
Software Verification (Autumn 2015)
Lecture 5: Auto-Active Verification

Chris Poskitt

(based on material by Nadia Polikarpova)

Chair of Software Engineering, ETH Zurich 2

This time last week

|- { x>0 } x := x+1; skip { x>1 }

Verification problem undecidable in general

How far can we go? What challenges do we face?
Determining loop invariants

Weak or missing assertions

Undecidable assertion logics

…

Idea: automate as much as possible, with users
indirectly providing guidance through program-level
annotations

Chair of Software Engineering, ETH Zurich 3

Can we reason about {pre}P{post}
mechanically?

all interaction at
the program level

Chair of Software Engineering, ETH Zurich 4

“Auto-active” verification

Verifier Program

Specification

Annotations

Logical
Formula

Reasoning
Engine

reuse

Chair of Software Engineering, ETH Zurich 5

Verifying imperative programs

Verifier B Verifier A Verifier C

Logical Formula

Reasoning Engine

Language A Language B Language C

Control flow & state
...

Control flow & state,
built-in types,

framing,...

Control flow & state
...

High-level constructs,
built-in types and

operations, framing, ...

Chair of Software Engineering, ETH Zurich 6

Intermediate Verification Language

Verifier B Verifier C

Logical Formula

Reasoning Engine

Language A Language B Language C

IVL Program

IVL Verifier

Verifier A

Control flow & state

Reasoning Engine I Reasoning Engine III Reasoning Engine II

Logical Formula I Logical Formula II Logical Formula III

Invariant inference, ...

Chair of Software Engineering, ETH Zurich 7

The Boogie IVL

AutoProof VCC

Z3

boogie

Dafny

Simplify

Chalice

HOL-Boogie

Spec#

Simple yet expressive
procedures
first-order logic
integer arithmetic

Great for teaching verification!
skills transferable to other auto-active tools

Alternatives: Why3 [http://why3.lri.fr/]

 Viper [http://www.pm.inf.ethz.ch/]

http://why3.lri.fr/
http://why3.lri.fr/
http://www.pm.inf.ethz.ch/
http://www.pm.inf.ethz.ch/

The Boogie Language
Imperative constructs

Specification constructs

The Boogie Tool
Debugging techniques

Boogaloo to the rescue

The AutoProof Verifier

Chair of Software Engineering, ETH Zurich 8

Overview

: how to express your intention?

: how to get it to verify?

The Boogie Language
Imperative constructs

Specification constructs

The Boogie Tool
Debugging techniques

Boogaloo to the rescue

The AutoProof Verifier

Chair of Software Engineering, ETH Zurich 9

Overview

Try online [rise4fun.com/Boogie]

Download [boogie.codeplex.com]

User manual [Leino: This is Boogie 2]

Hello, world?

Chair of Software Engineering, ETH Zurich 10

Getting started with Boogie

boogie

http://rise4fun.com/Boogie/
http://boogie.codeplex.com/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://rise4fun.com/Boogie/Vjvs

Basic types: bool, int, real

User-defined: type Name t1, ..., tn;

Maps: <t1, ..., tn>[dom1,...,domn]range

Synonyms: type Name t1, ..., tn = type;

Chair of Software Engineering, ETH Zurich 11

Types

type ref; // references type Person;

type Field t; // fields with values of type t

[Person]bool // set of persons

[ref]ref // “next” field of a linked list

<t>[ref, Field t]t // generic heap

type Array t = [int]t; type HeapType = <t>[ref, Field t]t;

Field ref Field int

definition

usage

[int]int // array of int

Regular procedural programming language
[Absolute Value & Fibonacci]

... and non-determinism
great to simplify and over-approximate behavior

Chair of Software Engineering, ETH Zurich 12

Imperative constructs

havoc x; // assign an arbitrary value to x

if (*) { // choose one of the branches non-deterministically
 statements
} else {
 statements
}

while (*) { // loop some number of iterations
 statements
}

http://rise4fun.com/Boogie/2NAs

assert e: executions in which e evaluates to false at
this point are bad

expressions in Boogie are pure, no procedure calls

Uses
explaining semantics of other specification constructs
encoding requirements embedded in the source language

debugging verification (see later)

[Absolute Value]

Chair of Software Engineering, ETH Zurich 13

Specification statements: assert

assert lo <= i && i < hi; // bounds check
result := array[i];

assert this != null; // O-O void target check
call M(this);

http://rise4fun.com/Boogie/fqo

assume e: executions in which e evaluates to false
at this point are impossible

Uses
explaining semantics of other specification constructs

encoding properties guaranteed by the source language

debugging verification (see later)

Assumptions are dangerous! [Absolute Value]

Chair of Software Engineering, ETH Zurich 14

Specification statements: assume

havoc x; assume x*x == 169; // assign such that

assume true; // skip assume false; // this branch is dead

havoc Heap; assume NoDangling(Heap); // managed language

http://rise4fun.com/Boogie/2sIT

The only thing the verifier know about a loop
simple invariants can be inferred

[Fibonacci]

Chair of Software Engineering, ETH Zurich 15

Loop invariants

before_statements;
while (c)
 invariant inv;
{
 body;
}
after_statements;

before_statements;
assert inv;

havoc all_vars;
assume inv && c;
body;
assert inv;

havoc all_vars;
assume inv && !c;
after_statements;

=

http://rise4fun.com/Boogie/lODt

The only thing the verifier knows about a call
this is called modular verification

[Abs and Fibonacci]

Chair of Software Engineering, ETH Zurich 16

Procedure contracts

procedure P(ins) returns (outs)
 free requires pre’;
 requires pre;
 modifies vars; // global
 ensures post;
 free ensures post’;
{ body; }

assume pre;
body;
assert post;

= call outs := P (ins);

assert pre;
havoc outs, vars;
assume post;

=
&& pre’;

&& post’;

http://rise4fun.com/Boogie/XjTs

How do we express more complex specifications?
e.g. ComputeFib actually computes Fibonacci numbers

Uninterpreted functions

Define their meaning using axioms

[Fibonacci]

Chair of Software Engineering, ETH Zurich 17

Enhancing specifications

function fib(n: int): int;

axiom fib(0) == 0 && fib(1) == 1;
axiom (forall n: int :: n >= 2 ==> fib(n) == fib(n-2) + fib(n-1));

http://rise4fun.com/Boogie/D5gg

The Boogie Language
Imperative constructs

Specification constructs

The Boogie Tool
Debugging techniques

Boogaloo to the rescue

The AutoProof Verifier

Chair of Software Engineering, ETH Zurich 18

Overview

Chair of Software Engineering, ETH Zurich 19

What went wrong?

Boogie Program

Specification

Annotations

Proceed in small steps [Swap]
use assert statements to figure out what Boogie knows

Divide and conquer the paths
use assume statements to focus on a subset of executions

Prove a lemma [Non-negative Fibonacci]
write ghost code to help Boogie reason

Chair of Software Engineering, ETH Zurich 20

Debugging techniques

http://rise4fun.com/Boogie/OnpC
http://rise4fun.com/Boogie/rQV2
http://rise4fun.com/Boogie/rQV2
http://rise4fun.com/Boogie/rQV2

The Boogie Language
Imperative constructs

Specification constructs

The Boogie Tool
Debugging techniques

Boogaloo to the rescue

The AutoProof Verifier

Chair of Software Engineering, ETH Zurich 21

Overview

Chair of Software Engineering, ETH Zurich 22

AutoProof: a Boogie-based
verifier for Eiffel

ETHZ D-INFK

Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verificat ion – Problem Sheets

Fall 2014

Problem Sheet 2: AutoProof

Chris Poskit t and Julian Tschannen
ETH Zürich

“Beware of bugs in the above code; I have only proved it correct, not tr ied it.”

– Donald E. Knuth

Starred exercises (⇤) are more challenging than the others.

1 Background

This exercise class is concerned with the AutoProof tool [2, 3], a stat ic verifier for programs

writ ten in (a subset of) the object-oriented language Ei↵el. The tool takes an Ei↵el program—

annotated with contracts (i.e. executable pre-/ postcondit ions, class invariants, intermediate

assert ions)—and automatical ly at tempts to verify the correctness of the program with respect

to its contracts.

AutoProof

Boogie

SMT Solver

Eiffel program

Eiffel errors

Boogie

file

Boogie

errors

Verification
conditions

Valid
/ invalid

User

Figure 1: The AutoProof workflow

The tool is built on top of Boogie [1],

an automat ic verificat ion framework developed

by Microsoft Research. AutoProof t ranslates

Ei↵el programs and their contracts (i.e. their

proof obligat ions) into the front -end language

of Boogie—an intermediate verification language

encoding the semant ics of the source program

in terms of primit ive const ructs, and prescrib-

ing what it means for the source program to be

correct . The Boogie tool then translates this in-

termediate program into a set of verification con-

di tions; logical formulae which if valid, indicate

the correctness of the source program. The va-

lidity of these verificat ion condit ions is checked

automat ically by an SMT solver (current ly Z3).

This workflow is summarised in Figure 1. We

will only be interact ing with AutoProof itself in

this exercise class, but it is helpful to be roughly

aware of how it works and what t ranslat ions it is

performing (in a later class, we will look at the

Boogie framework direct ly).

1

Translates contract-annotated
Eiffel programs to Boogie

Try online [via Comcom]

Manual, tutorial,

examples [AutoProof webpage]

How the translation works [Slides]

http://cloudstudio.ethz.ch/comcom/#AutoProof
http://se.inf.ethz.ch/research/autoproof/
http://se.inf.ethz.ch/courses/2015b_fall/sv/slides/eiffel_to_boogie.pdf

Chair of Software Engineering, ETH Zurich 23

Boogie is an Intermediate Verification Language (IVL)
IVLs help develop verifiers

The Boogie language consists of:
imperative constructs ≈ Pascal
specification constructs (assert, assume, requires, ensures,
invariant)
math-like part (functions + first-order axioms)

There are several techniques to debug a failed verification
attempt

AutoProof is one of several auto-active verifiers, based on
translating annotated programs to Boogie

Chair of Software Engineering, ETH Zurich 24

Conclusions

