
Experimental Assessment of Random Testing for
Object-Oriented Software

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, Bertrand Meyer
Chair of Software Engineering

Swiss Federal Institute of Technology Zurich
CH-8092 Zurich, Switzerland

{firstname.lastname}@inf.ethz.ch

ABSTRACT
Progress in testing requires that we evaluate the effectiveness of
testing strategies on the basis of hard experimental evidence, not
just intuition or a priori arguments. Random testing, the use of
randomly generated test data, is an example of a strategy that the
literature often deprecates because of such preconceptions. This
view is worth revisiting since random testing otherwise offers sev-
eral attractive properties: simplicity of implementation, speed of
execution, absence of human bias.

We performed an intensive experimental analysis of the efficiency
of random testing on an existing industrial-grade code base. The
use of a large-scale cluster of computers, for a total of 1500 hours
of CPU time, allowed a fine-grain analysis of the individual effect
of the various parameters involved in the random testing strategy,
such as the choice of seed for a random number generator. The re-
sults provide insights into the effectiveness of random testing and a
number of lessons for testing researchers and practitioners.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—testing
tools

General Terms
Measurement, Verification

Keywords
software testing, random testing, experimental evaluation

1. OVERALL GOALS
The research effort invested into software unit testing automation

during recent years and the emergence of commercial applications
implementing some of the resulting ideas (such as Agitar’s Agi-
tator [5] or Parasoft’s Jtest [2]) are evidence of the attraction of
automated testing solutions.

One approach to fully automated testing is random testing (pro-
vided that an automated oracle is also available). In the software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

testing literature, the random strategy is often considered to be one
of the least effective approaches. The advantages that random test-
ing does present (wide practical applicability, ease of implementa-
tion and of understanding, execution speed, lack of bias) are con-
sidered to be overcome by its disadvantages. However, what stands
behind this claim often seems to be intuition, rather than experi-
mental evidence.

A number of years ago Hamlet [18] already pointed out that
many of the assumptions behind popular testing strategies, and
many ideas that seem intuitively to increase testing effectiveness,
have not been backed by experimental correlation with software
quality.

Serious advances in software testing require a sound and credi-
ble experimental basis to assess the effectiveness of proposed tech-
niques. As part of a general effort to help establish such a basis,
we have investigated the effectiveness of random testing at finding
bugs in a significant code base with two distinctive properties: it is
extensively used in production applications and it contains a num-
ber of bugs, which can be found through automatic testing. This
makes it possible to assess testing strategies objectively, by mea-
suring how many of these bugs they find and how fast. To allow
individual assessment of the many parameters involved in defining
such a strategy, we performed large-scale experiments with the help
of a cluster consisting of 32 dual-core machines running in paral-
lel. The total automatic testing effort resulted in 1875 test session
results for each of the 8 classes under test, over a total CPU time of
1500 hours.

A study of this size was only possible in the presence of an auto-
mated oracle. In our approach, this oracle is provided by executable
specification embedded into the source code in the form of con-
tracts as described in the Design by Contract software development
methodology [21]. We used the AutoTest tool ([10], [19] describe
previous versions of it), which takes advantage of contracts to un-
cover bugs automatically.

Section 2 describes the setup of the experiments, including some
details on AutoTest, and Section 3 the results; Section 4 presents a
discussion of the experiment. Section 5 reviews related work and
Section 6 draws some conclusions.

Here as a preview is a summary of the main results:

• The number of found bugs has a surprisingly high increase
in the first few minutes of testing.

• The seed used for the random testing algorithm can make an
important difference in the number of bugs found over the
same timeout. For example, in the case of one class under
test, 5 bugs were found for one seed and 23 for another one
over a timeout of 30 minutes, all other conditions being the
same.

• The version of the random testing algorithm that works best
for a class for a testing timeout as small as 2 minutes will
also deliver the best results for higher timeouts (such as 30
minutes).

• This version is not the same for all classes, but one can iden-
tify a solution that produces optimal results for a specified
set of tested classes.

These conclusions are of course to be interpreted in light of our
specific setup and assumptions, which are made explicit in the fol-
lowing sections together with the details of the results.

In addition to the results summarized above, this paper also makes
the following contributions:

• Suggestions for testing practitioners and tool builders. Based
on the results of our study, we provide guidelines for choos-
ing which algorithm for random testing should be used de-
pending on the test scope and duration.

• Basis for other case studies. The results we show here can be
used to open the way for a series of comprehensive studies
of the performances of various automated testing strategies.
In particular, the algorithms identified here to produce the
best results for random testing should be used as the basis
for comparison against any other strategy.

2. TEST BED

2.1 Framework
AutoTest, the tool we used for running the experiment, achieves

push-button testing of Eiffel applications equipped with contracts.
It is implemented as a framework, so that various strategies for in-
put value generation can easily be plugged in. For the experiment
described in this paper we used a configurable random strategy.

Input generation
Random input generation for object-oriented applications can be
performed in one of two ways:

• In a constructive manner, by calling a constructor of the tar-
geted class and then, optionally, other methods of the class
in order to change the state of the newly created object.

• In a brute force manner, by allocating a new object and then
setting its fields directly (technique applied by the Korat tool
[6], for instance).

The second approach has the disadvantage that objects created
in this way can violate their class invariant. If this is the case, the
effort for creating the object has been a waste and a new attempt
must be made. (Invariant violations can also be triggered through
the constructive approach, but, if that is the case, a bug has been
found in the system under test.) Also, it can be the case that objects
created in this way could never be created by executions of the
software itself. For these reasons, AutoTest implements the first
approach.

Any such constructive approach to generating objects (test in-
puts) must answer the following questions:

• Are objects built simply by constructor calls or are other
methods of the class called after the constructor, in an at-
tempt to bring the object to a more interesting state?

• How often are such diversification operations performed?

Select method m from class C

Select Values

Test

Diversify

PDiv

1-PDiv

Figure 1: General algorithm

• Can objects used in tests be kept and re-used in later tests?

• How are values for primitive types generated?

With AutoTest, answers to these questions take the form of explicit
parameters provided to the input generation algorithm.

AutoTest keeps a pool of objects available for testing. All ob-
jects created as test inputs are stored in this pool, then returned to
the pool once they have been used in tests. The algorithm for input
generation proceeds in the following manner, given a method m of a
class C currently under test. To test m, a target object and arguments
(if m takes any) are needed. With some probability PGenNew, the
algorithm either creates new instances for the target object and ar-
guments or uses existing instances (taken from the pool). If the
decision is to create new instances, then AutoTest calls a randomly
chosen constructor of the corresponding class (or, if the class is ab-
stract, of its closest non-abstract descendant). If this constructor
takes arguments, the same algorithm is applied recursively. The
input generation algorithm treats basic types1 differently: for an ar-
gument declared of a primitive type, with some probability
PGenBasicRand, a value will be chosen randomly either out of the
set of all values possible for that type or out of a set of predefined,
special values. These predefined values are assumed to have a high
bug-revealing rate when used as inputs. For instance, for type IN-
TEGER, these values include the minimum and maximum possible
values, 0, 1, -1, etc. Figures 1 and 2 depict an overview of the use
of these probabilities in the input generation algorithm.

Keeping a pool of objects which can be reused in tests raises the
question of whether an attempt should be made to bring these ex-
isting objects to more interesting states as would occur during the
actual execution of a program (for example with a list class, not
just a state occurring after creation but one resulting from many in-
sertions and deletions). To provide for this, we introduce the prob-
ability PDiv which indicates how often, after running a test case,
a diversification operation is performed. Such a diversification op-
eration consists of calling a procedure (a method with no return
value) on an object selected randomly from the pool.

Supplying different values for these three probabilities (PGenNew,
PGenBasicRand, PDiv) changes the behavior of the input genera-
tion algorithm.

1Basic types are also called “primitive” and among these types
in Eiffel are INTEGER, REAL, DOUBLE, CHARACTER, and
BOOLEAN.

Select Reference
Type

Create new
instance Reuse instance

PGenNew 1-PGenNew

Select Basic
Type

Random choice Choice from
Predefined Set

PGenBasicRand 1-PGenBasicRand

Figure 2: Value Selections

Other tools which use a constructive approach to random input
generation also rely on calling sequences of constructors and other
methods to create input data. Eclat [23], very much like AutoTest,
stores objects in a pool and uses existing values to call construc-
tors and methods which create new values. However, after this
initial generation phase, it applies heuristics to classify and select
which of the available inputs it will use in tests. AutoTest performs
no such selection, because it wants to implement a purely random
strategy. JCrasher [12] builds sequences of constructor and method
calls starting from a method under test and systematically building
required input objects, by calling either constructors or methods
returning objects of the desired type.

Test execution
AutoTest uses a two-process model for executing the tests: the mas-
ter process implements the actual testing strategy; the slave process
is responsible for the test execution. The slave, an interpreter, gets
simple commands (object creation, method call, etc.) from the mas-
ter and can only execute such instructions and return the results.
This separation of the testing activity in two processes has the ad-
vantage of robustness: if test execution triggers a failure in the slave
from which the process cannot recover, the interpreter will shut it
down and then restart it where testing was interrupted. The entire
testing process does not have to be restarted from the beginning
and, if the same failure keeps occurring, testing of that method can
be aborted so the rest of the test scope can still be explored.

Automated oracle
AutoTest uses contracts (method pre- and postconditions and class
invariants) present in the code as an automated oracle. In Eif-
fel these contracts are boolean expressions (with the addition of
the old keyword which can only appear in postconditions and is
used to refer to the value of a variable before the execution of the
method), so they are easy to learn and use even for beginner pro-
grammers. As these contracts contain the specification of the soft-
ware and can be evaluated at run time, AutoTest checks them dur-
ing testing and reports any contract violation (with the exception of
cases in which a test input directly violates the precondition of the
method under test).

An important distinction must be noted. The information that
we look for in our experiment is not the number of failures (exe-
cutions leading to outcomes different from the expected ones), but
that of software faults (problems in the code that can trigger fail-
ures). Since a single fault can trigger multiple failures, we consider

that two failures expose the same fault if they are triggered at the
same line in the code and manifest themselves through the same
type of exception. (In Eiffel, contract violations are also excep-
tions, but, for clarity, for the rest of this paper we will refer to them
separately.) Hence, under this convention, the measures that we
provide in our results always represent the number of found faults,
not failures. Such faults are simply called “bugs” below, although
this is not a rigorous terminology.

2.2 Experimental setup
The experiment was run using the ISE Eiffel compiler version

5.6 on 32 identical machines, each having a Dual Core Pentium III
at 1 GHz and 1 Gb RAM, running Fedora Core 1.

We chose the classes to test in the experiment so that they come
from different sources and have varying purposes, sizes, and com-
plexity:

• Classes from the data structures library of Eiffel, used by
most projects written in this language (EiffelBase 5.6 [1]):
STRING, PRIMES, BOUNDED STACK, HASH TABLE.

• Classes written by students of the Introduction to Program-
ming course at ETH Zurich for an assignment: FRACTION1,
FRACTION2.

• Classes mutated to exhibit some common bugs found in object-
oriented applications: UTILS, BANK ACCOUNT.

The last four classes are available at
http://se.inf.ethz.ch/people/ciupa/test results. The others are avail-
able as part of the EiffelBase library version 5.6 [1]. The classes
from the EiffelBase library and those written by students were not
modified in any way for this experiment.

Table 1 shows various data about the classes under test: total
number of lines of code, number of lines of contract code, number
of methods (including those inherited), number of parent classes
(also those that the class indirectly inherits from). In Eiffel all
classes inherit implicitly from class ANY (similarly to the case of
Java and class Object), so every class has at least one parent class.

We tested each of the classes for 30 minutes, for three different
seeds for the pseudo-random number generator, for all combina-
tions of the following values for each parameter to the input gener-
ation algorithm:

• PGenNew (the probability of creating new objects as inputs
rather than using existing ones) ∈ {0; 0.25; 0.5; 0.75; 1}

• PDiv (the probability of calling a procedure on an object
chosen randomly from the pool after running each test case)
∈ {0; 0.25; 0.5; 0.75; 1}

• PGenBasicRand (the probability of generating values for ba-
sic types randomly rather than selecting them from a fixed
predefined set of values) ∈ {0; 0.25; 0.5; 0.75; 1}

Thus, we ran AutoTest for each of these classes for 30 minutes, for
every combination of the 3 seed values, 5 values for PGenNew, 5
values for PDiv , and 5 values for PGenBasicRand. So there were 3
* 5 * 5 * 5 = 375 tests run per class for 30 minutes each, amounting
to a total test time of 90000 minutes or 1500 hours.

We then parsed the saved test logs to get the results for testing for
1, 2, 5, 10, and 30 minutes. (This approach is valid since AutoTest
tests methods in the scope in a fair manner, by selecting at each step
the method that has been tested the least up to the current moment.
This means that the timeout that the tool is given does not influence
how it selects which method to test at any time.)

Table 1: Properties of the classes under test
Class Total lines of code Lines of contract code Number of methods Number of parent classes

STRING 2600 283 175 7
PRIMES 262 52 75 1

BOUNDED STACK 249 44 66 2
HASH TABLE 1416 156 135 3
FRACTION1 152 36 44 1
FRACTION2 180 32 45 1

UTILS 54 34 32 1
BANK ACCOUNT 74 43 35 1

Hence, for each combination of class, seed, timeout, and proba-
bility values, we get the total number of found “bugs” (in the above
sense) and the number of these bugs which were found due to con-
tract violations and due to other exceptions, respectively. Since
there are 5 timeout values and 375 tests/class, this method produced
5 * 375 = 1875 test session results per class.

This paper only reproduces part of the raw data. The results and
conclusions are based on the entire raw data, available at
http://se.inf.ethz.ch/people/ciupa/test results.

The criterion we used for evaluating the efficiency of the exam-
ined strategies is the number of bugs found in a set time. Although
several other criteria are commonly used to evaluate testing strate-
gies, we consider this criterion to be the most useful, since the main
purpose of unit testing is to find bugs in the modules being tested.

3. RESULTS
This section analyzes the results with respect to the questions

stated as the goals of the experiment.

How does the number of found bugs evolve over
time?
To determine how the number of found bugs evolves with the time-
out we look at the highest number of bugs (averaged over the three
seeds) found for each timeout for every class. For the classes that
were tested, the evolution was inversely proportional to the elapsed
time: the best fitting that we could find was against a function
f(x) = a/x + b. Table 2 shows, for each class under test, the
parameters characterizing the fitting of the evolution of the number
of found bugs over time against this function with 95% confidence
level. The parameters quantifying the goodness of fit are:

• SSE (sum of squared errors): measures the total deviation of
the response values from the fit. A value closer to 0 indicates
that the fit will be more useful for prediction.

• R-square: measures how successful the fit is in explaining
the variation of the data. It can take values between 0 and 1,
with a value closer to 1 indicating that a greater proportion
of variance is accounted for by the model.

• RMSE (root mean squared error): an estimate of the standard
deviation of the random component in the data. An RMSE
value closer to 0 indicates a fit that is more useful for predic-
tion.

Figures 3, 4, and 5 illustrate the results of the curve fitting for
classes STRING, PRIMES, and HASH TABLE respectively. They
show both the best fitting curves (as given in Table 2) and the actual
data obtained in the experiment.

Table 2: Parameters characterizing the fitting of the evolution
of the number of found bugs over time against the function
f(x) = a/x + b.

Class name a b SSE R-square RMSE
BANK -1.25 2.58 0.03 0.96 0.10
ACCOUNT
BOUNDED -4.20 11.6 0.11 0.98 0.23
STACK
FRACTION1 -0.45 3.14 0.01 0.86 0.10
FRACTION2 -2.19 2.93 0.45 0.86 0.38
HASH TABLE -14.48 19.57 9.64 0.93 1.79
PRIMES -4.8 6.96 0.39 0.97 0.36
STRING -10.37 11.47 1.24 0.98 0.64
UTILS -3.16 3.82 0.15 0.97 0.22

Figure 3: Evolution of the number of found bugs over time for
class STRING

How much does the seed influence the number
of found bugs?
As stated, the experiment ran each combination of probabilities, for
each class, for each timeout, and for 3 different seeds. The results
show that the seed has a high influence on the number of found
bugs, going as far as, for class HASH TABLE, finding 5 bugs for
one value of the seed and 23 for another one (for the same time-
out of 30 minutes and the same combination of probability values).
Table 3 shows for each class the number of bugs found for differ-
ent seeds for the same combination of probability values and for
the same timeout and which have the highest difference between
the maximum and minimum number of found bugs. The table also
shows the timeouts for which the given number of bugs was found.

Figure 4: Evolution of the number of found bugs over time for
class PRIMES

Figure 5: Evolution of the number of found bugs over time for
class HASH TABLE

The varying values for these timeouts show no correlation between
the maximum difference that the seed can make in the number of
found bugs and the testing timeout.

The values shown in Table 3 are extreme cases. The distribution
of all differences in the number of bugs found for the different seed
values for a certain class is also interesting. Figure 6 shows this
distribution for class HASH TABLE. The figure shows the number
of occurrences for every difference in the number of bugs found for
every combination of probabilities and timeout value for the differ-
ent seeds. In other words, it shows how often each difference in
number of found bugs occurs, illustrating how important the influ-
ence of the seed can be (all other things being equal) and how often
such an influence occurs. Figure 7 shows the same information for
class BOUNDED STACK.

Although these results indicate how important the influence of
the seed can be, this should not lead one to believe that a certain
seed value constantly delivers better results than another one. In-
stead, these results indicate that random testing needs to be per-
formed several times, with various seed values, to compensate for
the high variability.

Table 3: Minimum and maximum number of bugs found max-
imizing the difference obtained for using different seeds for the
same timeout and combination of probabilities

Class name Max bugs Min bugs Timeout
BANK ACCOUNT 2 0 1, 2, 5, 10
BOUNDED STACK 9 2 2

10 3 5
FRACTION1 3 0 1
FRACTION2 3 0 5, 10
HASH TABLE 23 5 30
PRIMES 7 0 30
STRING 7 2 2

12 7 30
UTILS 3 0 2

Figure 6: Distribution of the difference in number of found
bugs caused by the used seed for class HASH TABLE

How much do the values of the probabilities
influence the number of found bugs for every
timeout?
Table 4 shows the minimum and maximum number of bugs found
(averaged over the three seeds) for every timeout using all combi-
nations of probability values for each class.

These results show that the minimum number of bugs found stays
constant or increases very little with the increase of the timeout. In
other words, for each timeout, there exist several combinations of
probabilities which perform surprisingly badly compared to others.
For all classes under test (with the exception of PRIMES) a value
of 0 for the probability of generating new objects delivered bad
results. A value of 1 for the probability of generating basic values
randomly had the same effect.

Classes HASH TABLE, STRING, and BOUNDED STACK es-
pecially show a high difference between the maximum and mini-
mum numbers of bugs found for every timeout. This shows that the
performance of the random testing algorithm can vary widely with
the combination of probabilities that is chosen.

Which version of the random generation algo-
rithm maximizes the number of found bugs?
The goal of this analysis is to find the combination of probability
values that maximizes the number of found bugs, first over all tested

Table 4: Minimum and maximum number of bugs found for each timeout
STRING UTILS PRIMES BANK ACCOUNT BOUNDED STACK

Time- Min Max Min Max Min Max Min Max Min Max
out bugs bugs bugs bugs bugs bugs bugs bugs bugs bugs
1 0.00 1.33 0.00 0.66 0.33 2.00 0.00 1.33 0.66 7.33
2 0.00 6.00 0.00 2.33 3.00 5.00 0.00 2.00 1.00 9.66
5 0.00 9.00 0.00 3.00 3.33 5.66 0.00 2.33 1.00 11.00
10 0.00 10.00 0.00 3.33 3.33 6.33 0.00 2.33 1.00 11.00
30 0.00 12.00 0.00 4.00 3.33 7.00 0.00 2.66 1.00 11.00

FRACTION1 FRACTION2 HASH TABLE
Time- Min Max Min Max Min Max
out bugs bugs bugs bugs bugs bugs
1 0.00 2.66 0.00 1.00 1.00 6.00
2 2.00 3.00 0.00 1.33 1.00 11.00
5 2.00 3.00 0.00 2.33 1.00 15.33
10 2.00 3.00 0.00 3.00 1.00 17.66
30 2.00 3.00 0.00 3.00 1.00 21.33

Figure 7: Distribution of the difference in number of found
bugs caused by the used seed for class BOUNDED STACK

classes and over all timeouts, and then individually per class and
timeout (1, 2, 5, 10, and 30 minutes). Since the seed influences the
results, the results are averaged over the 3 seed values.

The best combination of probabilities averaged over all classes
and timeouts is C0 such that PGenNew0 = 0.25, PDiv0 = 0.5, and
PGenBasicRand0 = 0.25. With this combination of probabilities,
the average percent of bugs that is lost by timeout and by class
compared to the highest number of bugs that could be found (by
the optimal combination of probability values for that specific class
and timeout) is 23%. When trying to bound the percent of bugs that
could not be found by C0, only two combinations give bounded
values: PGenNew1 = 1, PDiv1 = 0.25, PGenBasicRand1 = 0.25
ignores 70% of the bugs at most, and PGenNew2 = 1, PDiv2 =
0.75, PGenBasicRand2 = 0 ignores 75% of the bugs at most.

If the low timeout values (1 and 2 minutes) are excluded from
this calculation, then combination C0 does not find at most 44%
of the bugs. This is not significantly different from the best value:
43%. The most likely explanation is that the low timeout values in-
troduce a high level of noise in the equations due to the low number
of tests performed in each series.

Another analysis groups results by classes and looks for tenden-
cies over each of the classes. Table 5 gives a more detailed view
of the results. For each class and for each timeout of 2, 5, 10, and

30 minutes, the table shows values for PGenNew (abbreviated in
the table as PNew) and PGenBasicRand (abbreviated in the table
as PBasic) that uncover the highest number of bugs. When there
is more than one value, several values uncover the same number
of bugs. If the difference between the highest and second high-
est numbers of bugs is very low, the table also shows the second
highest number of bugs. The question marks stand for inconclu-
sive results, that is cases where there were several values for the
probabilities which uncovered the same maximum number of bugs,
and there was no clearly predominant value for the probability in
question. The probability of diversifying is not shown in the table
because clear correlation could not be made between its value and
the number of bugs. Results for classes FRACTION1 and FRAC-
TION2 were also unclear. The issue with these classes was that the
total number of bugs is small (3) and a minimal variation impacts
greatly on the tendency.

The results show that the most effective probability values differ
from class to class, but, in most cases, they either change very little
or not at all with the timeout for a particular class. In other words,
for a certain class, the same combinations provide the best results
regardless of the timeout of testing.

According to the results in Table 5, a value of 0.25 for PGenNew

seems generally to deliver good performance, confirming the result
explained above. Exceptions from this rule are classes
BOUNDED STACK, PRIMES, and UTILS. A likely explanation
for the different behavior of the last two classes is that very little
of their behavior is dependent on their state, so, if they contain any
bugs, these bugs will manifest themselves on newly created objects
too, and not only on objects in a certain state.

Low values for PGenBasicRand (0, 0.25) also seem to deliver
the best results in most cases. Again, classes BOUNDED STACK
and PRIMES have different behavior: in these classes and in class
HASH TABLE, the most bugs are uncovered for PGenBasicRand =
0.75 or 1. In the case of class PRIMES, the most obvious reason is
its very nature: a class implementing the concept of prime numbers
is best tested with random values, not with values chosen from a
limited set, which have no relation to the characteristics of the class.

As a general conclusion, the combination of factors C0 gives the
best overall result but the process can be fine-tuned depending on
the classes that are tested. This fine-tuning is not dependent on the
timeout value chosen. However, if time permits, one should run
random testing several times with different values for the parame-

ters, because, even though a certain combination of parameters may
find fewer bugs than another, it may find different bugs.

Are more bugs found due to contract violations
or due to other exceptions being thrown?
The Design by Contract software development methodology rec-
ommends that the contracts be written at the same time as (or even
before) the implementation. Eiffel programmers generally follow
this practice, but the contracts that they write are most often weaker
(especially in the case of postconditions and class invariants) than
the intended specification of the software. When contracts are used
as oracles in testing, any condition that is not expressed in them
cannot be checked, so bugs might be missed. For this reason we
consider uncaught exceptions also to signal bugs. But what contri-
bution does each of these two factors have to the total number of
found bugs?

Figure 8 shows the evolution over time of the number of bugs
found through contract violations and that of the number of bugs
found through other exceptions being thrown for class STRING.
The values shown on the graph are obtained by averaging over the
numbers of bugs found for every timeout by all versions of the
random algorithm. For most other classes this evolution is sim-
ilar. One concludes that over time the proportion of bugs found
through contract violations becomes much higher than that of bugs
found through other thrown exceptions. For short timeouts (1 or 2
minutes) the situation is reversed.

Figure 8: Evolution over time of the number of bugs found
through contract violations and through other exceptions for
class STRING

Extreme cases are those of classes BOUNDED STACK,
BANK ACCOUNT, and PRIMES. Figure 9 shows the evolution
over time of the number of bugs found through contract violations
and that of the number of bugs found through other exceptions be-
ing thrown for class BOUNDED STACK. One notices that, regard-
less of the timeout, the number of bugs found by contract violations
is always higher than the number of bugs found through other ex-
ceptions. Furthermore, this latter number increases only slightly
from timeout 1 to timeout 2, and then does not increase at all. For
classes BANK ACCOUNT and PRIMES, all version of the ran-
dom generation algorithm constantly find more or an equal number
of bugs through contract violations that through other exceptions.

Although these results are not directly relevant for estimating the
performance of random testing, our intuition is that other testing

Figure 9: Evolution over time of the number of bugs found
through contract violations and through other exceptions for
class BOUNDED STACK

strategies, especially guided ones, would achieve different distribu-
tions. For this reason we also provide these results in this paper, so
that other studies (comparing different testing strategies) can bene-
fit from them.

4. DISCUSSION

4.1 Methodology
We chose to use contracts and exceptions as automated oracles.

One can argue that this strategy is neither complete (bugs which
do not trigger contract violations or other exceptions are missed)
nor sound (false positives might be reported). The former is a valid
point, but the size of the study made it impossible to perform man-
ual evaluation of all generated tests. The latter is a matter of con-
vention: a contract violation always signals a bug; whether this bug
is in the contract or in the implementation does not make a differ-
ence at this point. Bugs in the specification are just as dangerous
as bugs in the implementation because they too prove the presence
of an error in the developer’s thinking process. They are also dan-
gerous because a programmer trying to use the functionality of that
software and looking at its interface (in which the contracts are
included) will make wrong assumptions about the intended specifi-
cation of that software.

One aspect in which our study and the ones mentioned in sec-
tion 5 differ is the criterion used to evaluate the performance of the
examined testing strategy. In our case, this is the number of bugs
found in a fixed period of time. Other commonly used criteria are
the time to first bug (time elapsed until the first bug is found), num-
ber of tests run until the first bug-revealing test case is generated,
proportion of fault-revealing tests out of total tests generated, code
and data coverage of the generated tests, number of false positives
(false bug alarms), etc. Although all these measures are intuitively
relevant, we consider number of found bugs to be more important
than any of them, as this should be the purpose of any unit testing
strategy: finding bugs (if there are any) in the software units under
test.

4.2 Threats to validity
As is the case for any experimental study, the conclusiveness of

the results depends on the representativeness of the samples exam-
ined. Testing a higher number of classes would naturally have in-

Table 5: Probability values that maximize the number of found bugs for each timeout
Timeout=2 Timeout=5 Timeout=10 Timeout=30

Class name PNew PBasic PNew PBasic PNew PBasic PNew PBasic

BANK ACCOUNT 0.25 ? 0.25 0; 0.25 0.25 0.25 0.25; 0.5 0; 0.25
BOUNDED STACK 0.5; 0.75 0.5 0.75 0.75 0.75 0.75 0.75 0.75
HASH TABLE 0.25; 0.5 >0 0.25;0.5 0.75 0.25; 0.5 0.5; 0.75 0.25; 0.5 0.5; 0.75
PRIMES 1 0.75; 1 1 0.75 1 0.75 1 1
STRING 0.25 0.75 0.25 0.25 0.25 0 0.25 0
UTILS ? 0 0.75 0 0.75 0 0.5; 0.75 0; 0.25

creased the reliability of the results. The very high number of tests
that we had to run for each class in order to explore all possible
combinations of parameters (the probabilities and the seed) and the
duration of each such test (30 minutes) made it impossible for us to
test more classes in the time during which we had exclusive access
to the hardware necessary for the experiment. Hence, we chose
the classes that we tested so that they come from different sources,
implement different concepts and functionality, were produced by
programmers with different levels of expertise, and have different
sizes (in lines of code). Despite this, these classes do not exhibit all
types of bugs that can be found in object-oriented software; hence,
it is likely that, for some of these bugs, the behavior of a random
testing algorithm would be slightly different.

As the results indicate, the seed can have a high influence on the
number of found bugs. Each experiment was executed for three
seeds. Using a higher number of seed values would have improved
the robustness of the results, but practical time constraints pre-
vented this. We plan to conduct a further study in which to use
a higher number of seed values and investigate questions such as:
is there a bound on the testing timeout so that, when testing for that
duration, the choice of seed makes no difference? (in other words,
the same bugs are found regardless of the used seed); how many
seeds should be used over short timeouts to overcome the variabil-
ity of the results?

Perhaps the greatest threat to the validity of our results is the ex-
istence of bugs in the testing tool that we used in the study. We are
not aware of any such bugs, but a critical mind should not exclude
the possibility of their presence.

4.3 Other flavors of random testing
The study presented in this paper is naturally not exhaustive.

Other variations of the random generation algorithm are also possi-
ble. One can have different values for the probabilities or different
algorithms. An example of a completely different algorithm which
performs purely random testing is the one mentioned in section 2
which uses direct setting of object field values to get inputs for the
tests.

Other possible variations go in the direction of making random
testing “a little less random”. An example would be to use, for ba-
sic types, constants taken verbatim from the source code, instead of
the predefined, fixed set of values which we use in our algorithm.
Another promising direction consists of using dynamic inference of
abstract types [16]. This method finds sets of related variables (such
as variables declared as integers which actually represent sums of
money, or others declared as integers which represent ages of peo-
ple). Determining these sets allows for them to be treated differ-
ently by the testing strategy.

This is a practical limitation which any experimental study has
and it is part of the composable nature of such studies: the results
of one case study can be used as the starting basis of another one,
which adds to the scope of the first to make it more comprehensive.

5. RELATED WORK
A comprehensive overview of random testing is provided by

Hamlet [18]. He discusses the advantages of purposely being “un-
systematic” in choosing test inputs and also some of the theoretical
deficiencies of the method. One of the interesting conclusions of
the article is that the common misconceptions behind the criticism
of random testing are most often triggered by misapplications of
the method.

Although random testing of numerical applications has a longer
standing tradition than random testing of object-oriented software,
the interest for the latter has increased in recent years. Tools like
JCrasher [12], Eclat [23], Jtest [2], Jartege [22], or RUTE-J [4] are
proof of this interest.

Several tools combine random testing with other strategies.
DART [15] combines random testing and symbolic execution. Agi-
tar Software’s Agitator [5] combines several strategies: static analy-
sis, random input generation, and heuristics to find data likely to
expose bugs.

There exist also directions of research based on the idea of ran-
dom testing, but which try to improve its performance by adding
some guidance to the algorithm. This is the case for Adaptive Ran-
dom Testing [7] and its recent extension to object-oriented soft-
ware [11], and for quasi-random testing [8].

Some studies of random testing are available, but unfortunately
the vast majority are not recent. Some such studies ([14], [17], [24],
[9]) compare random testing and partition testing. Their results are
centered around the conditions under which partition testing (with
its several flavors such as data-flow-oriented testing, path testing,
etc.) can perform better than random testing. Their empirical in-
vestigations (or, in the case of Hamlet and Taylor [17], theoretical
studies) also show that, outside of these restraining conditions, ran-
dom testing outperforms partition testing.

Mankefors et al. [20] also investigate random testing and intro-
duce a new method for estimating the quality of random tests. As
opposed to the study presented here, their focus is on random test-
ing of numerical routines and on quality estimations for tests which
do not reveal bugs.

In a recently published report [3], Andrews et al. state that the
main reasons behind the so far poor adoption of random genera-
tion for object-oriented unit tests is the lack of tools and of a set of
recognized best practices. The authors provide such a set of best
practices and also compare the performance of random testing to
that of model checking. They show that random testing produces
good results both when used on its own and when used as prepara-
tion for model checking.

D’Amorim et al [13] compare the performance of two input gen-
eration strategies (random generation and symbolic execution) com-
bined with two strategies for test result classification (the use of
operational models and of uncaught exceptions). For the results
presented in this paper, one aspect of their study is particularly rel-

evant: the comparison of the test generation techniques (the ran-
dom one and symbolic execution). The results of the study show
much lower applicability of the symbolic-execution-based strategy
than of the random one: the authors could only run the symbolic-
execution-based tool on about 10% of the subjects used for the ran-
dom strategy and, even for these 10% of subjects, the tool could
only partly explore the code. We see this as a very serious limita-
tion of the strategy based on symbolic execution. Although, as the
study shows, the symbolic-execution-based strategy does find bugs
that the random one does not, the tool has extremely restricted prac-
tical applicability.

6. CONCLUSIONS
We have presented the results of an extensive case study that

evaluates the performance of random unit testing of object-oriented
applications over fixed timeouts. The purpose of the study was to
see how random unit testing performs in general and to determine
a most effective strategy (out of the examined ones) to recommend
as best practice.

The evolution of the number of found bugs is inversely propor-
tional to the elapsed time. Especially surprising is the steepness of
the increase in the number of found bugs over the first few minutes
of testing.

Because we used contracts and thrown exceptions as an auto-
mated oracle, we also examined the question of what proportion
of bugs are found due to each of these factors. Our results indi-
cate that over longer timeouts (10 minutes and more) the number
of bugs found through contract violations is much higher than that
of bugs found through other exceptions. For small timeouts (1 or 2
minutes) the situation is reversed.

In particular, the study evaluated implementation choices on the
input generation algorithm: the frequency with which we create
new objects as opposed to using existing ones, the frequency with
which we try to diversify the object pool, and whether basic val-
ues are generated completely randomly or selected from a fixed
predefined set. The combination of factors that gives the best over-
all result is 0.25 for creating new objects (so a creation of a new
object once every 4 test cases are run), 0.5 for the probability of
diversifying (the frequency with which we perform diversification
operations on the objects in the pool), and 0.25 for the probability
of generating values for basic types randomly as opposed to select-
ing these values from a fixed, predefined set. The process can be
fine tuned depending on the classes that are tested. This fine-tuning
needed by a class is not dependent on the timeout value chosen.
In future experiments it would be interesting to check if the result
is also valid on classes that evolve, i.e. it is applicable to future
versions of the same class and, if so, under what circumstances.

The results of the study also show that the values chosen for the
above-mentioned parameters can have a significant impact on the
performance of the testing tool. Although there exists a combina-
tion of parameter values that seems to deliver overall good results,
it is recommendable to run the tool with several combinations of
parameter values, since different such combinations may find dif-
ferent bugs.

The study presented in this paper answered several questions
about the performance of random testing in general and about the
factors that influence it. It has shown that, despite its simplicity and
unguided nature, random testing does indeed find bugs, not only
seeded ones, but also bugs present in widely used, industrial-grade
code. Of particular importance is the observation that random test-
ing finds a very high number of bugs in the first few minutes of
testing a certain class. This indicates that, although this strategy
might not find all bugs present in the code, its rate of finding bugs

over short timeouts makes it a very good candidate for combining
with other testing strategies, more expensive in terms of the com-
putational resources they require.

The question of how random testing compares to other testing
strategies is still open. We consider that providing an answer to
this question is of utmost importance, because the great variety of
automated testing strategies that are now available leaves develop-
ers and testers wondering as to the choice of testing tool that would
deliver the best results for their projects. Future work includes ex-
tensive experimental studies to answer this question and the devel-
opment of methods and metrics to compare testing strategies.

Acknowledgements
We thank Gustavo Alonso for providing us the hardware infrastruc-
ture that we used in the experiment.

7. REFERENCES
[1] The EiffelBase library. Eiffel Software Inc.

http://www.eiffel.com/.
[2] Jtest. Parasoft Corporation. http://www.parasoft.com/.
[3] J. H. Andrews, S. Haldar, Y. Lei, and C. H. Li. Randomized

unit testing: Tool support and best practices. Technical
Report 663, Department of Computer Science, University of
Western Ontario, January 2006.

[4] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li. Tool
support for randomized unit testing. In RT ’06: Proceedings
of the 1st International Workshop on Random Testing, pages
36–45, New York, NY, USA, 2006. ACM Press.

[5] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to
Agitator: lessons and challenges in building a commercial
tool for developer testing. In ISSTA ’06: Proceedings of the
2006 International Symposium on Software Testing and
Analysis, pages 169–180, New York, NY, USA, 2006. ACM
Press.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2002), Rome, Italy, 2002.

[7] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random
testing. In M. J. Maher, editor, Advances in Computer
Science - ASIAN 2004: Higher-Level Decision Making. 9th
Asian Computing Science Conference. Proceedings.
Springer-Verlag GmbH, 2004.

[8] T. Y. Chen and R. Merkel. Quasi-random testing. In ASE ’05:
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pages
309–312, New York, NY, USA, 2005. ACM Press.

[9] T. Y. Chen and Y. T. Yu. On the relationship between
partition and random testing. IEEE Transactions on Software
Engineering, 20(12):977–980, 1994.

[10] I. Ciupa and A. Leitner. Automatic testing based on Design
by Contract. In Proceedings of Net.ObjectDays 2005 (6th
Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and Applications for
a Networked World), pages 545–557, September 19-22 2005.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Object distance
and its application to adaptive random testing of
object-oriented programs. In RT ’06: Proceedings of the 1st
International Workshop on Random Testing, pages 55–63,
New York, NY, USA, 2006. ACM Press.

[12] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic
robustness tester for Java. Software: Practice and
Experience, 34(11):1025–1050, 2004.

[13] M. d’Amorim, C. Pacheco, D. Marinov, T. Xie, and M. D.
Ernst. An empirical comparison of automated generation and
classification techniques for object-oriented unit testing. In
ASE 2006: Proceedings of the 21st Annual International
Conference on Automated Software Engineering, Tokyo,
Japan, September 20–22, 2006.

[14] J. Duran and S. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, SE-10:438 –
444, July 1984.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 213–223, New
York, NY, USA, 2005. ACM Press.

[16] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst.
Dynamic inference of abstract types. In ISSTA ’06:
Proceedings of the 2006 International Symposium on
Software Testing and Analysis, pages 255–265, New York,
NY, USA, 2006. ACM Press.

[17] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence. IEEE Transactions on Software Engineering, 16
(12):1402–1411, December 1990.

[18] R. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering, pages 970–978.
Wiley, 1994.

[19] A. Leitner, I. Ciupa, B. Meyer, and M. Howard. Reconciling
manual and automated testing: the AutoTest experience. In
Proceedings of the 40th Hawaii International Conference on
System Sciences - 2007, Software Technology, January 3-6,
2007.

[20] S. Mankefors, R. Torkar, and A. Boklund. New quality
estimations in random testing. In ISSRE ’03: Proceedings of
the 14th International Symposium on Software Reliability
Engineering, pages 468-478, 2003.

[21] B. Meyer. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, 1997.

[22] C. Oriat. Jartege: a tool for random generation of unit tests
for Java classes. Technical Report RR-1069-I, Centre
National de la Recherche Scientifique, Institut National
Polytechnique de Grenoble, Universite Joseph Fourier
Grenoble I, June 2004.

[23] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005 —
Object-Oriented Programming, 19th European Conference,
Glasgow, Scotland, July 25–29, 2005.

[24] E. Weyuker and B. Jeng. Analyzing partition testing
strategies. IEEE Transactions on Software Engineering,
17(7):703–711, 1991.

