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Program Verification: the very idea 

max (a, b: INTEGER): INTEGER 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 

 require 

  true 

 

 ensure 

  Result >= a 

  Result >= b 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem: 

 Given: a program P and a specification S 

 Determine: if every execution of P, for every value of input parameters, satisfies S 
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Real-time Verification 

max (a, b: INTEGER): INTEGER 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 ensure 

  Result >= a 

  Result >= b 

 

 ensure  -- real-time 

 “max terminates no sooner 

  than 3 ms and no later than 

  10 ms after invocation” 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Real-time Verification problem: 

 Given: program P (embedded in environment E)  
          and real-time specification S 

 Determine: if every execution of P (within E) satisfies S 
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Real-time Programs and Systems 

 The timing of a piece of software is usually dependent on the environment 
where the computation takes place 

 Hence, in real-time verification the focus shifts from programs to (software-
intensive) systems 

 The purely computational aspects can often be analyzed in isolation 

 Real-time verification can then focus on real-time aspects of the system 

 e.g., synchronization, deadlines, delays, ... 

 while abstracting away most of the rest 

Def. Real-time specification: specification that includes  

exact timing information. 

Def. Real-time computation: computation whose specification 

is real-time. In other words: computation whose correctness 

depends not only on the value of the result but also on  

when the result is available. 
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Decidability vs. Expressiveness Trade-Off 

 The classes of F(P) and N(S) should guarantee: 

 enough expressiveness to include a quantitative notion of time 

 decidability of the verification problem 

The Real-time Verification problem: 

 Given: program P (embedded in environment E) and real-time specification S 

 Determine: if every execution of P (within E) satisfies S 

Does      F(P) ⊧ N(S)         hold? 

P: a system S: a real-time specification 

F(P): formal model of P N(S): formal annotation for S 
⇕ ⇕ 
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Real-time Model-Checking 

A: a timed automaton F: a metric temporal-logic formula A ⊧ F 

The Real-time Model Checking problem: 

 Given: a timed automaton A  
          and a metric temporal-logic formula F 

 Determine: if every run of A satisfies F or not 

 if not, also provide a counterexample:  
a run of A where F does not hold 

 The model-checking paradigm is naturally extended to real-time systems 

 Different choices are possible for the family of automata and of formulae 

 Linear time is the standard option for real-time (as opposed to branching time) 

 A different attribute of time that becomes relevant in quantitative models is discrete 
vs. dense time 

? 



7 

Discrete vs. dense (continuous) time 

Discrete time 

 sequence of isolated “steps” 

 every instant has a unique successor 

 e.g.: the naturals N = {0, 1, 2, ...} 

 

+ simple and intuitive 

+ verification usually decidable (and 
acceptably complex) 

+ robust and elegant theoretical 
framework 
 

 cannot model true asynchrony 

 unsuitable to model physical 
variables 

Dense (or continuous) time 

 arbitrarily small distances 

 the successor of an instant is not 
defined 

 e.g.: the reals R 

 

+ can model true asynchrony 

+ accurate modeling of physical 
variables 
 

 

 tricky to understand 

 verification often undecidable (or 
highly complex) 

 lacks a unifying framework 



8 

Discrete Real-time Model-Checking 

 

Timed Automata and 

Metric Temporal Logic 
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Discrete Real-time Model-Checking 

A: a discrete TA F: an MTL formula A ⊧ F 

The Discrete Real-time Model Checking problem: 

 Given: a discrete TA A and an MTL formula F 

 Determine: if every run of A satisfies F or not 

 if not, also provide a counterexample: a run of A where F does not 

hold 

? 

Discrete real-time model checking extends standard 

“untimed” model checking straightforwardly: 

 Discrete Timed Automata (TA) extend the Finite-State Automata 

(FSA) 

 Metric Temporal Logic (MTL) extends Linear Temporal Logic (LTL) 
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Timed Automata: Syntax 
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Timed Automata: Syntax 

Def. Nondeterministic Timed Automaton (TA) 
 A tuple [Σ, S, C, I, E, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of locations 
(i.e., discrete states) 

 C: finite set of clocks 

 I, F: set of initial/final states 

 E: finite set of edges [s, σ, c, ρ, s'] 

 s ∈ S: source location 

 s' ∈ S: target location 

 σ ∈ Σ: input character (also “label”) 

 c: clock constraint in the form: 
 c ::= x ≈ k | ¬ c | c1 ∧ c2 

 x, y ∈ C are clocks 

 k ∈ N is an integer constant 

 ≈ is a comparison operator among <, ≤, >, ≥, = 

 ρ ⊆  C: set of clock that are reset (to 0) 
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Timed Automata: Semantics 

Accepting run: 

r =  [off, (x=0, y=0)] 

  [on, (x=0, y=3)] 

   [cooking, (x=8, y=0)] 

  [on, (x=81, y=73)] 

   [off, (x=85, y=77)] 

Over input timed word: 

w =  [turn_on, 3] 

  [start, 11] 

   [stop, 84] 

   [turn_off, 88] 
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Timed Automata: Semantics 

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] 

over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x N)* is a 

sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]  

   ∈ (S x N|C| )* of (extended) states such that: 

 it starts from an initial and ends in an accepting state:   s(0) ∈ I,  s(n)  ∈ F 

 initially all clocks are reset to 0:   v(0,k) = 0   for all 1 ≤ k ≤ |C| 

 for every transition (0 ≤ i < n): 
        [ s(i) v(i,1) ... v(i,|C|) ]  -->  [ s(i+1) v(i+1,1) ... v(i+1,|C|) ] 
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed: 

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i)) 
satisfy the constraint c 

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i) 

Def.    A timed word w = w(1) w(2) ... w(n) ∈ (Σ x N)* is a sequence 
 of pairs [σ(i), t(i)] such that: 

 the sequence of timestamps t(1), t(2), ..., t(n) is increasing 

 [σ(i), t(i)] represents the i-th character σ(i) read at time t(i) 
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Timed Automata: Semantics 

Def. Any TA A=[Σ, S, C, I, E, F] defines 
   a set of input timed words ⟨A⟩: 
  ⟨A⟩ ≜ { w ∈ (Σ x N)*  |   there is 
     an accepting run of A 
     over w } 

      ⟨A⟩ is called the language of A 

With regular expressions and arithmetic: 

 

⟨A⟩ = ( [turn_on, t1] 

     ([start, t2] [stop, t3])* 

     [turn_off, t4] )* 

 

  with t3-t2 ≤ 300 and t4-t1 > 1 
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Metric (Linear) Temporal Logic 

<>[2,4) stop 

“there is an occurrence of stop between 2 (included) and 4 (excluded) 

time units in the future” 

 [any, t ≤ 1]* [stop, 2] [stop, 3] [any, 4] [any, 7] ... 

 [any, t < 3]* [stop, 3] [any, 4] [any, t > 4] ... 

 

[](2,4] start 

“start holds between 2 (excluded) and 4 (included) time units in the future” 

 [any, 0] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]* 

 [any, 0] [any, 1] [any, 2] [start, 3] [any, t > 4]* 

 [stop, 0] [stop, 1] 
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Metric (Linear) Temporal Logic 

[] ( start ⇒ <>(3,10] stop ) 

“every occurrence of start is followed by an occurrence of stop 

between 3 (excluded) and 10 (included) time units in the 

future” 

 

cook U(3,10] stop 

“stop occurs between 3 (excluded) and 10 (included) time units in 

the future, and cook holds until then” 
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Metric (Linear) Temporal Logic: Syntax 

Def. Propositional Metric Temporal Logic (MTL) formulae: 

   F  ::=  p  |  ¬ F  |  F ∧ G  |  F U<a,b> G 

with p ∈ P any atomic proposition and <a,b> an interval of the 

time domain (w.l.o.g. with integer endpoints). 

Temporal (modal) operators: 

 next:         X F  ≜ True U[1,1] F 

 bounded until:   F U<a,b> G 

 bounded eventually:  <><a,b> F  ≜ True U<a,b> F 

 bounded always:   []<a,b> F  ≜ ¬ <><a,b> ¬F 

 intervals can be unbounded; e.g., [3, ∞) 

 intervals with pseudo-arithmetic expressions; e.g.: 

 ≥ 3 for [3, ∞) 

 = 1 for [1,1] 

 [0, ∞) is simply omitted 
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Metric Temporal Logic: Semantics 

Def. A timed word w =  [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x N)* satisfies LTL 
formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when: 

 w, i ⊧ p         iff     p = σ(i) 

 w, i ⊧ ¬ F        iff     w, i ⊧ F does not hold 

 w, i ⊧ F ∧ G      iff     both w, i ⊧ F and w, i ⊧ G hold 

 w, i ⊧ F U<a,b> G  iff     for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F 

 i.e., F holds until G will hold within <a, b> 

For derived operators: 

w, i ⊧ <><a,b> F iff   for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
    it is: w, j ⊧ F 

 i.e., F holds eventually within <a,b> 

w, i ⊧ []<a,b> F iff   for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
    it is: w, j ⊧ F 

 i.e., F holds always within <a,b> 
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Metric Temporal Logic: Semantics 

Def. Satisfaction: 

         w ⊧ F    ≜   w, 1  ⊧ F 

i.e., timed word w satisfies formula F initially 

Def. Any MTL formula F defines a set of timed words ⟨F⟩: 

    ⟨F⟩ ≜ { w ∈ (P x N)*  |  w ⊧ F } 

 ⟨F⟩ is called the language of F 
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Discrete Real-time Model-Checking 

 

From Real-time to Untimed 

Model-Checking 
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Discrete-time Real-time Model Checking 

An semantic view of the Real-time Model Checking problem: 

Given: a timed automaton A and an MTL formula F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A satisfies F 

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A does not satisfy F 

 any member of the nonempty intersection ⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample 

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)? 

 

For a discrete time domain we can reduce real-time model 

checking to (untimed) model-checking: 

 Transform timed automaton A into finite-state automaton A' 

 Transform MTL formula F into LTL formula F' 

 ⟨A⟩ ∩ ⟨¬ F⟩ = ∅    iff    ⟨A'⟩ ∩ ⟨¬ F'⟩ = ∅ 

 Re-use standard model-checking algorithms 
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Reduce discrete-time TAs to FSAs 

Use states of an FSA to “count” discrete time steps 

according to the semantics of the TA 

 transitions with special 

events τ are time steps 

without events. 

 on0 represents location on 

with clock x = 0 

 on≥1 represents location on 

with clock x ≥ 1 
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Reduce discrete-time MTL to LTL 

Use next operator X to “count” discrete time steps 

according to the semantics of the MTL formula 

 <>[1,3] p  becomes  Xp ∨ XXp ∨ XXXp 

 More compactly X(p ∨ X(p ∨ Xp)) 

 []≥5 p becomes X5 [](p ∨ τ) 

 X5p is a shorthand for XXXXXp 

 The disjunction is needed because we may have time 

increments without events 

 The encoding for bounded until is a bit more 

complicated but not different in principle 
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Discrete-time Real-time MC: Complexity 

There is an exponential blow-up in complexity when 

switching from (untimed) linear-time model checking to 

discrete-time real-time model checking: 

 Discrete-time real-time MTL model checking: 

EXPSPACE-complete 

 in practice: double-exponential time 

 LTL model checking: PSPACE-complete 

 in practice: singly-exponential time 

 The blow up occurs only if the constants (in timed automata and 

MTL formulas) are encoded succinctly in binary 

 blow-up due to the “unrolling” of binary constants as FSA states or 

nested next operators 
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Dense Real-time Model-Checking 

 

Timed Automata and 

Metric Temporal Logic 
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Dense Real-time Model-Checking 

Dense real-time model checking considers the same model as 

discrete real-time model checking but with R≥0 as time domain: 

 A dense Timed Automaton (TA) models the system 

 Dense-time Metric Temporal Logic (MTL) models the property 

 The syntax of TA and MTL need not be changed for dense time 

 with the possible exception of allowing fractional time bounds 

 The semantics of TA and MTL is also unchanged except that: 

 R≥0 replaces N as time domain 

 As we did with untimed model checking, we will use finite-word  
models for automata and logic. 

 Unlike in untimed model checking, this choice affects some results.  (We will 
mention some details only later for simplicity.) 
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Dense Real-time Model-Checking 

A: a TA F: an MTL formula A ⊧ F 

The Dense Real-time Model Checking problem: 

 Given: a dense TA A and an MTL formula F 

 Determine: if every run of A satisfies F or not 

 if not, provide a counterexample: a run of A where F does not hold 

? 

Dense real-time model checking extends standard 

“untimed” model checking: 

 Timed Automata (TA) extend Finite-State Automata (FSA) 

 Metric Temporal Logic (MTL) extends Linear Temporal Logic 

(LTL) 
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Timed Automata: Syntax 
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Timed Automata: Syntax 

Def. Nondeterministic Timed Automaton (TA): 
  a tuple [Σ, S, C, I, E, F]: 

 Σ: finite nonempty (input) alphabet 

 S: finite nonempty set of locations 
(i.e., discrete states) 

 C: finite set of clocks 

 I, F: set of initial/final states 

 E: finite set of edges [s, σ, c, ρ, s'] 

 s ∈ S: source location 

 s' ∈ S: target location 

 σ ∈ Σ: input character (also “label”) 

 c: clock constraint in the form: 
c ::= x ≈ k | ¬ c | c1 ∧ c2 

 x, y ∈ C are clocks 

 k ∈ N is an integer constant 

 ≈ is a comparison operator among <, ≤, >, ≥, = 

 ρ ⊆  C: set of clock that are reset (to 0) 
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Timed Automata: Semantics 

Accepting run: 

r =  [off, (x=0, y=0)] 

  [on, (x=0, y=3.2)] 

   [cooking, (x=8.5, y=0)] 

  [on, (x=81.7, y=73.2)] 

   [off, (x=84.91, y=76.41)] 

Over input timed word: 

w =  [turn_on, 3.2] 

  [start, 11.7] 

   [stop, 84.9] 

   [turn_off, 88.11] 
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Timed Automata: Semantics 

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word  
 w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x R)* is a sequence  
 r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S x R|C|)*  
  of (extended) states such that: 

 it starts from an initial and ends in an accepting state:   s(0) ∈ I, s(n)  ∈ F 

 initially all clocks are reset to 0:   v(0,k) = 0  for all 1 ≤ k ≤ |C| 

 for every transition (0 ≤ i < n):  
  [ s(i) v(i,1) ... v(i,|C|) ]  -->  [ s(i+1) v(i+1,1) ... v(i+1,|C|) ] 
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed: 

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))  
satisfy the constraint c 

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i) 

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x R)* is a sequence 
        of pairs [σ(i), t(i)] such that: 

 the sequence of timestamps t(1), t(2), ..., t(n) is increasing 

 [σ(i), t(i)] represents the i-th character σ(i) read at time t(i) 
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Timed Automata: Semantics 

Def. Any TA A=[Σ, S, C, I, E, F] defines 

 a set of input timed words ⟨A⟩: 

   ⟨A⟩ ≜ { w ∈ (Σ x R)*  | there is an  

   accepting run of A over w } 

        ⟨A⟩ is called the language of A 

With regular expressions and arithmetic: 

 

⟨A⟩ = ( [turn_on, t1] 

     ([start, t2] [stop, t3])* 

     [turn_off, t4] )* 

  with t3-t2 ≤ 300 and t4-t1 > 1 
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Metric (Linear) Temporal Logic 

<>[2,4) stop 

“there is an occurrence of stop between 2 (included) and 4 (excluded) time units in the 

future” 

 [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ... 

 [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ... 

 

[](2,4] start 

“start holds between 2 (excluded) and 4 (included) time units in the future” 

 [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ... 

 [any, t ≤ 2] [start, 4] [any, t > 4] ... 

 [stop, 0] [stop, 0.3] [stop, 0.7] 
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Metric (Linear) Temporal Logic 

[] ( start ⇒ <>(3,10] stop ) 

“every occurrence of start is followed by an occurrence of stop 

between 3 (excluded) and 10 (included) time units in the 

future” 

 

cook U(3,10] stop 

“stop occurs between 3 (excluded) and 10 (included) time units in 

the future, and cook holds until then” 
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Metric (Linear) Temporal Logic: Syntax 

Def. Propositional Metric Temporal Logic (MTL) formulae: 

    F  ::=  p  |  ¬ F  |  F ∧ G  |  F U<a,b> G 

with p ∈ P any atomic proposition and <a,b> an interval of the 

time domain (w.l.o.g. with integer endpoints). 

Temporal (modal) operators: 

 next:         X F  ≜ True U[1,1] F 

 bounded until:   F U<a,b> G 

 bounded eventually:  <><a,b> F  ≜ True U<a,b> F 

 bounded always:   []<a,b> F  ≜ ¬ <><a,b> ¬F 

 intervals can be unbounded; e.g., [3, ∞) 

 intervals with pseudo-arithmetic expressions; e.g.: 

 ≥ 3 for [3, ∞) 

 = 1 for [1,1] 

 [0, ∞) is simply omitted 
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Metric Temporal Logic: Semantics 

Def. A timed word w =  [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x R)* satisfies LTL  
  formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when: 

 w, i ⊧ p         iff     p = σ(i) 

 w, i ⊧ ¬ F        iff     w, i ⊧ F does not hold 

 w, i ⊧ F ∧ G      iff     both w, i ⊧ F and w, i ⊧ G hold 

 w, i ⊧ F U<a,b> G  iff     for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F 

 i.e., F holds until G will hold within <a, b> 

For derived operators: 

w, i ⊧ <><a,b> F iff   for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds eventually within <a,b> 

w, i ⊧ []<a,b> F iff   for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> 
     it is: w, j ⊧ F 

 i.e., F holds always within <a,b> 
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Metric Temporal Logic: Semantics 

Def. Satisfaction: 

          w ⊧ F    ≜   w, 1  ⊧ F 

i.e., timed word w satisfies formula F initially 

Def. Any MTL formula F defines a set of timed words ⟨F⟩: 

   ⟨F⟩ ≜ { w ∈ (P x R)*  | w ⊧ F } 

       ⟨F⟩ is called the language of F 
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Dense Real-time Model-Checking 

 

What's Decidable? 
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Automata-theoretic real-time model-checking? 

Let's try to extend the automata-theoretic model checking 

paradigm to real-time.  

 

 MTL2TA: given MTL formula F build TA 

a(F) such that ⟨F⟩ = ⟨a(F)⟩ 

 TA-Intersection: given TAs A, B build 

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩ 

 TA-Emptiness: given TA A check whether 

⟨A⟩ = ∅ is the case 

 

Which of these algorithms are applicable over real-time? 
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TAs not Closed under Complement 

A: a dense TA F: a dense-time MTL formula A ⊧ F 
? 

Fundamental problem: 

Dense timed automata are not closed under 

complement 

The complement of the language 

of this TA isn't accepted by any TA: 

 language of this TA: 

“there exist two p's separated by one t.u.” 

 complement language: 

“no two p's are separated by one t.u.” 

 intuition: need a clock for each p within 

the past time unit, but there can be an 

unbounded number of such p's because time is dense 
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TAs not Closed under Complement 

Fundamental problem: 

 Dense TAs are not closed under complement 

 MTL is clearly closed under complement 

 Language of the TA:    <> ( p ∧ <>=1 p ) 

 Complement language of the TA: 

¬ <> ( p ∧ <>=1 p ) = [] ( p ⇒ ¬ <>=1 p ) 

 Hence, automata-theoretic dense 

real-time model-checking 

is unfeasible (in general) 
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Dense MTL Model Checking is Undecidable 

An even more fundamental problem: 

 

The dense-time model-checking problem for MTL and TAs 

is undecidable (for infinite words) 

 no approach is going to work, not just  

the automata-theoretic one 

 

MTL and TAs are “too expressive” over dense time 
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What's Decidable about Timed Automata 

Let's revisit the three algorithmic components of automata-

theoretic model checking: 

 

 MTL2TA: given MTL formula F build TA 

a(F) such that ⟨F⟩ = ⟨a(F)⟩ 

 undecidable problem* 

 TA-Intersection: given TAs A, B build 

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩ 

 decidable 

 TA-Emptiness: given TA A check whether 

⟨A⟩ = ∅ is the case 

 decidable! 

 

*(for infinite words: see technical clarification later) 
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Dense Real-time Model-Checking 

 

Intersection of Timed Automata 
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Given TAs A, B it is always possible to build automatically a TA C  

that accepts precisely the words that both A and B accept. 

TA C represents all possible parallel runs of A and B where a timed word is 

accepted if and only if both A and B would accept it. The construction is 

called “product automaton”. 

TA-Intersection: running TAs in parallel 
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TA-Intersection: Example 

x = 
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Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB] 
 let     C ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC]  be defined as: 

 SC ≜ SA  x SB 

 CC ≜ CA  ∪ CB  (assuming w.l.o.g. that they are disjoint sets) 

 IC ≜ { (s, t) | s ∈ IA  and t ∈ IB } 

 [(s, t), σ, cA ∧ cB, ρA ∪ ρB, (s', t')] ∈ EC   iff 
  [s, σ, cA, ρA, s'] ∈ EA    and     [t, σ, cB, ρB, t']∈ EB 

 FC ≜ { (s, t) | s ∈ FA  and t ∈ FB } 

Theorem. 

⟨A x B⟩ 

= 

⟨A⟩ ∩ ⟨B⟩ 

TA-Intersection: running TAs in parallel 
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Dense Real-time Model-Checking 

 

Checking the Emptiness 

of Timed Automata 
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Given a TA A it is always possible to check automatically 

if it accepts some timed word. 

Outline of the algorithm: 

 Assume that clock constraints involve integer constants only 

 Define an equivalence relation over extended states (location + clocks) 

 All extended states in the same equivalence class are equivalent 
w.r.t. satisfaction of clock constraints 

 The equivalence relation is such that there is a finite number 
of equivalence classes for any given TA 

 Given a TA A, build an FSA reg(A) – the “region automaton”: 

 the states of reg(A) represent the equivalence classes of 
the extended states of any run of of A 

 the edges of reg(A) represent evolution of any extended state 
within the equivalence class over any run of A 

 Checking the emptiness of reg(A) is equivalent to checking A’s emptiness 

TA-Emptiness 
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Integer vs. Rational vs. Irrational 

The domain for time is R≥0 

What about the domain for time constraints? 

 constants in clock constraints of TAs  (e.g.: x < k) 

1. Same as the domain for time: R≥0 

 x < π 

 emptiness becomes undecidable! 

2. Discrete time domain: integers Z 

 e.g.:   x < 5 

 emptiness fully decidable (see algorithm next) 

3. Dense but not continuous: rationals Q≥0 

 x < 1/3 

 emptiness is reducible to the discrete case 
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Integer vs. Rational 

Dense but not continuous: rationals Q≥0 

 Let A be a TA with rational constants 

 let m be the least common multiple of denominators of all constants 

appearing in the clock constraints of A 

 let A*m be the TA obtained from A by multiplying every constants in 

the clock constraints by m 

 A*m has only integers constants in its clock constraints 

 A accepts any timed word 

   [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] 

iff A*m accepts the “scaled” timed word 

  [σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)] 

 Hence checking the emptiness of A*m is equivalent to checking the 

emptiness of A 
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Equivalence Relation over Extended States 

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)] 

 For any clock x(i) in C let M(i) be the largest constant involving clock x(i) in 
any clock constraint in E 

 Let [v(1), ..., v(n)] ∈ R≥0
n

 denote a “clock evaluation” representing 
any assignment of values to clocks 

 Equivalence of two clock evaluations: 
[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)]   iff    all of the following hold: 

1. For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i))   or v(i), v'(i) > M(i) 

2. For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j): 
  frac(v(i)) ≤ frac(v(j))   iff   frac(v'(i)) ≤ frac(v'(j)) 

3. For all 1 ≤ i ≤ n such that v(i) ≤ M(i): 
  frac(v(i)) = 0     iff    frac(v'(i)) = 0 

 
Note: int(x) is the integer part of x;  
  frac(x) is the fractional part of x 

For example:    int(3.12) = 3    frac(3.12) = 0.12 



53 

Clock Regions 

 For a clock evaluation v = [v(1), ..., v(n)] ∈ R≥0n, 

[[v]] denotes the clock region v belongs to 

 As a consequence of the definition of ~, any clock region can 

be uniquely characterized by a finite set of constraints on 

clocks 

 v = [0.4;  0.9;  0.7; 0]  for 4 clocks w, x, y, z 

 [[v]]   is   z = 0 < w < y < x < 1 

 Fact: clock regions are always in finite number 

Def. A clock region is an equivalence class 

of clock evaluations induced by the equivalence relation ~ 
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Clock Regions (cont'd) 

More systematically: 

 given a set of clocks C = [x(1), ..., x(n)] 

 with M(i) the largest constant appearing in constraints on clock x(i) 

a clock region is uniquely characterized by 

 For each clock x(i) a constraint in the form: 

 x(i) = c  with c = 0, 1, ..., M(i); or 

 c – 1 < x(i) < c with c = 1, ..., M(i); or 

 x(i) > M(i) 

 For each pair of clocks x(i), x(j) a constraint in the form 

 frac(x(i)) < frac(x(j)) 

 frac(x(i)) = frac(x(j)) 

 frac(x(i)) > frac(x(j)) 

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j) ) 
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Clock Regions: Example 

 Clocks C = [x, y] 

 M(x) = 2;  M(y) = 3 

 All 60 possible clock regions: 

 12 corner points 

 30 open line segments 

 18 open regions 
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Time-successors of Regions 

Fact: a clock evaluation v satisfies a clock constraint c iff every 
other clock evaluation in [[v]] satisfies c 

Hence, we can say that a “clock region satisfies a clock constraint” 

Given a clock region R it is always possible to compute all other clock regions 
that can be reached from R by letting time pass  

(i.e., without resetting any clock) 

Graphically: 

 the time-successors of a region R are the regions that can be 
 reached by moving along a line parallel to the diagonal in the 
 upward direction, starting from any point in R 

( For a formal definition see e.g.: Alur & Dill, 1994 ) 

Def. The time successor time-succ(R) of a clock region R is the set of all clock 
regions (including R itself) that can be reached from R by letting time pass 

(i.e., without resetting any clock). 
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Time-successors of Regions: Example 

Graphically: the time-successors of a region R are the regions that can be reached by 

moving along a line parallel to the diagonal in the upward direction, starting from any point 

in R 

Example: 

 successors of region 
2 < y < 3; 1 < x < y-1 
(other than the region itself): 

 y > 3; 1 < x < 2 

 y > 3; x = 2 

 y = 3; 1 < x < 2 

 y > 3; x > 2 

 successors of region 
y = 2; x = 2 (other than the region 
itself): 

 2 < y < 3; x > 2 

 ... 
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Region Automaton Construction 

For a timed automaton A it is always possible to build an FSA reg(A) 

(the “region automaton” of A) such that: 

⟨A⟩ = ∅  iff  ⟨reg(A)⟩ = ∅ 

Def.  Given a TA A = [Σ, S, C, I, E, F] its region automaton  

 reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as: 

 rS ≜ { (s, r) |  s ∈ S  and r is a clock region } 

 rI ≜ { (s, [[0, 0, ..., 0]])  |  s ∈ I } 

 the clock region where all clocks are reset to 0 

 rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E            

 and there exists a region r''∈ time-succ(r)  

  such that  r'' satisfies  c, and r' is obtained 

  from r'' by resetting all clocks in ρ to 0 } 

 rF ≜ { (s, r) | s ∈ F } 
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Region Automaton: Example 
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Dense Real-time Model-Checking 

 

Complexity, Variants, and Tools 
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Complexity of Emptiness Checking for TAs 

 Building the region automaton and checking its emptiness 

takes time exponential in the size of the clock constraints 

 Checking emptiness of a TA is a PSPACE-complete problem 

 Hence the region-automaton algorithm is worst-case 

optimal 

 However, variants of the emptiness checking algorithm can 

achieve better performances in practice 

 mostly by using ad hoc data structures and symbolic 

representations of regions that can be manipulated 

efficiently 
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Variants of TA Emptiness Checking 

Variants of the Emptiness Checking Algorithm are typically based 
on more efficient (on average) representations of regions 

 Representatives 

 a clock region is represented by a concrete extended state that belongs 
to it 

 the concrete state is a “representative” of the region 

 if it is suitably chosen, manipulating it is equivalent to manipulating the 
whole region 

 Clock constraints (a.k.a. zones) 

 a region is represented symbolically as a Boolean combination of clock 
constraints 

 successors are computed symbolically directly on the Boolean expression 

 Other equivalence relations (e.g., bisimulation) 

 they can produce fewer equivalence classes 
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Tools for the Analysis of TAs 

 Uppaal    (Larsen, Petterson, Yi et al., ~1995) 

 Kronos    (Tripakis, Yovine et al., ~1995) 

 HyTech  (Henzinger et al., ~1994) 

 PHAVer  (Frehse, ~2005) 

 

Remark:  emptiness checking is also called 

       “reachability analysis” 

the language of a TA A is empty iff the accepting states 

of A cannot be reached in any computation 
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Dense Real-time Model-Checking 

 

Getting Decidability Back 
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Decidable Dense Real-time MC 

Model checking is undecidable over dense-time infinite words for TAs 
and MTL formulas 
 
As usual, we can trade-off some expressiveness in exchange for 
decidability. 
 
In particular, not mutually exclusively: 

 Syntactic restrictions: use a real-time temporal logic with less 
expressiveness 

 Semantic restrictions: restrict (the density of) the time domain in 
some way 

 discretization 

 finite words 

 bounded variability 

 bounded time 
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Reducing the Expressiveness of MTL 

There exist different real-time temporal logics for which dense-
time model checking is decidable. 
 

Some examples: 

 Strict subsets of MTL: 

 MITL: MTL without punctual (i.e., singleton) intervals 
(Alur, Henzinger; Hirshfeld, Rabinovich et al.) 

 BMTL, SMTL, ... 
(Ouaknine, Worrell et al.) 

 

 Branching-time real-time logics: 

 TCTL    
(Henzinger, Nicollin, Sifakis, Yovine, et al.) 
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Discretization of Dense Real-time M-C 

Build approximations of TAs and MTL dense-time 
semantics over discrete time, such that some results of the 
discrete-time analysis apply to the dense-time semantics 
as well. 
 

In general these approaches are incomplete, that is they 
can't be applied to certain classes of formulas or they 
ignore certain classes of dense timed word. 
 

 Digitization (Henzinger, Manna, Pnueli, 1992) 

 Sampling (F., 2006) 



68 

Restrict the Semantics to Finite Words 

Real-time model-checking of TAs and MTL is 

undecidable for infinite timed words 

 infinite sequences of timestamped input symbols 

 

It is decidable for finite words 

(which we used in formally defining the semantics) 

 

This result came somewhat unexpectedly in ~2005 

(Ouaknine & Worrell) and it contradicted the “folk 

belief” that the undecidability for infinite words carries 

over to finite words 
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Restrict the Semantics to Finite Words 

There are various reasons, however, that lessen the 
practical (and didactical) relevance of this decidability 
result. Mainly: 

 While decidable, the problem has non-primitive 
recursive complexity 

 as complex as a computable function can be! 

 The (current) algorithm for decidability is nontrivial 
and difficult to present concisely 

 it uses techniques different than the region 
automaton construction for TAs 

 no efficient symbolic techniques have been 
developed yet 
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Bounded Variability and Time 

Other semantic restrictions to dense time that makes 

that model-checking problem decidable (over infinite 

time as well) 

 Bounded variability: 

“at most k events can occur within a time unit” 

 Wilke, 1994;  F., 2008, 2014 

 Bounded time: 

“time only goes up to B” 

 Ouaknine, Rabinovich, Worrell, 2009 
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Dense Real-time Model-Checking 

 

Other Models for Real-time 
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Other Models for Real-time 

Research and practice in real-time systems has a wide 

spectrum and heterogeneous concerns 

 

There exist many different models that go beyond the 

model-checking paradigm 

 

Let us briefly consider two of them: 

 Timed Petri nets: another concurrency model 

 TRIO (and others): very expressive real-time temporal logics 

 

Further reading: 

F. et al. “Modeling time in computing”, Springer 2012 
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Timed Petri Nets (in a slide) 

Petri Nets (PN) are a popular model for concurrency. 

Many variants are available, including (real-)timed ones. 

 PNs and timed PNs pre-date TAs but are less common in 
automated verification 

 More suitable for “natural” modeling of asynchrony 

 

 Places store tokens 

 Transitions fire, moving tokens around 

 Time bounds on the firing time of transitions 
 

Model of the microwave oven 
(not equivalent to the TA models we’ve seen) 
 
Bounded Petri nets: bound on the maximum number of tokens that 
can be in any place in any run 

 Essentially equivalent to TAs in expressiveness 
(with some semantic subtleties) 
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Full-fledged Real-time Temporal Logics 

Another, quite different, approach to real-time modeling and analysis 
uses very expressive first- (or even higher-) order temporal logic to 
formalize any aspect of the system under analysis. 
 

Example: the TRIO temporal logic, which includes: 

 a core real-time temporal logic with real-time temporal operators 

 first-order quantification and arithmetic 

 object-oriented constructs 

 higher-order extensions 
 

Usage: 

 partial requirements (and formal documentation) 

 semi-automated analysis 

 development by refinement 

 ... 


