
Software Verification (Autumn 2015)
Lecture 15: Separation Logic

Part 1of 2

Chris Poskitt

Chair of
Software Engineering

A recent separation logic success story

2

Now open source: fbinfer.com

http://fbinfer.com

What is separation logic for?

• for reasoning about shared mutable data
structures in imperative programs

• structures where an updatable field can be referenced
from more than one point

• correctness of such programs depends upon complex
restrictions on sharing

• classical methods like Hoare logic suffer from extreme
complexity; reasoning does not match programmers’
intuitions

4

Some shared mutable data structures

5

i ...↵1 ↵2 ↵n

i ...↵1 ↵2 ↵n

l

l r

r

Problem illustration
(from O’Hearn)

6

• the following program disposes the elements of a tree

procedure DispTree(p)
local i, j;
if ¬isatom?(p) then

i := p!l;
j := p!r;
DispTree(i)
DispTree(j)
free(p)

• can we prove its correctness using classical Hoare logic?

l

l r

r

Problem illustration: Hoare logic
• here is a possible specification:  
 
{ tree(p) ∧ reach(p,n) }  
 DispTree(p)  
{ ¬allocated(n) }  
 
i.e. if there is a node n in the tree that p points to,
then after executing DispTree(p), n is no longer
allocated 

7

Problem illustration: Hoare logic
• here is a possible specification:  
 
{ tree(p) ∧ reach(p,n) }  
 DispTree(p)  
{ ¬allocated(n) }  
 
i.e. if there is a node n in the tree that p points to,
then after executing DispTree(p), n is no longer
allocated 

8

! have we specified enough?

Problem illustration: Hoare logic
• what does DispTree(p) do to nodes outside of the

tree p?  

9

procedure DispTree(p)
local i, j;
if ¬isatom?(p) then

i := p!l;
j := p!r;
DispTree(i)
DispTree(j)
free(p)

specification too weak! 
does not rule out that DispTree(i)
did not alter subtree j...
 ...might no longer be a tree!
 (precondition violation)

{ tree(i) ∧ reach(i,n) }  
 DispTree(i)  
{ ¬allocated(n) }

Problem illustration: Hoare logic
• can strengthen the specification with frame axioms 

 i.e. clauses specifying what does not change 

10

{ tree(p) ∧ reach(p,n) ∧ ¬reach(p,m) ∧ allocated(m)
∧ m.f = m’ ∧ ¬allocated(q) }  
 DispTree(p)  
{ ¬allocated(n) ∧ ¬reach(p,m) ∧ allocated(m)  
∧ m.f = m’ ∧ ¬allocated(q) }

• complicated; certainly does not scale!

• does not match the intuition that programmers use

How does separation logic help?

• separation logic extends Hoare logic to facilitate local
reasoning

• assertion language offers spatial connectives, allowing
one to reason about smaller parts of the program state  
 
 

• this locality allows us to:  
 - avoid mentioning the frame in specifications 
 - but to bring the frame condition in when needed

11

p * q

Next on the agenda

(1) model of program states for separation logic 

(2) assertions and spatial connectives 

(3) axioms and inference rules 

(4) program proofs

12

0

7

Recap: program states

13

s :

• in Hoare logic a program state comprises a variable store 
 
 i.e. a partial function mapping variables to integers 

x 
y
z

Variables Integers

0

7

Recap: program states

14

s :
s(x) = 0 
s(y) = 0  
s(z) = 7

• in Hoare logic a program state comprises a variable store 
 
 i.e. a partial function mapping variables to integers 

x 
y
z

Variables Integers

Recap: satisfaction of assertions

• we write s ⊨ p if store s (i.e. a program state)
satisfies assertion p  

• typically ⊨ is defined inductively  
 
 
 
 
 
 
(where [|B|]s denotes the evaluation of B w.r.t. s)  

15

s |= p ^ q if s |= p and s |= q

s |= 9x. p if there exists some integer v such that s[x 7! v] |= p

.

.

.

s |= B if [|B|]s = true

• For example:  
 
 
 
 
 
 
 
 
 

16

(x 7! 5, y 7! 10) |= x < y ^ x > 0

(x 7! 0) 2 9y. y < x ^ y � 0

(x 7! 25) |= 9y. y > x

Recap: satisfaction of assertions

The Heaplet model

17

we define locations  
as a subset of the
natural numbers

• in separation logic, program states comprise both a variable
store and a heap 
 
i.e. a partial function mapping locations (pointers) to integers 

• in separation logic, program states comprise both a variable
store and a heap 
 
i.e. a partial function mapping locations (pointers) to integers 

18

1 
 
3 
 
5

h :
0

25

-56

we define locations  
as a subset of the
natural numbers

The Heaplet model

Locations Integers

• the store: state of the local variables 
 
 

• the heap: state of dynamically-allocated objects

19

Variables ! Integers

Locations ! Integers

where:

The Heaplet model

Locations ⇢ Naturals

Example store and heap

20

Store Heap

x:

y:

8

20

1

5 16

z: 5

w: 97

8

20 5

v: -66

Example store and heap

21

Store Heap

x:

y:

8

20

1

5 16

z: 5

w: 97

v: -66

Example store and heap

22

Store Heap

x:

y:

1

5 16

z:

w: 97

v: -66

Next on the agenda

(1) model of program states for separation logic 

(2) assertions and spatial connectives 

(3) axioms and inference rules 

(4) program proofs

23

Syntax of assertions

24

false

p ^ q

p _ q

p) q

p ⇤ q
p�⇤ q

e = f

e 7! f

emp

9x. p

logical false
classical conjunction
classical disjunction
classical implication
separating conjunction
separating implication
equality of expressions
points to (in the heap)
empty heap
existential quantifier

}

}

spatial assertions

heap assertions

(e,f range over integer expressions; x over variables; p,q over assertions)

Semantics of assertions

• we write s,h ⊨ p if store s and heap h (together the
program state) satisfies assertion p  
 
 
 
 
 
 
 
 

25

(where [|e|]s denotes the evaluation of e with respect to s)

s, h |= false never

s, h |= p ^ q if s, h |= p and s, h |= q

s, h |= p _ q if s, h |= p or s, h |= q

s, h |= p) q if s, h |= p implies s, h |= q

s, h |= e = f if [|e|]s = [|f |]s

Semantics of empty heap

• the semantics of the remaining assertions all rely
on the heap h  
 
 
 
 
 
 
 
 

26

s, h |= emp if h = {}

Example of emp

27

HeapStore

x:

y:

3

-6

z: 5

s, h |= emp

Example of emp

28

HeapStore

x:

y:

3

-6

z: 5

s, h |= emp s, h |= emp ^ x < z

Semantics of points to

29

!
the heap h has exactly one
location: the value of e...  
...and the contents at that
location is the value of f

what about 
larger heaps?

s, h |= e 7! f if h = {[|e|]s ! [|f |]s}

Example of points to

30

Store Heap

x: 7

Example of points to

31

Store Heap

x: 7

s, h |= x 7! 7

Semantics of separating conjunction

• informally: the heap h can be divided in two so that
p is true of one partition and q is true of the other  
 
 
 
 
 
 
 

32

s, h |= p ⇤ q

Semantics of separating conjunction

• informally: the heap h can be divided in two so that
p is true of one partition and q is true of the other  
 
 
 
 
 
 
 

33

s, h |= p ⇤ q

s, h |= p ⇤ q if 9h1, h2. (h1?h2), (h1 � h2 = h),

s, h1 |= p and s, h2 |= q

disjoint domains
of definition

disjoint function  
composition

Example of separating conjunction

34

Store Heap

x: 5

10

z:

zy: _

Example of separating conjunction

35

Store Heap

x: 5

10

z:

zy: _

s, h |= x 7! 5 ⇤ 5 7! z ⇤ z 7! 10

Example of separating conjunction
(from Calcagno)

36

Store Heap

x: y

y: z

z: x

Example of separating conjunction
(from Calcagno)

37

Store Heap

x: y

y: z

z: x

s, h |= x 7! y ⇤ y 7! z ⇤ z 7! x

Example of separating conjunction
(from Calcagno)

38

Store Heap

x: y

y: z

z: x

s, h |= x 7! y ⇤ y 7! z ⇤ z 7! x

s, h |= x 7! y ⇤ y 7! z ⇤ z 7! x ⇤ emp

Notation

39

let e 7! f0, . . . , fn

abbreviate e 7! f0 ⇤ e+ 1 7! f1 ⇤ · · · ⇤ e+ n 7! fn

Notation

40

Store Heap

x: 4

y: 2

let e 7! f0, . . . , fn

abbreviate e 7! f0 ⇤ e+ 1 7! f1 ⇤ · · · ⇤ e+ n 7! fn

5

3 4

Notation

41

Store Heap

x: 4

y: 2

let e 7! f0, . . . , fn

abbreviate e 7! f0 ⇤ e+ 1 7! f1 ⇤ · · · ⇤ e+ n 7! fn

5

3 4

x 7! 4, 5 ⇤ y 7! 2, 3, 4

x 7! 4, 5 ⇤ true

Exercises
(from Parkinson)

42

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B

Exercises
(from Parkinson)

43

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B
✓X

Exercises
(from Parkinson)

44

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B
✓
✓✓

X

Exercises
(from Parkinson)

45

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B
✓
✓✓

✓ X

X

Exercises
(from Parkinson)

46

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B
✓
✓✓

✓
✓X
X

X

Exercises
(from Parkinson)

47

Store Heap

x: 4

y: 4

4

4

Store Heap

x: 4

y:

4

A:

B:

x 7! 4, 4

x 7! 4, 4 ⇤ true
x 7! 4, 4 ⇤ y 7! 4, 4

x 7! 4, 4 ^ y 7! 4, 4

(x 7! 4, 4 ⇤ true)
^ (y 7! 4, 4 ⇤ true)

A B
✓
✓✓

✓
✓
✓✓

X
X

X

Semantics of separating implication

• aka the magic wand

• informally: asserts that extending h with a disjoint
part h’ that satisfies p results in a new heap
satisfying q

• metatheoretic uses, e.g. proving completeness
results

48

s, h |= p�⇤ q

∧ versus ∗
(from Parkinson)

49

p ^ q i↵ q ^ p

p ^ true i↵ p

p ^ (p) q) implies q

p ⇤ q i↵ q ⇤ p
p ⇤ emp i↵ p

p ⇤ (p�⇤ q) implies q

p implies p ^ p

p ^ p implies p

one does not imply one ⇤ one
one ⇤ one does not imply one

9x, y. x 7! y

Similarities

Differences

where one is defined by:

Unsatisfiable...?

50

p ∧ ¬p p ∗ ¬p

!

Unsatisfiable...?

51

p ∧ ¬p p ∗ ¬p

!

“to understand separation
logic assertions you should

always think locally”

Next on the agenda

(1) model of program states for separation logic 

(2) assertions and spatial connectives 

(3) axioms and inference rules 

(4) program proofs

52

Some program constructs for pointers

53

v := e  

v := [e]  

[e] := f  

v := cons(e1, ... , en)

dispose(e)

variable assignment 

fetch assignment 

heap mutation  

allocation assignment 

pointer disposal

Some program constructs for pointers

54

v := e  

v := [e]  

 

variable assignment 

fetch assignment 

 

 
• evaluate e (with respect to store) to get a location l
• fault if l is not in the heap
• otherwise assign contents of l in heap to variable v

Some program constructs for pointers

55

v := e  

 

[e] := f  

variable assignment 

 

heap mutation  

 
• evaluate e (with respect to store) to get a location l
• fault if l is not in the heap
• otherwise assign value of f as contents of l in the heap

Some program constructs for pointers

56

v := e  

 

 

v := cons(e1, ... , en)

variable assignment 

 

 

allocation assignment 

• choose n consecutive locations not in the heap
• ...say l, l+1, ...
• extend the heap by adding l, l+1, ... to it
• assign l to variable v in the store
• assign values of e1, ..., en to contents of l, l+1, ...

Some program constructs for pointers

57

v := e  

 

 

dispose(e)

variable assignment 

 

 

 

pointer disposal

• evaluate e (with respect to store) to get a location l
• fault if l is not in the heap
• otherwise remove l from the heap

Some program constructs for pointers

58

v := e  

v := [e]  

[e] := f  

v := cons(e1, ... , en)

dispose(e)

variable assignment 

fetch assignment 

heap mutation  

allocation assignment 

pointer disposal

Example program
(from Parkinson)

59

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

Example program
(from Parkinson)

60

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

x: 3 3

Example program
(from Parkinson)

61

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4y: 4

3 3x:

Example program
(from Parkinson)

62

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4

3

4

y:

x:

Example program
(from Parkinson)

63

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4

3

y:

x:

Example program
(from Parkinson)

64

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4

3

y:

x:

Example program
(from Parkinson)

65

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4

y:

x:

Example program
(from Parkinson)

66

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

4

y:

x:

New axioms for separation logic

67

{e 7! } [e] := f {e 7! f}

{e 7! } dispose(e) {emp}

{X = x ^ e 7! Y } x := [e] {e[X/x] 7! Y ^ Y = x}

{emp} x := cons(e0, . . . , en) {x 7! e0, . . . , en}

these expressions must not contain x

Recall the problem in verifying this program:

68

procedure DispTree(p)
local i, j;
if ¬isatom?(p) then

i := p!l;
j := p!r;
DispTree(i)
DispTree(j)
free(p)

{ tree(p) ∧ reach(p,n) ∧ ¬reach(p,m) ∧ allocated(m)
∧ m.f = m’ ∧ ¬allocated(q) }  
 DispTree(p)  
{ ¬allocated(n) ∧ ¬reach(p,m) ∧ allocated(m)  
∧ m.f = m’ ∧ ¬allocated(q) }

Framing!

l

l r

r

The frame rule
(the most important rule!)

69

{p} C {q}
{p ⇤ r} C {q ⇤ r}

• side condition: no variable modified by C
appears free in r  

• enables local reasoning: programs that
execute correctly in a small state (⊨ p) also
execute correctly in a bigger state (⊨ p*r)

Warning: interpretation of triples!

70

• interpretation of triples slightly stronger in
separation logic than partial correctness 
 
 

• “if C is executed on a state satisfying p, then
it will not fault, and if it terminates, that state
will satisfy q”

⊨ {p} C {q}

Why no faulting?

71

• if we don’t insist that programs do not fault,
then strange “proofs” like the following will
be possible:  
 
 
 
 
 
 

{true} [x] := 7 {true}  
 

{true * x |-> 4} [x] := 7 {true * x |-> 4}
!

Next on the agenda

(1) model of program states for separation logic 

(2) assertions and spatial connectives 

(3) axioms and inference rules 

(4) program proofs

72

Exercise (for next time): prove this!

73

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

Store Heap

x:

4

y:

{emp}

{y|->4 ∗ true}

Exercise (for next time): prove this!

74

x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;
y := x+1;
dispose x;
y := [y];

{emp}

{y|->4 ∗ true}

• the frame rule is crucial!
• reason forwards 
 i.e. use the “forward” assignment axiom
• try a proof outline (proof trees too large)

Summary

• separation logic is an extension of Hoare
logic for shared mutable data structures

• program states are now modelled by
variable stores and heaps

• spatial connectives allow assertions to
focus on resources used by programs

• frame rule enables local reasoning

75

Main sources for these lectures

Peter W. O’Hearn:  
 
A primer on separation logic 
(and automatic program verification and analysis) 
 
In: Software Safety and Security: Tools for Analysis and
Verification. NATO Science for Peace and Security
Series, vol. 33, pages 286-318, 2012

76

Main sources for these lectures

Peter W. O'Hearn, John C. Reynolds, Hongseok Yang 
 
Local Reasoning about Programs that Alter Data Structures 
 
CSL '01. Volume 2142 of LNCS, pages 1-19. Springer, 2001.

77

Thank you! Questions?

Next lecture:

• writing separation logic proofs

• inductively-defined predicates in assertions

78

