
Efficient Unit Test Case Minimization

Andreas Leitner
Chair of Software Engineering

ETH Zurich, Switzerland
andreas.leitner@inf.ethz.ch

Manuel Oriol
Chair of Software Engineering

ETH Zurich, Switzerland
manuel.oriol@inf.ethz.ch

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-sb.de

Ilinca Ciupa
Chair of Software Engineering

ETH Zurich, Switzerland
ilinca.ciupa@inf.ethz.ch

Bertrand Meyer
Chair of Software Engineering

ETH Zurich, Switzerland
bertrand.meyer@inf.ethz.ch

ABSTRACT
Randomized unit test cases can be very effective in detecting de-
fects. In practice, however, failing test cases often comprise long
sequences of method calls that are tiresome to reproduce and de-
bug. We present a combination of static slicing and delta debug-
ging that automatically minimizes the sequence of failure-inducing
method calls. In a case study on the EiffelBase library, the strategy
minimizes failing unit test cases on average by 96%.

This approach improves on the state of the art by being far more
efficient: in contrast to the approach of Lei and Andrews, who use
delta debugging alone, our case study found slicing to be 50×
faster, while providing comparable results. The combination of
slicing and delta debugging gives the best results and is 11× faster.
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing] Testing and Debugging–Testing tools (e.g., data generators,
coverage testing)
General Terms: Experimentation, Verification

1. INTRODUCTION
Although automated test generation is more attractive than ever,

randomly generated unit test cases can become very large in size
of inputs and the number of method invocations. While large unit
test cases can be useful for triggering specific defects, they make
the subsequent diagnosis hard, and take resources to execute.

In this paper, we introduce a novel test case minimization method
based on static program slicing. The key idea of using slicing for
minimization is straightforward: we start from the oracle in the
failing test case—that is, the failing assertion or another exception.
By following back data dependencies, we establish the subset of
the code—the slice—that possibly could have influenced the oracle
outcome; any instructions that are not in the slice can therefore be
removed. In contrast to related work (Section 6), this approach is
far more efficient.

2. CREATING TEST CASES
To generate test cases, we use the AutoTest [7] tool. AutoTest

automatically tests Eiffel classes. by invoking their methods at ran-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

dom. The Eiffel contracts (pre- and postconditions and class invari-
ants), constitute natural test oracles and can be exploited to narrow
down the test generation space [7].

As an example of a test generated by AutoTest, consider List-
ing 1, testing the interplay of various classes in the EiffelBase li-
brary—the library used by almost all Eiffel applications, covering
fundamental data structures and algorithms.

. . .
67 v_61. forget_right
68 create {PRIMES} v_62
69 v_63 := v_62.lower_prime ({INTEGER_32} 2)
70 create {STRING_8} v_64.make_from_c(itp_default_pointer)

. . .
146 create {ARRAY2 [ANY]} v_134.make ({INTEGER_32} 7, {

INTEGER_32} 6)
147 v_134.enter (v_45, v_131)
148 create {RANDOM} v_135.set_seed (v_63)
149 v_136 := v_135. real_item

Listing 1: A generated random test case. Line 149 fails with a
nested precondition violation.

As shown in Listing 1, an AutoTest-generated test case only
needs four kinds of instruction—object creation, method (routine)
invocation, method invocation with assignment, and assignment.
This language is as complete as required by the test synthesis strat-
egy and as simple as possible. Control structures, for instance, are
not needed as tests are generated on the fly. Likewise, compos-

(a) Eiffel Class (b) AutoTest Generator (c) Randomized Unit Test Case

(f) Unit Test Case
 after Delta Debugging

(e) Unit Test Case
 after Slicing

(d) Failing Test Case

f()
f()
g()
g()
h()
…

f()
f()
g()
g()
h()
…

✘f()
f()
g()
g()
h()
…

f()
f()
g()
g()
h()
…

✘✘

Figure 1: Unit test generation and minimization. An Eiffel
class file (a) is fed into the AutoTest tool (b), which generates
a randomized unit test case (c) as a sequence of method calls.
Failing unit test cases (d) are automatically minimized—first by
static analysis (e), and then by delta debugging (f).

ite expressions can be transformed into a sequence of instructions
using only atomic expressions.

The test case in Listing 1 has successfully detected a defect in the
EiffelBase library. The invocation in Line 149: v_136 := v_135.
real_item results in a precondition violation (of the RANDOM.i_th
method), raising an exception.

How did this violation come to be? In general, a violated pre-
condition indicates a defect in the caller or further upstream in the
execution. In Listing 1, though, “upstream” means 148 lines of
code, not counting all the code that is executed in method calls.
Such a large test case makes diagnosis hard and brings a recurrent
performance penalty when executed repeatedly.

A means to simplify failing test cases to the bare minimum of
instructions required to reproduce the failure is therefore needed.
This helps the programmer understand the failure conditions and
narrow down the defect—and it makes test execution more effi-
cient. A simple test case will also be easier to explain and commu-
nicate. Finally, test case simplification facilitates the identification
of duplicate failures (multiple failing test cases that relate to the
same defect), as the simplified test cases all contain the same se-
quence of instructions.

3. MINIMIZING TEST CASES
A common diagnosis strategy for debugging works as follows:

starting with the failing instruction, proceed backwards (“upstream”)
to identify those instructions that might have influenced the failure.
This can be done dynamically (e.g. in a debugger) or statically (by
analyzing the code). In the case of Listing 1, this backward reason-
ing could be as follows:

1. Line 149 fails when invoking v_135. real_item .

2. Object v_135 was created in Line 148 as a RANDOM object,
setting the seed from v_63.

3. Object v_63, in turn, was created from v_62 in Line 69.

4. Object v_62 was created from a constant as a PRIMES object
in Line 68.

Not only does this backward reasoning help us understand the
chain of events that led to the failure, but even more importantly:
no other objects were involved in the computation. In other words,
the above backward sequence of events could easily be reversed to
a forward subset of instructions, as shown in Listing 2.

68 create {PRIMES} v_62
69 v_63 := v_62.lower_prime ({INTEGER_32} 2)

148 create {RANDOM} v_135.set_seed (v_63)
149 v_136 := v_135. real_item

Listing 2: Example test case, minimized

Now the reason for the failure becomes clear: creating an in-
stance of class RANDOM using the set_seed constructor to initial-
ize its seed, we cannot access the random value with real_item .
What happens here is that the set_seed constructor fails to initial-
ize the random generator, which results in the failure. The other
RANDOM constructor, far more frequently used, works fine.

The general technique of reasoning backwards and identifying
those statements that could have influenced a statement at hand is
known as slicing, and the set of influencing statements is known as
a slice [9]. In our example, the statements in Listing 2 constitute the

Test scope Avg. no. Avg. no. min. Avg. reduction
original inst. inst. (slicing) factor (%)

EiffelBase 35.29 1.62 95.39
Data struct. 100.24 2.90 97.10

Table 1: Reduction in number of lines of code of test cases by
slicing. Slicing reduces the size of test cases by over 90%.

backward slice of Line 149. Put in other words, Line 149 depends
on the statements in the backward slice, because they all potentially
influence the input to Line 149. Furthermore, the slice is a static
slice, as it is obtained from program code alone—in contrast to a
dynamic slice [1, 5], which would be extracted from a program run,
tracking all concrete variable accesses.

These ideas are the basis of our approach to minimize test cases:
a straightforward static analysis that follows data dependencies back-
wards from the failing method call, and returns a slice within the
generated test case. This slice then serves as a minimized test case
as well.

This approach is summarized in Figure 2. The core of the algo-
rithm is the definition of the ssmin function, which gets a sequence
of instructions to be minimized.

The slicing approach to simplify test cases is surprisingly simple
but highly effective. In our test setting, executing the full test case
(Listing 1) took 2344 ms. Executing the minimized test case takes
only 105 ms—that is, the test case is now 22 times faster. Due
to the verifying test run at the end, the whole run for ssmin took
105 ms as well. The slicing step itself (slice) took less than 1 ms,
which means virtually no cost.

4. CASE STUDY: EIFFELBASE LIBRARY
In order to evaluate the efficiency and effectiveness of the ssmin

algorithm we have generated over 1300 failing test cases for the
EiffelBase library with AutoTest.

Table 1 summarizes the results of the case study in terms of test
case size. The number of instructions per test case is averaged out
over all processed test cases.

Slicing produced test cases reduced by 95% (EiffelBase) and
97% (data structures). This clearly indicates that slicing is a very
effective minimization technique despite its simplicity.

The overall overhead of minimization compared to random test-
ing (as summarized in Table 2) is small: the first testing session
lasted for 900 seconds producing 1316 failing test cases and the
second session lasted for 300 seconds producing 168 failing test
cases. Minimizing the failing test cases was much faster with 94
seconds for the first session and 19 seconds for the second.

Test scope Number of Total testing Total minimization
failing TCs time (s) time (s)

EiffelBase 1316 900 94
Data struct. 168 300 19

Table 2: Performance of testing compared to minimization.
Minimization is quicker than testing itself.

Table 4 (column ssmin) shows how much time is spent slicing
and how much time executing the resulting slice. Values are again
averaged out over all processed test cases. Most of the minimiza-
tion time is spent verifying the slice (via execution). The slicing
step in particular, takes negligible time; this seems to confirm the
advantage of a shallow but fast slicing. The sum of slicing and ex-
ecution time is slightly smaller than the total minimization time,
because the algorithm also performs some extra benchmarking.

Let tc be a test case, represented as a sequence of instructions tc = [i1, . . . , in]. Our static slicing minimization algorithm ssmin(tc)
returns a minimized sequence tc′ = ssmin(tc) = [i′1, . . . , i

′
m] with m <= n and i′1, . . . , i

′
m ∈ tc.

ssmin is defined from the function slice . slice returns all instructions in the original test case on which the last instruction in depends
upon. In other words, slice returns only those instructions that can actually affect the execution of the last instruction, the one that makes
the test fail:

slice
`
[i1, . . . , in]

´
,

ˆ
i ∈ [i1, . . . , in] | in →? i

˜
In this definition, [a ∈ A | b] is the subsequence of A including only those elements for which b holds, and in →? i is the transitive reflexive
closure over the dependency relationship. An instruction i2 is dependent on an instruction i1, written i2 → i1, if there is some variable v
that is written by i1, read by i2, and not written in-between:

i2 → i1 , ∃ v ∈ (WRITE(i1) ∧ READ(i2)) \WRITTEN _BETWEEN (i1, i2)

(Note that we ignore control dependencies, as the generated test cases do not contain any control instructions.)

The set of variables read and written depend on the individual type of instruction:

READ(i) ,

8>>><>>>:
{source(i)} if i is an assignment
{arguments(i)} if i is an object creation
{target(i)} ∪ arguments(i) if i is a method invocation
{target(i)} ∪ arguments(i) if i is a method invocation with assignment

WRITE(i) ,

8>>><>>>:
{receiver(i)} if i is an assignment
{target(i)} if i is an object creation
{target(i)} if i is a method invocation
{receiver(i), target(i)} if i is a method invocation with assignment

In these definitions, source(i) is the right-hand side of instruction i, receiver (i) is the left-hand side of an assignment, target(i) the target
variable of a method call, and arguments(i) is the set of actual variables (constants are ignored).

Finally, the set of variables that may be written by some other instruction executed between i1 and i2 is defined as

WRITTEN _BETWEEN (i1, i2) , {v | i ∈ i1 ↔ i2 ∧ v ∈ WRITE(i)}

Here, i1 ↔ i2 denotes the sequence of instructions that can be executed between i1 and i2, but excluding i1 and i2.

Finally, we define ssmin on top of slice . Since slice is unsound, we check whether the minimized test case returned by slice produces the
same failure as the original:

ssmin(tc) ,

(
slice(tc) if failure(tc) = failure

`
slice(tc)

´
tc otherwise

where failure returns the contract that failed the test.

Figure 2: Static slicing minimization in a nutshell. The ssmin function takes a test case as a sequence of instructions and returns a
minimized test case, keeping only those instructions in the test case that might affect the failing instruction.

5. DELTA DEBUGGING
Our work is not the first one that minimizes randomized unit

tests. In 2005, Lei and Andrews [6] presented an approach based
on delta debugging [10], a general and automated solution to sim-
plify failure-inducing inputs. The delta debugging minimization
algorithm (abbreviated as ddmin) takes a set of factors that might
influence a test outcome, and repeats the test with subsets of these
factors. By keeping only those factors that are relevant for the test
outcome, it systematically reduces the set of factors until a mini-
mized set is obtained containing only relevant factors.

We have implemented ddmin as described in the original pa-
per [10]. The minimized result of ddmin (Table 3, column ddmin)
is only slightly smaller than the result of ssmin discussed in Sec-
tion 3. But ddmin takes vastly more time. In EiffelBase (Table 4),
the average minimization with ddmin takes 3570 ms, which is
50 times slower than the minimization with ssmin (71 ms). This
does not come as a surprise, considering that ssmin’s time essen-

tially comes from the single test execution.
Why is ddmin able to minimize further than ssmin? The rea-

son is that ssmin relies on dependencies, whereas ddmin actually
experimentally verifies causality. In the sequence y := 1; z := 0;
x := y * z, for instance, ssmin determines that x is dependent on

y, and therefore keeps y := 1 in the minimized test case. ddmin ,
however, finds that removing y := 1 makes no difference for the
value of x (nor to the test outcome, for that matter), and therefore
removes the instruction as not being a cause of failure. In general,
such findings are hard to produce without actual experiments.

It turns out, though, that the strengths of both approaches can be
combined, by first applying ssmin and then ddmin . As shown in
Tables 3 and 4, the combination

sdmin(tc) , ddmin
`
ssmin (tc)

´
is just as effective as ddmin alone, yet conserves the efficiency

gains of ssmin .

Test scope Average Average minimized LOC Average reduction factor (%)
original LOC ssmin ddmin sdmin ssmin ddmin sdmin

EiffelBase 35.29 1.62 1.42 1.42 95.39 95.97 95.97
Data struct. 100.24 2.90 2.05 2.05 97.10 97.95 97.95

Table 3: Reduction in number of lines of code of test cases by all 3 strategies

Test scope Minimization average Average Average
total time (ms) #executions execution time (ms)

ssmin ddmin sdmin ssmin ddmin sdmin ssmin ddmin sdmin
EiffelBase 71.40 3570.25 316.68 1 14.01 2.10 71.25 3551.42 315.16
Data struct. 110.42 11554.51 738.88 1 29.35 6.05 110.92 11510.41 741.75

Table 4: Minimization times for all 3 strategies

6. RELATED WORK
Delta debugging [10] is a general and automated solution to sim-

plify failure-inducing inputs. If, as in our case, the input is strongly
bound by a known semantic of the computation, other domain-
specific techniques can be much more efficient. Our experiments
indicate that slicing is nearly as effective as delta debugging, and in
cases where it fails often reduces the number of executions needed
by delta debugging and hence the overall minimization time.

Program slicing was first introduced in the testing area for im-
proving regression testing [2, 4]. It executes a test case designed for
previous versions of the code only if the new version of the code
changes some of the code executed by the test case. In an empirical
study Zhang et al. [11] compare several dynamic slicing algorithms
for detecting faulty statements. They conclude that data slices are
the most efficient version.

Combining delta debugging and program slicing for testing pro-
grams was already proposed by Gupta et al. [3] with a different pur-
pose from what is described here. In that approach, the test cases
are minimized with delta-debugging and then the input is taken as
the input for dynamic slices of the failing program. In the present
work, slicing and delta debugging are both applied to a program
only. In this case, delta debugging and slicing are then competing
solutions rather than complementary techniques.

While many approaches concentrate on the generation of failure-
producing test cases, most do not consider test case minimization.
We are only aware of two approaches that minimize test cases, both
using delta debugging. The work of Lei and Andrews [6] mini-
mizes randomized unit tests, just as we do, whereas the work of
Orso et al. [8] minimizes captured program executions. As dis-
cussed in Section 5, our approach is far more efficient than delta
debugging alone; we use delta debugging as an optional step to fur-
ther minimize sliced test cases and as a fall-back mechanism for
when program slicing fails. By doing so, it is possible to speed
up the minimization process by a factor of 11 comparing to a pure
delta debugging minimization technique—which makes it applica-
ble to large industrial code bases, such as the EiffelBase library.

7. CONCLUSION
Failing random unit test cases should be minimized—to locate

defects faster, to make execution more efficient, and to ease com-
munication between developers. Our proposed minimization ap-
proach based on static slicing is highly efficient, practical, and easy
to implement. In our evaluation, running static minimization came
at virtually no cost, and the speed gain of the resulting minimized
test case pays off with the first execution. To gain another 1% in
minimization, one can combine the approach with an additional

delta debugging step. This combination yields the same results as
delta debugging (the state of the art) alone, but is far more efficient.

On a larger scale, our approach also demonstrates what can be
achieved by combining different techniques in quality assurance—
in our case, random test generation, static program analysis, and
experimental assessment. We believe that the future of program
validation lies in such pragmatic combinations, and this is also the
focus of our future work.

To encourage further research in these and other directions, ev-
erything needed to replicate our experiments is publicly available.
A package including all data, intermediate results, the source of
the tester and minimizer, as well as the compilers and tools used to
compile the source is available at

http://se.ethz.ch/people/leitner/ase_min/

Acknowledgements. We thank the Hasler foundation for financial
support through project Managing Complexity (project #2146).

8. REFERENCES
[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic program slicing. In

Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation (PLDI) (White Plains, New York, June
1990), vol. 25(6) of ACM SIGPLAN Notices, pp. 246–256.

[2] AGRAWAL, H., HORGAN, J. R., KRAUSER, E. W., AND LONDON, S. A.
Incremental regression testing. In Proceedings of the Conference on Software
Maintenance (Washington, Sept. 1993), D. Card, Ed., IEEE Computer Society
Press, pp. 348–357.

[3] GUPTA, N., HE, H., ZHANG, X., AND GUPTA, R. Locating faulty code using
failure-inducing chops. In ASE (2005), D. F. Redmiles, T. Ellman, and
A. Zisman, Eds., ACM, pp. 263–272.

[4] GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. Program slicing-based
regression testing techniques. Softw. Test, Verif. Reliab 6, 2 (1996), 83–111.

[5] KOREL, B., AND LASKI, J. Dynamic slicing of computer programs. The
Journal of Systems and Software 13, 3 (Nov. 1990), 187–195.

[6] LEI, Y., AND ANDREWS, J. H. Minimization of randomized unit test cases.
In ISSRE (2005), IEEE Computer Society, pp. 267–276.

[7] MEYER, B., CIUPA, I., LEITNER, A., AND LIU, L. L. Automatic testing of
object-oriented software. In Proceedings of SOFSEM 2007 (Current Trends in
Theory and Practice of Computer Science) (2007), J. van Leeuwen, Ed.,
Lecture Notes in Computer Science, Springer-Verlag.

[8] ORSO, A., JOSHI, S., BURGER, M., AND ZELLER, A. Isolating relevant
component interactions with JINSI. In Proceedings of the Fourth International
ICSE Workshop on Dynamic Analysis (WODA 2006) (May 2006), pp. 3–10.

[9] WEISER, M. Programmers use slices when debugging. Commun. ACM 25, 7
(1982), 446–452.

[10] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering SE-28, 2
(Feb. 2002), 183–200.

[11] ZHANG, X., HE, H., GUPTA, N., AND GUPTA, R. Experimental evaluation
of using dynamic slices for fault location. In AADEBUG’05: Proceedings of
the sixth international symposium on Automated analysis-driven debugging
(New York, NY, USA, 2005), ACM Press, pp. 33–42.

http://se.ethz.ch/people/leitner/ase_min/

	Introduction
	Creating Test Cases
	Minimizing Test Cases
	Case study: EiffelBase Library
	Delta Debugging
	Related Work
	Conclusion
	References

