Software Verification (Autumn 2015)

Lecture 5: Auto-Active Verification

Chris Poskitt

(based on material by Nadia Polikarpova)

Chair of ‘e
@Software Engineering mzurICh

This time last week

|- {x>0 } x :=x+1; skip { x>1 }

o I s T xmxt L (e 1)

[cons] skip]

F{x>0}x:=x+1{z>1} = {x > 1} skip {z > 1}

[comp - {x >0} x = x + 1; skip {z > 1}

Can we reason about {pre}P{post}
mechanically?

Verification problem undecidable in general

How far can we go? What challenges do we face?
Determining loop invariants
Weak or missing assertions
Undecidable assertion logics

ldea: automate as much as possible, with users
indirectly providing guidance through program-level
annotations

“Auto-active” verification

all interaction at
the program level

Specification
Program EnilE

Annotations

Reasoning
Engine

Chair of Software Engineering, ETH Zurich 4

Veritying imperative programs

Language A Language B Language C
Verifier A Verifier B Verifier C
Control flow & state = Control flow & state, = Control flow & state reuse
built-in types,

framing,...

Logical Formula

Reasoning Engine

&

Chair of Software Engineering, ETH Zurich 5

Intermediate Verification Language

Language A Language B Language C

Verifier A Verifier B Verifier C

High-level constructs,
built-in types and

. _ IVL Program operations, framing, ...
Invariant inference, ... ‘.,__
VL Verifier

Control flow & state

Logical Formula | Logical Formula Il Logical Formula Il

Reasoning Engine | Reasoning Engine | Reasoning Engine Ill

& & &

Chair of Software Engineering, ETH Zurich 6

The Boogie IVL

Chalice AutoProof

Microsoft
Research

Simple yet expressive
procedures
first-order logic
integer arithmetic

Great for teaching verification!
skills transferable to other auto-active tools

Alternatives: Why3 [http://why3.Iri.fr/]
Viper [http://www.pm.inf.ethz.ch/]

Simplify HOL-Boogie

Chair of Software Engineering, ETH Zurich 7

http://why3.lri.fr/
http://why3.lri.fr/
http://www.pm.inf.ethz.ch/
http://www.pm.inf.ethz.ch/

Overview

The Boogie Language : how to express your intention?

Imperative constructs
Specification constructs

The Boogie Tool : how to get it to verify?

Debugging techniques
Boogaloo to the rescue

The AutoProof Verifier

Chair of Software Engineering, ETH Zurich

Overview

The Boogie Language
Imperative constructs
Specification constructs

The Boogie Tool
Debugging techniques
Boogaloo to the rescue

The AutoProof Verifier

Getting started with Boogie

Micrasoft

Try online [rise4fun.com/Boogie]

Download [boogie.codeplex.com]

User manual [Leino: This is Boogie 2]

Hello, world?

Chair of Software Engineering, ETH Zurich

10

http://rise4fun.com/Boogie/
http://boogie.codeplex.com/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://rise4fun.com/Boogie/Vjvs

Types

Basic types: bool, int, real definition
User-defined: type Name t,, ..., t,; usage
type ref; // references type Person;

type Field t; // fields with values of type t Field int || Field ref
Maps: <t;, ..., t,>[domg,...,dom]Jrange

[int]int // array of int [Person]bool // set of persons
[ref]ref // “next” field of a linked list
<t>[ref, Field t]t // generic heap

Synonyms: type Name t,, ..., t, = type;

type Array t = [int]t; type HeapType = <t>[ref, Field t]t;

Chair of Software Engineering, ETH Zurich 11

Imperative constructs

Regular procedural programming language
[Absolute Value & Fibonacci]

... and non-determinism
great to simplify and over-approximate behavior

havoc x; // assign an arbitrary value to x

if (*) { // choose one of the branches non-deterministically
statements

} else {
statements

}

while (*) { // loop some number of iterations
statements

}

Chair of Software Engineering, ETH Zurich

12

http://rise4fun.com/Boogie/2NAs

Specification statements: assert

assert e:executionsin which e evaluates to false at
this point are bad

expressions in Boogie are pure, no procedure calls

Uses
explaining semantics of other specification constructs
encoding requirements embedded in the source language

assert lo <= i & i < hi; // bounds check
result := array[i];

assert this != null; // 0-0 void target check
call M(this);

debugging verification (see later)
[Absolute Value]

Chair of Software Engineering, ETH Zurich 13

http://rise4fun.com/Boogie/fqo

Specification statements: assume

assume e: executions in which e evaluates to false
at this point are impossible

havoc x; assume x*x == 169; // assign such that

assume true; // skip assume false; // this branch is dead

Uses
explaining semantics of other specification constructs
encoding properties guaranteed by the source language

havoc Heap; assume NoDangling(Heap); // managed language

debugging verification (see later)

Assumptions are dangerous! [Absolute Value]

Chair of Software Engineering, ETH Zurich 14

http://rise4fun.com/Boogie/2sIT

Loop Invariants

before statements, before statements;

while (c¢) assert 1inv;
invariant 1inv;

{ . havoc all_vars;
body; — assume inv && c;

} body;

after statements; assert 1inv;

havoc all vars;
assume inv && !c;
after statements;

The only thing the verifier know about a loop
simple invariants can be inferred

[Fibonacci]

Chair of Software Engineering, ETH Zurich

http://rise4fun.com/Boogie/lODt

Procedure contracts

procedure P(ins) returns (outs)
free requires pre’;
requires pre;
modifies vars; // global
ensures post;
free ensures post’;

{ body; }

call outs := P (ins);

assume pre && pre’;
body;
assert post;

assert pre;
havoc outs, vars;
assume post && post”’;

The only thing the verifier knows about a call
this is called modular verification

[Abs and Fibonacci]

Chair of Software Engineering, ETH Zurich

16

http://rise4fun.com/Boogie/XjTs

Enhancing specifications

How do we express more complex specifications?
e.g. ComputeFib actually computes Fibonacci numbers

Uninterpreted functions

function fib(n: int): int;

Define their meaning using axioms

axiom fib(@) == @ && fib(1l) =
>=

:1;
axiom (forall n: int :: n 2 ==> fib(n) == fib(n-2) + fib(n-1));

'Fibonacci]

Chair of Software Engineering, ETH Zurich

17

http://rise4fun.com/Boogie/D5gg

Overview

The Boogie Language
Imperative constructs
Specification constructs

The Boogie Tool
Debugging techniques
Boogaloo to the rescue

The AutoProof Verifier

What went wrong?

Specification

Program Boogie

IZI

Annotations

Chair of Software Engineering, ETH Zurich 19

Debugging techniques

Proceed in small steps [Swap]
use assert statements to figure out what Boogie knows

Divide and conquer the paths
use assume statements to focus on a subset of executions

Prove a lemma [Non-negative Fibonacci]
write ghost code to help Boogie reason

Chair of Software Engineering, ETH Zurich

20

http://rise4fun.com/Boogie/OnpC
http://rise4fun.com/Boogie/rQV2
http://rise4fun.com/Boogie/rQV2
http://rise4fun.com/Boogie/rQV2

Overview

The Boogie Language
Imperative constructs
Specification constructs

The Boogie Tool
Debugging techniques
Boogaloo to the rescue

The AutoProof Verifier

AutoProof: a Boogie-based
verifier for Eiffel

Hffel program
« AutoProof

User] : Boogie

Translates contract-annotated
Eiffel programs to Boogie

\érification « \alid
Try online [via Comcom] conditions { /invelid
Manual, tutorial,
examples [AutoProof webpage]
How the translation works [Slides]

MT Solver

Chair of Software Engineering, ETH Zurich 22

http://cloudstudio.ethz.ch/comcom/#AutoProof
http://se.inf.ethz.ch/research/autoproof/
http://se.inf.ethz.ch/courses/2015b_fall/sv/slides/eiffel_to_boogie.pdf

1 - S5imple bank account class.

2 --Try to fix it and make the wverification go through.
3

4 (¢lass

S ACCOUNT

6

7 feature -- Access

g

9 balance: INTEGER

18 -- Balance of account.

11

12 feature -- Element change

13

14 deposit (amount: INTEGER)

15 -- Deposit “amount’ on account.
16 require

17 amount_not_negative: amount == @
18 do

19 balance := balance + amount
28 ensure

Run...

Feature Line

ACCOUNT (invariant admisgsibility)

ANY.default create (creator, inherited by ACCOUNT)
ACCOUNT .deposit

ACCOUNT .withdraw

ACCOUNT.transfer

21

445

Rasult

Successfully wverified.
Successfully wverified.
Successfully wverified.
Postcondition balance decreased may be vioclated.

Postcondition balance decreased may be vioclated.

Conclusions

Boogie is an Intermediate Verification Language (VL)
IVLs help develop verifiers

The Boogie language consists of:
imperative constructs = Pascal

specification constructs (assert, assume, requires, ensures,
invariant)

math-like part (functions + first-order axioms)

There are several techniques to debug a failed verification
attempt

AutoProof is one of several auto-active verifiers, based on
translating annotated programs to Boogie

Chair of Software Engineering, ETH Zurich 24

