Theory
Of

Programs

Bertrand Meyer, 23 November 2015

Axiomatic descriptions

LAWS OF PROGRAMMING

A complete set of algebraic laws is given for Dijkstra’s nondeterministic
sequential programming language. Iteration and recursion are explained in
terms of Scott’s domain theory as fixed points of continuous functionals,

A calculus analogous to weakest preconditions is suggested as an aid to
deriving programs from their specifications.

R. HOARE, I. J. HAYES, HE JIFENG, C. C. MORGAN, A. W. ROSCOE,

C.A.R
J. W. SANDERS, |. H. SORENSEN, J. M. SPIVEY, and B. A. SUFRIN

« Laws »

(1) Clearly, it does not make any difference in what
order a choice is offered. “Tea or coffee?” is the same as
“coffee or tea?.”

PUQ=QUP [symmetry)

(2) A choice between three alternatives (tea, coffee,
or cocoa) can be offered as first a choice between one
alternative and the other two, followed (if necessary) by
a choice between the other two, and it does not matter
in which way the choices are grouped.

PUQUR)=PUQUR (associativity)

(3) A choice between one thing and itself offers no
choice at all (Hobson’s choice).

PUP="P (idempotence)

(4) The ABORT command already allows completely
arbitrary behavior, so an offer of further choice makes
no difference to it.

1LUP=1 (zerol)

“Laws”

The Laws of Programming Unify
Process Calculi*

Tony Hoare! and Stephan van Staden®

! Microsoft Research, Cambridge, United Kingdom
* ETH Zurich, Switzerland
Stephan.vanStaden@inf.ethz.ch

Abstract. We survey the well-known algebraic laws of sequential pro-

gramming, and propose some less familiar laws for concurrent program-

ming. On the basis of these laws, we derive the rules of a number of classical

programming and process calculi, for example, those due to Hoare, Mil-

ner, and Kahn. The algebr: mpler than each of the calculi derive

it, and stronger than all the calculi put together. We end with a s Table 1. Basic properties of the operators

describing the role of unification in Science and Engineering,

v A i]
Commutative | yes no yes
Associative yes yes yes
Idempotent yes yes no no
Unit L T skip skip
Zero T i A B

s 0 Z 3 |!_73)iﬂﬂﬂ
In addition to such laws, distribution laws state the relationships between two
(or more) operators. All the binary operators in the table distribute through (Vv),
i.e. for o € {V,A,;, ||} we have:
e Po(QVR)=(PoQ)V(PoR)
e (PVQloR=(PoR)V(QoR)
Another distribution law, analogous to the exchange law of category theory,

specifies how sequential and concurrent composition interact:

e (PQ):(R[S)S(P:R)[1(Q:5)

“Natural” semantics

Natural Semantics

G. Kahn
INRIA, Sophia-Antipolis
06565 Valbonne CEDEX, FRANCE

Abstract

During the past few years, many researchers have begun to present semantic
specifications in a style that has been strongly advocated by Plotkin in [19].
The purpose of this paper is to introduce in an intuitive manner the essential
ideas of the method that we call now Natural Semantics, together with its
connections to ideas in logic and computing. Natural Semantics is of interest
per se and because it is used as a semantics specification formalism for an
interactive computer system that we are currently building at INRIA.

“Natural” semantics laws 0

ot mumbern=> N pHE, >true pFE; > a

p F true=> true p}- if B, thenE, elseE, = o
p b false => false

pt By => false pFrEs=>a
pl ifE, thenE,elseey = o

pF AP.E=[AP.E,]

valoof

p b identi—a
ptident1=>a

pFE, D a pFE =S
pt (B4, Es) =>(a,)
p = E,=>|AP.E, p4] pHE,=>a prP—ale=g
PHE\E.=>f

pFE =D a p.P»w_al—E.:»ﬂ
pkletp =E;ing, =6

pP—al B =>a p-P—a~g =0
ptletrecP = E;inE, = f§

The axiomatic method ©

Bertrand Russell (cited by Hoare et al.): an axiomatic approach
(i.e. postulating the laws)

has the advantages of theft over honest toil
Hoare et al.:

of course, the mathematician should also design a model of
the language, to check completeness and consistency of the
laws, to provide a framework for the specifications of
programs, and for proofs of correctness

Defining functions ©

Real functions £ and o, such that:
Icz—ﬁ
Jg=o
£ (x)?*+0 (x)*=1

etc.

Programs ©
A program (or specification) over a state space S is given by
> Arelation post: S<> S -- Postcondition

> AsetPre ¢S -- Precondition
Notation: S <> S
-- Relationson S, i.e. P (S x S)

For given program p, write these posty, and Plrep

Conversely, <post, Pre> is the program defined from post and Pre

Programs vs specifications ©

Examples:

> x:=1

> Result? = Input

10

Programs ©
A program (or specification) over a state space S is given by
> Arelation post: S<> S -- Postcondition

> AsetPre ¢S -- Precondition
Notation: S <> S
-- Relationson S, i.e. P (S x S)

For given program p, write these posty, and Plrep

Conversely, <post, Pre> is the program defined from post and Pre

11

Program/specification ©

S post

12

Determinism

A program is deterministic if b is a function*

The same concept applies to specifications

**Functions” are possibly partial; total functions are always marked as such

13

Programming language, specification language

Set of predefined relations and combinators for building
programs/specifications

14

Varieties of programs ©

Deterministic if post is a function
Non-deterministic otherwise

Functional if every subset C of S is disjoint from post,, (©)
Imperative otherwise

Object-oriented if if S is of the form 0..n — O for an integer n
and a set O of “objects”

Procedural otherwise

Notation: r (A)
-- Image of a set by a relation

A program (or specification) over a state space S is given by
> Arelation post: S<>S -- Postcondition
> AsetPre =S -- Precondition

15

Equivalence G

Two programs are equivalent if they have the same Pre and the
same post / Pre

Notation: restriction and corestriction of a relation
r/X --r n(XxS)
r\Y --r n(SxY)

A program (or specification) over a state space S is given by
> Arelation post: S<> S -- Postcondition
> AsetPre c S -- Precondition

16

Feasibility

A program is feasible if Pre < post

Notation:r, T

-- Domain, codomain of a relation

A program (or specification) over a state space S is given by

> Arelation post: S<> S -- Postcondition
> AsetPre S -- Precondition
17
Refinement ©
p, refines p_ if:
P POst YR pOst, -- Strengthening
Pre,
R Re s =Diaiie. -- Weakening

[Notation: rcrmeans(r/X)cr }
X

» Also:S, 25, -- Specialization

Refinement is a preorder over specifications/programs
(partial order modulo program equivalence)

18

Implementation

An implementation of p is a feasible refinement of p

19

Implementation theorem

A specification having an implementation is feasible

In other words, if a specification has a feasible refinement, it is
itself feasible

20

10

Refinement safety
An operator § is refinement-safe if
q, < p, and q, < p, implies (q, § q,) = (p, §)

Theorem: all the operators introduced in this discussion are
refinement-safe

21

Contracted programs

If p is a program, the notation
require Pre do p ensure post end

(a “contracted program”)
states that p is an implementation of <post, Pre>

Reminder: <post, Pre> is the program of
postcondition post and precondition Pre

J

A (contracted) program is a proof obligation

22

11

Programming language, specification language

Set of predefined relations and combinators for building
programs/specifications

23

Fundamental combinators

Name Notation |Postcondition Intuition
Choice p e) Performs like
: 1 2 ost, U post :
(union) e g < p, orlikep,
(Compos1t10n Performs like
sequence, P15 Py post, ; post,, ‘
compound, ...) p, thenlikep,
Restriction)
C: Performs like p
uarded p ost/C
(g (also: p / C) p P / on C
command)
Corestriction p\C postp \C Corestriction
Operations on relations:
r;r -- Composition
r/r -- Restriction
r\r -- Corestriction

24

12

Theorems
CT (G op) =
> C:(C,:p) =
> C:(p, v p,) =
- EC (PR Y =
> q;(p; Y py) =
> (p; Y Py) 54 =
2 (Bp, wC E
» IfDcC,
» Ifqcp,

G JEHD)
(C,nC,):p
Cop e C)
(Cp s

(a5py) Culqips)
(py;9) v (py59)
(p; \ Q) U (p, \ O)

then (C:p)c (D:p)
then (C:q) < (C:p)

25

Extreme programs

Skip: <Identity, S>

Havoc: <SxS, S>

Fail: <, >

-- where Identity is L x | x

Notation: <post, Pre> is the program of
postcondition post and precondition Pre

|

26

13

More theorems

(p\) = (p; (C: Skip)

(p ; Skip) = (Skip ; p) =p

(p v Fail) = (Fail U p) 2p

(p; Fail) = (Fail ; p) = Fail

(p U Havoc) = (Havoc up) = Havoc

(p ; havoc) = (Pre,: Havoc)

P S(CHp)
Ifq, cpandq,cp,: (q, v a,) c(p,vp,)
Ifq, cpandq,cp,: (d;595) & (PP
For any p: p c (Pre,: Havoc)
For any total p: p < Havoc
If and only if p = Fail: p c Fail
If and only if p = Fail: Fail P

i
Atomic concurrency G
Name Notation |Postcondition |Intuition
Ry Py Py) Performs once
P, |l P, W, like each of p,
concurrency d
(p,;py) ghch

Theorems:

(p,vp,) [l p3) (p; 11 P3) V (P, [P3)

(C3pr NPy = (- pRlINGR)
(p 1P\ C = (0, VC| |up5,\¥C)
oy) e S (DH([FD5]

(P55 Py) hg @)

Two programs commute if (p, ; p,) = (p, ; p,)

28

14

Fine-grain concurrency ©

Ternary operator:
(pypy) I1q

defined as:

Upyalf a)p%).- i, 2P| ha))

Some theorems:

(B LD SRl e (s A D5) Mg A DRI G ‘RIS)

> Py PRL aer'e * 5 p apy). [{'g

2y 1 (p2 e (pl, pz) || q -- “Laws of exchange”

e (palfia JoPae = (ap9,) |l p -- (Hoare/Van Staden)

29

Conditionals 0
Name Notation Definition
Guarded s ! _ |
Sk e if C:p, [] C,:p, end (G JIO(E P
If-then-else | if C then p, else p, end (C:p) U (C:p,)

Notation: C’
-- Complement of a set

30

15

More theorems

(C:p)

if C;:p, [] C,:p, end

D: (if C;:p, [] C,: p, end)
if C then p, else p, end
if C then p, else p, end

IfD,c C,and D, c C,, then
if D;:p[] D,:qend

Ifq,c p,and q, c p,, then
s C'q P Csigy

Ifq,c p,and q, < p,, then

end

if C then q, else q, end

©

[Notation: C

-- Set complement]

if C: p end
Cipy

i (DN C):p, Il

(DN C,): p, end)
if C: p, [C:p, end
if ¢’ then p, else p, end

if C:p[]C,:qend

€ paf eap S

5 P, end

if C then p, else p, end

31

Special conditions

True is another name for S

False is another name for &

and is another name for N, or another name for U, implies

another name for ¢
Theorems:
> (True: p)
> (False: p)
p \True
p \ False

V. AV TRVEE AV LY

and conditionals

(if True then p, else p, end) =
(if False then p, else p, end) -

Fail

Fail
P;
P>

and, or, not, implies distribute over choice, restriction

32

16

Loops
Name Notation Definition
0 S 2 <
Fixed pi p® =p: Skip
repetition ¢ '

p p1+1 = (p : pl)
Arbitrary s :
repetition PP ikz'{) p
lg/ggile from a until Cloopbend | a; (loop C: b end)\ C

33
Invariants [0

A condition [is an invariant of a program/specification p if

post,, (I Prep) g}

Notation:
r (A) -- Image of a set by a relation

Theorems

> Any [disjoint from Pre_ is an invariant of p

p
» Ifland] are invariants of p,soare I n Jand [U]

Invariant refinement theorem

» Iflis an invariant of p and q c p, then I is an invariant
of q / Pre,

34

17

Invariant preservation

All operators seen so far are invariant-preserving in the
following sense: an invariant of the operands is also an
invariant of the result

35

Loop invariant

A loop invariant of
from a until C loop b end

is a subset of 3 that is an invariant of C’: b

Notations: 1, T
-- Domain, codomain of a relation

36

18

Loop correctness theorem

If I is a loop invariant of the loop
L = (from a until C loop b)

then

37

Loop feasibility theorem

For feasible a and b, the loop
from a until C loop b
is feasible if both:
> bu Cisaloop invariant

> C': posty, is well-founded

38

19

Contracted programs

If p is a program, the notation
require Pre do p ensure post end
states that p is an implementation of <post, Pre>

A (contracted) program is a proof obligation

39

Contract refinement theorem

If
post < post’
Pre’ ¢ Pre

and the following is a contracted program:
require Pre do p ensure post end

then so is

require Pre’ do p ensure post’ end

40

20

Properties of programs

Name Notation Definition

Strongest postcondition of

T b sp post posty, / Pre

Weakest precondition of b e A S AT

for post PP e L BT

b sp False = Fail

b wp Fail = False

Fail sp C = Fail

Fail wp p = False

b sp (puq) = (bspp) w(bspq)

b wp (puq) > (bwpp)u(bwpq)

41

Theorems G

> Prespiisthe smallest relation post such that Pre, i and
post define a correct program

> 1 wp post is the largest set Pre such that Pre, i and post
define a correct program

> Any implementation of the MAI (Most Abstract
Implementation) of a specification p is an
implementation of p

» Ifpis feasible, its MAI is an implementation of p

> The MALl is the largest relation i such that Pre, i and post
define a correct program

42

21

A project: FLIP

Formal Language Innovation Platform

Eiffel library:

> Basic classes representing key mechanisms: aggregation,
alternation...

> Notion of proof

> Deferred classes representing the notions discussed
earlier: environment, state, instruction, expression...

> Proof mechanisms

> Effective classes representing common notions, e.g.
assignment, state in a Pascal-like language, state in an
OO language...

» Pre-packaged proof

43

A program as a proof obligation

44

22

Definition: Programming

©

Programming is the process of devising interesting

contract-implementation pairs and discharging the
associated proo i

Program = specification + implementation + proof obligation

45

Programming

46

23

