ETH ziricn

Chair of Software Engineering

Software Verification

Sebastian Nanz

Lecture 8: Abstract Interpretation

ETH :iich

Chair of Software Engineering

Abstract Interpretation

Introduction

One framework to rule them all

» In the past lectures we have introduced a particular style of
program analysis: data flow analysis.

» For these types of analyses, and others, a main concern is
correctness: how do we know that a particular analysis produces
sound results (does not miss possible errors)?

» In the following we discuss abstract interpretation, a general
framework for describing program analyses and reasoning about
their correctness.

Main ideas: Concrete computations

» An ordinary program describes computationsin some concrete
domain of values.

> Example: program states that record the integer value of
every program variable.

o & State=Var->/

» Possible computations can be described by the concrete
semantics of the programming language used.

Main ideas: Abstract computations

» Abstract interpretation of a program describes computationin a
different, abstract domain.
> Example: program states that only record a specific

property of integers, instead of their value: their sign,
whether they are even/odd, or contained in [-32768, 32767]

etc.
o & AbstractState = Var -> {even, odd}

» In order to obtain abstract computations, an abstract semantics
for the programming language has to be defined.

» Abstract interpretation provides a framework for proving that
the abstract semantics is sound with respect to the concrete
semantics.

The collecting semantics

We assume the state of a program to be modeled as:
o & State=Var->/Z

We will use the following notation for function update:

K ifx=y
o(y) otherwise

olx» k](y) = {

We will write |[e]|c to denote the value of an expression e in state o.

We construct the collecting semantics as a function which gives for
every program label the set of all possible states.

C : Labels -> §(State)

Rules of the collecting semantics

|
l C,={o[xP n]| o € C, and |[e]|0= n}
[X := e]
II
|
Ib] Ifalse Cirve ={0 | 0 € C, and |b]o = true}
l e Ciraie = {0 | 0 € C, and |b]o = false}
13 1,

| C=Cy UG,

Note: In difference to the lecture on data flow analysis, labels are
not on blocks, but on edges.

Example: Collecting semantics

Assume x > 0.

C,={o | o(x) >0}

C,={oly» 1] | o € C;} U
{olx» o(x) -1] | 0 € C}

C;=C,n{o | o(x) # 0}

Cy={oly~ a(x)-oly)] | 0 = G}

C.=C,n{o | o(x) = 0}

Solving the equations ©

» The equation system we obtain has variables C, ..., C; which are

interpreted over the complete lattice §(State).
» We can express the equation system as a monotone function F:

& (State)> -> & (State)>
F(Cy, ..., Cs)=({o | a(x) >0}, ..., C,n{o | o(x) =0})

» Using Tarski's Fixed Point Theorem, we know that a least fixed
point exists.

» We have seen: The least fixed point can be computed by
repeatedly applying F, starting with the bottom element L =

(4,9, D D) of the complete lattice until stabilization.

F(L)CFF(L)C...Cr(L)=Fm1(l)

Example: Fixed Point Computation ©

l 1 {[x»m,y»n] | m >0}

ly:=1]
/l 5> Alxem,y»1] | m>0} U {[x>m-1,y»m] | m >0}
[x# 0] —@ {[x»0,y>m] | m > 0} ... etc.
L3 A{xemy»1] | m>0)
ly:=x*y]
| 4 {[x>m,y>m] | m >0}
 [x:=x-1]

C,={o| a(x) >0}
C,={oly»1] | o € C;} U
{olxro(x)-1] | o & Cy}
C;=C,n{o | o(x) # 0}
C,={oly~ o(x)-aly)] | o € C5}
C.=C,n{o | o(x) = 0}

10

Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

o & AbstractState = Var -> Signs

where Signs is the followingstructure:

T T represents all integers
+ the positiveintegers
_ 0 + - the negative integers
0 the set {0}
1 1 the empty set

How is such a structure called?
A complete lattice

11

Example: Sign Analysis ©

Assume x > 0. Use the abstract domain for sign analysis.

ll A =[xP+,yrPT]

ly:=1]
\iz A, =Alyr +] U

[x # 0] > Aglx > Ay(x) © +]
l 3

[y:=x*y] o=
| 4 Ay = Asly P Ag(x) ® Agly)]
— [x:=x-1]

Ac=A,1[x>0,y»T]

12

ETH :iich

Chair of Software Engineering

Abstract Interpretation

Foundations

Introductory example: Expressions

A little language of expressions

Syntax
e:=n|le*e

Concrete semantics
C[n] =n
Cle * e] =Cle] - C[e]

Example
C[-3*2*-5]=C[-3*2]-C[5]=C[-3*2]-(5)=..=30

14

Introductory example: Abstraction ©

Assume that we are not interested in the value of an expression but
onlyin its sign:

> Negative: -
> [ero: 0)
> Positive: +
Abstract semantics o | - 0o | +
A[n] = sign(n) T T o
Ale * e] = Ale] @ Ale] 0 0O
+ 4

Example
A[-3*2*-5] =A[-3*2]®A[-5]=A[-3*2]®(-)=...=
=(-) @ (+)®(-) =(+)

15

Introductory example: Soundness ©

» We want to express that the abstract semantics correctly
describes the sign of a corresponding concrete computation.

> For this we first link each concrete value to an abstract value:

Representation function

B:Z->{-0,+}
Bn)= {0
+

ifn<O
ifn=0
ifn>0

16

Introductory example: Soundness ©

» Conversely, we can also link abstract values to the set of
concrete values they describe:

Concretization function

v:{-, 0, +}->&(2)

[{n | n<0} ifs=-
v(s) = < {0} ifs=0
ﬁn|n>0} ifs=+

» Soundness then describes intuitively that the concrete value of
an expression is described by its abstract value:

Ve.Cle] € y(Ale])

17

Extending the language ©

Syntax
e:=n|le*ele+e]|-e

Abstract semantics -]l o | o+
A[n] =sign(n) o + |0
Al-e] = ©A[e]

@ 0 +
Ale +e] = Ale] @ Ale]

- -] 2
0 0 +
+ +

Observation: The abstract domain {-,0,+} is not closed under the
interpretation of addition.

18

Extending the abstract domain

We have to introduce an additional abstract value:

T "top" - (any value)

® 0 + T

T T
0 0 + T
+ + T
T T

19

The new abstract domain

We can extend the concretization function to the new abstract
domain {-,0,+, T, L} (add L for completeness):
v(T) =2 y(L)=9

We obtain the following structure when drawing the partial order
induced by

a <biff y(a) < y(b)

T

- 0 +

\\/
1

How is such a structure called?
A complete lattice

Construction of complete lattices ©

» If we know some complete lattices, we can construct new ones
by combiningthem

» Such constructions become important when designing new
analyses with complex analysis domains

Example: Total function space

Let (D, L,) be a complete lattice and let S be a set. Then (D, L),
defined as follows, is a complete lattice:

»D=S->D, ("space of total functions")
»fCf iff VseS:f(s) 5, f'(s) ("point-wise ordering")

21

The framework of abstract interpretation

» Starting from a concrete domain C, define an abstract domain (A,
L), which must be a complete lattice

» Define a representation function B that maps a concrete value to
its best abstract value

B:C->A
» From this we can derive the concretization functiony

v:A->§(C)
v(a)={c € C| B(c) L a}

and abstraction function a for sets of concrete values
a: £(C)->A

a(C)= L {B(c) | c € ¢}

©

22

Galois connections

» The following properties of a and y hold:

Monotonicity
(1) a and y are monotone functions

Galois connection

(2) c < y(a(c)) for all c € §(C)
(3) a 2 a(y(a)) foralla € A

» Galois connection: This property means intuitively that the
functionsa and y are "almost inverses" of each other.

23

lon

IS connect

Galoi

Figure

—————
- -~
e

-
ST

S

24

Galois insertions ©

» For a Galois connection, there may be several elements of A that
describe the same elementin C

» As a result, A may contain elements which are irrelevant for
describing C
» The concept of Galois insertion fixes this:

Monotonicity
(1) a and y are monotone functions

Galois insertion

(2) c < y(a(c)) for all c € §(C)
(3) a = a(y(a)) foralla € A

25

lon

C

Galois inser

Figure

——————
- -~
e

-
ST

S

26

Induced Operations

» A Galois connection can be used to induce the abstract
operations from the concrete ones.

aA°opc°y

A abstract execution

§(C) op §(C)

» We can show that the induced operation op=a ° op ° y is the
most precise abstract operationin this setting.

» The induced operation might not be computable. In this case we
can define an upper approximation op#, op t op# and use this as
abstract operation.

concrete execution

27

ETH :iich

Chair of Software Engineering

Abstract Interpretation

Widening

Range analysis

» To introduce the notion of widening, we have a look at range
analysis, which provides for every variable an over-approximation

of its integer value range.

» We are left with the task of choosing a suitable abstract domain:

the interval lattice suggests itself.

[_

[_110]

[_°°I+°°]

1,1] [0,2]

N B
~
\\/\/\’ -~
-

[0,1] [1,2]

S -,
N -
S -

[_11_1] [0,0] [1,1]

Interval = { L}U {[x,y] | x<y,x €EZ U {0}, y € Z U {eo}}

29

Example

Consider the following program:

l 1 [X"’T]
[x:=1]

| 2 [x>[L1]] Yx>[2,2]] =[x>[1,2]]

[Xx<n] —

l 3 [x[1,1]]
L [x:=x+1]

» At program point 2, the following sequence of abstract
states arises: [x>[1,1]], [x*[1,2]], [x~[1,3]], ...
Consequence: The analysis never terminates (or, if n is statically

known, converges only very slowly).
30

The ascending chain condition ©

»Using an arbitrary complete lattice as abstract domain, the
solutionis not computablein general.

» The reason for that is the fact that the value space might be
unbounded, containinginfinite ascending chains:

(), issuch that I, EI,EI,E- -,
but there exists no n such that | =1, =

> If we replace it with an abstract space that is finite (or does not
possess infinite ascending chains), then the computationis
guaranteed to terminate.

» In general, we want an abstract domain to satisfy the ascending
chain condition, i.e. each ascending chain eventually stabilises:

if(I,),issuchthatl; CI,EI;E- -
then there exists n such that |, =1,,, =

31

Non-termination ©

» The reason for the non-terminationin the example is that the
interval lattice contains infinite ascending chains.

[_oo’i-oo]

L1 [02]
\\\/\/\’,
[_110] [011] [112]

o .
~ e
S -,

[-1-1] [0,0] [11] [2,2

1

» Trick, if we cannot eliminate ascending chains: We redefine the
join operator of the lattice to jump to the extremal value more
quickly.

Before: [1,1] Y [2,2] =[1,2] Now: [1,1] V [2,2] = [1,+°°] 39

Widening

A widening V : D x D -> D on a partially ordered set (D, C) satisfies
the following properties:

1. Forallx,y = D. xExVy and yLxVy

2. Forall ascending chains x; L x, L x3 L - - - the ascending chain y,
=X, Ly,=y;, Vx,L.---Ly .=y V x,, eventuallystabilizes.

» Wideningis used to accelerate the convergence towards an
upper approximation of the least fixed point.

33

Example (continued) ©

» Assume we have a widening operator V that is defined such that
[1,1] V [2,2] = [1, +e°]

\Ll [X"’T]
[x:=1] [x»[1,+e2]] V [x°[1,n]] = [x°[1,+°°]]

| 2 [x>[1,1]] V [x>[2,2]] =[x~[1,+e°]]

X<n] —s [x>[n+1+es])

| 3 D11l [xo[1,n]]
L [x:=x+1]

» The analysis converges quickly.

34

Reading ©

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In: POPL'77, pages 238-252. ACM Press,
1977

Neil D. Jones, Flemming Nielson: Abstract Interpretation: a
Semantics-Based Tool for Program Analysis, 1994

Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of
Program Analysis, Springer, 2005.

Chapter 1: Section 1.5
Chapter 4 (advanced material)

35

