
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Problem Sheet 9: Program Proofs

Chris Poskitt
ETH Zürich

1 Axiomatic Semantics

This section provides some additional questions on Hoare logic. Some proof rules are provided
in Figure 1.

i. Devise an axiom for the command havoc(x0, . . . , xn), which assigns arbitrary values to the
variables x0, . . . , xn.

ii. Write a program that computes the factorial of a natural number stored in variable x and
assigns the result to variable y. Prove that the program is correct using our Hoare logic.

iii. Define a proof rule for the from-until-loop construct.

iv. Consider the following annotated program, where A is an array indexed from 1 with
elements of type G, n is an integer variable storing A’s size, k is another integer variable,
v is a variable of type G initialised to some fixed value, and found is a Boolean variable.

{n ≥ 0}
from

k := n
found := False

until found or k < 1 loop
if A[k] = v then
found := True

else
k := k − 1

end
end

{(found =⇒ 1 ≤ k ≤ n ∧A[k] = v) ∧ (¬found =⇒ k < 1)}

(a) What does the program do? In particular, what does the value of k represent on
exit?

(b) Prove the triple using the axioms and inference rules of Hoare logic.

v. Sarah Proofgood has successfully shown that given an arbitrary program P and postcon-
dition post, the triple:

{WP[P, post]} P {post}

can be proven in our Hoare logic, i.e. ` {WP[P, post]} P {post}. Here, WP[P, post] is
an assertion expressing the weakest (liberal) precondition relative to P and post; that is,
the weakest condition that must be satisfied for P to establish post (without guaranteeing
termination).

Using Sarah’s result, show that any valid triple |= {p} P {q} is provable in our Hoare
logic, i.e. ` {p} P {q}.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

2 Separation Logic

This section provides some additional practice on using separation logic. The small axioms and
frame rule of separation logic are given in Figure 2.

i. Are the following assertions satisfiable? Justify your answers.

p ∗ ¬p

x = y ∗ ¬(x = y)

ii. Consider the following program state:

Which of the following assertions does this state satisfy? For the assertions it does not
satisfy: why not?

(a) ∃v. x 7→ v ∗ v 7→ v

(b) ∃v. x 7→ v ∗ v 7→ v ∗ y 7→ v

(c) y 7→
(d) (x = y) ∧ (y 7→ ∗ true)

(e) (x = y) ∗ true

iii. Starting from precondition {emp}, apply the axioms and inference rules of separation
logic to derive a postcondition expressing exactly the contents of the store and heap at
termination (assume that x and y are the only variables). Then, depict the post-state
using the store and heap diagrams presented in the lectures.

x := cons(5,9);

y := cons(6,7);

x := [x];

[y+1] := 9;

dispose(y);

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

iv. A well-formed binary tree t is defined by the grammar:

t , n | (t1, t2)

i.e. t can be either a leaf, which is a single number n, or an internal node with a left subtree
t1 and a right subtree t2. Consider the following definition of the inductive predicate
tree(t, i) which asserts that i is a pointer to a well-formed binary tree t:

tree(n, i) , i 7→ n

tree((t1, t2), i) , ∃l, r. i 7→ l, r ∗ tree(t1, l) ∗ tree(t2, r)

Using these definitions, give a proof outline of the following triple. There must be at least
one assertion between every two commands.

{tree((1, t), i)}
x := [i];

[i] := 2;

y := [i+1];

dispose(i);

dispose(x);

dispose(i+1);

{tree(t, y)}

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Autumn 2015

Appendix: Proof Rules

[ass] ` {p[e/x]} x := e {p}

[skip] ` {p} skip {p}

` {p} P {r} ` {r} Q {q}
[comp]

` {p} P ; Q {q}

` {b ∧ p} P {q} ` {¬b ∧ p} Q {q}
[if]

` {p} if b then P else Q {q}

` {b ∧ p} P {p}
[while]

` {p} while b do P {¬b ∧ p}

p⇒ p′ ` {p′} P {q′} q′ ⇒ q
[cons]

` {p} P {q}

Figure 1: A Hoare logic for partial correctness

` {e 7→ } [e] := f {e 7→ f}

` {e 7→ } dispose(e) {emp}

` {X = x ∧ e 7→ Y } x := [e] {e[X/x] 7→ Y ∧ Y = x}

` {emp} x := cons(e0, . . . , en) {x 7→ e0, . . . , en}

` {p} P {q}
` {p ∗ r} P {q ∗ r}

side condition: no variable modified by P appears free in r

Figure 2: The small axioms and frame rule of separation logic

4


	Axiomatic Semantics
	Separation Logic

