
Object distance and its application to adaptive random
testing of object-oriented programs

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, Bertrand Meyer
Chair of Software Engineering

Department of Computer Science
ETH Zurich

CH-8092 Zürich
{Ilinca.Ciupa, Andreas.Leitner, Manuel.Oriol, Bertrand.Meyer}@inf.ethz.ch

ABSTRACT
Testing with random inputs can give surprisingly good results if the
distribution of inputs is spread out evenly over the input domain;
this is the intuition behind Adaptive Random Testing, which relies
on a notion of ”distance” between test values. Such distances have
so far been defined for integers and other elementary inputs; ex-
tending the idea to the testing of today’s object-oriented programs
requires a more general notion of distance, applicable to composite
programmer-defined types.

We define a notion of object distance, with associated algorithms
to compute distances between arbitrary objects, and use it to gener-
alize Adaptive Random Testing to such inputs. The resulting test-
ing strategies open the way for effective automated testing of large,
realistic object-oriented programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—testing
tools

Keywords
random testing, adaptive random testing, object distance, distanced-
based testing

1. OVERVIEW
One of the central issues of software testing is test case selection.

Effective testing increasingly requires strategies for automatic test
case selection, since manual selection (for which a need will al-
ways remain) can only produce a subset of the large test suites that
modern computing technology allows us to run. Counter to what
intuition suggests, random strategies for selecting test inputs have
proved remarkably effective when they can use a distribution of in-
puts that is spaced evenly over the range of possible values. The
family of testing strategies called Adaptive Random Testing [3] is
based on this idea. They are one of the most promising directions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RT’06 July 20, 2006, Portland, ME, USA
Copyright 2006 ACM 1-59593-457-X/06/0007 ...$5.00.

of automatic test case generation. Section 2 summarizes the contri-
butions of this approach.

Work on Adaptive Random Testing has so far only considered
inputs of primitive types such as integers, for which the notion of
“even spacedness” immediately makes sense: any such input be-
longs to a known interval on which there exists a total order rela-
tion. To test today’s object-oriented programs, we also need to con-
sider inputs that are composite objects with many fields, which ex-
ist during execution as a result of instantiating classes. We feel that
it is desirable to extend the attractive concept of Adaptive Random
Testing to such inputs; this paper describes an adaptive random
strategy for selecting objects used in test cases for object-oriented
programs.

The basic problem is, given a set of instances of various types,
to select a subset for inclusion in a test suite so as to maximize
the chances of finding a bug. Because multiple-field objects are
not members of a totally ordered set, there’s no notion of “equally
spaced” inputs in a range. To address this issue, we rely on a notion
of object distance to determine how far an object is “spaced” from
another, and use it as a basis for object selection strategies.

The main contributions of this work include:

• A comprehensive notion of object distance (Section 3), which
takes into account the various properties of an object: its dy-
namic type, which in O-O programming need not be identi-
cal to the type of another object to which we need to compute
the distance (as both objects might be contenders for a call to
the same routine1 in the context of dynamic binding, both of
their types inheriting from a common ancestor); the values
of its primitive fields (integers, reals etc.); but also the refer-
ence fields that it may contain, leading to other objects and
enabling the distance to take account of the structure of the
run-time object graph.

• Strategies for Adaptive Random Testing (Section 4) based on
the object distance and making it possible to select objects
from a given set so as to maximize the diversity of objects in
a test suite.

• A case study (Section 5), suggesting that the strategy does
enhance that diversity and leads to effective testing.

Section 6 discusses various issues and Section 7 draws conclu-
sions and outlines directions for future work.

This work is part of a general project to produce test cases en-
tirely automatically on the basis of contracts equipping object-oriented
1Another name for routines is “methods”. Throughout the paper
we use Eiffel-like terminology and notations.

Proceedings of the First International Workshop on Random Testing (RT’06)

55

code, in particular reusable components. The testing IDE result-
ing from this project, AutoTest [6], is already in wide use and has
uncovered bugs in a number of existing production systems. The
testing strategies based on the notion of object distance developed
in this paper are in the process of being integrated into AutoTest.

2. ADAPTIVE RANDOM TESTING
Random testing presents several benefits in automated testing

processes. Some of its main benefits are ease of implementation,
efficiency of test case generation, and the existence of ways to es-
timate its reliability [9]. Many reference texts are, however, crit-
ical towards it. Glenford J. Myers deems it the poorest testing
methodology and “at best, an inefficient and ad hoc approach to
testing” [15].

Several studies [7, 8] disproved this assessment by showing that
random testing can be more cost-effective than partition testing.
Menzies and Cukic [14] conducted a simulation of random testing
of programs whose structures and sizes varied widely, and came to
the conclusion that random testing, even with only a few tests, is
very useful. Andrews et al. [1] show that, when specific recom-
mended practices are followed, a testing strategy based on random
input generation finds bugs even in mature software, and does so
efficiently. They also state that, in addition to lack of proper tool
support, the main reason for the rejection of random testing is lack
of information about best practices.

Several algorithms have therefore been developed which attempt
to maintain the benefits of random testing while increasing its ef-
ficiency. They generally provide ways to guide testing, so that it
is no longer purely random. Particularly promising is the family
of algorithms developed around the seminal work of Chen et al. on
Adaptive Random Testing (ART) [3]. ART is based on the intuition
that an even distribution of test cases in the input space allows find-
ing bugs through fewer test cases than with purely random testing.
The implementation of ART requires keeping two disjoint sets of
test cases: a candidate set and an executed set. The test cases in
the candidate set are generated randomly. The executed set is ini-
tially empty; then, as testing progresses, test cases that are executed
are added to it and removed from the candidate set. The first test
case that gets executed is selected at random from the candidate set
and is added to the executed set; in the subsequent steps, the test
case from the candidate set that is furthest away from the executed
ones is selected from the candidate set. The distance between two
test cases is computed using the Euclidean measure: thus, for an
n-dimensional input domain, the distance between two test cases a
and b whose inputs are ai and bi respectively, for i ∈ {1, ..., n}, is

dist(a,b) =
√

∑n
i=1(ai−bi)2. To evaluate the efficiency of ART, the

authors use the “F-measure”: the expected number of test cases re-
quired to reveal the first bug. Their experimental results show that
ART can be more efficient than random testing by more than 50%.

Based on the ART intuition, a series of related algorithms have
been proposed. Mirror ART [5] (MART) and ART through dy-
namic partitioning [4] reduce the overhead of ART. In MART, the
input space is partitioned into disjoints subdomains. Test cases
are generated in only one of these subdomains, using the ART
algorithm, and then these generated test cases are mirrored into
the other subdomains. This reduces the number of distance cal-
culations that ART must perform. Restricted Random Testing [2]
(RRT) is also closely related to ART and is based on restricting the
regions of the input space where test cases can be generated. As
opposed to ART, where the elements of the candidate set are gener-
ated randomly, in RRT test cases are always generated so that they
are outside of the exclusion zones (a candidate is randomly gen-

erated, and, if it is inside an exclusion zone, it is disregarded and
a new random generation is attempted). Further improvements to
ART are provided by Mayer’s work on lattice-based ART [13] and
ART by bisection with restriction [12].

All the above algorithms need a measure of the distance between
two test cases, which is calculated based on the distances between
their integer (or real) inputs. If these inputs are not numeric, the
algorithms cannot be applied directly. To increase the applicability
of ART to object-oriented systems, we need a method for comput-
ing a measure of the degree of dissimilarity between two objects,
which we refer to as the distance between them. Having such an
object distance, as developed below, enables random testing of soft-
ware written in an OO language to benefit from all the advantages
provided by ART and its derivatives. Furthermore, the way this dis-
tance is calculated (the use of both a distance between types and a
distance between values, and of different weightings for them) al-
lows for high flexibility in implementing various testing strategies.

3. OBJECT DISTANCE
There are many ways to define a notion of distance between two

objects. It is important to specify a framework for acceptable def-
initions, then make explicit any choices behind a specific proposal
within that framework, and justify them. This discussion starts with
a very general framework and makes a number of such choices un-
til it arrives at a directly implementable notion, with an associated
algorithm.

Distance principle: Inter-object distance should be a distance.
This refers to the mathematical notion of distance, i.e. a function

↔ returning a real value between two objects p and q such that:

• p ↔ q ≥ 0

• p ↔ q = 0 ⇔ p = q

• p ↔ q = q ↔ p

• ∀r: p ↔ q ≤ p ↔ r + r ↔ q (the triangle inequality)

One of the consequences of the distance principle is that the rest of
this discussion need only concern itself with defining the distance
between two distinct objects; the distance from an object to itself
will be zero.

The basic issue is to define the distance between two composite
objects p and q. As illustrated in figure 2, each object is character-
ized by a number of fields, where each field is either:

• A directly usable expanded value2: integer, boolean etc.

• A reference to another composite object.

We will include strings in the first case; although in many object-
oriented frameworks a string value is denoted by a reference to an
object containing the string’s representation, it is more appropriate,
when defining the distance, to treat the string as a directly usable
value. Specifically, we will use as distance between two strings
their Levenshtein distance [11], also known as edit distance: the
minimum number of operations yielding one string from the other
where each operation is one of: substitution, insertion, and dele-
tion.

In the second case, the reference can be void (or null). To
avoid special cases we will treat a void reference as a reference to
a special object called Void.

2Expanded values are also called “primitive”

Proceedings of the First International Workshop on Random Testing (RT’06)

56

3.1 Elementary distance
A basic measure is needed to compare elementary values as ap-

pear in fields of objects.
Definition: elementary distance. The distance between two

elementary values p and q is:

• For numbers: C(|p−q|) (where |p−q| is the absolute value
of their difference and C is a monotonically non-decreasing
function, with C(0) = 0).

• For booleans: 0 if identical, B otherwise.

• For strings: the Levenshtein distance.

• For references: 0 if identical, R if different but none is void,
V if only one of them is void.

In this definition, B, R and V are positive values chosen conven-
tionally; fully defining the model will also require defining an ap-
propriate function C. In Section 5 we will use B = R = V = 10,
and the identity function for C .

In the reference cases, it does not seem appropriate to compare
the values of the references understood as addresses, since distance
in memory usually carries no semantic relevance.

In the integer and string cases, C is a compression function which
can be used, if desired, to avoid giving too much weight to very
large distances between integers or strings. Although integers and
strings could use separate compression functions we use just one
for simplicity. A possible choice for C, other than the identity
function, would be, for some constant M, C(x) = x for x ≤ M ,
and C(x) = M+ log10(x−M+1) for x > M.

3.2 Composite object distance
We may now turn to the issue of obtaining a proper definition of

the distance between two composite objects p and q. We should
take into account the following three properties:

• A measure of the difference between their types. In object-
oriented programming, any object is an instance of some
class; that is one of its relevant properties, especially since
a given (polymorphic) variable may at run time become at-
tached to objects of different types, which in this case must
have a common ancestor in the inheritance hierarchy. In
comparing two objects we should estimate how far apart their
types are in that hierarchy.

• A measure of the difference between the objects’ individ-
ual fields, derived from their pair-wise elementary distances
as defined above. We should compare these fields one by
one, considering only “matching” fields corresponding to the
same attributes in both objects; non-matching fields cause a
difference but are captured by the type distance.

• For unequal references, a measure of the difference between
the corresponding objects. This will be the same notion of
object distance, applied recursively.

Any non-zero value for each of these three measures should in-
crease the distance between p and q; in other words the distance
should be a monotonically non-decreasing function of each of its
three components.

These requirements seem appropriate for any meaningful defin-
ition of distance between composite objects, leading to the follow-
ing principle:

Composite Object principle. The distance between two distinct
composite objects p and q is entirely determined by the following
three values, and is monotonically increasing on each of them taken
separately:

Type distance: A measure of the difference between the types of
p and q, independent of the values of the objects themselves.

Field distance: A measure entirely determined by the difference
between the matching fields of p and q.

Recursive distance: A measure entirely determined by the values
of the distances between (recursively) objects p.r and q.r, for
all matching reference attributes r such that p.r �= q.r (both
non-Void).

We may express the Composite Object principle as a formula for
the distance p ↔ q:

p ↔ q = combination(
type distance(p.type,q.type),
f ield distance(p,q),
recursive distance({[p.r ↔ q.r]

|r ∈ Re f erence attributes(p.type,q.type)}))

(1)

where Re f erence attributes(t1, t2) is the set of attributes of ref-
erence types applicable to both objects of type t1 and objects of
type t2. We will look below at possible choices for the functions
combination, type distance, f ield distance and recursive distance.

The last part of formula 1 is a recursive use of the distance func-
tion; for that reason we must treat formula (1) as a fixpoint equa-
tion, and ensure not only that the function combination is monoton-
ically increasing on each argument but also that a sequence xn =
combination(a,b,xn−1) converges. A possible choice for
combination(a,b,x) is a+b+ 1

2 x, but many others are available.
In the third clause of the Composite Object principle, we ap-

ply the distance recursively to objects obtained by following refer-
ences. We need only consider reference pairs such that p.r �= q.r
, since for equal references the object distance would be zero. In
summing individual distances over a set of attributes A, we will al-
ways take the arithmetic mean (the sum divided by the number of
its elements) to avoid giving too much weight to objects that have
large numbers of fields. The notation

∑ai

will represent the arithmetic mean of the set A = {ai}.

3.3 Pair-wise field comparisons
The second and third clauses of the Composite Object principle

indicate that we must only consider pair-wise differences between
matching fields, corresponding to the same attribute, according to
the following definition:

Definition: matching fields. Fields taken from objects p and
q are matching if they are of the form p.a and q.a for an attribute
a common to their types, either because the types are the same or
because they inherit a from a common ancestor.

Without this rule the comparison would make no sense. In par-
ticular, the name of the attributes is irrelevant: a class PERSON and
a class BOOK may both have a field called title, but this does not
indicate they are comparable.

3.4 Consistency requirements
The two distances depending on fields of the object,

f ield distance and recursive distance, should obey a consistency
requirement:

Field principle. The field and recursive distances are entirely
determined by pair-wise differences between the values of match-
ing fields and objects (respectively), and are monotonically non-
decreasing functions of each of these differences taken separately.

Proceedings of the First International Workshop on Random Testing (RT’06)

57

How these components of the distance depend on the correspond-
ing fields will be expressed by the functions f ield dist-ance and
recursive distance.

We may now look at possible choices for the functions that re-
main to be specified: combination, type distance, f ield distance
and recursive distance.

3.5 Attaching weights to attributes
The last three functions cited serve to compare two objects or

their types. Any composite object is made of a number of fields,
each associated with an attribute (also called “data member” in
C++) of the corresponding class. To define type distance we must
look at the attributes of the classes involved; for f ield distance and
recursive distance we look at the fields of the objects.

In all three cases we shouldn’t have to treat all attributes as con-
tributing equally to the distance. Introducing a notion of weight
gives us the necessary flexibility:

Weight principle. For every attribute of a class, it is possible to
define an associated non-negative weight w, such that the type, field
and recursive distances are monotonically increasing functions of
w ∗ d for each applicable pair-wise distance d, and do not depend
on d if w is 0.

This convention of writing the distance functions as functions of
w ∗ d for each applicable elementary distance d makes it possible
to define a degree of relevance for various attributes of a given type
and the corresponding fields, and to ignore certain fields altogether
by giving them a zero weight.

It would be possible to define different weights for each of the
type, field and recursive distances, but such extra flexibility does
not seem warranted. Instead we just define, for each attribute of a
class, how important the attribute is in comparing the correspond-
ing objects.

The weight of an attribute a will be written weighta.

3.6 Type distance
The following rule guides the definition of the type distance:
Type distance principle. The distance between two types is

a monotonically increasing function of their path lengths to any
closest common ancestor, and of the number of their non-shared
features3.

In this principle:

• A closest common ancestor of two classes B and C is a class
A that is an ancestor of B and C, and such that no proper
descendant of A has this property.

• The path length from a class to an ancestor is the minimum
number of edges on a path to that ancestor.

• In languages where all types are based on a class and all
classes have a common ancestor (ANY in Eiffel, Object in
Java, etc), any two classes have a closest common ancestor.
If this is not the case we will take the type distance to be
infinite in the absence of a common ancestor.

• With multiple inheritance two types can have more than one
closest common ancestor. In this case, the type distance must
take into account distances to all of them.

• Non-shared features are features not inherited from a com-
mon ancestor. In figure 2 is sick is a non-shared feature; so
is name in PERSON since the presence of a name feature in
PET is just accidental homonymy.

3attributes and methods

The second part of the principle corresponds to the intuition that the
more individual features differ, the more the corresponding objects
should differ.

We will use the following as type distance for two types t and u:

type distance(t,u) =

λ ∗ path length(t,u)+ν ∗∑a∈non shared(t,u)weighta
(2)

here path length denotes the minimum path length to a closest
common ancestor, and non shared the set of non-shared features. λ
and ν are two non-negative constants; in Section 5 we will choose
1 for both.

3.7 Combining fields
There remains to define the field and recursive distances in ac-

cordance with the above requirements. A simple choice for the field
distance is:

f ield distance(p,q) =

∑
a

weighta ∗ elementary distance(p.a,q.a)
(3)

This is a sum over matching attributes a, with the convention noted
above for void references.

We may use a similar formula for the recursive distance:

recursive distance(p,q) = ∑
r

weightr ∗ (p.r ↔ q.r) (4)

This is a sum over matching reference attributes r; as noted we
need only consider the fields for which p.r and q.r are not equal
and neither of them is Void.

We also use a simple additive formula for the combination of the
three component distances:

combination(f d, td,rd) = τ ∗ td +φ ∗ f d +α ∗ rd (5)

where α is an attenuation factor, between 0 and 1 (excluded), in-
troduced to ensure convergence as discussed above; in the example
from Section 5 we will use α = 1

2 . τ and φ are non-negative con-
stants.

The following formula gives the full distance definition combin-
ing the previous definitions:

p ↔ q =
τ ∗λ ∗ path length(p.type,q.type)

+τ ∗ν ∗∑a∈non shared(p.type,q.type)weighta

+φ ∗∑
a

weighta ∗ elementary distance(p.a,q.a)

+α ∗∑
r

weightr ∗ (p.r ↔ q.r)

(6)

where a ranges over all matching fields and r over all matching
non-equal, non-Void reference fields.

3.8 Parameters to the model
The distance definition has introduced a number of constants and

a function, for which any application must choose values. Here
is a recapitulation of all these parameters, indicating for each, in
parentheses, the value chosen for the example presentation below.

B (10) : distance between two unequal boolean values.

V (10) : distance between a non-void reference and Void.

Proceedings of the First International Workshop on Random Testing (RT’06)

58

R (10) : distance between two unequal, non-void references.

C (identity function): compression function for integer, real, dou-
ble, and string distances.

λ (1): in the type distance, weight of the path length part.

ν (1): in the type distance, weight of the part involving non-shared
attributes.

τ (1): global weight for the type distance.

φ (1): global weight for the field distance.

α (1
2): attenuation factor (global weight for the part of the distance

that depends on referenced objects).

weighta for every attribute a (1): weight of a (used for the type
distance, the field distance and the recursive distance).

In the absence of a clear rationale for more specific values, the
choices so far, as reflected in the application below, use simple val-
ues: 1 to assign equal weight to the various components of a dis-
tance, 1

2 for the attenuation factor to ensure reasonably fast conver-
gence, and 10 as a conventional measure of distance between two
clearly different booleans or references. Our experience with the
model so far has not provided a conclusive answer to the question
whether these simple values suffice or more sophisticated tuning is
necessary. The presence of all the parameters listed will make such
tuning possible if it turns out to be needed.

3.9 The structure paradox
One effect of the general approach to distance measurement in-

troduced here is that it pays more attention to actual values than to
isomorphism of structures. With the example from Figure 1 (rep-
resenting an object structure where all objects have the same type
and a single attribute, which is a reference to another object of the
same type) and the attenuation factor α being set to 1

2 , we have
r ↔ p = 2−1 +2−2 +2−3 +2−4 + ... = 1

p

r

q

Figure 1: Structure paradox

r ↔ q = 0
This reflects the property that the objects q and r are field-by-

field identical, but p and q are not.
It is possible to argue instead that p is more similar to r than q is

since the corresponding deep object structures are isomorphic.
Both views are sustainable. The distance as defined here corre-

sponds to notions of “shallow” equality, as implemented in Eiffel
by is equal and in Java by equals. A notion of distance corre-
sponding to “deep equality”, as in Eiffel’s is deep equal func-
tion, seems also possible; it would need to estimate a distance be-
tween graph structures. This approach would have to use measures
of structural distance between graphs, as developed for example
in [16], and avoid the difficulties associated with the graph iso-
morphism problem. In the present discussion we stick to a more

elementary notion of distance based on values of references rather
than structural similarity.

3.10 A matrix form
Applying formula (6) to a set of mutually related objects gives

a matrix fixpoint equation form, which facilitates both illustration
and resolution.

Consider a set P of objects p1, p2, ..., pn. Let D be the matrix
of pair-wise distances between these objects: D [i, j] is the distance
between pi and p j. D and all other matrices involved in this dis-
cussion are symmetric.

Let T be the matrix of type distances between the elements of
P, and F the matrix of their field distances, as computed from their
matching fields. Then we may rewrite formula 6 applied to all the
points in P as the equation:

D = τT +φF +α ∗∑r∈Re f erencesD◦ r (7)

Where D◦ r is the matrix D′ such that

∀i, j D′[i, j] = weightr ∗D[pi.r, p j.r]

with the convention that p.r and the corresponding matrix entries
are zero if the attribute r is not applicable to p.

This last term of equation (7) simply results, for any particular
reference attribute r, from applying the last term of equation (6)

weightr ∗ (p.r ↔ q.r)

to all objects: we replace every object p by the object found by
following the reference in the r field of p. For the [i, j] entry of
the matrix D, which corresponds to the distance between objects pi
and p j, we apply this transformation to both pi and p j .

The transformation induced by a reference attribute r is generally
not a substitution (one-to-one mapping) because of the possibility
of dynamic aliasing (two references attached to the same object)
and of void references (which we represent as references to a fixed
object Void).

We may use equation (7) to compute the pair-wise distances be-
tween all the points in a set iteratively. With a small enough atten-
uation factor α it will quickly reach a satisfactory approximation.

For a precise computation of the distance, applying equation (7)
assumes that the set P of objects is reference-complete: any object
reachable directly or indirectly from a member of P by following
references is also in P. The simplest reference-complete set is the
set of all objects, but this will usually be too large to handle. Two
reasonable policies are:

1. Start from a set P that is not necessarily reference-complete,
for example a set containing just two objects p and q of which
we need to compute the distance and extend it repeatedly as
application of equation (7) brings in the need to consider new
objects.

2. Alternatively, work with a fixed set P, but whenever the ap-
plication of equation 7 brings in an object not in P take an
arbitrarily chosen large value for its distance to any member
of P.

4. DISTANCE-BASED TESTING STRATE-
GIES

Various testing strategies can be implemented using the compu-
tation of the distance between two objects presented in the previous
section. For instance, ART is based on the intuition that spreading
out values in the input domain will result in a decreased F-measure.

Proceedings of the First International Workshop on Random Testing (RT’06)

59

One possible implementation of this concept would be to keep a set
of candidate test inputs and a set of already used inputs, and always
choose from the candidate set the value v that has the highest av-
erage distance to all values used before. Then v is removed from
the candidate set and added to the used values set. The test case is
executed and, if it passes (so no bug is found), the next best value
is selected from the candidate set.

This algorithm is described by the following fragment of pseudo-
code, where the distance function is implemented as described in
the previous section:

used_objects: SET [ANY]
candidate_objects: SET [ANY]
current_best_distance: DOUBLE
current_best_object: ANY
v0, v1: ANY
current_accumulation: DOUBLE
...

current_best_distance := 0.0;
foreach v0 in candidate_objects
do

current_accumulation := 0.0;
foreach v1 in used_objects
do

current_accumulation :=
current_accumulation + distance(v0, v1);

end
if (current_accumulation > current_best_distance)
then

current_best_distance := current_accumulation;
current_best_object := v0;

end
end
candidate_objects.remove(v0);
used_objects.add(v0);
run_test(v0);

This strategy is similar to the one originally proposed for ART [3],
the differences being the selection criterion (average distance rather
than maximum minimum distance) and the computation of the dis-
tance measure. A number of variations are possible within that
framework; in particular they can play with weights and the model’s
other parameters to emphasize or downplay specific properties of
objects and types. Varying the number of fixpoint iterations is also
a way to tune the model.

5. CASE STUDY
In this section we apply the testing algorithm introduced in the

previous section on an example. We first introduce a class hierar-
chy and corresponding sample instances that will be used through-
out this section. Then we pre-calculate all the necessary object dis-
tances using our proposed definition. The resulting object-distances
will be used in the next step, which consists of stepping through the
execution of the testing algorithm, where in each step the next ob-
ject to be used for testing is selected.

We consider the classes depicted in Figure 2 and objects depicted
in Figure 3. The example involves both reference and primitive
types, and includes self-references, and polymorphism.

We assume that the routine under test takes one argument which
is of type PERSON. Our approach trivially extends to routines
with multiple arguments; here we use one argument for the sake
of brevity. In this section we will calculate the distance between
all persons. A potential implementation will quite likely use a lazy
strategy to only calculate those distances that the testing algorithm
actually requires.

name: STRING
animal:ANIMAL
spouse: PERSON

PERSON

pet_store: PET_STORE
age: INTEGER

ANIMAL

name: STRING
PET_STORE

breed: STRING
DOG

is_sick: BOOLEAN
BIRD

Figure 2: Case study class diagram

The following will show the necessary computations bottom-up
starting with first type and field comparisons, then pet shop, animal
and finally person comparisons.

The type distance between a type and itself is zero, hence the
only interesting type comparisons in our example are between DOG
and BIRD:

type distance(DOG,BIRD) = 2+(1+1) = 4

The sum of the path lengths from DOG and BIRD to their closest
common ancestor is 2 and there are two non-shared features (is sick
and breed, both weighted 1).

Next the differences between the strings occurring in the exam-
ple are, according to the Levenstein distance:

f ield distance(”Store1”,”Store2”) = 1
f ield distance(”Steve”,”Mary”) = 5
f ield distance(”Steve”,”Jenna”) = 5
f ield distance(”Steve”,”Kelly”) = 5
f ield distance(”Mary”,”Jenna”) = 5
f ield distance(”Mary”,”Kelly”) = 4
f ield distance(”Jenna”,”Kelly”) = 4

The calculations for the two pet shops follow:

ps1 ↔ ps2 = td(PET SHOP,PET SHOP)
+(f d(”Store1”,”Store2”))

= 0+1 = 1

Since both ps1 and ps2 have the same type (PET SHOP) their type
distance is zero; the difference between their only field (name of
type STRING) is 1 as already calculated.

The calculations for comparing the animals bird1, bird2 and dog1
to each other are shown below:

bird1 ↔ bird2 = td(BIRD,BIRD)
+ 1

2 ∗ (|bird1.age−bird2.age|+0)

= 0+ 1
2 ∗ (2+0) = 1

bird1 ↔ dog1 = td(BIRD,DOG)
+ 1

2 ∗ (|bird1.age−dog1.age|+R)+
1
2 ∗ (ps1p ↔ s2)

= 4+ 1
2 ∗ (7+10)+ 1

2 ∗1 = 13

bird2 ↔ dog1 = td(BIRD,DOG)
+ 1

2 ∗ (|bird2.age−dog1.age|+R)+
1
2 ∗ (ps1 ↔ ps2)

= 4+ 1
2 ∗ (9+10)+ 1

2 ∗1 = 14

The type distance between bird1 and bird2 is zero since they have
the same type. They share two fields, hence the sum of their field
differences is divided by 2. Their first fields (age) are set to 3 and
1 respectively hence we get a difference of 2. Their second field
(pet shop) is for both set to ps1 hence they do not differ. The type

Proceedings of the First International Workshop on Random Testing (RT’06)

60

name="Steve"
animal=bird1
spouse=p2

p1:PERSON
name="Kelly"
animal=bird2
spouse=Void

p4:PERSON
name="Mary"
animal=dog1
spouse=p1

p2:PERSON
name="Jenna"
animal=Void
spouse=p2

p3:PERSON

age=3
pet_store=ps1

bird1:BIRD
age=1
pet_store=ps1

bird2:BIRD

age=10
pet_store=ps2

dog1:DOG

name="Store1"
ps1:PET_STORE

name="Store2"
ps2:PET_STORE

Figure 3: Case study object diagram

distance for bird1 and dog1 is 4 as their types are BIRD and DOG
respectively. The sum of their field distances is again divided by
2, due to the 2 shared fields. The age difference is now 10− 3 =
7 and they come from different pet shops (ps1 ↔ ps2 = 1). The
difference between bird2 and dog1 is calculated correspondingly.

The following symmetric matrix depicts the distances between
the animals.

bird1 bird2 dog1
bird1 0
bird2 1 0
dog1 13 14 0

As a last step we compare the persons p1, p2, p3 and p4 to each
other. Note that for brevity, we omit the type distance calculations
for persons since the type distance between all persons is always
zero (they are all of type PERSON).

p1 ↔ p2 = 1
3 ∗ (f d(”Steve”,”Mary”)+R+R)
+α ∗ 1

2 ∗ (bird1 ↔ dog1+ p1 ↔ p2)

= 25
3 + 1

4 ∗ (13+ p1 ↔ p2)

Objects p1 and p2 share three fields: name, animal and spouse.
Hence the sum of their field differences is divided by 3. The dif-
ference between their names (“Steve” and “Mary”) is 5 as calcu-
lated during the string comparisons. Both the attributes animal and
spouse are distinct hence they weight R = 10 each. The rest of the
formula is due to the recursive distance. There is the attenuation
factor α (1

2) and the normalization through the number of shared
reference fields (animal and spouse). As calculated previously the
difference between the animals bird1↔ dog1 = 13. The difference
between the spouses is p1↔ p2. Note the introduction of recursion
in this last step. The resulting fix-point equation is now solved iter-
atively (using an initial value of zero; we show 3 significant digits
to illustrate speed of convergence):

p1 ↔ p2n+1 = 25
3 + 1

4 ∗ (13+ p1 ↔ p2n)

p1 ↔ p20 = 0
p1 ↔ p21 = 25

3 + 1
4 ∗ (13+0) = 11.583

p1 ↔ p22 = 25
3 + 1

4 ∗ (13+11.583) = 14.479
p1 ↔ p23 = 25

3 + 1
4 ∗ (13+14.479) = 15.203

p1 ↔ p24 = 25
3 + 1

4 ∗ (13+15.203) = 15.384
p1 ↔ p25 = 25

3 + 1
4 ∗ (13+15.384) = 15.429

p1 ↔ p26 = 25
3 + 1

4 ∗ (13+15.429) = 15.441

We abort the iteration after 6 steps and continue working with the
approximation of 15.4 for p1 ↔ p2. Next the distance between p1

and p3:

p1 ↔ p3 = 1
3 ∗ (f d(”Steve”,”Jenna”)+V+0)
+α ∗ 1

1 ∗ (p2 ↔ p2)

= 15
3 + 1

2 ∗ 1
1 ∗0

Note that in the recursive step in the above formula there is no
comparison between animals, because one of the animals is void.
Since there is no recursion in the above equation we can evaluate
the result immediately and get p1 ↔ p3 = 5.

Next we compare objects p1 and p4:

p1 ↔ p4 = 1
3 ∗ (f d(”Steve”,”Kelly”)+R+V)
+α ∗ 1

1 ∗ (bird1 ↔ bird2)

= 25
3 + 1

2 ∗ 1
1 ∗1

This distance can again be evaluated directly: p1 ↔ p4 = 8.8
(rounded to one decimal).

Comparing objects p2 and p3 we start with:

p2 ↔ p3 = 1
3 ∗ (f d(”Mary”,”Jenna”)+V+R)
+α ∗ 1

1 ∗ (p1 ↔ p2)

= 25
3 + 1

2 ∗15.4

Since we have already calculated the distance between p1 and p2
we can evaluate the above equation directly and get: p2 ↔ p3 =
16.0 (rounded to one decimal).

The second but last person comparison involves p2 and p4:

p2 ↔ p4 = 1
3 ∗ (f d(”Mary”,”Kelly”)+R+V)
+α ∗ 1

1 ∗ (dog1 ↔ bird2)

= 24
3 + 1

2 ∗ 1
1 ∗14

Hence we get p2 ↔ p4 = 15. And finally the last person compari-
son between p3 and p4:

p3 ↔ p4 = 1
3 ∗ (f d(”Jenna”,”Kelly”)+V+V)

= 24
3 = 8

Combining all those calculations we get the following matrix show-
ing the difference between persons p1, p2, p3, and p4:

p1 p2 p3 p4
p1 0
p2 15.4 0
p3 5.0 16.0 0
p4 8.8 15.0 8.0 0

Proceedings of the First International Workshop on Random Testing (RT’06)

61

Now that all distances between persons are known we can start test-
ing. Initially no object has been used for testing yet. Set
used ob jects is empty and candiate ob jects is {p1, p2, p3, p4}.
In this state our algorithm will pick an arbitrary object from the
candidate ob jects set. Let us assume p1 was picked.

After the first round of testing the set used ob jects is {p1} and
the set candidate ob jects is {p2, p3, p4}. According to the algo-
rithm, the next object to pick for testing is the one from
candidate ob jects with the biggest distance to p1; in our case this
is p2.

After moving p2 we now have used ob jects = {p1, p2} and
candidate ob jects = {p3, p4}. The accumulated distance of p3
to p1 and p2 is p3↔ p1+ p3↔ p2 = 21 and the accumulated dis-
tance of p4 to p1 and p2 is p4↔ p1+ p4↔ p2 = 23.8. Hence, we
next choose p4 for testing and move it from the candidate ob jects
set to the used ob jects set.

After the third round of testing the set used ob jects is {p1, p2,
p4} and the set candidate ob jects is {p3}.

In the fourth round of testing only one candidate is left and will
be chosen for testing. We have assumed throughout the case study
that test cases using the selected values always pass, in order to
demonstrate how the value selection proceeds. In a realistic setting,
when a test case fails, testing will most likely stop and only re-start
when the found bug is fixed.

The example we have shown suggests that our algorithm picks
the input objects in an order similar to that of an intuitive selection.

In this section we have first applied our measure to instances of
some example classes involving primitive types, references, several
levels of indirection, cycles and void references and polymorphism
and then used the resulting distance values to drive the test data
selection of a testing algorithm.

6. DISCUSSION
One of the issues we considered was whether we should use not

only attributes in the calculation, but also argument-less functions.
The results of such functions are obviously computed on the basis
of attribute values; however, the existence of these functions indi-
cates that they are representative for the semantics of the encom-
passing class, hence it may be reasonable to assume that a greater
weight should implicitly be given to the attributes that they rely on.
Although this argument speaks for including functions without ar-
guments in the object distance calculation, there is one major prob-
lem: the execution of such a function might change the state of the
object, and it is not acceptable that the distance calculation should
trigger a state change – it must be side-effect free. Furthermore,
what happens, in the case of languages which support executable
specification such as Eiffel, if the precondition of such a function
is not fulfilled?

Another alternative idea for our model is to use a developer-
defined function that compares the content of two objects to de-
cide if they are equal (an example of such a function in Java would
be equals). If such a function returns True for two objects, it
might be a reasonable assumption that we can set their distance to
0. However, this would break the consistency of our distance cal-
culation. Such a function can still be used in the implementation of
the distance computation, when setting the weights automatically
(as opposed to using user-provided weights).

The implementation of the object distance presented here is black-
box; we assume no knowledge about the internal structure of the
code under test or of its specification. A white-box approach where
the testing goal is not sheer coverage of the input domain or of its
partitions would bring entirely new aspects to our distance calcu-
lation. As a first example, if the testing goal is path coverage, we

will assign the maximum value to the distance between any two in-
puts that cause different paths in the code to be executed. Such a
strategy could be implemented (much in the spirit of the algorithms
for using symbolic execution for testing developed by Khurshid et
al. [10]) by first performing symbolic execution to gather the path
conditions (conditions that the inputs must fulfill for a certain in-
struction in the code to be executed), and then using these condi-
tions to calculate the object distance. Moreover, if the source code
is available, we could monitor attribute accesses in the code under
test, and, in the distance calculation, only use the attributes that are
actually accessed.

Performance is a possible concern, including both the cost of
the distance calculation itself and the number of such calculations
needed by the testing strategy.

For the distance calculation, there is (as noted) no need to in-
clude all possible objects. We can use, as illustrated informally
in the case study, a ”lazy” approach: start with only the objects
on which we need distance values in the end; then add referenced
objects as the traversal of the object graph needs them, or ignore
some altogether (simply giving them a high distance value) in a
performance-precision trade-off. Further analysis and experimen-
tation of such strategies are in progress.

The problem of the number of distances to compute also exists
in previous ART work, and the corresponding solutions should be
applicable to the present framework.

7. CONCLUSIONS
We have described a model for representing the differences be-

tween two objects, and, based on this model, an algorithm for com-
puting a value for the distance between them. We have also shown
how this model can be used in various distance-based testing strate-
gies.

The applications of the object distance potentially extend beyond
the scope of this paper and the general field of testing. One example
would be a data lookup system, where we search for objects that
are similar enough (within a given distance range) to a prototype
object. Another would be a data change tracking system, where we
only want to record changes to the object state that exceed a given
delta. Such applications must be explored further.

Further work on the notion of object distance can pursue sev-
eral directions. We first intend to run a wide-scale evaluation of
its performance, by integrating it into the fully automated random
testing framework AutoTest [6]. We will also investigate possible
variants of the calculation algorithm described here. Furthermore,
a white-box approach would allow for a very wide variety of imple-
mentations for the object distance, based on the testing target (code
coverage, etc). Finally, various distance-based testing strategies ex-
tending the basic idea illustrated in Section 4 can be developed.

Acknowledgements
We thank Stephanie Balzer, Lisa (Ling) Liu and Bernd Schoeller
for many helpful discussions and very useful comments on the
work presented here.

8. REFERENCES
[1] J. H. Andrews, S. Haldar, Y. Lei, and C. H. Li. Randomized

unit testing: Tool support and best practices. Technical
Report 663, Department of Computer Science, University of
Western Ontario, January 2006.

[2] K. P. Chan, T. Y. Chen, and D. Towey. Restricted random
testing. In Proceedings of the 7th International Conference

Proceedings of the First International Workshop on Random Testing (RT’06)

62

on Software Quality, pages 321 – 330. Springer-Verlag,
London, UK, 2002.

[3] T. Chen, H. Leung, and I. Mak. Adaptive random testing. In
M. J. Maher, editor, Advances in Computer Science - ASIAN
2004: Higher-Level Decision Making. 9th Asian Computing
Science Conference. Proceedings. Springer-Verlag GmbH,
2004.

[4] T. Chen, R. Merkel, P. Wong, and G. Eddy. Adaptive random
testing through dynamic partitioning. In Proceedings of the
Fourth International Conference on Quality Software,
volume 00, pages 79 – 86, Los Alamitos, CA, USA, 2004.
IEEE Computer Society.

[5] T. Y. Chen, F. C. Kuo, R. G. Merkel, and S. P. Ng. Mirror
adaptive random testing. In Proceedings of the Third
International Conference on Quality Software, volume 00,
pages 4 – 11, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[6] I. Ciupa and A. Leitner. Automatic testing based on design
by contract. In Proceedings of Net.ObjectDays 2005 (6th
Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and Applications for
a Networked World), pages 545–557, September 19-22 2005.

[7] J. Duran and S. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, SE-10:438 –
444, July 1984.

[8] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence. IEEE Transactions on Software Engineering, 16
(12):1402–1411, December 1990.

[9] R. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering, pages 970–978.
Wiley, 1994.

[10] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
Proceedings of the Ninth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), volume LNCS 2619, pages 553–568.
Springer-Verlag, 2003.

[11] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Doklady Akademii Nauk
SSSR, 163(4):845–848, 1965.

[12] J. Mayer. Adaptive random testing by bisection with
restriction. In Proceedings of the Seventh International
Conference on Formal Engineering Methods (ICFEM 2005),
LNCS 3785, pages 251–263. Springer-Verlag, Berlin, 2005.

[13] J. Mayer. Lattice-based adaptive random testing. In
Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), ACM,
pages 333–336. ACM Press, New York, NY, USA, 2005.

[14] T. Menzies and B. Cukic. When to test less. IEEE Software,
17(5):107–112, September - October 2000.

[15] G. J. Myers. The Art of Software Testing. John Wiley & Sons,
1979.

[16] K. Zhang, J. T.-L. Wang, and D. Shasha. On the editing
distance between undirected acyclic graphs and related
problems. In Proceedings of the 6th Annual Symposium on
Combinatorial Pattern Matching, pages 395–407.
Springer-Verlag, Berlin, 1995.

Proceedings of the First International Workshop on Random Testing (RT’06)

63

