Automatic Fixing of
Programs with Contracts

Yu Pej

Chair of Software Engineering, ETH Zurich
December 2, 2015

To ErrIs Human

~ THE WALL STREET JOURNAL, = surore

A French rail company has ordered 2000 new trains
that are too big for 1300 stations they are due to serve.

Programs Have Faults

% Specification vs. Implementation

» What a program should do vs. what a program really
does

» When they conform, the program is correct.

« Program faults are discrepancies between the two
» Unpleasant, unacceptable, or even fatal
> Expensive
» Overwhelming to fix manually

Automatic Unit Testing

<+ Unittesting

< AutoTlest

> Automatic test case generation

— > Jest: s.push(o) ——
Input

Oracle

» Precondition of the routine as the input filter

= Postcondition of the routine as the oracle

> Test case categorization

push(element: E)

require

element /= Void

ensure
count

top()

old count + 1
element

Precondition [Postcondition| Test Case
X -- Invalid
V4 V4 Valid, Passing
V4 X Valid, Failing

Outline

AutoFix

Program with Contracts

178 citations in total

5

An Example Fault

class CIRCULAR [G]
duplicate (m: INTEGER): CIRCULAR [G]
—- A duplicate with at most ‘m’
-- elements copied from ‘Current’.
require m >= 0
do
create Result.make (count)

end

make (n: INTEGER)
-- Initialize ‘Current’ for
-- ‘n’ elements.
require n >= 1
do
create list.make_list (n)
end

list: ARRAYED_LIST [G] -- Storage
count: INTEGER -- Length of circular

An Example Fault

class CIRCULAR [G]
duplicate (m: INTEGER): CIRCULAR [G]
—- A duplicate with at most ‘m’
-- elements copied from ‘Current’.
require m >= 0
do
create Result.make (count)

end

make (n: INTEGER)
-- Initialize ‘Current’ for
-- ‘n’ elements.
require n >= 1

do
create list.make_list (n)
end
list: ARRAYED_LIST [G] -- Storage
count: INTEGER -- Length of circular

duplicate (m: INTEGER):
do -- fix implementation
if count = @ then
create Result.make (1)

else

@

create Result.make (count)

end

end

duplicate (m: INTEGER):

require -=
count > 0 -—-
m >= @

make (n: INTEGER)
require -=
n >= @ --

strengthen
precondition

weaken
precondition

7

@

©,

The AutoFix Tool

Settings |Faults | Fixes | Output

rRO=R

Settings
= Fix
Fault Type Nature of cha

=- CIRCULAR.... Before fix After fix
— Auto-1 Fix to imple,__Candithna] ex duplicate (n:INTEGER):CIRCULAR[G] # duplicate (n:INTEGER):CIRCULAR[G]

B . 18 Fucto nple< Conditional 18 -- Copy of sub-list beginning at current posit| || -- Copy of sub-list beginning at current posit

e e —— -- and having min ("n', count - index + 1) ite -— and having min ('n', count - index + 1) ite|

— Auto-3318 Fix to contr... Weaken and s a2 ‘ s g |

fully automatic and easily accessible

-

I

i counter = to_be copied counter = to_be_copied
loop loop
Result.extend (item) Result.extend (item)
[forth > ' forth
4 [m ' 3 1 |a m

Fixing the Implementation with ImpleFix

< Assumption
> Contracts are correct

« Target faults
> Incorrect source states of object transitions as causes
» Simple changes as fixes

% Three steps
» Fault localization
» Fix synthesis
» Fix validation

Fixing the Implementation with ImpleFix

fault fix
localization validation

« Abstract execution traces
using state snapshots:
e, V]
+ Compute suspiciousness
scores of the snapshots
using multiple metrics

«» Consider the most
suspicious snapshots as
potential fault causes

L5. create Result.make (count)

[m >= 0, L5, Truel]
[count=0, L5, True]

0.2
1.3

10

Fixing the Implementation with ImpleFix

fault fix
localization validation

< Construct fix actions to create Result.make (count)
change the snapshot states | rcount=e, L5, True] 1.3
> call remove
> replace count with 28 Geunh = 6 et
count + 1 remove
. . . end
<+ Instantiate candidate fixes create Result.make (count)
from schemas using fix if count = @ then
actions and SUSpiCiOUS create Result.make (count + 1)
else
Snapshots create Result.make (count)

end

11

Fixing the Implementation with ImpleFix

fault fix
localization validation

+ Apply each fix to the ifr;‘;gcz =) EIeN
program and re-execute all end
the tests create Result.make (count) x

+ Mark as valid the fixes that, if count = @ then
create Result.make (1)

when applied, make all the e
tests Pass create Result.make (count) \/

end

« Report the first n valid fixes
to the user

12

Experimental Evaluation of ImpleFix

« To understand the behavior of ImpleFix and the
quality of generated fixes

«» Experimental setup
» AutoTest for fault detection and test preparation
» 204 faults from 4 different code bases
> 9 different settings of testing time for each fault
> 30 repetitions for each fault and setting

Evaluation Results of ImpleFix

«» How many faults can ImpleFix fix?
> Valid fixes to 86 faults (42%)

« Whatis the quality of the fixes produced by ImpleFix?
> Proper fixes to 51 faults (25%)

«» Whatis the cost of fixing faults with ImpleFix?

» On average <20 minutes per valid fix, including the time
required for test generation

«» How robust is ImpleFix’s performance?

> 48 (56%) of the faults that ImpleFix managed to fix at
least once were fixed in over 95% of the sessions

Correcting the Specification with SpeciFix

<+ Assumption
» The implementation is correct

% Goal of fixing
> Successful executions should be allowed
> Unsuccessful executions should be forbidden

< Four steps
> Contract weakening
> Contract strengthening
> Fixvalidation
> Fixranking

Correcting the Specification with SpeciFix

contract contract fix
weakening strengthening validation

+ Infer the set 2 of the weakest 2={n>=0,
preconditions for make make
- equiren>=1orn>=0
+ Weaken the precondition of make: require ..
Pyoke OF @
duplicate make

req: n >= 1*

req: m >

16

Correcting the Specification with SpeciFix

contract contract fix
weakening strengthening validation

<+ Infer the set X of preconditions for[Z={count /=0,

duplicate duplicate
. . i >=0 d t/=0
+ Strengthen the precondition of cquire ...
duplicate:
Pyuplicate @and o
duplicate make

req: n >= 1k

req: m >

17

Correcting the Specification with SpeciFix

contract contract fix
weakening strengthening validation

« Apply each fix to the program make

requiren>=1orn>=0
require ...

« Mark as valid the fixes that, when guplicate
applied, make the tests either v :ggzi:gmx@and count /=0
passing or invalid

and re-execute the tests

+ Use more tests for validation
than for fix generation

18

Correcting the Specification with SpeciFix

contract contract fix
weakening strengthening validation

% Prefer fixes resulting in weaker — make

requiren>=1orn>=0

duplicate (:)

requirem>=0 and count /=0

contracts, or more passing tests

19

Experimental Evaluation of SpeciFix

«» Experimental subjects
> 44 faults from 10 standard library classes

« Result
> Valid fixes to 42 faults, and proper fixes to 11

» On average, 3 minutes for fixing and 31 minutes for
testing per fix

» When both available, proper fixes to contracts are
often preferable to proper fixes that change the
implementation

Summary

AutoFix Tool
[ICSE’15]

ImpleFix SpeciFix
[ISSTA 10, ASE ’11, TSE’14] [FASE ’14]

Program with Contracts

Thank you!

