
Chair of Software Engineering

Software Verification

Verification of

Real-time Systems

Carlo A. Furia

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 require

 true

 ensure

 Result >= a

 Result >= b

P: a program S: a specification

Does P ⊧ S hold?

The Program Verification problem:

 Given: a program P and a specification S

 Determine: if every execution of P, for every value of input parameters, satisfies S

3

Real-time Verification

max (a, b: INTEGER): INTEGER

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 ensure

 Result >= a

 Result >= b

 ensure -- real-time

 “max terminates no sooner

 than 3 ms and no later than

 10 ms after invocation”

P: a program S: a specification

Does P ⊧ S hold?

The Real-time Verification problem:

 Given: program P (embedded in environment E)
 and real-time specification S

 Determine: if every execution of P (within E) satisfies S

4

Real-time Programs and Systems

 The timing of a piece of software is usually dependent on the environment
where the computation takes place

 Hence, in real-time verification the focus shifts from programs to (software-
intensive) systems

 The purely computational aspects can often be analyzed in isolation

 Real-time verification can then focus on real-time aspects of the system

 e.g., synchronization, deadlines, delays, ...

 while abstracting away most of the rest

Def. Real-time specification: specification that includes

exact timing information.

Def. Real-time computation: computation whose specification

is real-time. In other words: computation whose correctness

depends not only on the value of the result but also on

when the result is available.

5

Decidability vs. Expressiveness Trade-Off

 The classes of F(P) and N(S) should guarantee:

 enough expressiveness to include a quantitative notion of time

 decidability of the verification problem

The Real-time Verification problem:

 Given: program P (embedded in environment E) and real-time specification S

 Determine: if every execution of P (within E) satisfies S

Does F(P) ⊧ N(S) hold?

P: a system S: a real-time specification

F(P): formal model of P N(S): formal annotation for S
⇕ ⇕

6

Real-time Model-Checking

A: a timed automaton F: a metric temporal-logic formula A ⊧ F

The Real-time Model Checking problem:

 Given: a timed automaton A
 and a metric temporal-logic formula F

 Determine: if every run of A satisfies F or not

 if not, also provide a counterexample:
a run of A where F does not hold

 The model-checking paradigm is naturally extended to real-time systems

 Different choices are possible for the family of automata and of formulae

 Linear time is the standard option for real-time (as opposed to branching time)

 A different attribute of time that becomes relevant in quantitative models is discrete
vs. dense time

?

7

Discrete vs. dense (continuous) time

Discrete time

 sequence of isolated “steps”

 every instant has a unique successor

 e.g.: the naturals N = {0, 1, 2, ...}

+ simple and intuitive

+ verification usually decidable (and
acceptably complex)

+ robust and elegant theoretical
framework

 cannot model true asynchrony

 unsuitable to model physical
variables

Dense (or continuous) time

 arbitrarily small distances

 the successor of an instant is not
defined

 e.g.: the reals R

+ can model true asynchrony

+ accurate modeling of physical
variables

 tricky to understand

 verification often undecidable (or
highly complex)

 lacks a unifying framework

8

Discrete Real-time Model-Checking

Timed Automata and

Metric Temporal Logic

9

Discrete Real-time Model-Checking

A: a discrete TA F: an MTL formula A ⊧ F

The Discrete Real-time Model Checking problem:

 Given: a discrete TA A and an MTL formula F

 Determine: if every run of A satisfies F or not

 if not, also provide a counterexample: a run of A where F does not

hold

?

Discrete real-time model checking extends standard

“untimed” model checking straightforwardly:

 Discrete Timed Automata (TA) extend the Finite-State Automata

(FSA)

 Metric Temporal Logic (MTL) extends Linear Temporal Logic (LTL)

10

Timed Automata: Syntax

11

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA)
 A tuple [Σ, S, C, I, E, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of locations
(i.e., discrete states)

 C: finite set of clocks

 I, F: set of initial/final states

 E: finite set of edges [s, σ, c, ρ, s']

 s ∈ S: source location

 s' ∈ S: target location

 σ ∈ Σ: input character (also “label”)

 c: clock constraint in the form:
 c ::= x ≈ k | ¬ c | c1 ∧ c2

 x, y ∈ C are clocks

 k ∈ N is an integer constant

 ≈ is a comparison operator among <, ≤, >, ≥, =

 ρ ⊆ C: set of clock that are reset (to 0)

12

Timed Automata: Semantics

Accepting run:

r = [off, (x=0, y=0)]

 [on, (x=0, y=3)]

 [cooking, (x=8, y=0)]

 [on, (x=81, y=73)]

 [off, (x=85, y=77)]

Over input timed word:

w = [turn_on, 3]

 [start, 11]

 [stop, 84]

 [turn_off, 88]

13

Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F]

over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x N)* is a

sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]

 ∈ (S x N|C|)* of (extended) states such that:

 it starts from an initial and ends in an accepting state: s(0) ∈ I, s(n) ∈ F

 initially all clocks are reset to 0: v(0,k) = 0 for all 1 ≤ k ≤ |C|

 for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))
satisfy the constraint c

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x N)* is a sequence
 of pairs [σ(i), t(i)] such that:

 the sequence of timestamps t(1), t(2), ..., t(n) is increasing

 [σ(i), t(i)] represents the i-th character σ(i) read at time t(i)

14

Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines
 a set of input timed words ⟨A⟩:
 ⟨A⟩ ≜ { w ∈ (Σ x N)* | there is
 an accepting run of A
 over w }

 ⟨A⟩ is called the language of A

With regular expressions and arithmetic:

⟨A⟩ = ([turn_on, t1]

 ([start, t2] [stop, t3])*

 [turn_off, t4])*

 with t3-t2 ≤ 300 and t4-t1 > 1

15

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded)

time units in the future”

 [any, t ≤ 1]* [stop, 2] [stop, 3] [any, 4] [any, 7] ...

 [any, t < 3]* [stop, 3] [any, 4] [any, t > 4] ...

[](2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

 [any, 0] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]*

 [any, 0] [any, 1] [any, 2] [start, 3] [any, t > 4]*

 [stop, 0] [stop, 1]

16

Metric (Linear) Temporal Logic

[] (start ⇒ <>(3,10] stop)

“every occurrence of start is followed by an occurrence of stop

between 3 (excluded) and 10 (included) time units in the

future”

cook U(3,10] stop

“stop occurs between 3 (excluded) and 10 (included) time units in

the future, and cook holds until then”

17

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:

 F ::= p | ¬ F | F ∧ G | F U<a,b> G

with p ∈ P any atomic proposition and <a,b> an interval of the

time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

 next: X F ≜ True U[1,1] F

 bounded until: F U<a,b> G

 bounded eventually: <><a,b> F ≜ True U<a,b> F

 bounded always: []<a,b> F ≜ ¬ <><a,b> ¬F

 intervals can be unbounded; e.g., [3, ∞)

 intervals with pseudo-arithmetic expressions; e.g.:

 ≥ 3 for [3, ∞)

 = 1 for [1,1]

 [0, ∞) is simply omitted

18

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x N)* satisfies LTL
formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:

 w, i ⊧ p iff p = σ(i)

 w, i ⊧ ¬ F iff w, i ⊧ F does not hold

 w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold

 w, i ⊧ F U<a,b> G iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F

 i.e., F holds until G will hold within <a, b>

For derived operators:

w, i ⊧ <><a,b> F iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds eventually within <a,b>

w, i ⊧ []<a,b> F iff for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds always within <a,b>

19

Metric Temporal Logic: Semantics

Def. Satisfaction:

 w ⊧ F ≜ w, 1 ⊧ F

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words ⟨F⟩:

 ⟨F⟩ ≜ { w ∈ (P x N)* | w ⊧ F }

 ⟨F⟩ is called the language of F

20

Discrete Real-time Model-Checking

From Real-time to Untimed

Model-Checking

21

Discrete-time Real-time Model Checking

An semantic view of the Real-time Model Checking problem:

Given: a timed automaton A and an MTL formula F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is empty then every run of A satisfies F

 if ⟨A⟩ ∩ ⟨¬ F⟩ is not empty then some run of A does not satisfy F

 any member of the nonempty intersection ⟨A⟩ ∩ ⟨¬ F⟩ is a counterexample

How to check ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ algorithmically (given A, F)?

For a discrete time domain we can reduce real-time model

checking to (untimed) model-checking:

 Transform timed automaton A into finite-state automaton A'

 Transform MTL formula F into LTL formula F'

 ⟨A⟩ ∩ ⟨¬ F⟩ = ∅ iff ⟨A'⟩ ∩ ⟨¬ F'⟩ = ∅

 Re-use standard model-checking algorithms

22

Reduce discrete-time TAs to FSAs

Use states of an FSA to “count” discrete time steps

according to the semantics of the TA

 transitions with special

events τ are time steps

without events.

 on0 represents location on

with clock x = 0

 on≥1 represents location on

with clock x ≥ 1

23

Reduce discrete-time MTL to LTL

Use next operator X to “count” discrete time steps

according to the semantics of the MTL formula

 <>[1,3] p becomes Xp ∨ XXp ∨ XXXp

 More compactly X(p ∨ X(p ∨ Xp))

 []≥5 p becomes X5 [](p ∨ τ)

 X5p is a shorthand for XXXXXp

 The disjunction is needed because we may have time

increments without events

 The encoding for bounded until is a bit more

complicated but not different in principle

24

Discrete-time Real-time MC: Complexity

There is an exponential blow-up in complexity when

switching from (untimed) linear-time model checking to

discrete-time real-time model checking:

 Discrete-time real-time MTL model checking:

EXPSPACE-complete

 in practice: double-exponential time

 LTL model checking: PSPACE-complete

 in practice: singly-exponential time

 The blow up occurs only if the constants (in timed automata and

MTL formulas) are encoded succinctly in binary

 blow-up due to the “unrolling” of binary constants as FSA states or

nested next operators

25

Dense Real-time Model-Checking

Timed Automata and

Metric Temporal Logic

26

Dense Real-time Model-Checking

Dense real-time model checking considers the same model as

discrete real-time model checking but with R≥0 as time domain:

 A dense Timed Automaton (TA) models the system

 Dense-time Metric Temporal Logic (MTL) models the property

 The syntax of TA and MTL need not be changed for dense time

 with the possible exception of allowing fractional time bounds

 The semantics of TA and MTL is also unchanged except that:

 R≥0 replaces N as time domain

 As we did with untimed model checking, we will use finite-word
models for automata and logic.

 Unlike in untimed model checking, this choice affects some results. (We will
mention some details only later for simplicity.)

27

Dense Real-time Model-Checking

A: a TA F: an MTL formula A ⊧ F

The Dense Real-time Model Checking problem:

 Given: a dense TA A and an MTL formula F

 Determine: if every run of A satisfies F or not

 if not, provide a counterexample: a run of A where F does not hold

?

Dense real-time model checking extends standard

“untimed” model checking:

 Timed Automata (TA) extend Finite-State Automata (FSA)

 Metric Temporal Logic (MTL) extends Linear Temporal Logic

(LTL)

28

Timed Automata: Syntax

29

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA):
 a tuple [Σ, S, C, I, E, F]:

 Σ: finite nonempty (input) alphabet

 S: finite nonempty set of locations
(i.e., discrete states)

 C: finite set of clocks

 I, F: set of initial/final states

 E: finite set of edges [s, σ, c, ρ, s']

 s ∈ S: source location

 s' ∈ S: target location

 σ ∈ Σ: input character (also “label”)

 c: clock constraint in the form:
c ::= x ≈ k | ¬ c | c1 ∧ c2

 x, y ∈ C are clocks

 k ∈ N is an integer constant

 ≈ is a comparison operator among <, ≤, >, ≥, =

 ρ ⊆ C: set of clock that are reset (to 0)

30

Timed Automata: Semantics

Accepting run:

r = [off, (x=0, y=0)]

 [on, (x=0, y=3.2)]

 [cooking, (x=8.5, y=0)]

 [on, (x=81.7, y=73.2)]

 [off, (x=84.91, y=76.41)]

Over input timed word:

w = [turn_on, 3.2]

 [start, 11.7]

 [stop, 84.9]

 [turn_off, 88.11]

31

Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word
 w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ x R)* is a sequence
 r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S x R|C|)*
 of (extended) states such that:

 it starts from an initial and ends in an accepting state: s(0) ∈ I, s(n) ∈ F

 initially all clocks are reset to 0: v(0,k) = 0 for all 1 ≤ k ≤ |C|

 for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

 the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))
satisfy the constraint c

 v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x R)* is a sequence
 of pairs [σ(i), t(i)] such that:

 the sequence of timestamps t(1), t(2), ..., t(n) is increasing

 [σ(i), t(i)] represents the i-th character σ(i) read at time t(i)

32

Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines

 a set of input timed words ⟨A⟩:

 ⟨A⟩ ≜ { w ∈ (Σ x R)* | there is an

 accepting run of A over w }

 ⟨A⟩ is called the language of A

With regular expressions and arithmetic:

⟨A⟩ = ([turn_on, t1]

 ([start, t2] [stop, t3])*

 [turn_off, t4])*

 with t3-t2 ≤ 300 and t4-t1 > 1

33

Metric (Linear) Temporal Logic

<>[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time units in the

future”

 [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...

 [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

[](2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

 [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...

 [any, t ≤ 2] [start, 4] [any, t > 4] ...

 [stop, 0] [stop, 0.3] [stop, 0.7]

34

Metric (Linear) Temporal Logic

[] (start ⇒ <>(3,10] stop)

“every occurrence of start is followed by an occurrence of stop

between 3 (excluded) and 10 (included) time units in the

future”

cook U(3,10] stop

“stop occurs between 3 (excluded) and 10 (included) time units in

the future, and cook holds until then”

35

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae:

 F ::= p | ¬ F | F ∧ G | F U<a,b> G

with p ∈ P any atomic proposition and <a,b> an interval of the

time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

 next: X F ≜ True U[1,1] F

 bounded until: F U<a,b> G

 bounded eventually: <><a,b> F ≜ True U<a,b> F

 bounded always: []<a,b> F ≜ ¬ <><a,b> ¬F

 intervals can be unbounded; e.g., [3, ∞)

 intervals with pseudo-arithmetic expressions; e.g.:

 ≥ 3 for [3, ∞)

 = 1 for [1,1]

 [0, ∞) is simply omitted

36

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P x R)* satisfies LTL
 formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:

 w, i ⊧ p iff p = σ(i)

 w, i ⊧ ¬ F iff w, i ⊧ F does not hold

 w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold

 w, i ⊧ F U<a,b> G iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F

 i.e., F holds until G will hold within <a, b>

For derived operators:

w, i ⊧ <><a,b> F iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds eventually within <a,b>

w, i ⊧ []<a,b> F iff for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j ⊧ F

 i.e., F holds always within <a,b>

37

Metric Temporal Logic: Semantics

Def. Satisfaction:

 w ⊧ F ≜ w, 1 ⊧ F

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words ⟨F⟩:

 ⟨F⟩ ≜ { w ∈ (P x R)* | w ⊧ F }

 ⟨F⟩ is called the language of F

38

Dense Real-time Model-Checking

What's Decidable?

39

Automata-theoretic real-time model-checking?

Let's try to extend the automata-theoretic model checking

paradigm to real-time.

 MTL2TA: given MTL formula F build TA

a(F) such that ⟨F⟩ = ⟨a(F)⟩

 TA-Intersection: given TAs A, B build

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩

 TA-Emptiness: given TA A check whether

⟨A⟩ = ∅ is the case

Which of these algorithms are applicable over real-time?

40

TAs not Closed under Complement

A: a dense TA F: a dense-time MTL formula A ⊧ F
?

Fundamental problem:

Dense timed automata are not closed under

complement

The complement of the language

of this TA isn't accepted by any TA:

 language of this TA:

“there exist two p's separated by one t.u.”

 complement language:

“no two p's are separated by one t.u.”

 intuition: need a clock for each p within

the past time unit, but there can be an

unbounded number of such p's because time is dense

41

TAs not Closed under Complement

Fundamental problem:

 Dense TAs are not closed under complement

 MTL is clearly closed under complement

 Language of the TA: <> (p ∧ <>=1 p)

 Complement language of the TA:

¬ <> (p ∧ <>=1 p) = [] (p ⇒ ¬ <>=1 p)

 Hence, automata-theoretic dense

real-time model-checking

is unfeasible (in general)

42

Dense MTL Model Checking is Undecidable

An even more fundamental problem:

The dense-time model-checking problem for MTL and TAs

is undecidable (for infinite words)

 no approach is going to work, not just

the automata-theoretic one

MTL and TAs are “too expressive” over dense time

43

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of automata-

theoretic model checking:

 MTL2TA: given MTL formula F build TA

a(F) such that ⟨F⟩ = ⟨a(F)⟩

 undecidable problem*

 TA-Intersection: given TAs A, B build

TA C such that ⟨A⟩ ∩ ⟨B⟩ = ⟨C⟩

 decidable

 TA-Emptiness: given TA A check whether

⟨A⟩ = ∅ is the case

 decidable!

*(for infinite words: see technical clarification later)

44

Dense Real-time Model-Checking

Intersection of Timed Automata

45

Given TAs A, B it is always possible to build automatically a TA C

that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed word is

accepted if and only if both A and B would accept it. The construction is

called “product automaton”.

TA-Intersection: running TAs in parallel

46

TA-Intersection: Example

x =

47

Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB]
 let C ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC] be defined as:

 SC ≜ SA x SB

 CC ≜ CA ∪ CB (assuming w.l.o.g. that they are disjoint sets)

 IC ≜ { (s, t) | s ∈ IA and t ∈ IB }

 [(s, t), σ, cA ∧ cB, ρA ∪ ρB, (s', t')] ∈ EC iff
 [s, σ, cA, ρA, s'] ∈ EA and [t, σ, cB, ρB, t']∈ EB

 FC ≜ { (s, t) | s ∈ FA and t ∈ FB }

Theorem.

⟨A x B⟩

=

⟨A⟩ ∩ ⟨B⟩

TA-Intersection: running TAs in parallel

48

Dense Real-time Model-Checking

Checking the Emptiness

of Timed Automata

49

Given a TA A it is always possible to check automatically

if it accepts some timed word.

Outline of the algorithm:

 Assume that clock constraints involve integer constants only

 Define an equivalence relation over extended states (location + clocks)

 All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

 The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

 Given a TA A, build an FSA reg(A) – the “region automaton”:

 the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

 the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

 Checking the emptiness of reg(A) is equivalent to checking A’s emptiness

TA-Emptiness

50

Integer vs. Rational vs. Irrational

The domain for time is R≥0

What about the domain for time constraints?

 constants in clock constraints of TAs (e.g.: x < k)

1. Same as the domain for time: R≥0

 x < π

 emptiness becomes undecidable!

2. Discrete time domain: integers Z

 e.g.: x < 5

 emptiness fully decidable (see algorithm next)

3. Dense but not continuous: rationals Q≥0

 x < 1/3

 emptiness is reducible to the discrete case

51

Integer vs. Rational

Dense but not continuous: rationals Q≥0

 Let A be a TA with rational constants

 let m be the least common multiple of denominators of all constants

appearing in the clock constraints of A

 let A*m be the TA obtained from A by multiplying every constants in

the clock constraints by m

 A*m has only integers constants in its clock constraints

 A accepts any timed word

 [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]

iff A*m accepts the “scaled” timed word

 [σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)]

 Hence checking the emptiness of A*m is equivalent to checking the

emptiness of A

52

Equivalence Relation over Extended States

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)]

 For any clock x(i) in C let M(i) be the largest constant involving clock x(i) in
any clock constraint in E

 Let [v(1), ..., v(n)] ∈ R≥0
n

 denote a “clock evaluation” representing
any assignment of values to clocks

 Equivalence of two clock evaluations:
[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)] iff all of the following hold:

1. For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)

2. For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j):
 frac(v(i)) ≤ frac(v(j)) iff frac(v'(i)) ≤ frac(v'(j))

3. For all 1 ≤ i ≤ n such that v(i) ≤ M(i):
 frac(v(i)) = 0 iff frac(v'(i)) = 0

Note: int(x) is the integer part of x;
 frac(x) is the fractional part of x

For example: int(3.12) = 3 frac(3.12) = 0.12

53

Clock Regions

 For a clock evaluation v = [v(1), ..., v(n)] ∈ R≥0n,

[[v]] denotes the clock region v belongs to

 As a consequence of the definition of ~, any clock region can

be uniquely characterized by a finite set of constraints on

clocks

 v = [0.4; 0.9; 0.7; 0] for 4 clocks w, x, y, z

 [[v]] is z = 0 < w < y < x < 1

 Fact: clock regions are always in finite number

Def. A clock region is an equivalence class

of clock evaluations induced by the equivalence relation ~

54

Clock Regions (cont'd)

More systematically:

 given a set of clocks C = [x(1), ..., x(n)]

 with M(i) the largest constant appearing in constraints on clock x(i)

a clock region is uniquely characterized by

 For each clock x(i) a constraint in the form:

 x(i) = c with c = 0, 1, ..., M(i); or

 c – 1 < x(i) < c with c = 1, ..., M(i); or

 x(i) > M(i)

 For each pair of clocks x(i), x(j) a constraint in the form

 frac(x(i)) < frac(x(j))

 frac(x(i)) = frac(x(j))

 frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j))

55

Clock Regions: Example

 Clocks C = [x, y]

 M(x) = 2; M(y) = 3

 All 60 possible clock regions:

 12 corner points

 30 open line segments

 18 open regions

56

Time-successors of Regions

Fact: a clock evaluation v satisfies a clock constraint c iff every
other clock evaluation in [[v]] satisfies c

Hence, we can say that a “clock region satisfies a clock constraint”

Given a clock region R it is always possible to compute all other clock regions
that can be reached from R by letting time pass

(i.e., without resetting any clock)

Graphically:

 the time-successors of a region R are the regions that can be
 reached by moving along a line parallel to the diagonal in the
 upward direction, starting from any point in R

(For a formal definition see e.g.: Alur & Dill, 1994)

Def. The time successor time-succ(R) of a clock region R is the set of all clock
regions (including R itself) that can be reached from R by letting time pass

(i.e., without resetting any clock).

57

Time-successors of Regions: Example

Graphically: the time-successors of a region R are the regions that can be reached by

moving along a line parallel to the diagonal in the upward direction, starting from any point

in R

Example:

 successors of region
2 < y < 3; 1 < x < y-1
(other than the region itself):

 y > 3; 1 < x < 2

 y > 3; x = 2

 y = 3; 1 < x < 2

 y > 3; x > 2

 successors of region
y = 2; x = 2 (other than the region
itself):

 2 < y < 3; x > 2

 ...

58

Region Automaton Construction

For a timed automaton A it is always possible to build an FSA reg(A)

(the “region automaton” of A) such that:

⟨A⟩ = ∅ iff ⟨reg(A)⟩ = ∅

Def. Given a TA A = [Σ, S, C, I, E, F] its region automaton

 reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as:

 rS ≜ { (s, r) | s ∈ S and r is a clock region }

 rI ≜ { (s, [[0, 0, ..., 0]]) | s ∈ I }

 the clock region where all clocks are reset to 0

 rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E

 and there exists a region r''∈ time-succ(r)

 such that r'' satisfies c, and r' is obtained

 from r'' by resetting all clocks in ρ to 0 }

 rF ≜ { (s, r) | s ∈ F }

59

Region Automaton: Example

60

Dense Real-time Model-Checking

Complexity, Variants, and Tools

61

Complexity of Emptiness Checking for TAs

 Building the region automaton and checking its emptiness

takes time exponential in the size of the clock constraints

 Checking emptiness of a TA is a PSPACE-complete problem

 Hence the region-automaton algorithm is worst-case

optimal

 However, variants of the emptiness checking algorithm can

achieve better performances in practice

 mostly by using ad hoc data structures and symbolic

representations of regions that can be manipulated

efficiently

62

Variants of TA Emptiness Checking

Variants of the Emptiness Checking Algorithm are typically based
on more efficient (on average) representations of regions

 Representatives

 a clock region is represented by a concrete extended state that belongs
to it

 the concrete state is a “representative” of the region

 if it is suitably chosen, manipulating it is equivalent to manipulating the
whole region

 Clock constraints (a.k.a. zones)

 a region is represented symbolically as a Boolean combination of clock
constraints

 successors are computed symbolically directly on the Boolean expression

 Other equivalence relations (e.g., bisimulation)

 they can produce fewer equivalence classes

63

Tools for the Analysis of TAs

 Uppaal (Larsen, Petterson, Yi et al., ~1995)

 Kronos (Tripakis, Yovine et al., ~1995)

 HyTech (Henzinger et al., ~1994)

 PHAVer (Frehse, ~2005)

Remark: emptiness checking is also called

 “reachability analysis”

the language of a TA A is empty iff the accepting states

of A cannot be reached in any computation

64

Dense Real-time Model-Checking

Getting Decidability Back

65

Decidable Dense Real-time MC

Model checking is undecidable over dense-time infinite words for TAs
and MTL formulas

As usual, we can trade-off some expressiveness in exchange for
decidability.

In particular, not mutually exclusively:

 Syntactic restrictions: use a real-time temporal logic with less
expressiveness

 Semantic restrictions: restrict (the density of) the time domain in
some way

 discretization

 finite words

 bounded variability

 bounded time

66

Reducing the Expressiveness of MTL

There exist different real-time temporal logics for which dense-
time model checking is decidable.

Some examples:

 Strict subsets of MTL:

 MITL: MTL without punctual (i.e., singleton) intervals
(Alur, Henzinger; Hirshfeld, Rabinovich et al.)

 BMTL, SMTL, ...
(Ouaknine, Worrell et al.)

 Branching-time real-time logics:

 TCTL
(Henzinger, Nicollin, Sifakis, Yovine, et al.)

67

Discretization of Dense Real-time M-C

Build approximations of TAs and MTL dense-time
semantics over discrete time, such that some results of the
discrete-time analysis apply to the dense-time semantics
as well.

In general these approaches are incomplete, that is they
can't be applied to certain classes of formulas or they
ignore certain classes of dense timed word.

 Digitization (Henzinger, Manna, Pnueli, 1992)

 Sampling (F., 2006)

68

Restrict the Semantics to Finite Words

Real-time model-checking of TAs and MTL is

undecidable for infinite timed words

 infinite sequences of timestamped input symbols

It is decidable for finite words

(which we used in formally defining the semantics)

This result came somewhat unexpectedly in ~2005

(Ouaknine & Worrell) and it contradicted the “folk

belief” that the undecidability for infinite words carries

over to finite words

69

Restrict the Semantics to Finite Words

There are various reasons, however, that lessen the
practical (and didactical) relevance of this decidability
result. Mainly:

 While decidable, the problem has non-primitive
recursive complexity

 as complex as a computable function can be!

 The (current) algorithm for decidability is nontrivial
and difficult to present concisely

 it uses techniques different than the region
automaton construction for TAs

 no efficient symbolic techniques have been
developed yet

70

Bounded Variability and Time

Other semantic restrictions to dense time that makes

that model-checking problem decidable (over infinite

time as well)

 Bounded variability:

“at most k events can occur within a time unit”

 Wilke, 1994; F., 2008, 2014

 Bounded time:

“time only goes up to B”

 Ouaknine, Rabinovich, Worrell, 2009

71

Dense Real-time Model-Checking

Other Models for Real-time

72

Other Models for Real-time

Research and practice in real-time systems has a wide

spectrum and heterogeneous concerns

There exist many different models that go beyond the

model-checking paradigm

Let us briefly consider two of them:

 Timed Petri nets: another concurrency model

 TRIO (and others): very expressive real-time temporal logics

Further reading:

F. et al. “Modeling time in computing”, Springer 2012

73

Timed Petri Nets (in a slide)

Petri Nets (PN) are a popular model for concurrency.

Many variants are available, including (real-)timed ones.

 PNs and timed PNs pre-date TAs but are less common in
automated verification

 More suitable for “natural” modeling of asynchrony

 Places store tokens

 Transitions fire, moving tokens around

 Time bounds on the firing time of transitions

Model of the microwave oven
(not equivalent to the TA models we’ve seen)

Bounded Petri nets: bound on the maximum number of tokens that
can be in any place in any run

 Essentially equivalent to TAs in expressiveness
(with some semantic subtleties)

74

Full-fledged Real-time Temporal Logics

Another, quite different, approach to real-time modeling and analysis
uses very expressive first- (or even higher-) order temporal logic to
formalize any aspect of the system under analysis.

Example: the TRIO temporal logic, which includes:

 a core real-time temporal logic with real-time temporal operators

 first-order quantification and arithmetic

 object-oriented constructs

 higher-order extensions

Usage:

 partial requirements (and formal documentation)

 semi-automated analysis

 development by refinement

 ...

