
Reconciling Manual and Automated Testing: the AutoTest Experience

Andreas Leitner, Ilinca Ciupa, Bertrand Meyer
Chair of Software Engineering, Department of Computer Science, ETH Zurich

CH-8092 Zürich
{Firstname.Lastname}@inf.ethz.ch

Mark Howard

AXA Rosenberg Investment Management LLC
Orinda, California 94563

mhoward@axarosenberg.com

Abstract

Software can be tested either manually or

automatically. The two approaches are
complementary: automated testing can perform a
large number of tests in little time, whereas manual
testing uses the knowledge of the testing engineer to
target testing to the parts of the system that are
assumed to be more error-prone.

Despite this complementarity, tools for manual and
automatic testing are usually different, leading to
decreased productivity and reliability of the testing
process.

AutoTest is a testing tool that provides a “best of
both worlds” strategy: it integrates developers’ test
cases into an automated process of systematic
contract-driven testing. This allows it to combine the
benefits of both approaches while keeping a simple
interface, and to treat the two types of tests in a unified
fashion: evaluation of results is the same, coverage
measures are added up, and both types of tests can be
saved in the same format.

1. Introduction

A testing strategy can be manual or automated.
With a manual strategy, the more traditional approach,
testers prepare test suites that they think will best
exercise the program. An automated testing strategy
tries to remove the tediousness of the process by
relying on a software tool that generates test cases

from the program's specification (black box) or its
actual text (white box).

Automated and manual strategies are often thought
of as completely distinct, and usually supported by
different tools.

In fact they are complementary, since each has
weaknesses that the other addresses. Manual tests are
good for capturing deep or special cases, which
automated tests might not guess; but they cannot yield
extensive coverage because of the sheer number of test
cases this requires. Automated tests are good at
breadth but much less at depth.

The AutoTest tool is, at its core, an automated
testing framework that produces systematic tests from
contracts [1] of object-oriented programs. AutoTest is
the successor of a series of tools we built, that all
implement contract-based testing [2-4]. We have
developed the latest version, which is described in this
paper, in a way so that many aspects (e.g. the actual
testing strategy) can be plugged in as needed. The
complete source of AutoTest can be downloaded from
the tool homepage [5]. ”Automatic”, when applied to
AutoTest, should be understood in the full “push-
button” sense of the term: all a user must specify is the
set of classes that he wants to test; then AutoTest will
test these classes automatically, without requiring any
intervention of the user, such as preparing test cases.

But AutoTest also supports manual testing, in
particular the inclusion of any extra test that a
developer finds relevant for any reason, supporting the
important rule that any test that has uncovered a bug –
whether the test case was generated through automated

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

or manual means – should remain part of the
regression test database of the project.

One of the novelties of AutoTest is the close
integration of its manual and automated testing parts.
A manual test is represented by a class, distinguished
only by its inheritance from a specific library class.
The automated testing framework is able to detect such
classes and then runs them first, reserving any
remaining time for the generation and execution of as
many automated test cases as timing constraints will
permit. In incremental mode, the framework can be
used to run test cases, manual or automated, that
pertain only to parts of the software that have been
modified since the last run.

Also contributing to the close integration of the two
approaches is the use of a single mechanism —
contracts — as test oracle.

AutoTest is a released tool that has already served
to uncover bugs in production libraries and systems.
AutoTest currently targets Eiffel code, because Eiffel
is one of the few languages that integrate executable
specification. A large base of contracted code for
testing our tool is available (which is not the case for
the recent additions of contracts to such languages as
Java and C#). Selecting relevant test cases from a test
scope is applicable to object oriented languages in
general. The integration with automated contract-based
testing is only feasible for languages that support
contracts either natively or via extensions such as
JML [6].

The main contribution of this paper lies in the
mechanisms that we provide to integrate the manual
and automated testing strategies. This integration has
the following advantages:
• The overall testing process benefits from the

strengths of both manual and automated testing;
• Support for regression testing: any

automatically generated tests that uncover bugs
can be saved in the same format as manual tests
and stored in a regression testing database;

• The measures of coverage (code, dataflow,
specification) will be computed for the manual
and automated tests as a whole;

• The interface is kept consistent and simple:
AutoTest only requires a user to specify the
classes that he wants to test. Manual unit test
cases that are not relevant for any of those
classes are automatically filtered out.

The paper is organized as follows: the next section
contains a general presentation of the manual and
automated testing strategies and motivates why they
should be combined. Section 3 describes the
architecture of AutoTest. Section 4 describes how the

two strategies can be unified and how this was
accomplished in AutoTest. Section 5 gives an
evaluation of our approach. Section 6 provides related
work and Section 7 presents ideas for future work and
draws conclusions.

2. Testing strategies

In this section we introduce the two strategies
unified by our tool, manual testing and automated
testing, then an analysis of the advantages and
disadvantages of each, and the rationale for integrating
them.

2.1 Manual testing

Manual unit testing has established itself as an
integral part in modern software development. It only
reached a respectable state with the introduction of
adequate tool support (the xUnit family of tools, e.g.
jUnit for Java, sUnit for Smalltalk, pyUnit for Python,
and Gobo Eiffel Test for Eiffel). Such frameworks are
typically small but they provide significant practical
benefits.

Manual unit testing frameworks automate test case
execution. The test cases themselves (including input
data generation and test result verification) need to be
created by hand.

To add a new test case, the user must create a new
class that inherits from an abstract test case class (often
called TEST_CASE or equivalent). Typically the goal
of a test case class is to exercise one class from the
system under test. The developer can put as many
testing routines1 into this new test case class as desired.
The goal of such a routine is to test a certain scenario.
With most frameworks, the names of these routines are
required to start with test.

Testing frameworks use reflection to find the set of
test case classes: membership in this set is determined
by checking if a class inherits from the abstract test
case class. During test case execution, all routines that
start with test are invoked in sequence.

The test routines themselves have two
responsibilities:
• They trigger the execution of the system, by

creating objects and invoking routines on them.
• They verify whether the output and status of the

system under test after the execution is correct.
This is done by calling an assert routine in the test
routines. This routine requires a boolean argument

1 Routines are also called “methods”.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

that signals whether an assumption held or was
violated.

Over time, software projects typically acquire a
large number of manual unit tests. The execution of a
whole test suite is usually time-consuming. Testing
frameworks hence offer the ability to run test cases in
isolation or run just a subset of the available test cases
for incremental development.

2.2 Automated testing

In contrast to manual testing, automated testing
automates not only test case execution, but also test
case generation and test result verification. A fully
automated testing system is able to test software as-is,
without any user intervention.

Contract-based testing achieves full automation
through the use of contracts as oracle. Contracts are
executable preconditions, postconditions, and
invariants embedded in the software text [1].

Contracts are part of Eiffel [7] and Spec# [8], and
are available as add-ons for Java using for example
JML [6], iContract [9], or OCL [10].

Preconditions serve to filter out invalid input;
postconditions serve to detect failures in the system
under test.

Recently, contract-based testing [11, 12] has been
the subject of much research, taking advantage of such
techniques as: constraint solving [13], state pruning by
monitoring read accesses [14], integration with static
verifiers [15], evolutionary test case generation [16,
17], and synthesis through a planning system [18].

When using fully automated testing systems, users
do not choose what test cases to execute. Instead, they
typically provide a test scope: a set of classes that
should be tested; in other words, they only have to
specify what to test and not how.

AutoTest contains a fully automated contract-based
testing strategy that creates test cases using random
input data. This strategy receives the test scope as
input and creates test cases for each routine of every
class in the scope.

2.3 Manual vs. automated testing

Automated testing requires less effort on the

developer's side, but it cannot fully replace manual unit
testing: developers are better at setting up complex
input data and at finding interesting test cases (where
“interesting” means “more likely to uncover a bug”).

Nevertheless, automated testing retains strong
advantages. A developer might misunderstand the real
input domain of a routine. For example, he might not

think of certain borderline cases, and may write an
implementation that does not work as he would expect
in those cases. Since his understanding of the input
will be just as flawed when he tests the system, he is
unlikely to write tests that exercise the erroneous
cases; the bug will not be uncovered. An automated
testing system does not try to guess the intended
semantics of a system, hence it does not exhibit this
weakness.

In this paper we present a way to integrate manual
and automated testing that retains the advantages of
both approaches:
• By testing both automatically and manually we

uncover bugs that one strategy alone might miss.
• We retain a simple tool interface: the user only

specifies what classes to test, not how. In
particular this means that we have to automatically
select those manual test cases from the complete
set of manual test cases that are relevant with
regards to the current testing goal.

• A single set of results is produced. Coverage data
reflects coverage achieved by both manual and
automated testing.

• Generated test cases that reveal a bug are saved in
the same format as manual test cases. They can
hence be easily added to the manual test suite.

3. AutoTest architecture

AutoTest is a framework for fully automated
software testing. It allows for arbitrary testing
strategies to be plugged in and is not hard coded to a
certain testing strategy. The pluggable testing strategy
is only concerned with determining exactly how and
with what inputs the system under test should be
invoked. The actual execution is a task of the
framework.

Results

Scope

SUT

Interpreter

strategy

oracle

proxy

Master

requests

responses

Figure 1: AutoTest architecture

As shown in Figure 1, the main parts of AutoTest

are:

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

• Testing strategy: pluggable component that
determines what instructions should be executed
on the system under test. A testing strategy
receives the AST of the system under test and
the test scope, i.e., the set of classes that should
be tested. It then uses this information to
synthesize test cases which it gives to the proxy.
The strategy provided by default creates test
cases that use random input to exercise the
classes under test. In addition to the default
strategy, we have developed an experimental
forward class testing strategy [19], an
experimental planner-based strategy and a
strategy that handles manually written unit tests.
The last strategy and its integration with
automated testing are the main contribution of
this paper and will be described in Section 4.

• Interpreter: Executes instructions on the
system under test. The interpreter lives in a
separate process to increase robustness. Typical
instructions for the interpreter are: create object,
invoke routine, and assign result.

• Proxy: Component that handles inter-process
communication. The proxy receives execution
requests from the strategy and forwards them to
the interpreter. The execution results are then
sent to the oracle.

• Oracle: The oracle is based on the idea of
contract-based testing as further described in
Section 4.4. It receives execution results and
determines the outcome of the execution. The
oracle then writes the testing results in the form
of HTML documents to the hard disk.

4. Integrating manual and automated
testing

The two testing strategies described above can have
several incarnations. In this section, we describe in
detail their particular implementations in the AutoTest
tool and how we obtain their seamless integration.

4.1 Test scope selection

The first step in any testing strategy is to decide on

the test scope. AutoTest is specifically designed for
unit testing, where the scope is usually one or several
classes of the system under test. AutoTest supports the
incremental testing of software as it is being
developed. Our tool requires no user intervention. A
possible scenario is for software to be tested in the
background, receiving the test scope from the IDE in
the form of a list of recently changed classes, or to be

tested as soon as the code is committed to a version
control system. In both cases testing can be limited to
the part of the software that has changed.

TEST_CASE

TEST_BANK_ACCOUNTTEST_PERSON TEST_CURRENCY

BANK_ACCOUNTPERSON CURRENCY

BANK
Figure 2: Example class diagram

Consider the class diagram depicted in Figure 2,

which we will use as a running example. The classes
PERSON, CURRENCY, BANK and
BANK_ACCOUNT make up the system under test. The
classes TEST_BANK_ACCOUNT, TEST_CURRENCY
and TEST_PERSON form the corresponding test suite.
They are all descendants of class TEST_CASE. Class
TEST_BANK_ACCOUNT is a client of
BANK_ACCOUNT, class TEST_PERSON is a client of
PERSON, and class TEST_CURRENCY is a client of
CURRENCY.

AutoTest only requires an input file describing the
system under test (similar to a make or ant file), and
the list of classes that must be tested (the test scope).
The following invocation instructs AutoTest to test the
classes PERSON and CURRENCY:

auto_test system.ace PERSON CURRENCY

The file system.ace is the standard build file for the
system under test. Note that no part of the system
under test (including the build file) has to be modified
for testing.

Once AutoTest knows the test scope, it will perform
all other steps necessary for test case generation,
execution, and result evaluation in a completely
automated manner.

4.2 The intuition behind the selection of
relevant test cases

Since AutoTest knows that the user is interested in
testing classes PERSON and CURRENCY, it will not
only test them automatically, but also detect the
manual test cases that apply to them. The relevant test
cases are detected through the two fundamental
relations of object-oriented programming as follows:

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

• Inheritance is used to mark which classes are
manual unit tests

• Client (or association) is used to determine which
manual unit tests apply to the classes in the test
scope.

The inheritance relation is commonly used in
manual unit testing frameworks. Our use of the client-
relationship to reduce the number of relevant manual
unit tests is novel. In an incremental development
setting where development is constantly interleaved
with testing it is important that test execution be fast.
Since the execution of the whole test suite might take
too long, this reduction is a great improvement.

We detect the complete set of manual test cases (in
the example TEST_BANK_ACCOUNT,
TEST_CURRENCY and TEST_PERSON) using the
inheritance relation. To reduce the number of test cases
we only select those test cases that are clients of a class
in the scope: TEST_CURRENCY and TEST_PERSON.

In most unit test suites a given test case class is
dedicated to testing one class from the system under
test. Any such test case class is obviously a direct
client of its class under test; we will call it immediately
relevant. The notion of immediate relevance is
naturally extended by including tests that are directly
or indirectly clients of a class under test. This
extension, called recursive relevance, can capture
subtle interactions between classes that may not be
caught by examining only immediate clients. In our
example the set of recursively relevant test cases
would also include class TEST_BANK_ACCOUNT
because it is a client of class BANK_ACCOUNT, which
is a client of class CURRENCY, which is in the test
scope. Test case selection based on recursive relevance
ensures that all test cases that may exercise a class
from the scope are selected. In contrast, a selection
made by a human may not include all test cases
relevant to a change that has been made.

We now formalize these two notions of relevance
and our strategy for test case selection.

4.3 Formal description of the selection of
relevant test cases

This section describes the notion of immediately

relevant and recursively relevant test cases and shows
how they can be implemented efficiently.

Let C be the set of classes making up the system
under test and tc ∈ C be the abstract test case class
from which every manual test case class inherits. We
need notations for the inheritance and client-of
relations:

Definition 1 (inheritance). Let inh be the
inheritance relation such that for any two classes a,b∈
C, a inh b iff a is a direct descendant (subclass) of b.

The set of manual test cases T is defined as
T := {t ∈ C| t inh+ tc}

where inh+ denotes transitive closure of the relation
inh. Hence, T is the set of all manual test cases from
the system under test.

Definition 2 (client-of). Let co be the client relation

such that for any two classes a,b ∈C, a co b iff a is a
direct client of b. Furthermore, a is an indirect client of
b iff a co* b where co*denotes the reflexive, transitive
closure of the relation co.

We denote the inverse of the client-of relation,

called supplier-of, by so.

Let S⊆C be the given test scope. The sets of

immediately and recursively relevant test cases are
defined as:

• Timmediate:= {t ∈ T | ∃ s ∈ S: t co s}
• Trecursive := {t ∈ T | ∃ s ∈ S: t co* s}

Given a class s in the test scope, computing all test
cases that are clients of s requires the traversal of all
classes in C. However, to compute the suppliers of a
test case t that are in the test scope, it is sufficient to
traverse t and all its direct and indirect parents.
Consequently, in our implementation we use the
supplier-of relation to compute Timmediate.

The set Timmediate can be calculated efficiently using
the supplier-of relation. To obtain Trecursive we need to
compute the transitive closure of the suppliers of all
test cases, which involves finding all indirect suppliers
of these test cases. In large and highly interconnected
systems this can lead to a significant overhead.

To improve performance when computing Trecursive ,
we use a reasonable approximation of the relation so*.
We define this approximation based on some
observations about constants:

• Constants have types that are defined in a core

library of the language.
• Core libraries are self-contained, meaning they do

not depend on classes external to the library.
• Core libraries do not need testing except from the

compiler provider.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Thus, when computing so* it is sufficient to
consider classes outside of the core library.

Let sonc be the relation between classes such that for
a, b ∈C, a sonc b iff a is a supplier of b that does not
occur in a core library. Given a class b, the direct and
indirect suppliers of b that do not occur in a core
library are the classes a such that a so*

nc b.
The computation of the relation so*

nc is also
expensive, since it depends on the semantics of every
class involved. Note that this is also true for the
relations introduced above. There exists an over-
approximation of so*

nc, based on purely lexical
analysis, which makes it cheap to compute:
• Given a class a mark all type names occurring in

the text of a as belonging to the result set.
• Process all type names occurring in the text of a

recursively.
This over-approximation can be used to compute

Trecursive more efficiently.

4.3 Execution

AutoTest allows to specify the duration of testing:

users can provide a number of minutes (or use the
default of 10) representing how long they would like
AutoTest to test their classes. When the time has
elapsed, AutoTest stops testing and displays the
results.

AutoTest executes relevant manual test cases first.
The remaining time is used for automatic testing of
classes in the scope. The reason for this scheduling is
that the existence of manual tests indicates that the user
is most interested in those tests: hence we execute
them in the beginning. Any time that remains may be
used for generating and running as many automated
tests as possible.

4.4 Oracle

The oracle is notoriously difficult to automate:

AutoTest uses the contracts embedded in the software
for this purpose. These contracts come in the form of
routine pre- and postconditions, class invariants, loop
variants and invariants, and check2 instructions.

Contracts contain the specification of the software
and can be monitored at runtime. Except for the case
when a generated test case directly violates the
precondition of the routine under test (and hence this is
an invalid test case), any contract violation signals a
mismatch between the implementation and the

2 In C++ and Java, the equivalent of the check instruction
is the assert mechanism.

specification. Hence, whenever it encounters a contract
violation (with the exception of the case mentioned
above), AutoTest signals a bug and the test case that
triggered the contract violation is accordingly marked
as failed. If all contracts are fulfilled during the
execution of a test case, the test case is marked as pass.
The same result verification process can be applied in
the case of manual tests. The user need not write any
result checking code; the contracts are the oracle,
hence, just as above, any contract violation will cause
the manual test case to fail and lack of contract
violations will mean that the manual test case has
passed. To add supplementary checks on the results, it
suffices (as shown in the example below) to embed
them in a check instruction, a regular contract
perfectly integrated in the contract-based oracle
system. The following example shows a manual test
case that uses such a check instruction.

class TEST_BANK_ACCOUNT
inherit TEST_CASE
feature -- Tests
 test_creation is
 -- Check that bank accounts are created
 -- with an initial balance of 0.
 local
 b: BANK_ACCOUNT
 p: PERSON
 do
 create p.make (“John Doe”, 30)
 create b.make (p)
 check
 bank_account_empty: b.balance = 0
 end
 end

Figure 3: Screenshot of AutoTest results

Unified results. A great advantage of the

integration of automated and manual tests is the
unification of their results. After all manual and
automatically generated test cases have been run,
AutoTest displays their results in the same setting, as
shown in Figure 3. This is very convenient for the user
of the tool, because for him it is not important what
kind of test case uncovered the bug, but only that the

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

bug was found (or that all test cases passed). In
addition, AutoTest provides a bug-reproducing
witness.

A major drawback of performing manual and
automated tests through separate tools is that the
coverage measures will be computed separately too.
Obviously, adding the two resulting measures will not
give the overall coverage of the manual and automated
tests. This problem disappears in AutoTest: as test
cases are executed in the same framework, their
coverage is also computed together. Hence we will
have only one measure, representing the coverage
achieved by manual and automated tests together.

Another advantage of the integration of manual and
automated tests is that automatically generated tests
that fail can be saved in the format of manual tests
(classes inheriting from TEST_CASE) and stored in a
regression testing database, together with any failing
manual tests.

5. Evaluation

As noted in Section 1, automatically generated and
manually written tests have different strengths. An
automatic strategy can generate and run a much greater
number of test cases than a human could run in the
same time. Table 1 shows some results obtained by the
automatic strategy when testing some widely used
Eiffel libraries and applications.

Table 1: Results obtained by the automatic

strategy when testing some Eiffel libraries and
applications

Library/
Application

Failed tests /
Total tests

Buggy
routines /
total
tested

EiffelBase (base) 1513/39615 127/1984
base.structures 1143/21242 88/1400
Gobo math 16/1539 9/144
DoctorC 1283/8972 15/33

For illustration purposes, we provide an example of

a bug that was found by AutoTest in the EiffelBase
library. The bug is located in routine has of generic
class BOUNDED_STACK [G], which checks if the
argument that it receives is an element of the bounded
stack. The following test case generated by AutoTest
found a bug in this routine:

create {BOUNDED_STACK [ANY]} v_75.make
(8)

v_76 := Void
v_77 := v_75.has (v_76)

The first instruction creates an empty bounded stack

with at most 8 elements. AutoTest signals a bug
because the postcondition of has is violated:

not_found_in_empty: Result implies not
is_empty

Since no element has been pushed on the stack no
element should be contained in it. Nevertheless
Result is set to true and the implementation of routine
has is wrong. Upon creation the stack already
allocates space for all 8 elements that it is able to store.
The space of these elements is by default initialized
with Void. The bug in has is that it traverses those
empty cells even though it should know that they are
not in use yet.

Although, as shown above, AutoTest can find many
bugs even in production-quality code, manually
written test cases benefit from the knowledge that the
tester has about the system under test, and hence can
uncover bugs that an automatic strategy might not find
given limited time. We provide two examples of such
bugs here. They are both located in the EiffelBase
library mentioned in Table 1.

Class STRING from cluster base.kernel contains
a routine is_integer returning a boolean result
which indicates whether the string represents an
integer. It does so by checking that each character in
the string is a digit, except for the first one, which can
also be a plus or a minus sign. AutoTest did not find
any bug in this routine when testing it automatically,
but the following manually written test case did:

create {STRING} s.make_filled (’2’, 100)
check not s.is_integer end

This test case creates a string that is 100 characters

long, each character being ‘2’. Function is_integer
returns true, but the number that the string represents is
much greater than the maximum integer. Therefore,
when this routine is called in the precondition of
procedure to_integer (for example) it will return
true for the given string, then to_integer will try to
convert it to an integer number and will fail.

Another bug that was found only by a manual test
case and not by AutoTest appears in routine
occurrences of generic class BOUNDED_STACK [G].
This routine should return the number of times an
element occurs in the bounded stack. The manual test
case that uncovered the bug is:

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

create {BOUNDED_STACK [ANY]} bs.make (9)
check bs.occurrences (Void) = 0 end

The first instruction creates an empty bounded stack

with an initial capacity of 9 elements. The second tries
to compute how many Void elements there are in this
bounded stack, and occurrences wrongly returns 9,
because the empty slots in the structure are counted as
Void elements. The automatic strategy also tried to call
occurrences with a void argument, but the
postcondition of this routine only states that the result
should be greater than or equal to 0, so the routine
passes its automatically generated tests.

These two examples illustrate two issues that the
automatic strategy has:

• In the first case, generation of input values;
• In the second case, incomplete oracle (because

of under-specified contracts).
Another problem that the current random strategy

for generating input values has is that it cannot fulfill
strong preconditions in a limited time. Routines with
many arguments and preconditions on each of them are
particularly problematic. Naturally, manually written
test cases do not suffer from the same drawback, and
are thus necessary for testing these routines that the
automatic approach leaves untested.

6. Related work

Support for manual unit testing has been greatly
improved with the advent of the xunit family of tools.
Some of its members are JUnit [20] for Java,
SUnit [21] for Smalltalk, or Gobo Eiffel Test [22] for
Eiffel. The idea of using the client relation to detect
relevant manual test cases was first implemented in
Rose Studio, an in-house IDE developed at AXA
Rosenberg. Rose Studio tightly integrates with manual
unit testing but does not cover automated testing.

All these tools function by the same principle: they
provide an automated test driver, but the user still has
to write the test case to be executed: input values, code
for calling the routines under test, and code for
comparing the expected result to the actual one.
Despite the amount of manual work involved,
automatic execution brings a big improvement over
fully manual testing, so these tools have become very
popular and are still the de-facto standard for manual
unit testing. They allow testers to exercise the inputs
and parts of the code that the testers think are most
likely to expose bugs. Because of the amount of work
involved, the size of a manual test suite cannot
compare to the size of an automatically generated one,
so testers have to pay particular attention to how they
invest their effort and always try the combinations of

inputs that they think will bring the most information
about the system under test.

The research community has invested a lot of effort
during recent years into developing tools for
completely automatic testing. AutoTest [23] is part of
this effort. The Korat [14] tool can also perform
automatic testing of contracted code; it provides full
coverage of a bounded subset of the input domain by
creating all non-isomorphic inputs that satisfy a
boolean predicate up to a given size. This strategy for
generating input values is especially useful when
dealing with predicates on the structure of the input,
but is not as efficient for arithmetic expressions.
DART [24] is another tool that can perform fully
automatic testing; however, it is designed to work at
the level of the whole, integrated system, while
AutoTest specifically targets unit testing.

A tool very similar in concept to AutoTest is
Jartege [25] (Java Random Test Generator), which
performs automatic testing of Java programs equipped
with JML [6] contracts. This tool also uses random
generation of test inputs, and for routines with strong
preconditions the user must write generators for the
parameters.

Another approach to input value generation relies
on symbolically executing the routine under test to find
inputs that cover a certain path [26, 27]. Although code
coverage is an important measure of test quality,
achieving full path coverage in no way guarantees that
all faults are detected in the tested software.

Other strategies go into the direction of trying to
improve the performance of random testing, while
keeping its simplicity. Adaptive Random
Testing (ART) [28] go into this direction: they provide
ways of generating and selecting inputs based on a
random strategy, but use a notion of “distance”
between the inputs in order to run tests with values that
are “far” away from each other in the input domain.
This strategy improves over the efficiency of random
testing for non-point types of failure patterns. The
distribution of failure-causing values in the input
domain is important for the efficiency of ART; this
strategy is based on the idea that failure-causing inputs
are clustered into regions.

Despite the fact that all tools cited here provide
great advantages by the degree of automation that they
offer, the implemented automatic testing strategies
cannot make up for the lack of specialized knowledge
that a human tester has. When manual and automatic
testing are integrated, each of them can benefit from
the advantages offered by the other.

Parasoft’s Jtest tool [29] automatically generates
and runs unit tests on Java classes, and tests code for
compliance with development rules. Contracts can be

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

added to Java code by using the same company’s
Jcontract tool. Developers can also add their own unit
tests. However, Jtest does not use the transitive closure
of the client relation for manually written unit test
cases to determine which test cases are relevant for
which class, as is the case in our work. Instead, when
the user selects a certain class for testing, Jtest will
only run the unit tests that were specifically designed
for that particular class.

Agitator [30] is a commercial tool that integrates
dynamic invariant discovery [31] with other recent
ideas from the testing research community into an
Eclipse extension. It uses several strategies of
automatic testing to infer likely invariants that then can
be promoted to real assertions by the developer. In
contrast to our work it does not assume the presence of
contracts. Agitator can include manual unit tests in its
harness, but does not detect relevant test cases
automatically.

Augmenting manual unit tests with automatically
generated ones has also been investigated [32, 33]. In
the former, operational abstractions are generated from
the execution of manual tests and then any automatic
tests that violate these abstractions are candidates for
inclusion in the test suite. In the latter, an operational
model of the behavior of the classes under test is also
inferred from a set of correct executions. Automatic
test cases whose executions produce models different
from the inferred ones are considered likely to identify
faults. Both these techniques use dynamic discovery of
program properties, against which program behavior is
checked afterwards. Our technique assumes the
presence of contracts in code, and these contracts are
not modified in any way during testing.

7. Future work and conclusions

We have shown that the seamless integration
between manual and fully automated tests has several
advantages, such as combining the strengths of both
approaches, the support it provides for regression
testing, and the unification of coverage data. We have
shown how the interfaces to an automated testing
strategy and a manual one can be unified: the user
provides the set of classes to be tested; these classes
directly drive the automated strategy and are input for
a selection process of manual unit tests.

The already existing features of AutoTest open the
way towards continuous testing (or testing in the
background), based on the integration of AutoTest in
an integrated development environment (IDE).
Because the tool can test software completely
autonomously, it can be constantly run in the

background while the developer is writing the code. As
soon as a bug is found, the corresponding routine can
be marked (in an un-intrusive way), to draw the
developer’s attention that the current implementation
of the routine is not correct with respect to its
specification. A further advantage of integrating
AutoTest into an IDE is that the test scope selection is
automated too, since the IDE can keep track of classes
that have changed.

Moreover, AutoTest can be used in a test-driven
development process [34]: the manual tests (which are
written first in such a process) will be continuously
executed by AutoTest in the background; as long as
they fail, the corresponding routines will be
highlighted (similar to syntax and type check errors),
and these warning signs will only disappear once the
test cases pass.

8. Acknowledgements

We thank Vijay D'silva, Manuel Oriol, Bernd
Schoeller, Lisa Liu, and Piotr Nienaltowski for their
valuable feedback, and Eric Bezault both for fruitful
discussions and the Gobo Eiffel framework.

9. References

[1] B. Meyer, Object-Oriented Software Construction:

Prentice Hall PTR, 1997.
[2] I. Ciupa, "Test Studio: An environment for

automatic test generation based on Design by
Contract," ETH Zurich, 2004.

[3] I. Ciupa and A. Leitner., "Automatic Testing Based
on Design by Contract," in Proceedings of
Net.ObjectDays 2005, 2005, pp. 545-557.

[4] A. Leitner, "Strategies to Automatically Test Eiffel
Programs," Graz University of Technology, 2004.

[5] A. Leitner and I. Ciupa, "AutoTest,"
http://se.ethz.ch/people/leitner/auto_test, 2006.

[6] E. P. G. T. Leavens, C. Clifton, Y. Cheon, C.
Ruby, D. Cok, P. Müller, J. Kiniry, JML Reference
Manual: (draft), 2005.

[7] "Eiffel Analysis, Design and Programming
Language," ECMA Standard, vol. 367, 2005.

[8] M. Barnett, K. R. M. Leino, and W. Schulte, "The
Spec# programming system: An overview.," in
CASSIS 2004: Construction and Analysis of Safe,
Secure and Interoperable Smart devices: Springer,
2004.

[9] R. Kramer, "iContract - The Java(tm) Design by
Contract(tm) Tool," in TOOLS '98: Proceedings of
the Technology of Object-Oriented Languages and
Systems. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 295.

[10] M. Richters and M. Gogolla, "On Formalizing the
UML Object Constraint Language OCL," in Proc.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

17th International Conference on Conceptual
Modeling (ER), vol. 1507, M. L. Lee, Ed.:
Springer-Verlag, 1998, pp. 449-464.

[11] B. K. Aichernig, "Contract-Based Testing,"
Lecture Notes in Computer Science, vol. 2757,
2003.

[12] Y. Cheon and G. T. Leavens, "A Simple and
Practical Approach to Unit Testing: The JML and
JUnit Way," in Proceedings of the 16th European
Conference on Object-Oriented Programming,
Proceedings of the 16th European Conference on
Object-Oriented Programming, 2002, pp. 231-255.

[13] D. Marinov and S. Khurshid, "TestEra: A Novel
Framework for Automated Testing of Java
Programs," in Proc.~16th IEEE International
Conference on Automated Software Engineering
(ASE), 2001, pp. 22-34.

[14] C. Boyapati, S. Khurshid, and D. Marinov, "Korat:
automated testing based on Java predicates," in
Proceedings of the 2002 International Symposium
on Software Testing and Analysis (ISSTA). Rome:
ACM Press, 2002.

[15] C. Csallner and Y. Smaragdakis, "Check 'n' crash:
combining static checking and testing," in ICSE
'05: Proceedings of the 27th international
conference on Software engineering. St. Louis,
MO, USA: ACM Press, 2005, pp. 422-431.

[16] Y. Cheon, M. Y. Kim, and A. Perumandla, "A
Complete Automation of Unit Testing for Java
Programs," in Proceedings of the 2005
International Conference on Software Engineering
Research and Practice (SERP '05), Proceedings of
the 2005 International Conference on Software
Engineering Research and Practice (SERP '05).
Las Vegas, 2005, pp. 290-295.

[17] P. Tonella, "Evolutionary testing of classes," in
International symposium on Software testing and
analysis (ISSTA'04). Boston, Massachusetts, USA:
ACM Press, 2004, pp. 119-128.

[18] A. E. Howe, A. v. Mayrhauser, and R. T. Mraz,
"Test Case Generation as an AI Planning
Problem," Automated Software Engineering, vol. 4,
pp. 77-106, 1997.

[19] L. Liu, A. Leitner, and J. Offut, "Using Contracts
to Automate Forward Class Testing," submitted to
Elsevier Science, 2006.

[20] "JUnit," http://www.junit.org/, 2004.
[21] "SUnit,"

http://www.xprogramming.com/software.htm.
[22] E. Bezault, "Gobo Eiffel Project,"

http://www.gobosoft.com, 2003.
[23] I. Ciupa and A. Leitner, "Automatic Testing Based

on Design by Contract," in Proceedings of
Net.ObjectDays 2005, 2005, pp. 545-557.

[24] N. K. Patrice Godefroid, Koushik Sen, "DART:
directed automated random testing," presented at
PLDI '05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming

 language design and implementation, 2005.
[25] C. Oriat, "Jartege: a Tool for Random Generation

of Unit Tests for Java Classes," Centre National de
la Recherche Scientifique, Institut National
Polytechnique de Grenoble, Universit\u017de
Joseph Fourier Grenoble I, 2004.

[26] W. Visser, C. S. Pasareanu, and S. Khurshid, "Test
Input Generation with Java PathFinder," in
International Symposium on Software Testing and
Analysis (ISSTA'04), 2004.

[27] T. Xie, D. Marinov, W. Schulte, and D. Notkin,
"Symstra: A Framework for Generating Object-
Oriented Unit Tests using Symbolic Execution," in
Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 05). Edinburgh, UK,
2005, pp. 365-381.

[28] T. Y. Chen, H. Leung, and I. K. Mak, "Adaptive
Random Testing," in Advances in Computer
Science - ASIAN 2004: Higher-Level Decision
Making. 9th Asian Computing Science Conference.
Proceedings, M. J. Maher, Ed.: Springer-Verlag
GmbH, 2004.

[29] Parasoft, "Jtest," http://www.parasoft.com, 2006.
[30] B. Marat, D. Roongko, and S. Alberto, "From

daikon to agitator: lessons and challenges in
building a commercial tool for developer testing,"
in Proceedings of the 2006 international
symposium on Software testing and analysis.
Portland, Maine, USA: ACM Press, 2006.

[31] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin, "Dynamically Discovering Likely Program
Invariants to Support Program Evolution," in
International Conference on Software Engineering,
1999, pp. 213-224.

[32] C. Pacheco and M. D. Ernst, "Eclat: Automatic
generation and classification of test inputs," in
ECOOP 2005 -- Object-Oriented Programming,
19th European Conference. Glasgow, Scotland,
2005.

[33] T. Xie and D. Notkin, "Tool-assisted unit test
selection based on operational violations," in 18th
IEEE International Conference on Automated
Software Engineering: IEEE Computer Society,
2003.

[34] K. Beck, Test Driven Development: By Example:
Addison-Wesley Professional, 2002.

10. Copyright forms and reprint orders
 Not needed for initial submission.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

