Software Verification (Autumn 2015) Lecture 15: Separation Logic Part 1 of 2

#### **Chris Poskitt**





# A recent separation logic success story

#### theguardian

News Sport Comment Culture Business Money Life & style

News > Technology > Facebook

#### Facebook buys code-checking Silicon Roundabout startup Monoidics

Acquisition of company which carries out tests to find crashing bugs will see its technology applied to mobile apps and site

#### The Telegraph

| Home   | News     | World    | Sport   | Finance     | Comment     | Blogs    | Culture   | Travel   | Life  | Women     |
|--------|----------|----------|---------|-------------|-------------|----------|-----------|----------|-------|-----------|
| Techno | ology Ne | ws   Teo | hnology | or Companie | es   Techno | logy Rev | iews   Vi | deo Game | s   T | echnology |
|        |          |          |         |             |             |          |           |          |       |           |

HOME » TECHNOLOGY » FACEBOOK

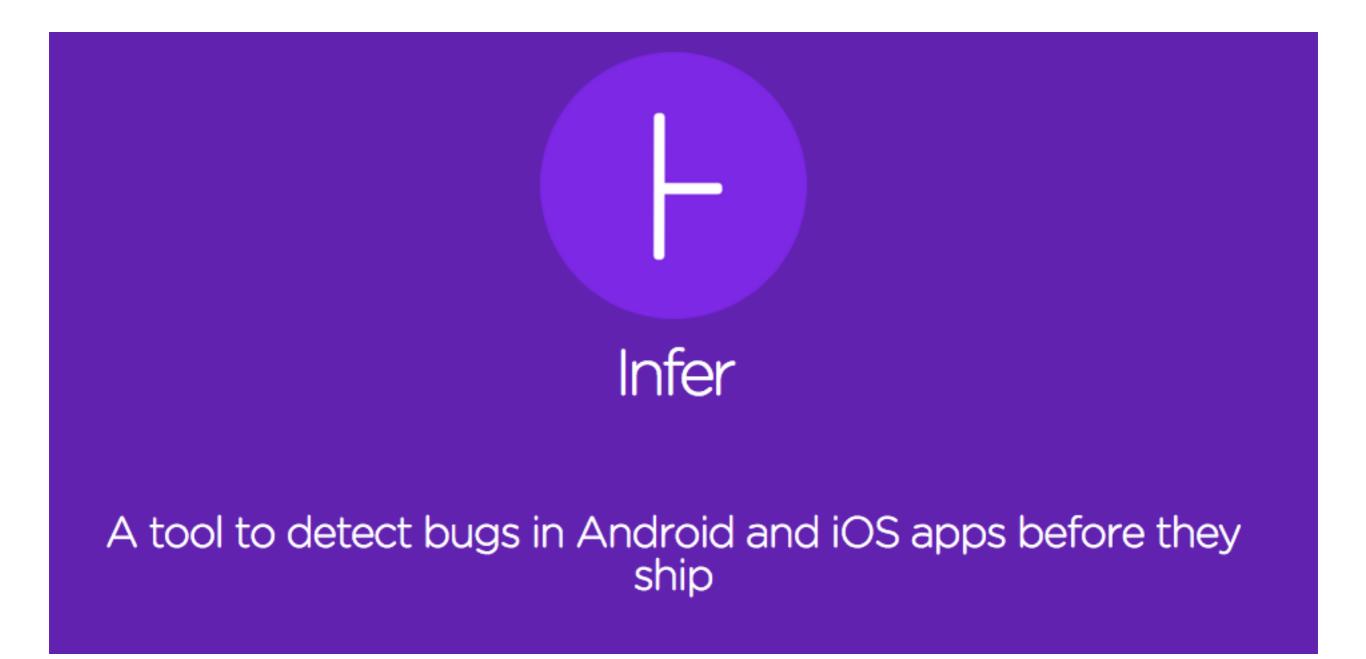
#### Facebook buys UK startup Monoidics

Facebook has acquired assets behind Monoidics, a London-based startup whose technology is used to detect coding errors.



ONOIDICS

# facebook.

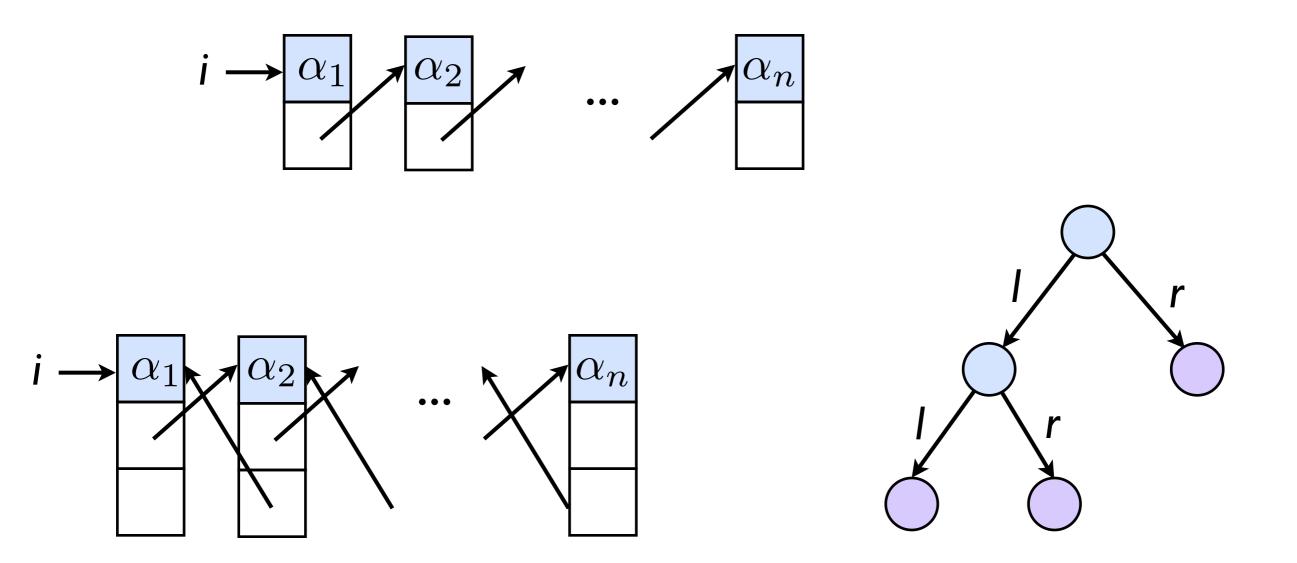


#### Now open source: <u>fbinfer.com</u>

#### What is separation logic for?

- for reasoning about shared mutable data structures in imperative programs
  - structures where an updatable field can be referenced from more than one point
  - correctness of such programs depends upon complex restrictions on sharing
  - classical methods like Hoare logic suffer from extreme complexity; reasoning does not match programmers' intuitions

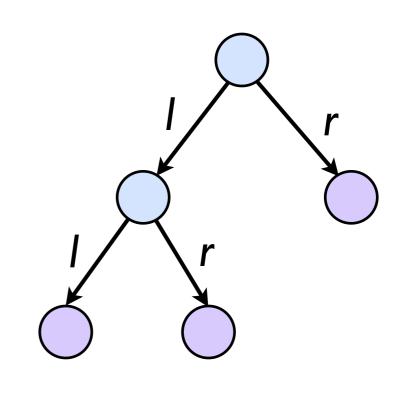
#### Some shared mutable data structures



#### Problem illustration (from O'Hearn)

• the following program disposes the elements of a tree

```
procedure DispTree(p)
local i, j;
if ¬isatom?(p) then
    i := p→l;
    j := p→r;
    DispTree(i)
    DispTree(j)
    free(p)
```



• can we prove its correctness using classical Hoare logic?

• here is a possible specification:

```
{ tree(p) \lapha reach(p,n) }
  DispTree(p)
{ ¬allocated(n) }
```

i.e. if there is a node n in the tree that p points to, then after executing DispTree(p), n is no longer allocated

• here is a possible specification:

```
{ tree(p) \lapha reach(p,n) }
  DispTree(p)
{ ¬allocated(n) }
```

i.e. if there is a node n in the tree that p points to, then after executing DispTree(p), n is no longer allocated



 what does DispTree(p) do to nodes outside of the tree p?

```
procedure DispTree(p)
local i, j;
if ¬isatom?(p) then
i := p→l;
j := p→r;
DispTree(i)
DispTree(j)
free(p)
```

specification too weak!
does not rule out that DispTree(i)
did not alter subtree j...
...might no longer be a tree!
(precondition violation)

{ tree(i) \lambda reach(i,n) }
 DispTree(i)
{ ¬allocated(n) }

• can strengthen the specification with frame axioms i.e. clauses specifying what does not change

{ tree(p) \land reach(p,n) \land \neg reach(p,m) \land allocated(m)
\land m.f = m' \land \neg allocated(q) }
DispTree(p)
{ \neg allocated(n) \land \neg reach(p,m) \land allocated(m)
\land m.f = m' \land \neg allocated(q) }

- complicated; certainly does not scale!
- does not match the intuition that programmers use

### How does separation logic help?

- separation logic <u>extends</u> Hoare logic to facilitate local reasoning
- assertion language offers spatial connectives, allowing one to reason about smaller parts of the program state

- this locality allows us to:
  - avoid mentioning the frame in specifications
  - but to bring the frame condition in when needed

#### Next on the agenda

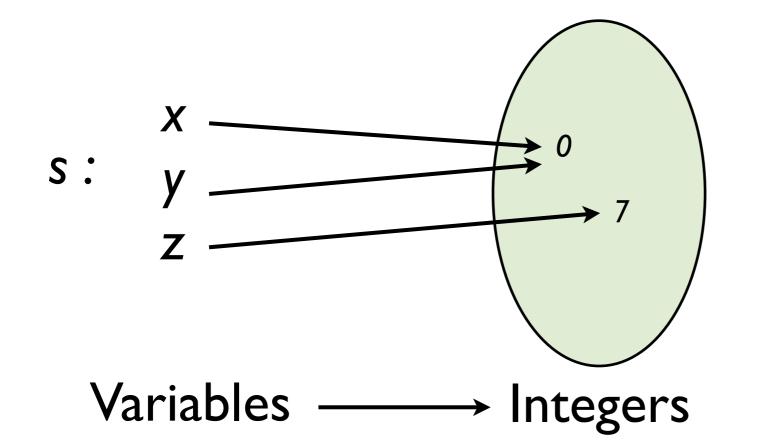
(1) model of program states for separation logic

- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

#### Recap: program states

• in Hoare logic a program state comprises a variable store

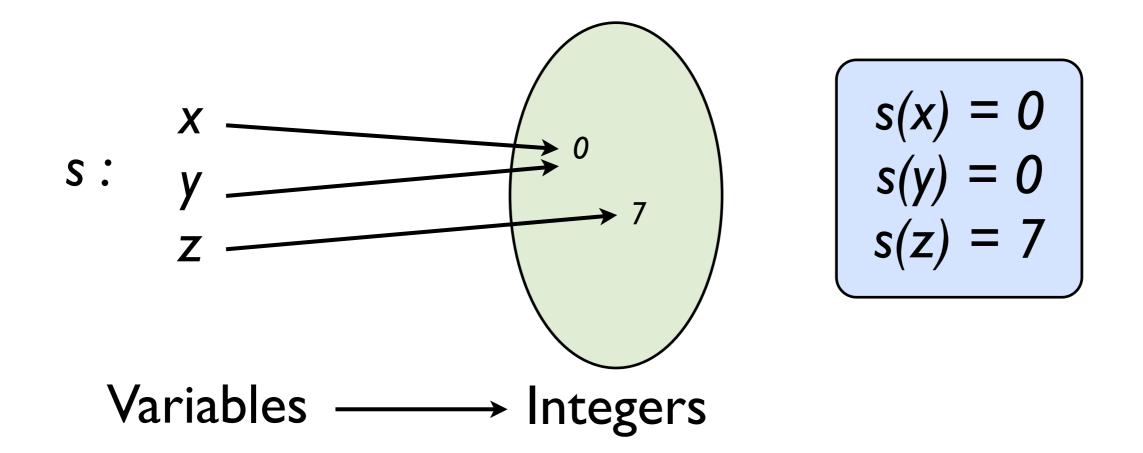
i.e. a partial function mapping variables to integers



#### Recap: program states

• in Hoare logic a program state comprises a variable store

i.e. a partial function mapping variables to integers



#### Recap: satisfaction of assertions

- we write s = p if store s (i.e. a program state)
   satisfies assertion p
- typically = is defined inductively

$$s \models p \land q$$
 if  $s \models p$  and  $s \models q$   
 $s \models \exists x. p$  if there exists some integer  $v$  such that  $s[x \mapsto v] \models p$   
 $\vdots$   
 $s \models B$  if  $[|B|]s =$ true  
(where  $[|B|]s$  denotes the evaluation of B w.r.t. s)

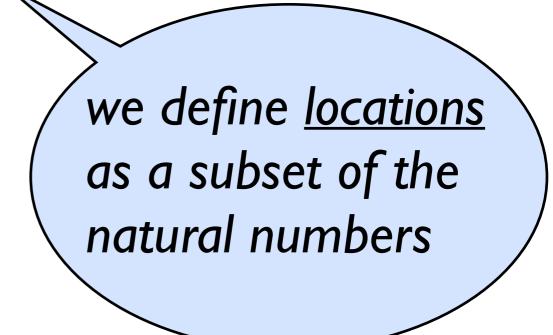
#### Recap: satisfaction of assertions

• For example:

$$(x \mapsto 5, y \mapsto 10) \models x < y \land x > 0$$
$$(x \mapsto 25) \models \exists y. \ y > x$$
$$(x \mapsto 0) \nvDash \exists y. \ y < x \land y \ge 0$$

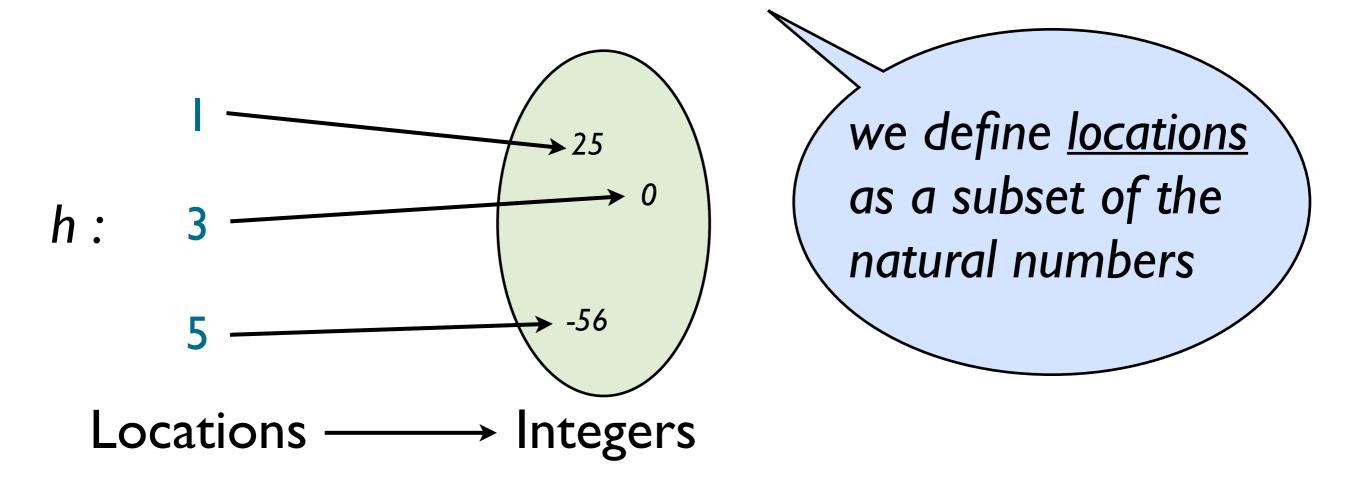
# The Heaplet model

- in separation logic, program states comprise both a variable store <u>and</u> a heap
  - i.e. a partial function mapping locations (pointers) to integers



# The Heaplet model

- in separation logic, program states comprise both a variable store <u>and</u> a heap
  - i.e. a partial function mapping locations (pointers) to integers



#### The Heaplet model

• the <u>store</u>: state of the local variables

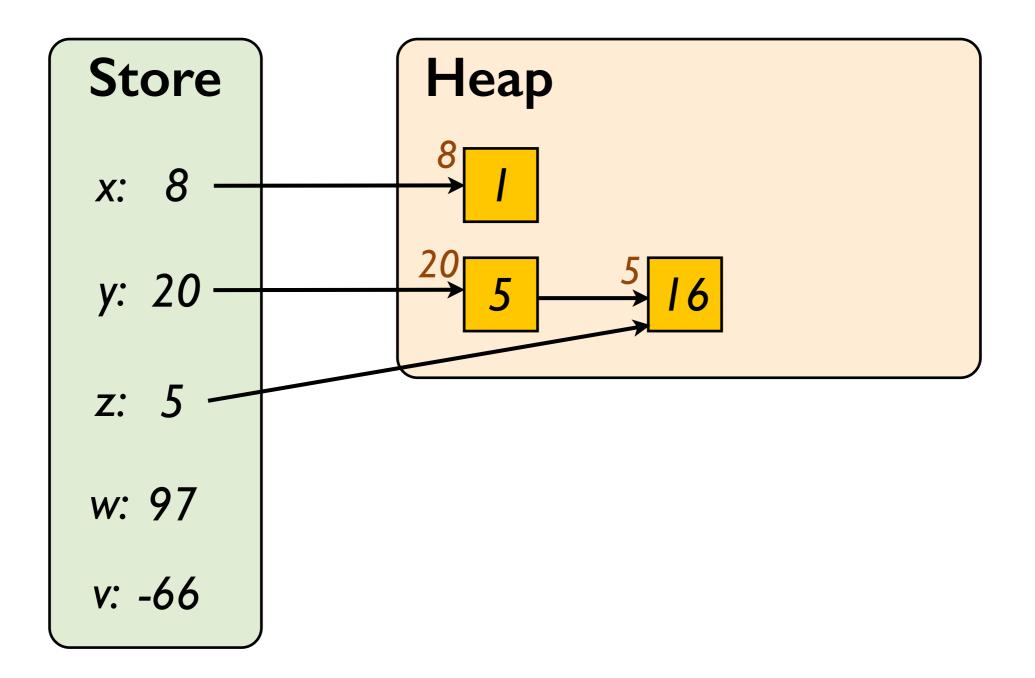
Variables  $\rightarrow$  Integers

• the <u>heap</u>: state of dynamically-allocated objects

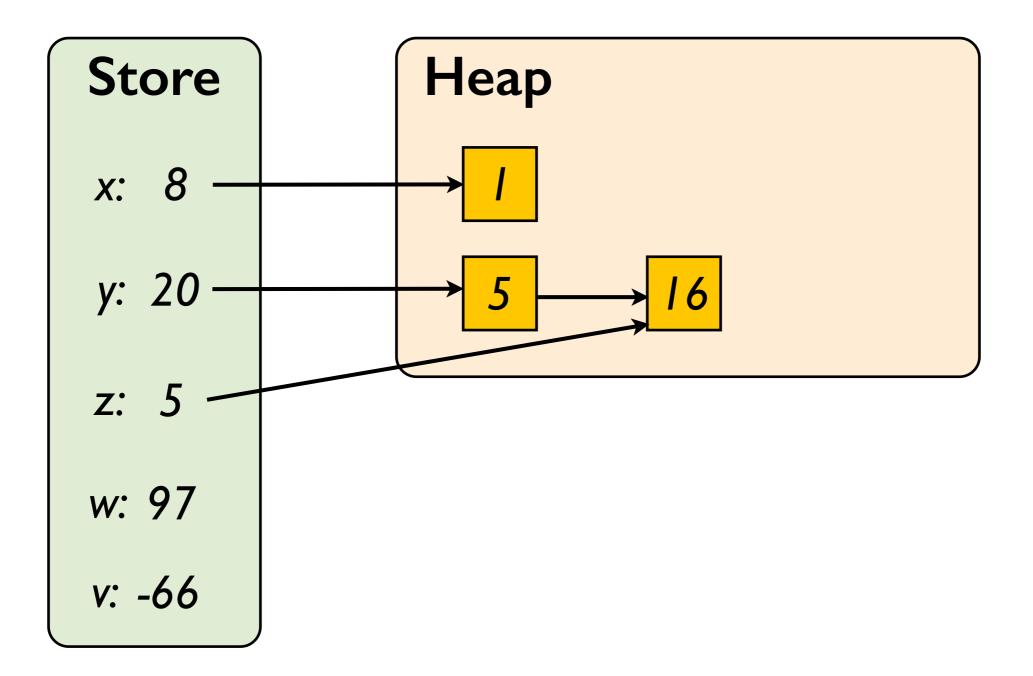
 $\text{Locations} \rightarrow \text{Integers}$ 

#### where: Locations ⊂ Naturals

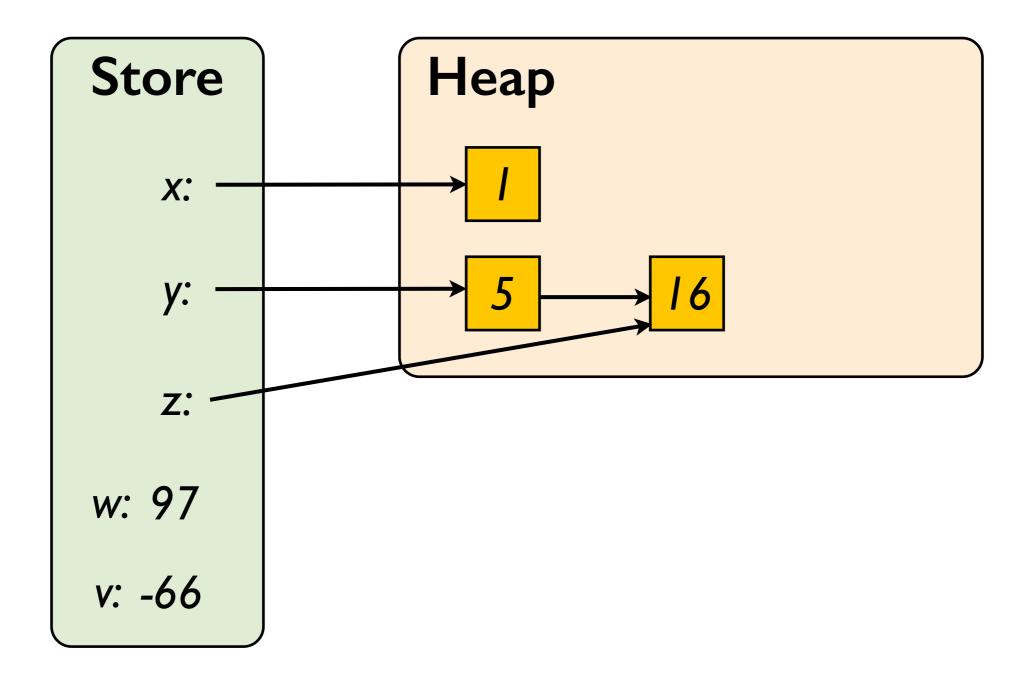
#### Example store and heap



#### Example store and heap



#### Example store and heap



#### Next on the agenda

(I) model of program states for separation logic

- (2) assertions and spatial connectives
- (3) axioms and inference rules
- (4) program proofs

# Syntax of assertions

| false                    | logical false                                          |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|
| $p \wedge q$             | classical conjunction                                  |  |  |  |  |  |  |  |
| $p \lor q$               | classical disjunction                                  |  |  |  |  |  |  |  |
| $p \Rightarrow q$        | classical implication                                  |  |  |  |  |  |  |  |
| p * q                    | <pre>separating conjunction } spatial assertions</pre> |  |  |  |  |  |  |  |
| $p \twoheadrightarrow q$ | separating implication <i>f</i> spatial assertions     |  |  |  |  |  |  |  |
| e = f                    | equality of expressions                                |  |  |  |  |  |  |  |
| $e \mapsto f$            | points to (in the heap) } heap assertions              |  |  |  |  |  |  |  |
| $\operatorname{emp}$     | empty heap <b>f</b> heap discritions                   |  |  |  |  |  |  |  |
| $\exists x. p$           | existential quantifier                                 |  |  |  |  |  |  |  |

(e,f range over integer expressions; x over variables; p,q over assertions)

#### Semantics of assertions

• we write  $s,h \models p$  if store s and heap h (together the program state) satisfies assertion p

$$\begin{array}{lll} s,h\models \mathrm{false} & \mathrm{never} \\ s,h\models p\wedge q & \mathrm{if} & s,h\models p \mathrm{ and } s,h\models q \\ s,h\models p\vee q & \mathrm{if} & s,h\models p \mathrm{ or } s,h\models q \\ s,h\models p\Rightarrow q & \mathrm{if} & s,h\models p \mathrm{ implies } s,h\models q \\ s,h\models e=f & \mathrm{if} & [|e|]s=[|f|]s \end{array}$$

(where [|e|]s denotes the evaluation of e with respect to s)

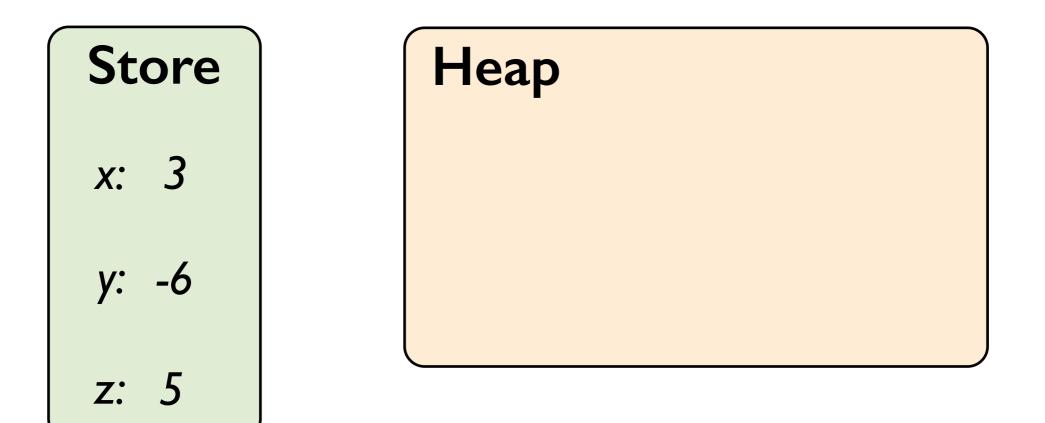
# Semantics of empty heap

• the semantics of the remaining assertions all rely on the heap *h* 

$$s, h \models emp \quad \text{if} \quad h = \{\}$$

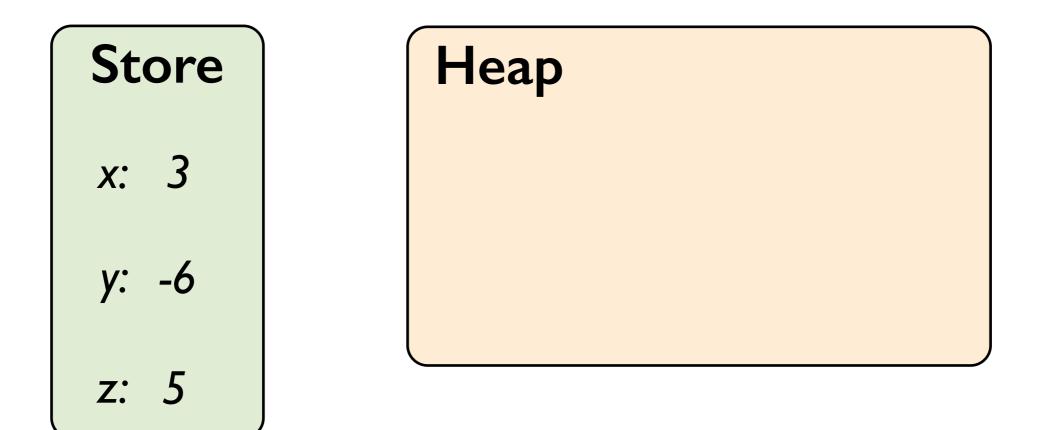
# Example of emp

 $s, h \models emp$ 



# Example of emp

 $s, h \models emp$   $s, h \models emp \land x < z$ 

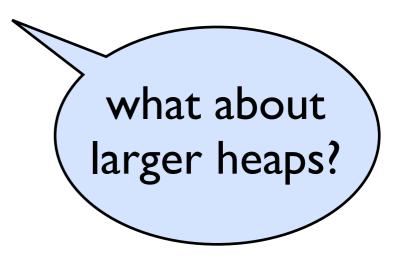


#### Semantics of points to

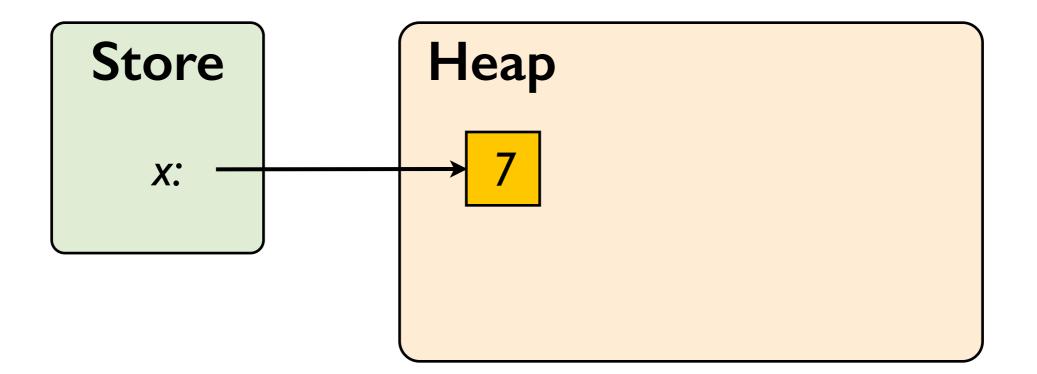
#### $s, h \models e \mapsto f \quad \text{if} \quad h = \{[|e|]s \to [|f|]s\}$



the heap h has <u>exactly</u> one location: the value of e... ...and the <u>contents</u> at that location is the value of f

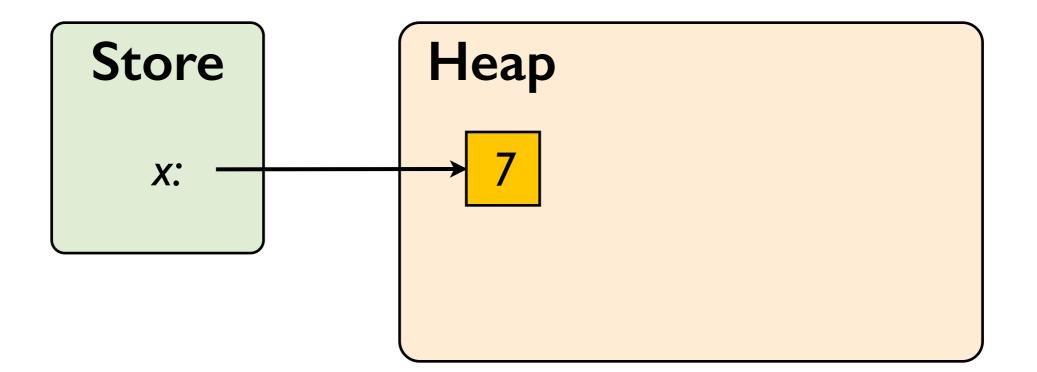


# Example of points to



#### Example of points to

$$s, h \models x \mapsto 7$$



#### Semantics of separating conjunction

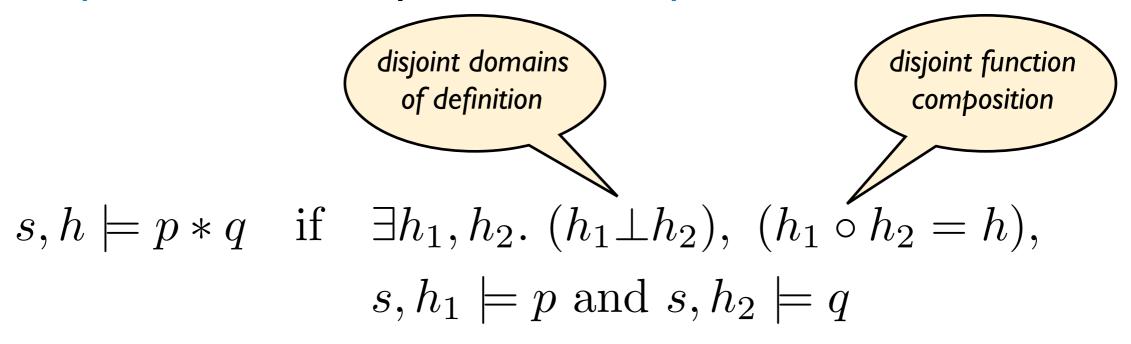
$$s, h \models p * q$$

informally: the heap h can be divided in two so that
 p is true of one partition and q is true of the other

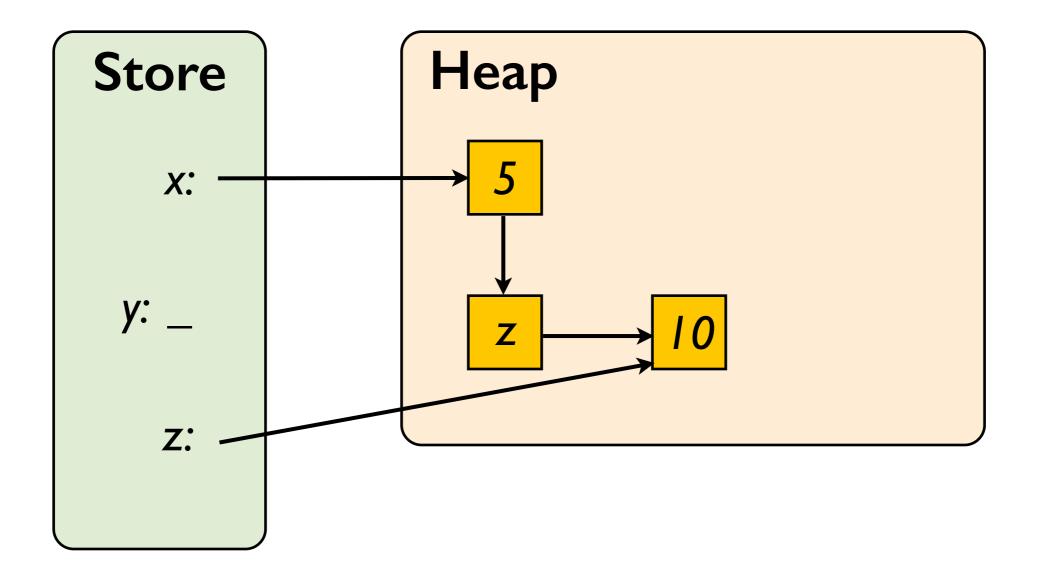
#### Semantics of separating conjunction

$$s,h\models p*q$$

informally: the heap h can be divided in two so that
 p is true of one partition and q is true of the other

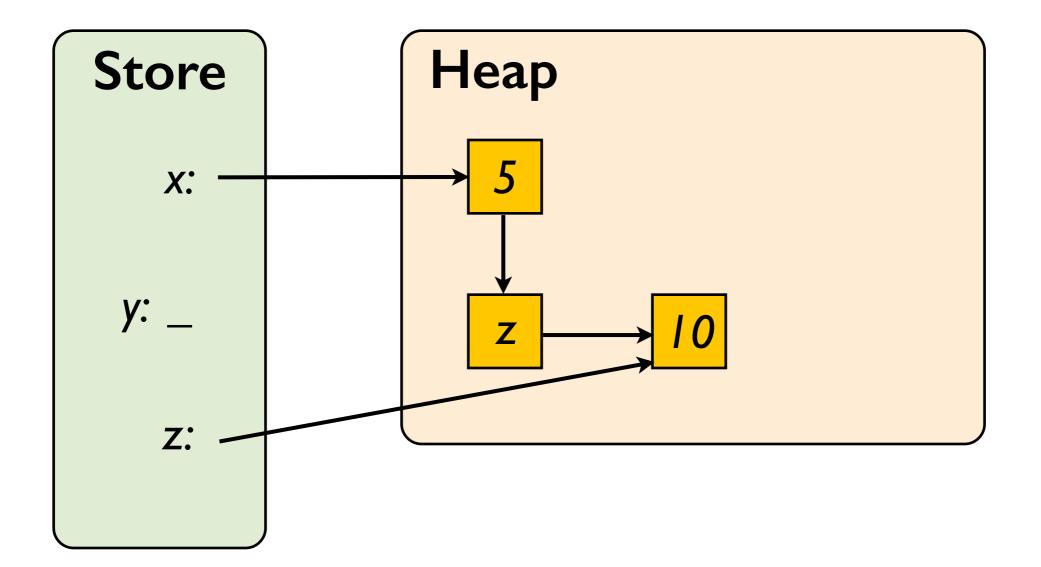


#### Example of separating conjunction

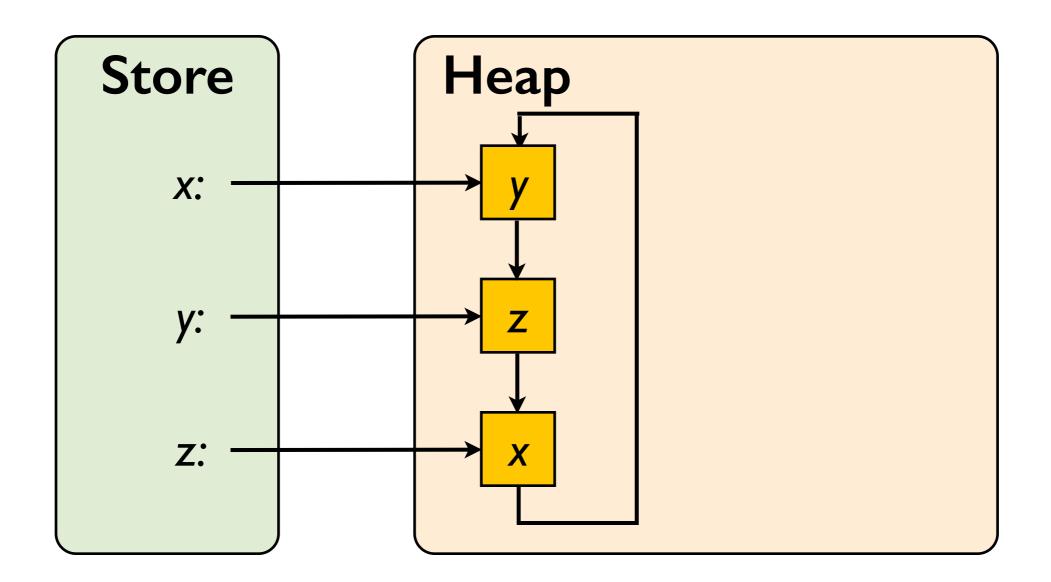


#### Example of separating conjunction

$$s, h \models x \mapsto 5 * 5 \mapsto z * z \mapsto 10$$



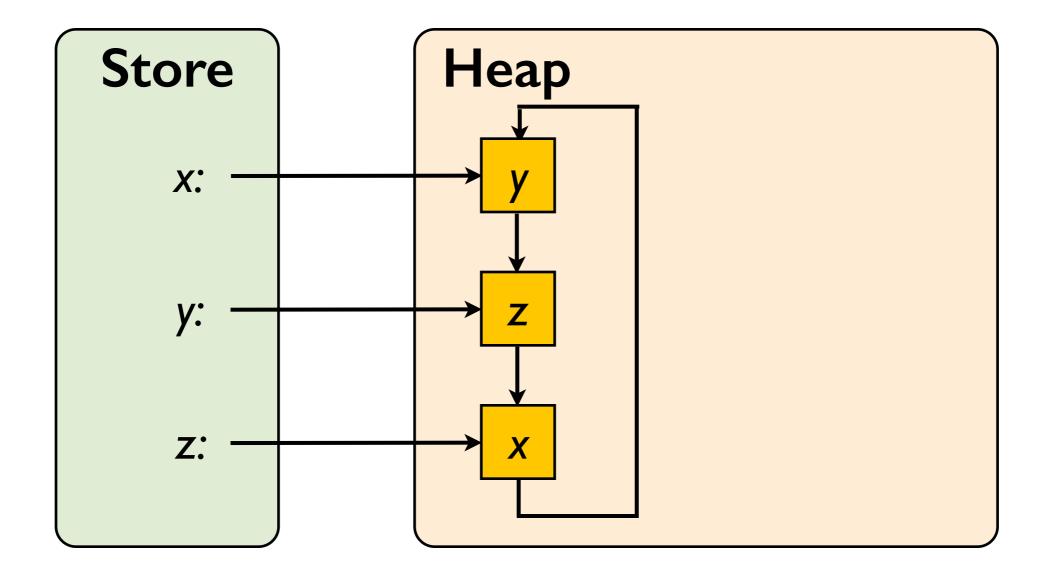
#### Example of separating conjunction (from Calcagno)



## Example of separating conjunction

(from Calcagno)

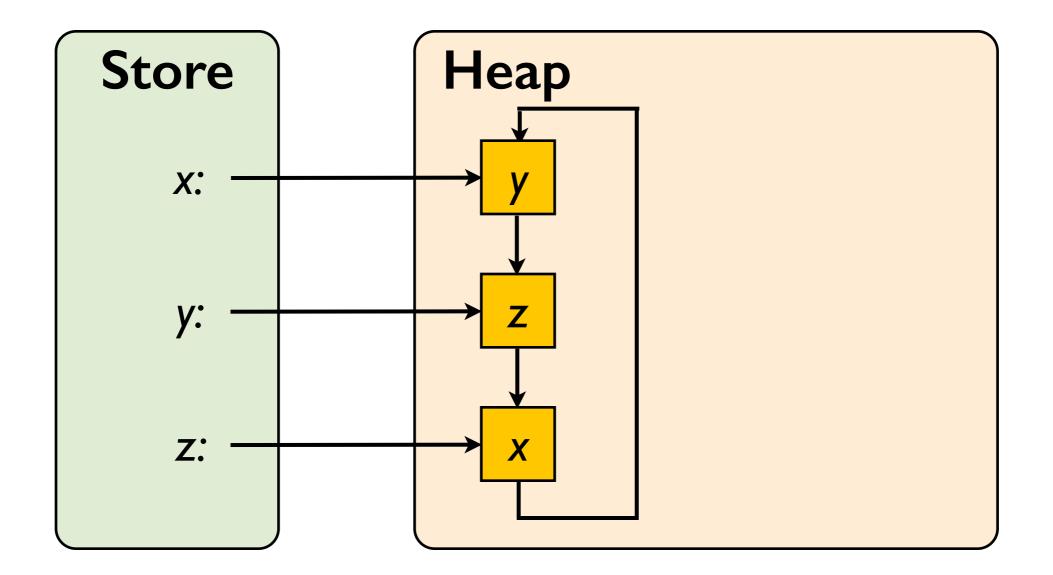
 $s, h \models x \mapsto y * y \mapsto z * z \mapsto x$ 



#### Example of separating conjunction (from Calcagno)

 $s, h \models x \mapsto y * y \mapsto z * z \mapsto x$ 

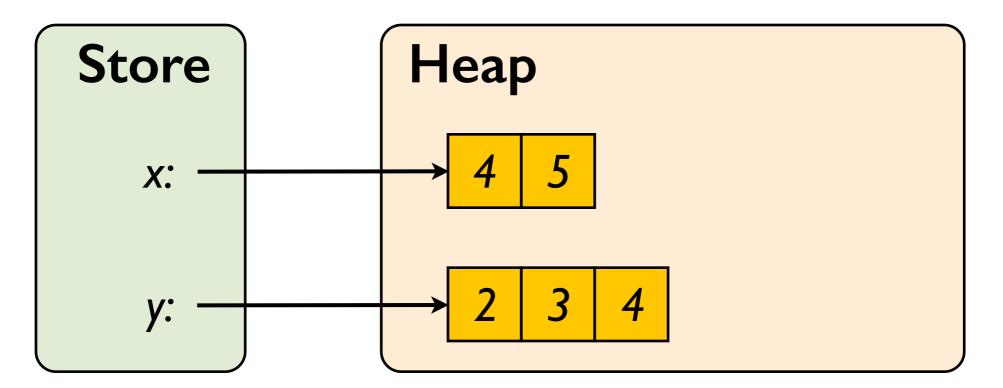
$$s, h \models x \mapsto y * y \mapsto z * z \mapsto x * emp$$



#### Notation

#### Notation

 $\begin{array}{lll} \mbox{let} & e\mapsto f_0,\ldots,f_n\\ \mbox{abbreviate} & e\mapsto f_0*e+1\mapsto f_1*\cdots*e+n\mapsto f_n \end{array}$ 

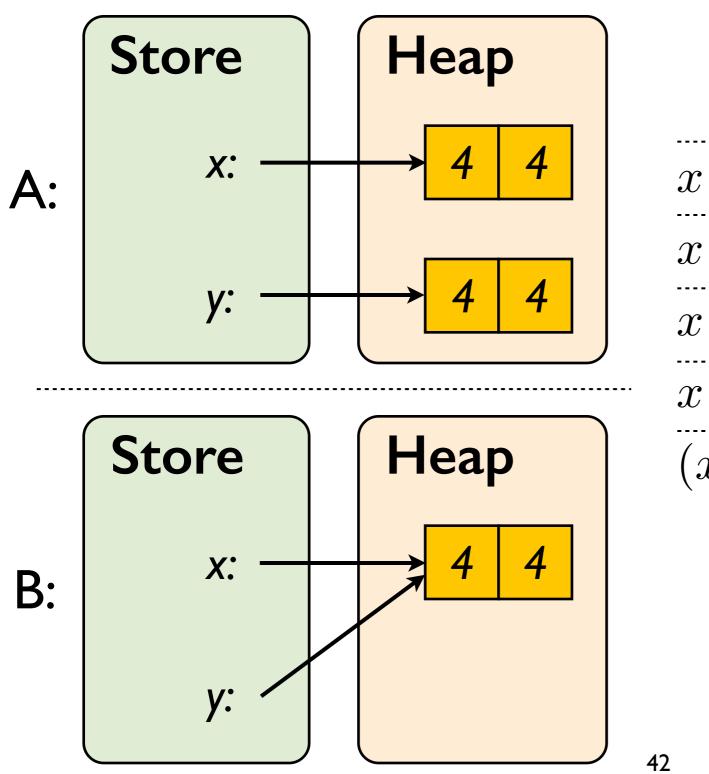


#### Notation

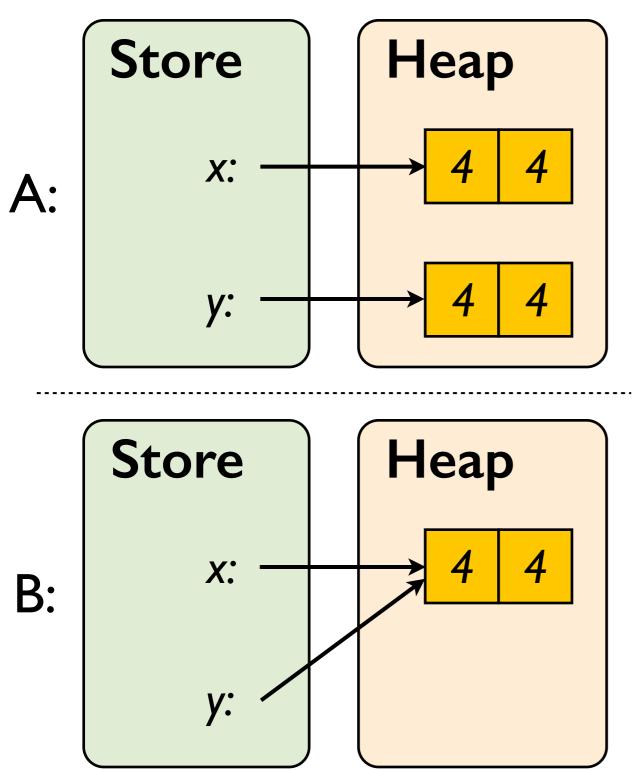
let  $e \mapsto f_0, \dots, f_n$ abbreviate  $e \mapsto f_0 * e + 1 \mapsto f_1 * \dots * e + n \mapsto f_n$ 



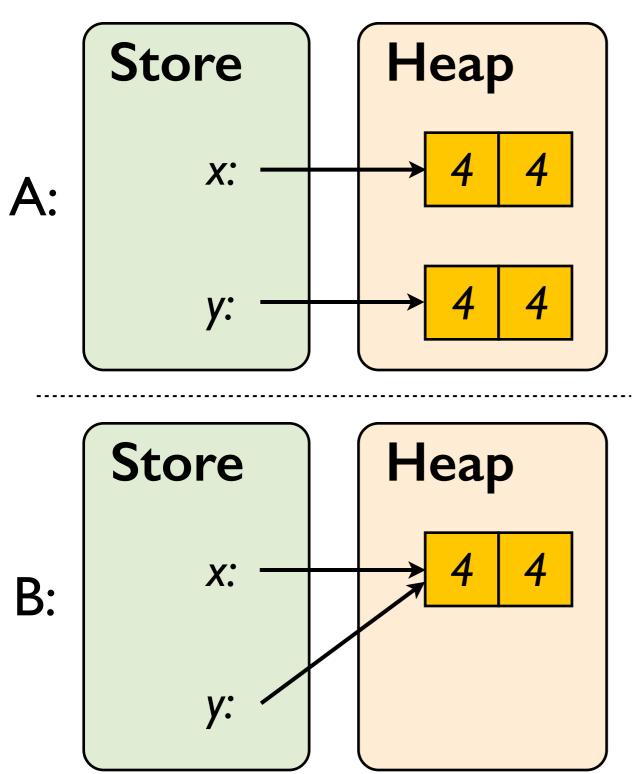
 $x \mapsto 4, 5 * y \mapsto 2, 3, 4$  $x \mapsto 4, 5 * true$ 



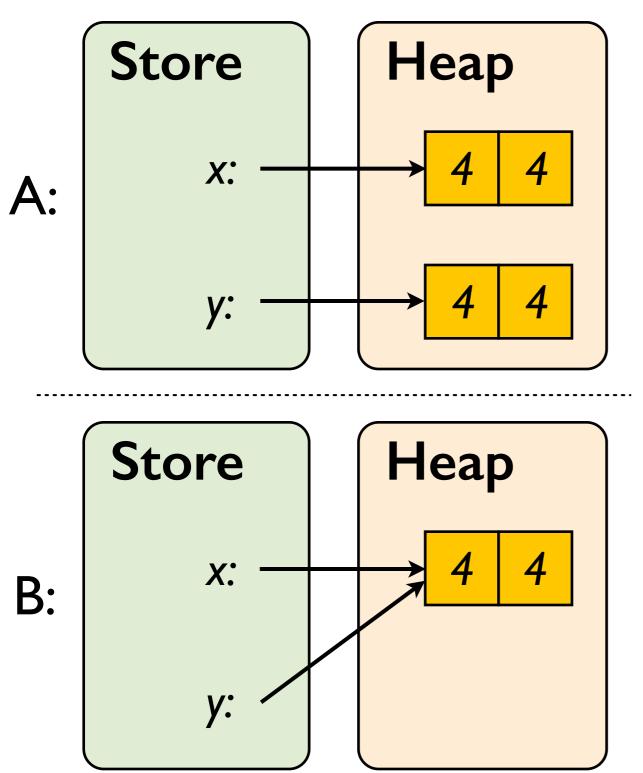
|                                         | Α | В |
|-----------------------------------------|---|---|
| $x \mapsto 4, 4$                        |   |   |
| $x \mapsto 4, 4 * \text{true}$          |   |   |
| $x \mapsto 4, 4 * y \mapsto 4, 4$       |   |   |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$  |   |   |
| $(x \mapsto 4, 4 * \text{true})$        |   |   |
| $\wedge (y \mapsto 4, 4 * \text{true})$ |   |   |



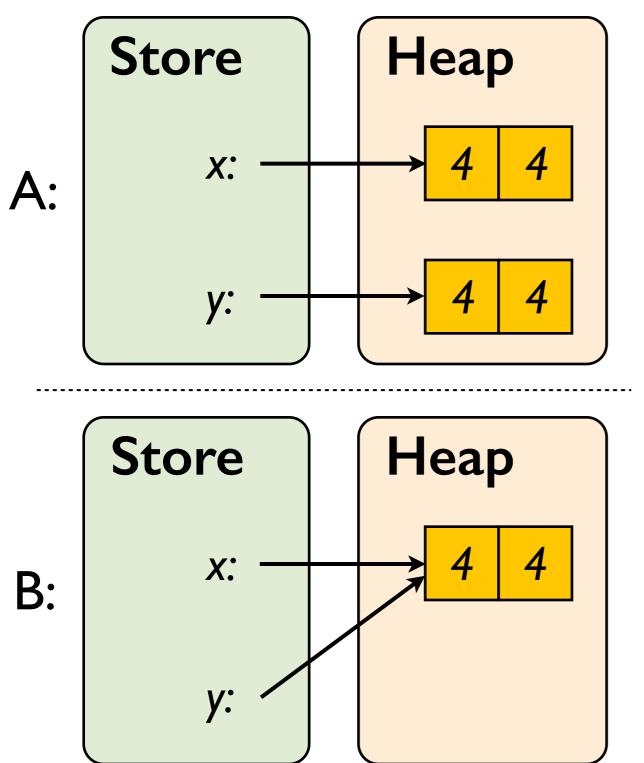
|                                         | Α | В            |
|-----------------------------------------|---|--------------|
| $x \mapsto 4, 4$                        | Χ | $\checkmark$ |
| $x \mapsto 4, 4 * true$                 |   |              |
| $x \mapsto 4, 4 * y \mapsto 4, 4$       |   |              |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$  |   |              |
| $(x \mapsto 4, 4 * \text{true})$        |   |              |
| $\wedge (y \mapsto 4, 4 * \text{true})$ |   |              |



|                                         | Α            | В            |
|-----------------------------------------|--------------|--------------|
| $x \mapsto 4, 4$                        | Χ            | $\checkmark$ |
| $x \mapsto 4, 4 * true$                 | $\checkmark$ | $\checkmark$ |
| $x \mapsto 4, 4 * y \mapsto 4, 4$       |              |              |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$  |              |              |
| $(x \mapsto 4, 4 * \text{true})$        |              |              |
| $\wedge (y \mapsto 4, 4 * \text{true})$ |              |              |

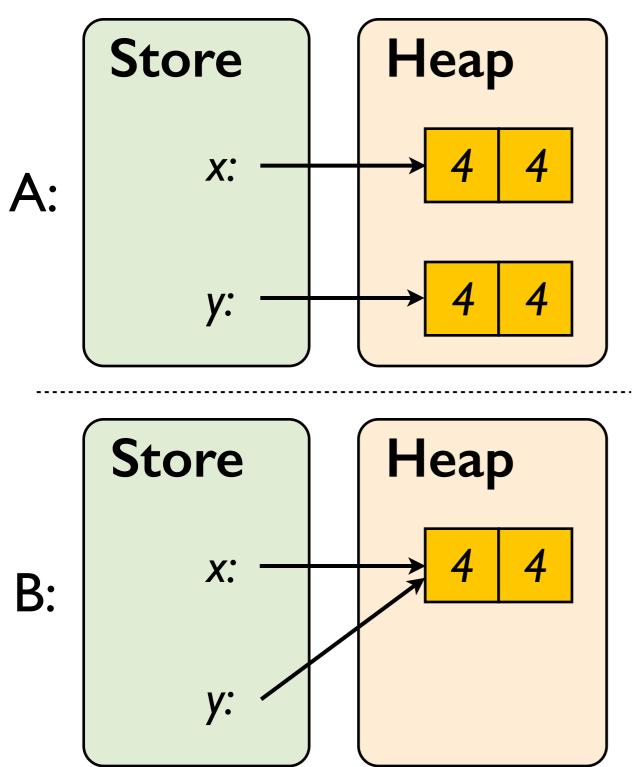


|                                         | Α            | В            |
|-----------------------------------------|--------------|--------------|
| $x \mapsto 4, 4$                        | Х            | $\checkmark$ |
| $x \mapsto 4, 4 * \text{true}$          | $\checkmark$ | $\checkmark$ |
| $x \mapsto 4, 4 * y \mapsto 4, 4$       | $\checkmark$ | Χ            |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$  |              |              |
| $(x \mapsto 4, 4 * \text{true})$        |              |              |
| $\wedge (y \mapsto 4, 4 * \text{true})$ |              |              |



|                                         | Α            | В            |
|-----------------------------------------|--------------|--------------|
| $x \mapsto 4, 4$                        | Χ            | $\checkmark$ |
| $x \mapsto 4, 4 * \text{true}$          | $\checkmark$ | $\checkmark$ |
| $x \mapsto 4, 4 * y \mapsto 4, 4$       | $\checkmark$ | Х            |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$  | Χ            | $\checkmark$ |
| $(x \mapsto 4, 4 * \text{true})$        |              |              |
| $\wedge (y \mapsto 4, 4 * \text{true})$ |              |              |

(from Parkinson)



|                                                                            | Α            | В            |
|----------------------------------------------------------------------------|--------------|--------------|
| $x \mapsto 4, 4$                                                           | Χ            | $\checkmark$ |
| $x \mapsto 4, 4 * true$                                                    | $\checkmark$ | $\checkmark$ |
| $x \mapsto 4, 4 * y \mapsto 4, 4$                                          | $\checkmark$ | Χ            |
| $x \mapsto 4, 4 \wedge y \mapsto 4, 4$                                     | Χ            | $\checkmark$ |
| $(x \mapsto 4, 4 * \text{true})$<br>$\land (y \mapsto 4, 4 * \text{true})$ | $\checkmark$ | $\checkmark$ |

47

### Semantics of separating implication

$$\left(s,h\models p\twoheadrightarrow q\right)$$

- aka the magic wand
- informally: asserts that extending h with a disjoint part h' that satisfies p results in a new heap satisfying q
- metatheoretic uses, e.g. proving completeness results

#### ∧ versus ∗

(from Parkinson)

#### Similarities

 $p \land q$ iff $q \land p$ p \* qiffq \* p $p \land true$ iffpp \* empiffp $p \land (p \Rightarrow q)$ impliesqp \* (p - \* q)impliesq

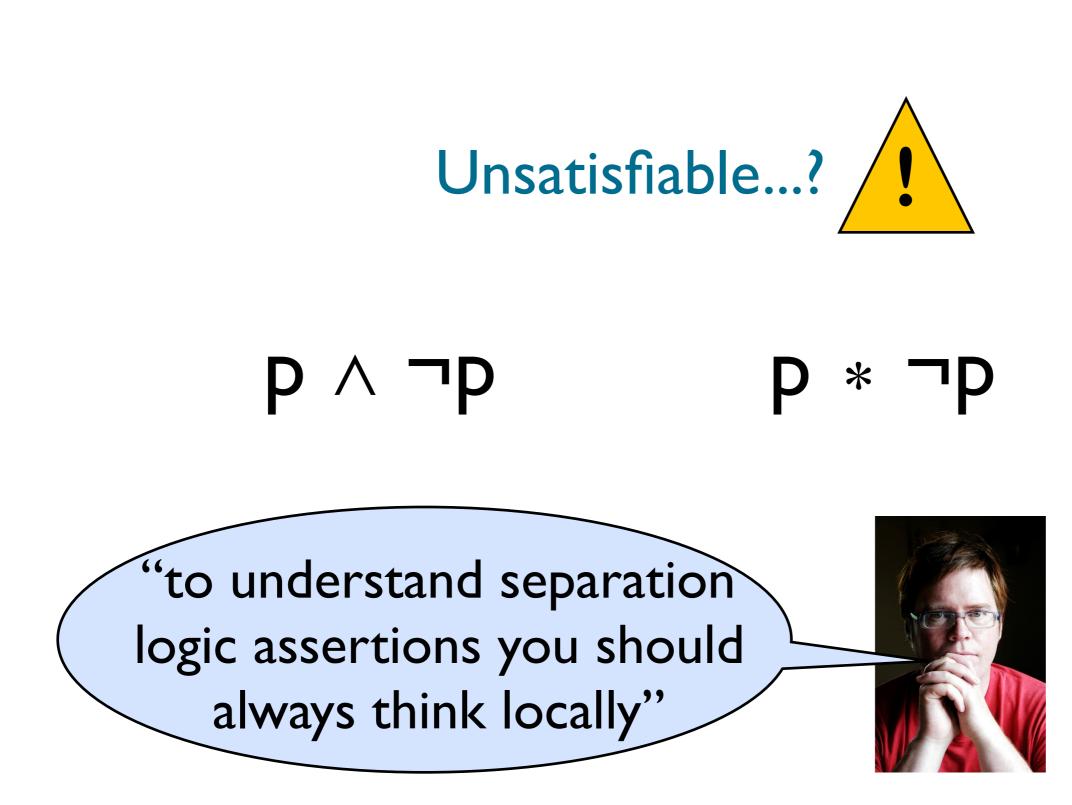
#### Differences

p implies $p \land p$ onedoes not implyone \* one $p \land p$ impliespone \* onedoes not implyone

where one is defined by:  $\exists x, y. \ x \mapsto y$ 



## P ^ ¬P P \* ¬P



#### Next on the agenda

(I) model of program states for separation logic

(2) assertions and spatial connectives

(3) axioms and inference rules

(4) program proofs

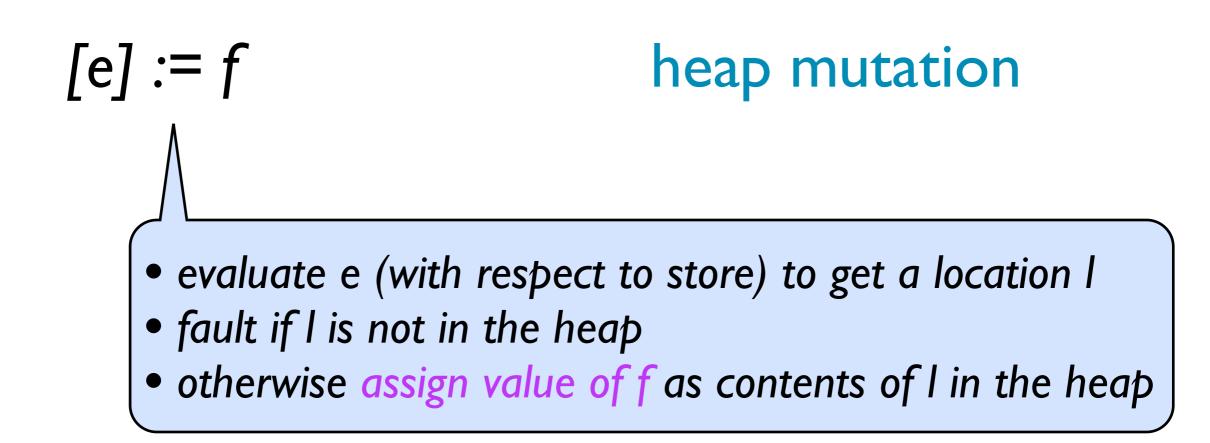
## Some program constructs for pointers variable assignment v := e v := [e] fetch assignment [e] := f heap mutation v := cons(e1, ..., en) allocation assignment dispose(e) pointer disposal

## Some program constructs for pointers variable assignment v := e fetch assignment v := [e] • evaluate e (with respect to store) to get a location l • fault if I is not in the heap • otherwise assign contents of I in heap to variable v

## Some program constructs for pointers

v := e

### variable assignment



## Some program constructs for pointers

### variable assignment

- choose n <u>consecutive locations</u> not in the heap
- ....say |, |+ | , ...
- extend the heap by adding I, I+I, ... to it
- assign I to variable v in the store
- assign values of el, ..., en to contents of l, l+l, ...

#### v := cons(e1, ..., en) allocation assignment

## Some program constructs for pointers

v := e

#### variable assignment

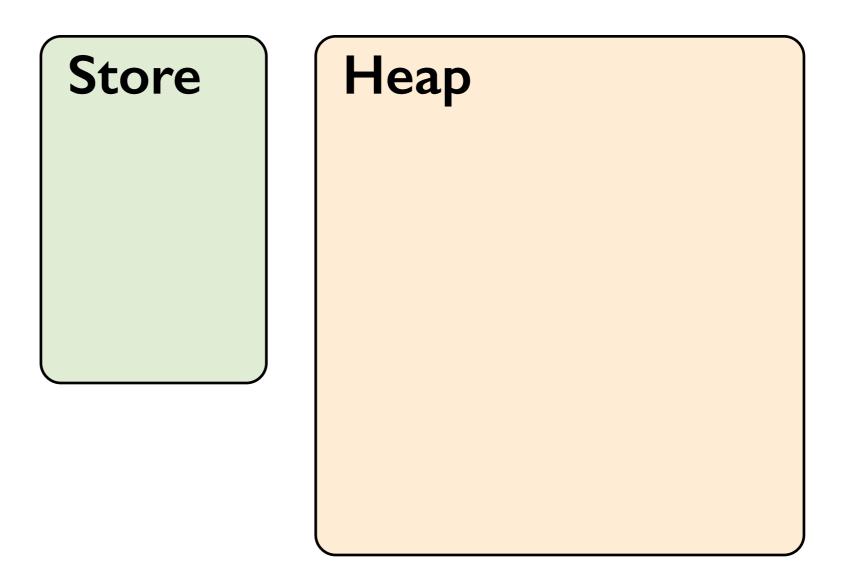
- evaluate e (with respect to store) to get a location I
- fault if I is not in the heap
- otherwise remove I from the heap

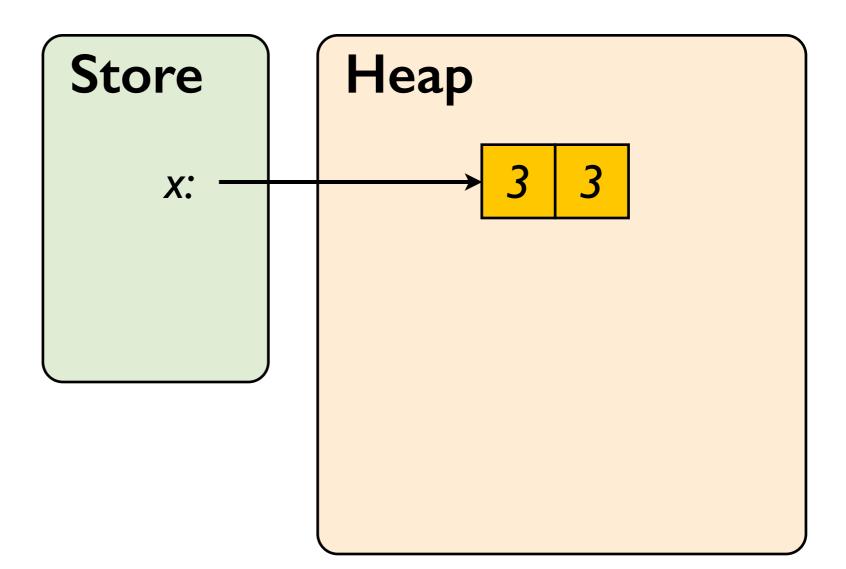
dispose(e)

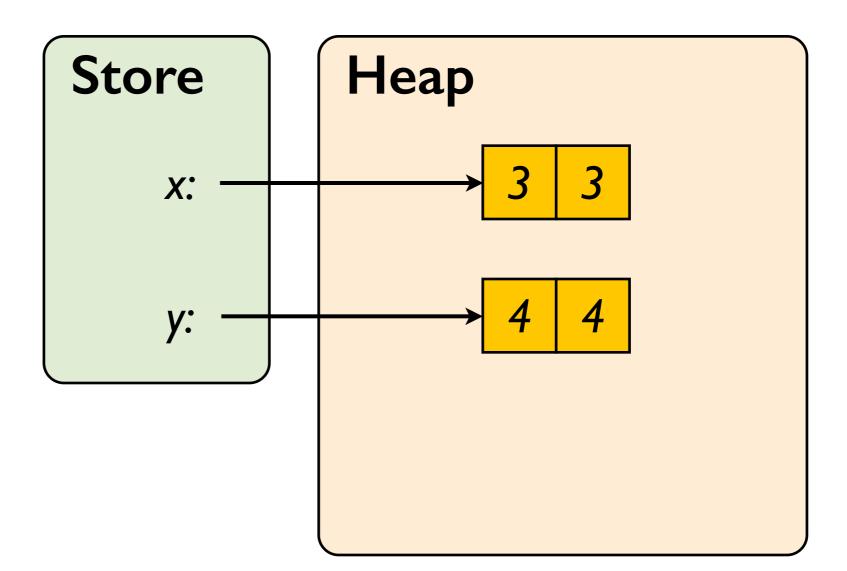
## pointer disposal

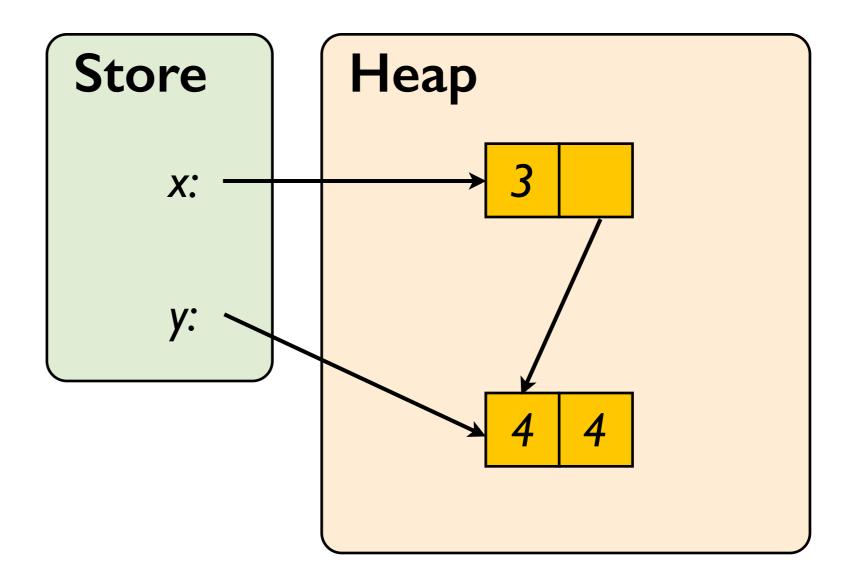
## Some program constructs for pointers variable assignment v := e v := [e] fetch assignment [e] := f heap mutation v := cons(e1, ..., en) allocation assignment dispose(e) pointer disposal

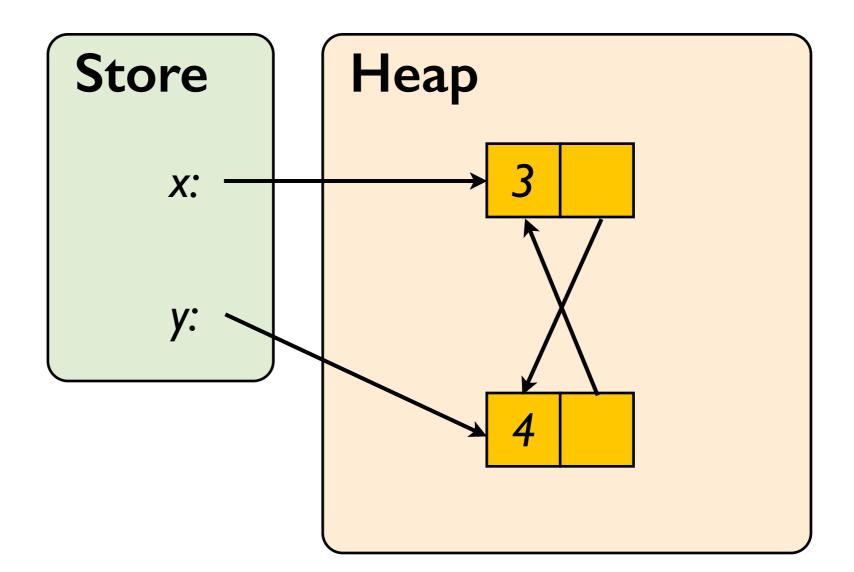
| x := cons(3,3); |
|-----------------|
| y := cons(4,4); |
| [x+1] := y;     |
| [y+l] := x;     |
| y := x+l;       |
| dispose x;      |
| y := [y];       |

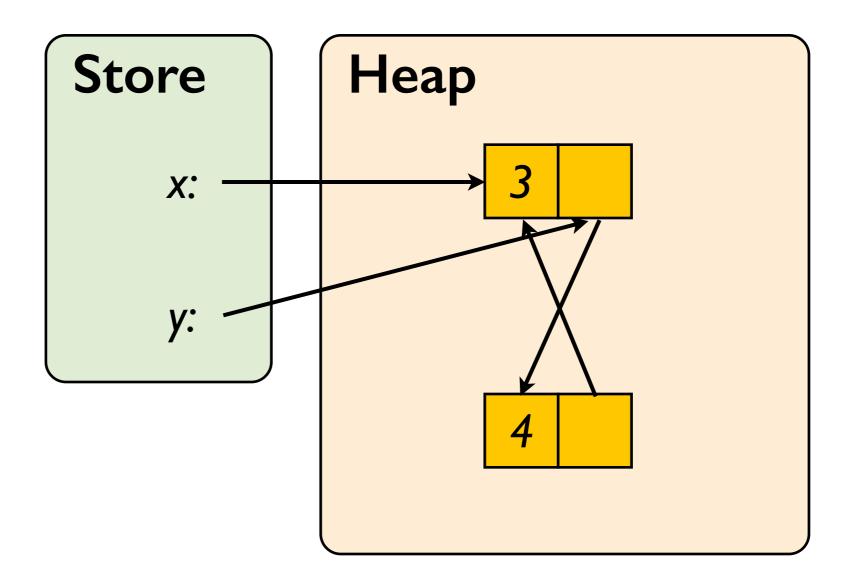


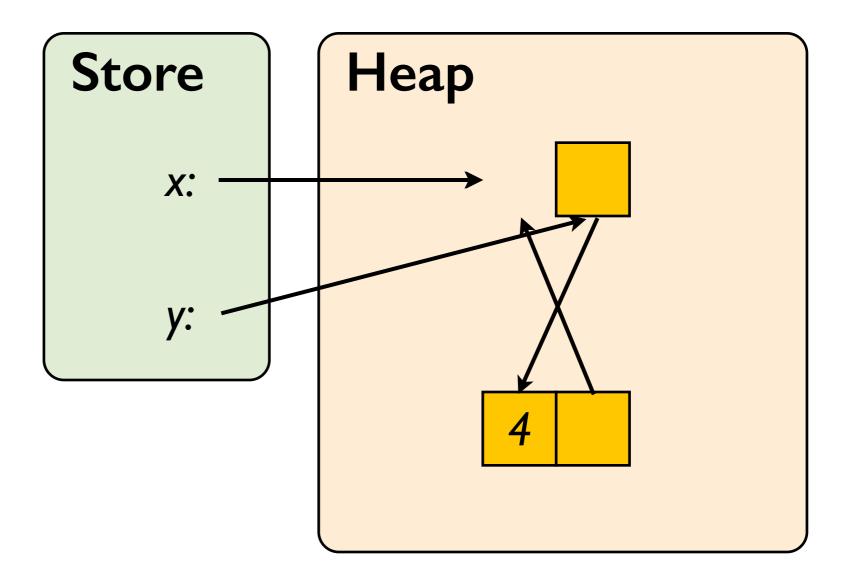




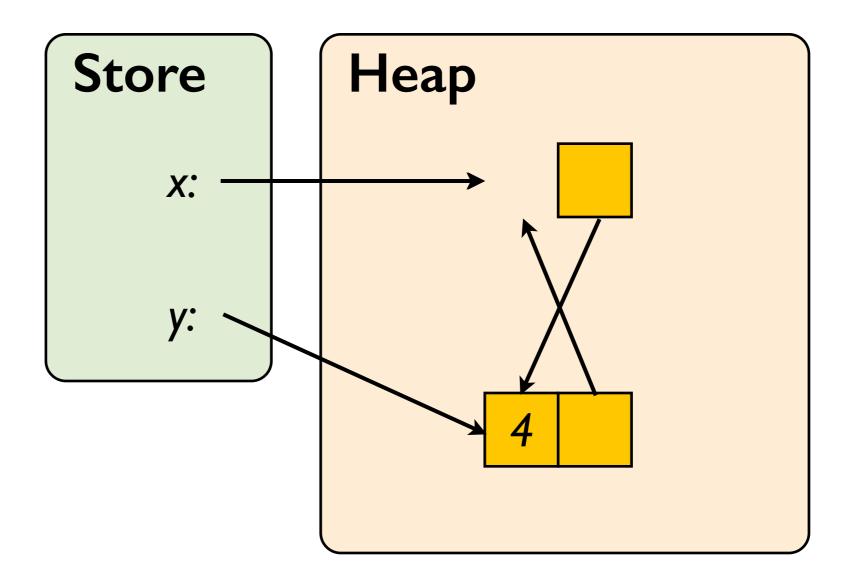






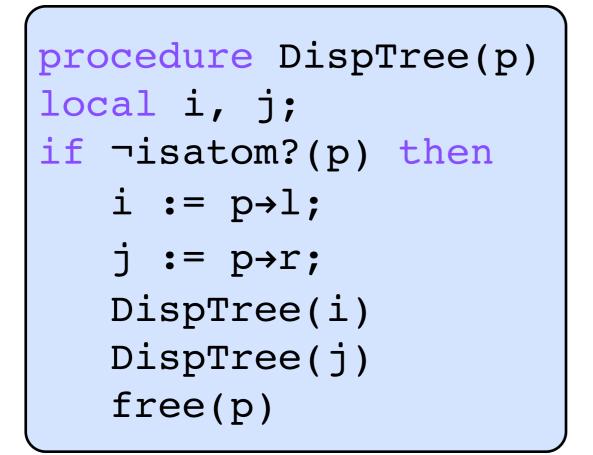


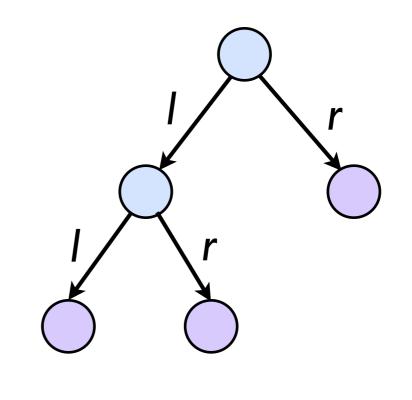
```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```



## New axioms for separation logic $\{e \mapsto \_\} [e] := f \{e \mapsto f\}$ $\{e \mapsto \}$ dispose(e) $\{emp\}$ $\{X = x \land e \mapsto Y\} \ x := [e] \ \{e[X/x] \mapsto Y \land Y = x\}$ $\{ \text{emp} \} \ x := \text{cons}(e_0, \dots, e_n) \ \{ x \mapsto e_0, \dots, e_n \}$ these expressions must not contain x

## Recall the problem in verifying this program:





{ tree(p)  $\land$  reach(p,n)  $\land \neg$  reach(p,m)  $\land$  allocated(m)  $\land m.f = m' \land \neg allocated(q)$  } DispTree(p) {  $\neg allocated(n) \land \neg$  reach(p,m)  $\land$  allocated(m)  $\land m.f = m' \land \neg allocated(q)$  }

## The frame rule

(the most important rule!)

$$\begin{array}{cccc} \{p\} & C & \{q\} \\ \\ \{p*r\} & C & \{q*r\} \end{array} \end{array}$$

 side condition: no variable modified by C appears free in r

• enables <u>local reasoning</u>: programs that execute correctly in a small state ( $\models p$ ) also execute correctly in a bigger state ( $\models p^*r$ )

#### Warning: interpretation of triples!

 interpretation of triples slightly stronger in separation logic than partial correctness

$$\models \{p\} \ C \ \{q\}$$

 "if C is executed on a state satisfying p, then it will not fault, and if it terminates, that state will satisfy q"

## Why no faulting?

 if we don't insist that programs do not fault, then strange "proofs" like the following will be possible:

#### Next on the agenda

(I) model of program states for separation logic

(2) assertions and spatial connectives

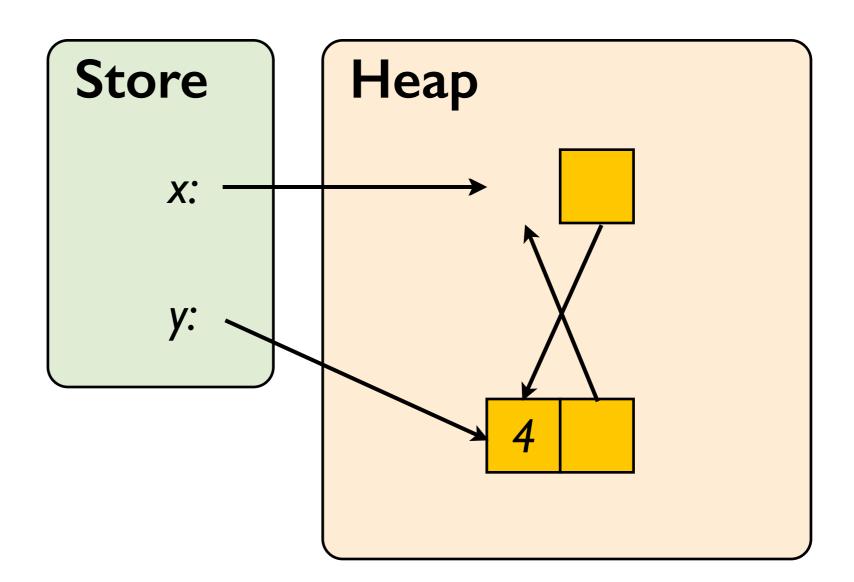
(3) axioms and inference rules

(4) program proofs

#### Exercise (for next time): prove this!

#### {emp}

```
x := cons(3,3);
  y := cons(4,4);
  [x+1] := y;
  [y+1] := x;
  y := x+1;
  dispose x;
  y := [y];
{y|->4 * true}
```



#### Exercise (for next time): prove this!

{emp}

```
x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];
```

{y|->4 \* true}

- the frame rule is crucial!
- reason forwards
  - i.e. use the "forward" assignment axiom
- try a proof outline (proof trees too large)

## Summary

- separation logic is an extension of Hoare logic for shared mutable data structures
- program states are now modelled by variable stores and heaps
- spatial connectives allow assertions to focus on resources used by programs
- frame rule enables local reasoning

#### Main sources for these lectures

Peter W. O'Hearn:

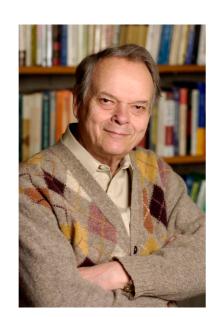
A primer on separation logic (and automatic program verification and analysis)

In: Software Safety and Security: Tools for Analysis and Verification. NATO Science for Peace and Security Series, vol. 33, pages 286-318, 2012



#### Main sources for these lectures







Peter W. O'Hearn, John C. Reynolds, Hongseok Yang

Local Reasoning about Programs that Alter Data Structures

CSL '01. Volume 2142 of LNCS, pages 1-19. Springer, 2001.

# Thank you! Questions?

Next lecture:

- writing separation logic proofs
- inductively-defined predicates in assertions