
Automatic Fixing of
Programs with Contracts

Yu Pei

Chair of Software Engineering, ETH Zurich
December 2, 2015



To Err Is Human

2

A French rail company has ordered 2000 new trains 
that are too big for 1300 stations they are due to serve.



Programs Have Faults

Specification vs. Implementation
What a program should do vs. what a program really 
does
When they conform, the program is correct.

Program faults are discrepancies between the two
Unpleasant, unacceptable, or even fatal
Expensive
Overwhelming to fix manually

3



Automatic Unit Testing

Unit testing

AutoTest
Automatic test case generation

Precondition of the routine as the input filter
Postcondition of the routine as the oracle

Test case categorization

4

Precondition Postcondition Test Case

× -- Invalid

✓ ✓ Valid, Passing

✓ × Valid, Failing

push(element: E)
require
element /= Void

ensure
count = old count + 1
top() = element

Test:
OracleInput

s.push(o)



Outline

5

Program with Contracts

ImpleFix
[ISSTA ’10, ASE ’11, TSE’14]

SpeciFix
[FASE ’14]

AutoFix Tool 
[ICSE’15]

AutoFix

178 citations in total



An Example Fault
class CIRCULAR [G]
duplicate (m: INTEGER): CIRCULAR [G]

-- A duplicate with at most ‘m’ 
-- elements copied from ‘Current’.

require m >= 0
do
create Result.make (count)
...

end

make (n: INTEGER)
-- Initialize ‘Current’ for 
-- ‘n’ elements.

require n >= 1
do
create list.make_list (n)

end

list:  ARRAYED_LIST [G]
count: INTEGER
...

6

-- Length of circular
-- Storage



An Example Fault
class CIRCULAR [G]
duplicate (m: INTEGER): CIRCULAR [G]

-- A duplicate with at most ‘m’ 
-- elements copied from ‘Current’.

require m >= 0
do
create Result.make (count)
...

end

make (n: INTEGER)
-- Initialize ‘Current’ for 
-- ‘n’ elements.

require n >= 1
do
create list.make_list (n)

end

list:  ARRAYED_LIST [G]
count: INTEGER
...

-- Length of circular

7

-- Storage

duplicate (m: INTEGER): ...
do -- fix implementation

if count = 0 then
create Result.make (1)

else
create Result.make (count)

end
...

end

duplicate (m: INTEGER): ...
require -- strengthen

count > 0 -- precondition
m >= 0

make (n: INTEGER)
require -- weaken

n >= 0 -- precondition

1

3

2



The AutoFix Tool

8

fully automatic and easily accessible



Fixing the Implementation with ImpleFix

Assumption
Contracts are correct

Target faults
Incorrect source states of object transitions as causes
Simple changes as fixes

Three steps
Fault localization
Fix synthesis
Fix validation

9



Fixing the Implementation with ImpleFix

Abstract execution traces 
using state snapshots: 

[ e, l, v ]
Compute suspiciousness 
scores of the snapshots 
using multiple metrics
Consider the most 
suspicious snapshots as 
potential fault causes

L5. create Result.make (count)

[count=0, L5, True] 1.3
[m >= 0, L5, True] 0.2
...

[m >= 0, L5, True] 0.2
[count=0, L5, True] 1.3
...

fault 
localization

fix 
synthesis

fix 
validation

10



Fixing the Implementation with ImpleFix

Construct fix actions to 
change the snapshot states

call remove
replace count with 
count + 1

Instantiate candidate fixes 
from schemas using fix 
actions and suspicious 
snapshots

11

if count = 0 then
create Result.make (count + 1)

else
create Result.make (count)

end

[count=0, L5, True] 1.3
...

if count = 0 then
remove

end
create Result.make (count)

fault 
localization

fix 
synthesis

fix 
validation

L5. create Result.make (count)



Fixing the Implementation with ImpleFix

Apply each fix to the 
program and re-execute all 
the tests
Mark as valid the fixes that, 
when applied, make all the 
tests pass
Report the first n valid fixes 
to the user

12

if count = 0 then
create Result.make (1)

else
create Result.make (count)

end

if count = 0 then
remove

end
create Result.make (count)

fault 
localization

fix 
synthesis

fix 
validation



Experimental Evaluation of ImpleFix 

To understand the behavior of ImpleFix and the 
quality of generated fixes

Experimental setup
AutoTest for fault detection and test preparation
204 faults from 4 different code bases
9 different settings of testing time for each fault
30 repetitions for each fault and setting

13



Evaluation Results of ImpleFix

How many faults can ImpleFix fix?
Valid fixes to 86 faults (42%)

What is the quality of the fixes produced by ImpleFix?
Proper fixes to 51 faults (25%) 

What is the cost of fixing faults with ImpleFix?
On average ≤20 minutes per valid fix, including the time 
required for test generation

How robust is ImpleFix’s performance?
48 (56%) of the faults that ImpleFix managed to fix at 
least once were fixed in over 95% of the sessions

14



Correcting the Specification with SpeciFix

Assumption
The implementation is correct

Goal of fixing
Successful executions should be allowed
Unsuccessful executions should be forbidden

Four steps
Contract weakening
Contract strengthening
Fix validation
Fix ranking

15



Correcting the Specification with SpeciFix

Infer the set of the weakest 
preconditions for make
Weaken the precondition of make:

make

16

= {n >= 0, ...}

contract 
weakening

contract 
strengthening

fix 
validation

fix 
ranking

make
require n >= 1 or n >= 0
require ...

req: m >= 0

...

req: n >= 1

...

duplicate make



Correcting the Specification with SpeciFix

Infer the set of preconditions for 
duplicate
Strengthen the precondition of 
duplicate: 

duplicate

17

= {count /= 0, ...}

contract 
weakening

contract 
strengthening

fix 
validation

fix 
ranking

duplicate
require m >= 0 and count /= 0
require ...

req: m >= 0

...

req: n >= 1

...

duplicate make



duplicate
require m >= 0 and count /= 0
require ...

make
require n >= 1 or n >= 0
require ...

Correcting the Specification with SpeciFix

Apply each fix to the program 
and re-execute the tests
Mark as valid the fixes that, when 
applied, make the tests either 
passing or invalid

Use more tests for validation 
than for fix generation

18

contract 
weakening

contract 
strengthening

fix 
validation

fix 
ranking



duplicate
require m >= 0 and count /= 0

make
require n >= 1 or n >= 0

Correcting the Specification with SpeciFix

Prefer fixes resulting in weaker 
contracts, or more passing tests

19

contract 
weakening

contract 
strengthening

fix 
validation

fix 
ranking

...

1

2



Experimental Evaluation of SpeciFix

Experimental subjects
44 faults from 10 standard library classes

Result
Valid fixes to 42 faults, and proper fixes to 11
On average, 3 minutes for fixing and 31 minutes for 
testing per fix

When both available, proper fixes to contracts are 
often preferable to proper fixes that change the 
implementation

20



Summary

21

Program with Contracts

ImpleFix
[ISSTA ’10, ASE ’11, TSE’14]

SpeciFix
[FASE ’14]

AutoFix Tool 
[ICSE’15]



Thank you!

22


