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ABSTRACT

Testing plays a central role in software quality assurance. Although this is
widely agreed upon, many software projects in industry suffer from im-
proper testing. Inadequate testing tools and underestimation of the costs
of thorough testing are among the reasons.

The research community has been trying to address some of the chal-
lenges of testing through automated solutions, which aim at taking most
of the burden of devising, running, and evaluating tests off the shoulders
of programmers and testers. This thesis is part of this effort: it proposes
several strategies for automatically testing contracted object-oriented soft-
ware, that is software built according to the principles of Design by Con-
tract.

One of these strategies is based on the notion of “object distance”: a
measure of how different two objects are, taking into account the objects’
types, their direct values, and a recursive application of the distance on
their common attributes. Using this notion, the proposed strategy (called
ARTOO) selects test inputs with the greatest distance between them and
thus maximizes the diversity of the inputs.

Proposing a new testing strategy must be accompanied by a thorough
evaluation of the performance of this strategy, both in absolute terms and
compared to other testing strategies. This thesis hence also presents the
results of such evaluations, for the newly introduced algorithms and for
existing ones. These results offer insights into the performance of random
testing for object-oriented software on such issues as the evolution of the
number of found faults over time, the predictability of random testing, and
the types of faults found through random testing, through manual testing
and by users of the software. Experimental evaluation indicates that the
newly introduced ARTOO strategy requires on average 5 times less tests
to uncover faults than a random strategy combined with boundary-value
testing.

The proposed and examined testing strategies are based on the pres-
ence of executable specification in the form of contracts in the software

vii



under test. A further contribution lies in evaluating how automatically in-
ferred contracts can be used to improve manually-written ones. A case
study we performed shows that the two approaches are complementary:
an assertion inference tool generates more contracts than programmers
write, but also does not find all manually-written contracts.

The contributions of this thesis hence include: proposing new auto-
mated testing algorithms, investigating ways of improving the executable
specification embedded in software — a central component in automated
testing — and evaluating the performance of existing and of the newly-
introduced testing strategies.
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ZUSAMMENFASSUNG

Testen spielt eine zentrale Role in der Qualitätssicherung von Softwa-
re. Obwohl man sich dessen bewusst ist, leiden viele Softwareprojek-
te in der Industrie an mangelhaftem Testen. Unpassende Tools und die
Unterschätzung der Kosten für gründliches Testen sind unter anderem
Gründe dafür.

Die Forschungsgemeinschaft versucht, einige der Schwierigkeiten
beim Testen durch automatisierte Lösungen anzusprechen. Das Ziel sol-
cher Lösungen ist, die Programmierer und Tester vom grössten Teil des
Entwerfens, der Ausführung und der Auswertung der Tests zu entlasten.
Diese Dissertation ist Teil dieser Anstrengungen: Sie führt mehrere Stra-
tegien für das automatisierte Testen von objekt-orientierter und mit Ver-
trägen versehener Software (d.h. Software die nach den Prinzipien von
Design by Contract entwickelt wurde) ein.

Eine dieser Strategien basiert auf dem Begriff “Objektdistanz”, einem
Mass für die Verschiedenheit zweier Objekte, unter Berücksichtigung ih-
rer Typen, ihrer direkten Werte und einer rekursiven Anwendung der Di-
stanz auf ihre gemeinsamen Attribute. Die vorgeschlagene Strategie (na-
mens ARTOO) benutzt dieses Mass um maximal distanzierte Testinputs
auszuwählen und auf diese Weise die Diversität der Inputs zu maximie-
ren.

Das Vorschlagen einer neuen Teststrategie muss von einer gründlichen
Analyse ihrer Leistung begleitet werden, sowohl in absoluter Hinsicht als
auch im Vergleich zu anderen Teststrategien. Daher stellt diese Disserta-
tion die Ergebnisse solcher Evaluierungen für die neu eingeführten und
die bereits vorhandenen Algorithmen dar. Diese Ergebnisse geben Ein-
blick in die Leistung zufallsbasierten Testens für objekt-orientierte Softwa-
re in Fragen wie der Entwicklung der Anzahl gefundener Fehler pro Zeit,
der Vorhersagbarkeit für zufallsbasiertes Testen und der Arten von Feh-
lern, welche durch zufallsbasiertes Testen, durch manuelles Testen und
von den Benutzern der Software gefunden werden. Die experimentelle
Evaluierung deutet darauf hin, dass die neu eingeführte ARTOO Strate-
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gie durchschnittlich fünfmal weniger Tests braucht um Fehler zu finden
als das Testen mit einer Zufallsstrategie kombiniert mit Grenzwerten.

Die vorgeschlagenen und begutachteten Teststrategien basieren auf
der Existenz von ausführbaren Spezifikationen in Form von Verträgen in
der zu testenden Software. Ein weiterer Beitrag dieser Dissertation eva-
luiert, wie automatisch abgeleitete Verträge benutzt werden können um
die manuell geschriebenen Verträge zu verbessern. Eine von uns durch-
geführte Fallstudie deutet darauf hin, dass die beiden Ansätze komple-
mentär sind: Ein Tool, das Verträge ableiten kann, generiert mehr Verträge
als Programmierer schreiben, findet aber nicht alle manuell geschriebenen
Verträge.

Die Beiträge dieser Dissertation umfassen folglich: Die Einführung
neuer automatisierter Testalgorithmen, das Erforschen von Methoden,
welche die ausführbaren und in der Software integrierten Spezifikationen
— ein zentraler Bestandteil automatisierten Testens — verbessern und die
Evaluierung der Leistung der bereits vorhandenen und neu eingeführten
Teststrategien.

x



CHAPTER 1

TESTING AND QUALITY
ASSURANCE

Software quality assurance is a complex process involving many activities
and spanning the entire life cycle of a software product. The purpose of
this process is to ensure that the resulting software meets a set of quality
measures, relating both to the external, users’ view of the product, and to
the internal or developers’ view of it.

In the effort to deliver products on time and within budget, industrial
projects often end up purposely sacrificing one or several of these quality
measures. A quality factor that should never be sacrificed is correctness:
the property that the software conforms to its specification, or, in other
words, implements the functionality specified in its requirements. Thus,
ensuring software correctness is a central activity involved in quality as-
surance.

There are two main approaches to checking correctness: proving soft-
ware correct through formal techniques, and proving it incorrect. Testing
can do the latter: it can prove software incorrect by revealing the presence
of faults in it. Testing is currently the most widespread method of achiev-
ing this. This makes testing combined with debugging, the subsequent
process of identifying and removing the faults, a key element in improv-
ing software quality.

This chapter provides a brief overview of some of the current direc-
tions in testing research, focusing on the areas of contribution of this the-
sis: automated testing — in particular random contract-based testing —
and evaluations of testing strategies.



2 CHAPTER 1. TESTING AND QUALITY ASSURANCE

1.1 Challenges of testing

Although the purpose of testing, finding faults, and the role testing plays
in the quality assurance process are clear and well defined, testing itself
is by no means a simple activity. Evidence of this are the numerous chal-
lenges that the software industry is facing in this field: inadequate testing
methods and tools, difficulties in estimating the time and effort necessary
for proper testing, difficulties in determining what “proper testing” is and
how it should be performed, the inability of adapting the state-of-the-art
in research on testing to their particular settings and needs.

Many research groups are trying to address these challenges. The re-
sults are a great variety of testing strategies, some fully and some par-
tially automated, using different algorithms for generating inputs, such as
purely random and directed random algorithms, symbolic execution, ge-
netic algorithms, coverage-driven methods, combinations of static and dy-
namic analysis, etc. Some approaches generate test scripts from test spec-
ifications, others from models of the software, others from formal specifi-
cations. Others try to combine manual and automated testing.

Yet research on testing does not only involve developing new testing
algorithms and tools implementing them, but also evaluating these tools
both in absolute terms and in comparison to other tools, clearly defining
their applicability and strong and weak points, defining testing best prac-
tices, evaluating tests (for instance through coverage measures or through
mutation testing), studying testing behavior, investigating what can be au-
tomated and what not, classifying faults, performing static and dynamic
analysis, performing theoretical and empirical case studies, defining
domain-specific testing strategies, defining best practices in the context
of test-first programming and test-driven development, etc. The result of
recent research into software testing is thus a wide variety of testing strate-
gies, tools, metrics, and studies.

1.2 Automated testing

Much of the recent research develops automated solutions: push-button
testing tools that require no human intervention. Such a tool must auto-
mate all stages of the testing process: input generation, test script genera-
tion, test execution, evaluation of results (the oracle), and optionally also
a component estimating the quality of the tests and a feedback loop from
this component and from the result analyzer to the input generator. Out
of all these, arguably the most difficult to automate are input generation
and the oracle.
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Random testing
As shown above, many strategies are possible for automatically generat-
ing inputs. One family of strategies is random testing, based on random
generation of candidate inputs and then random selection from them of
those to be used in tests. Variations of this, based on providing some guid-
ance to the process, are also possible.

Random testing presents several advantages: wide practical applica-
bility, ease of implementation and of understanding, execution speed, lack
of bias. In the testing literature, these advantages of the random strategy
are often considered to be overcome by its disadvantages. However, what
stands behind this claim often seems to be intuition, rather than experi-
mental evidence. Furthermore, several random testing tools developed in
recent years (such as JCrasher [47], Eclat [124], RUTE-J [16], Jartege [122],
Jtest [4]), both in academia and in industry, suggest that this view is cur-
rently changing.

Contract-based testing
Fully automated testing requires an automated oracle. This oracle can be
as coarse as using any thrown exception as an indication of a failing test
case or it can use executable specification as a means of checking the test
case result. The latter is clearly the more precise method and is hence
preferable if specification checkable at runtime is available.

The presence of executable specification embedded in the source code
has several further advantages:

• It is a documentation aid: it provides clients of a software module
with information about the services that the module offers and under
what conditions it offers them.

• It supports developers in the analysis and design phases of software
development by helping them identify the various software modules
and define their responsibilities.

• It greatly aids testing (both manual and automated, as outlined
throughout this thesis) and debugging, by providing information
about the locations of faults in software.

• All the above-mentioned properties make it a key element in ensur-
ing software quality.

Thus, software written according to the principles of Design by Con-
tract lends itself very well to contract-based testing: automated testing that
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uses routine (method) preconditions as filters for invalid inputs and all
other contracts as an automated oracle.

1.3 Evaluating testing strategies

Progress in testing requires evaluating the effectiveness of testing strate-
gies on the basis of hard experimental evidence, not just intuition or a pri-
ori arguments. Thus, any newly introduced strategy must be evaluated,
both in terms of its absolute performance and compared to other strate-
gies, and guidelines must be provided to practitioners for choosing the
testing strategy or tool best adapted to their settings.

Evaluations of testing tools can take into account several measures, but
must focus on the purpose of testing: finding faults in software. Hence,
key for any automated testing tool are:

• Its effectiveness: the number of faults it finds in a certain time or after
generating and running a certain number of test cases

• Its efficiency: the time or the number of generated test cases necessary
for it to find the first fault or a certain number of faults

We consider these to be the essential properties of a testing tool, but
several other measures are also important: how does the number of faults
found by the tool evolve over time and over the number of generated test
cases; in what domain or under what assumptions is the tool most effec-
tive and efficient; what parameters influence the performance of the tool.
Other measures are also often used in the literature, such as various ver-
sions of code and data coverage, but one must not forget that such mea-
sures first must be connected to the main purpose of testing, that of finding
software faults, before they can be considered indicative of the quality of
tests. Depending on the analyzed strategies, the answers to these ques-
tions can be investigated both theoretically and through empirical studies.

Once such measures are available, testing strategies can be objectively
compared and testing practitioners can choose the tools that suit their
needs best. Such data would also make evident the drawbacks of exist-
ing tools and thus the directions that future research into software testing
must follow.
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Roadmap

The rest of this thesis is organized as follows. Chapter 2 briefly outlines the
main results and contributions. Chapter 3 explains the basic concepts of
the Eiffel language and of the Design by Contract software development
method. Chapter 4 presents an overview of the state of the art in software
testing, evidencing the work that is the most closely related to the contri-
butions of this thesis. Chapter 5 describes the automated testing tool that
is used as a basis for most of the developments performed as part of this
thesis. Chapter 6 presents the new strategies for test input generation and
selection proposed in the thesis. In chapter 7 we describe the results of
an investigation into improving contracts written by programmers with
automatically-inferred assertions. The results of case studies examining
the performance of random-based testing strategies are the object of chap-
ter 8. Finally, chapter 9 lists directions for future work and chapter 10
draws conclusions.
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CHAPTER 2

OVERVIEW AND MAIN RESULTS

This thesis is part of the research effort of improving existing testing strate-
gies, proposing new ones and evaluating their performance. The basis for
the work was AutoTest, a push-button testing tool applicable to contract-
equipped Eiffel classes. AutoTest implements a random strategy for gen-
erating inputs, filters the inputs through the preconditions of the routines
under test, and monitors contracts at runtime: any contract violation and
any other exception triggered while running the tests are indicative of a
fault in the software under test.

One of the contributions is the notion of object distance: a measure of
how different two objects are, taking into account the objects’ types, their
direct values, and a recursive application of the distance on their com-
mon attributes. Based on this notion, this thesis proposes a strategy for
selecting test inputs that tries to maximize the diversity of the inputs. This
strategy is called ARTOO (Adaptive Random Testing for Object-Oriented
software) and was implemented as a plug-in for AutoTest. Experimental
evaluations of its performance show that ARTOO and the random strat-
egy have different strengths: ARTOO requires on average 5 times less tests
to find the first fault, but about 1.6 times more time, due to the overhead
introduced by the distance calculations and other extra computations. The
experiments also show that ARTOO and the random strategy do not find
the same faults, so ideally they should be used in combination.

We also explored ways of integrating manual and automated testing, by
using the information contained in manual tests to drive the automated
input selection process. Experiments showed that such a combined strat-
egy can reduce the number of tests to first fault by a factor of 2 compared
to the basic implementation of ARTOO.

The quality of the results produced by any contract-based testing tool
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is inherently dependent on the quality of the contracts present in the code.
We hence investigated ways of improving these contracts by means of assertion
inference tools. A tool that has attracted considerable attention is Daikon
[55]. We developed an Eiffel front-end for Daikon, which allowed us to
compare the assertions generated by such a tool to the contracts written
by programmers. The results of a case study we performed showed that
assertion inference tools can be used to strengthen programmer-written
contracts (on average, such a tool generates around 6 times more correct
and interesting assertion clauses than programmers write), but the asser-
tion inference tool only finds around half of the programmer-written con-
tracts.

Another contribution of this thesis lies in evaluations of various random-
based testing strategies: we performed large experimental studies to inves-
tigate several questions about the performance of random testing and to
find the most effective algorithm for random testing. Among the results:

• The number of new faults found per time unit by random testing is
inversely proportional to the elapsed time

• The number of found faults has an especially steep increase in the
first few minutes of testing

• On average, random testing finds more faults through contract vio-
lations than through other exceptions

• Random testing is predictable in terms of the relative number of
faults it finds in a certain time, but it is not predictable in the actual
faults it finds

• Random contract-based testing and manual testing reveal different
kinds of faults, and in turn these faults are different from the ones
that users report; none of these three strategies for finding faults sub-
sumes any of the others

• Random contract-based testing reveals more faults in the specifica-
tion (contracts) than in the implementation, while for manual testing
and user reports the situation is reversed

The contributions of this thesis hence span a variety of activities in-
volved in advancing the state of the art in software testing: proposing
new testing algorithms; investigating ways of improving executable spec-
ification embedded in software, a central component in automated testing;
evaluating the performance of existing and of the newly-introduced test-
ing strategies.



CHAPTER 3

EIFFEL AND DESIGN BY
CONTRACT

The tools implemented as part of this thesis and the performed studies are
all based on the Eiffel language [108]; applicability to other languages is
discussed in the respective sections. Therefore, in this chapter we provide
a brief overview of the basics of Eiffel and the Design by Contract software
development method, essential to the results presented in the following
chapters. Also, Eiffel uses slightly different vocabulary than other similar
languages, hence we introduce here some terms which we use throughout
the thesis.

3.1 The basics of the Eiffel language

Eiffel is a purely object-oriented (O-O) language. It uses static typing and
dynamic binding and supports multiple inheritance and genericity. The
type hierarchy has a common root: class ANY from which all other classes
inherit by default.

Eiffel supports two kinds of types: reference types and expanded types.
An entity declared of a reference type C represents a reference that may
become attached to an instance of type C, while an entity declared of
an expanded type C directly denotes an instance of C. A special case of
expanded types are the basic types (also called “primitive” in other lan-
guages), such as INTEGER, REAL, CHARACTER, BOOLEAN, etc. The
instances of these types are also objects, but they are implemented through
special compiler support. Class NONE, which exists only in theory, inher-
its from all reference types, cannot be inherited from and has only one
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instance: the special value Void, denoting an unattached reference, the
equivalent of null in other programming languages.

Eiffel does not support routine overloading, so all routines in a class
must have different names.

Eiffel does not use keywords to express the export status of features;
rather, it allows the specification of a list of classes to which features are
available. For instance, features exported to classes A and B will be callable
from A, B and their descendants. Hence, features exported to ANY are
available to all classes (the equivalent of the public access modifier in
Java/C#) and features exported to NONE are not callable from outside
their class (the equivalent of the private access modifier in Java/C#).

Classes can be organized in clusters, which are simple administrative
units and have no scoping effect. Two clusters in a software system should
hence not contain two classes with the same name, or one of the classes
must be excluded from the system.

3.2 Terminology

An Eiffel class has a set of features (operations), which can be either routines
or attributes. In Java/C# terminology, features are called “members” and
routines are called “methods”. Eiffel makes a distinction between func-
tions, that is routines returning a result, and procedures — routines that
do not return a result. Objects are created through calls to creation proce-
dures, known in Java/C# as “constructors”. Creation procedures in Eiffel
do not have to conform to any naming scheme; they are normal proce-
dures, which acquire the special status by being declared in the create
clause of a class.

Eiffel also distinguishes between commands, that is features that do not
return a value (procedures), and queries, that is features that do return a
value (attributes and functions).

Eiffel uses the notion of supplier to denote a routine or class provid-
ing a certain functionality and client for a routine or class using that func-
tionality. Hence client-supplier and inheritance are the two fundamental
relationships between classes.

Eiffel routines and classes can be deferred (or “abstract” in Java/C#
terms). A class having one or several deferred routines must be deferred
itself and cannot be instantiated. A class can be declared deferred even if
it does not contain any deferred routines.
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3.3 Design by Contract

Eiffel supports the Design by Contract software development method
[107], through which classes can embed specification checkable at run-
time. Contracts are the mechanism allowing this: routine preconditions spec-
ify conditions that must be fulfilled by any client upon calling the rou-
tine; routine postconditions specify conditions that must be fulfilled when
the routine is done executing. Preconditions are thus an obligation for
the client, who has to fulfill them, and a benefit for the supplier, who can
count on their fulfillment; conversely, postconditions are an obligation for
the supplier and a benefit for the client. Another type of contract are class
invariants — conditions that must hold whenever an instance of the class
is in a visible state, that is, after the execution of creation procedures and
before and after the execution of exported routines. Satisfying the class
invariant is the responsibility of the class itself.

Routine pre- and postconditions and class invariants should be writ-
ten already in the design phase of the software system and are part of
the interface of the class. Eiffel also supports assertions that are purely
implementation-related. These are:

• Loop invariants — conditions that must hold before and after each
execution of the loop body

• Loop variants — integer expressions that must always be non-
negative and must be decreased by each execution of the loop body

• check assertions — conditions that can appear inside routine bod-
ies, expressing properties that must hold when the execution reaches
that point; they are similar to the assert statements of C/C++

For all these assertions, Eiffel uses simple boolean conditions, with the
exception of postconditions, which can contain the old keyword. This
keyword can be applied to any expression and denotes the value of the
expression on routine entry. Calling functions from assertions is allowed
and greatly increases the expressiveness of Eiffel contracts, but it also in-
troduces the possibility of side effects of contract evaluations.

Any Eiffel assertion can be preceded by a tag, followed by a colon,
as in balance_positive: balance >= 0, where balance is an integer
variable in scope.

Runtime contract checking can be enabled or disabled. It is enabled
typically during the development phases of a software system and dis-
abled in production mode, due to its high performance penalty. Contract
violations are signaled at runtime through exceptions.
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The support for Design by Contract in Eiffel is essential to the use of
executable specification by programmers in this language. This is made
clear by a study [31] which shows that Eiffel classes contain more asser-
tions than classes written in programming languages that don’t support
Design by Contract. In the classes examined in the study, 97% of asser-
tions were located in contracts rather than in inline assertions.

Eiffel was the first language to support Design by Contract in this form.
Since then, many other languages natively contain or have introduced fea-
tures supporting executable contracts in the form of pre- and postcondi-
tions and class invariants; among them, some of the best known are JML
[96] (the Java Modeling Language) and Spec# [20].

3.4 Example

To illustrate some characteristics of Eiffel code and its support for Design
by Contract, listing 3.1 shows an example of an Eiffel class which imple-
ments the basic functionality of a bank account.

make is the creation procedure and it cannot be used as normal pro-
cedure too, because it is exported to NONE as normal procedure. The
attributes of class BANK ACCOUNT are balance, an integer representing
the balance of the bank account, and owner name, a string representing
the name of the owner of the bank account. The invariant of the class states
that the balance of the account must always be positive and that the name
of the owner should not be void and empty. Class BANK ACCOUNT
implements the basic operations that can be performed on a bank ac-
count: depositing and withdrawing money, and transferring an amount
between accounts. The routines implementing these operations all have
corresponding pre- and postconditions.

class BANK_ACCOUNT

3 create
make

6 feature {NONE} -- Initialization

make (name: STRING)
9 -- Create a new bank account with default balance and

-- owner ‘name’.
require

12 valid_name: name /= Void and then not name.is_empty



3.4. EXAMPLE 13

do
owner_name := name

15 ensure
name_set: owner_name = name
default_balance: balance = 0

18 end

feature -- Basic operations
21

deposit (n: INTEGER)
-- Deposit amount ‘n’.

24 require
n_positive: n >= 0

do
27 balance := balance + n

ensure
balance_increased: balance = old balance + n

30 end

withdraw (n: INTEGER)
33 -- Withdraw amount ‘n’.

require
n_positive: n >= 0

36 can_withdraw: balance >= n
do
balance := balance - n

39 ensure
balance_decreased: balance = old balance - n

end
42

transfer (n: INTEGER; other: BANK_ACCOUNT)
-- Transfer amount ‘n’ from current account

45 -- to ‘other’.
require
n_positive: n >= 0

48 can_withdraw: balance >= n
other_not_void: other /= Void
no_transfer_to_same_account: other /= Current

51 do
withdraw (n)
other.deposit (n)

54 ensure
withdrawn_from_current: balance = old balance - n
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deposited_in_other: other.balance = old other.balance
+ n

57 end

feature -- Status report
60

owner_name: STRING
-- Name of owner

63

balance: INTEGER
-- Sum of money in the account

66

invariant
positive_balance: balance >= 0

69 valid_owner_name: owner_name /= Void and then not
owner_name.is_empty

end

Listing 3.1: Example of an Eiffel class implementing the basic functionality
of a bank account.



CHAPTER 4

APPROACHES TO TESTING
OBJECT-ORIENTED SOFTWARE

This chapter presents the background and related work for the contribu-
tions of this thesis. It starts by defining some testing-related terminology,
continues by briefly discussing test selection, the central issue in software
testing, and then examines existing solutions to the issues involved in au-
tomating the testing process. It then presents the results of studies evalu-
ating various testing strategies and proposed fault classification schemes.
The chapter ends with a discussion of static approaches for finding soft-
ware faults.

4.1 Terminology

In this section we introduce some terms used throughout this thesis. Un-
less indicated otherwise, the definitions are taken from Robert Binder’s
reference work “Testing Object-Oriented Systems. Models, Patterns, and
Tools” [25].

Types of tests

Various properties of software can be checked through testing. Thus, de-
pending on the goal, there can be several types of testing, among which:

• Functional testing — checks if a software element fulfills its specifica-
tion

• Robustness testing — exercises a system in cases not covered by its
specification
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• Performance testing — estimates various performance parameters of
the system

This thesis only addresses functional testing. For briefness and simplicity,
we hence use the term “testing” to refer to functional testing.

Another important distinction is between white-box and black-box test-
ing: white-box testing uses information about the internals of the system
under test, black-box testing does not. Hence the former only uses the
specification of the system and needs only an executable, whereas the lat-
ter performs some analysis of the source code to design the test cases.
Black-box testing is typically performed at the system level, while white-
box testing is typically performed at the unit level.

Mutation testing addresses a different goal: estimating the quality of
the tests, not of the system under test. Mutation testing consists of pur-
posely introducing faults in a program (usually by making rather simple
syntactic changes to the source code) and then running a test suite on the
modified versions of the program (called “mutants”) to see if it detects the
modifications. Scores reflect the proportions of detected mutants and are
considered indicative of the fault-revealing capability of the test suite.

Fault-related terminology

A failure is a run-time event showing that the system’s behavior does not
correspond to its specification. In other words, a failure is an observed
difference between actual and intended behaviors. A fault is a problem in
the code (incorrect or missing code), which may, but does not have to, lead
to a failure when the system is executed. One fault can trigger arbitrarily
many failures. Mapping failures to faults is part of the debugging process
and is usually done by humans. According to the IEEE Standard Glossary
of Software Engineering Terminology [10], the human action that leads to
a fault in the code is a mistake. Binder [25] uses the term “error” for this,
but since this is a very general term with several possible meanings, we
only use it accompanied by an explanation of its meaning in context. A
bug is a mistake or a fault. Due to this imprecision of meaning, we do not
use this term in this thesis.

Test scope

A unit test typically exercises a relatively small executable. Hence, for O-O
systems, the scope of a unit test is typically one or several routines of a
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class or group of related classes. An integration test exercises several com-
ponents of a software system, with the purpose of checking if by inter-
acting they can achieve a certain task. Integration testing is typically per-
formed after the components have been unit tested. A system test exercises
a complete integrated application; its purpose is to check if the application
as a whole meets its requirements.

Components of a test

A test case contains the code necessary to bring the implementation under
test (IUT) to a certain state, to create the test inputs, to call the IUT with
these inputs, and to check if the actual result corresponds to the expected
one. This result does not include only returned values, but also the state
of the IUT after the test case execution, and any messages displayed and
exceptions thrown during the execution. A test suite is a set of test cases,
typically related through their test scope or goal.

A test driver is a program or part thereof that triggers the execution of
the test cases on the IUT. A stub is a partial implementation of a component
used as a temporary replacement for it. A test harness is a set of tools,
including test drivers, that supports test execution.

Evaluation of the outcome of a test case

The oracle produces the expected results and can make a pass/fail evalua-
tion of the test case: if the actual results match the expected ones, then the
test case passes, otherwise it fails. In the context of testing contracted soft-
ware, a further case arises: if the test case does not fulfill the precondition
of a routine it calls, we say that the test case is invalid.

Debugging

Debugging is an activity separate from testing. It follows after the exis-
tence of a fault has been established, either through a failure during test-
ing or through analysis of the source code, and encompasses the actions
necessary for removing the fault: if a failure occurred, its cause must be
identified and located in the source code and the code must be changed so
that the fault is removed. After this, typically tests are run again to check
that the fault was indeed removed. Therefore debugging, not testing, is
the activity that actually improves software quality, but testing is a key
step towards this goal.
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4.2 Test selection

Since for a realistic program no practical strategy can include all possi-
ble test cases, the central question of testing is how to select a set of test
cases most likely to uncover faults. This problem comes down to group-
ing data into equivalence classes, which should have the property that, if
one value in the set causes a failure, then all other values in the set will
cause the same failure and conversely, if a value in the set does not cause
a failure, then none of the others should cause a failure. This property
allows using only one value from each equivalence class as a represen-
tative for its set and is the basis of partition testing. If it could be proved
that the chosen partition of the input domain indeed results in equivalence
classes, then exhaustive testing could be performed. Through their work
on the category-partition method [123], Ostrand and Balcer laid the basis
for systematic approaches to partition testing.

Several strategies are possible for coming up with partitions of the in-
put domain, such as:

• Based on the requirements and knowledge of the code and of defect
likelihood — manually determining partition classes based on the
developer’s knowledge of the program and intuition of which inputs
might be incorrectly handled

• Based on the control flow — determining partitions so that the con-
trol flow graph is covered

• Based on the data flow — determining partitions so that the data
flow graph is covered

A completely different strategy does not use partitions, but simply
picks test cases at random; this strategy is called random testing.

4.3 Automated testing

Any software testing activity involves several steps:

1. Establishing the test scope — this can be as small as one or several
routines of a class (in the case of unit testing) or as large as an entire
software system consisting of millions of lines of code (in the case of
system testing)

2. Creating and choosing inputs for the test — in the case of testing O-O
software, these inputs must be objects and possibly primitive values
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3. Causing the execution of the elements in the test scope using the
selected inputs

4. Examining the output of this execution and possibly also interme-
diate states reached by the program to decide if the test passed or
failed. This decision naturally requires access to the specification of
the software.

5. If resources permit, going back to step 2 in order to execute more
tests. The information obtained through the previously run tests can
guide the process of designing new tests.

Each of these steps can involve specific approaches and can be auto-
mated or performed by developers or testers, resulting in a very wide
variety of testing strategies, with different levels of automation. In the
following we examine how test execution, input selection, and the oracle
can be automated and what the challenges are.

4.3.1 Automated execution

The automation of test execution through the xUnit family of tools had a
strong impact on the regular practice of software testing. xUnit is a generic
name for any unit test framework that automates test execution. xUnit
tools supply all the mechanisms needed to run tests so that the test writer
only needs to provide the test-specific logic: setting up system state, cre-
ating test inputs, and the oracle, typically in the form of an assertion com-
paring the actual result to the expected one. xUnit tools are available for
all major programming languages: JUnit [5] for Java, CppUnit [1] for C++,
sUnit [7] for Smalltalk, PyUnit [6] for Python, vbUnit [9] for Visual Basic,
getest (Gobo Eiffel Test) [3] for Eiffel, etc.

Such tools typically require testers to group their test cases as routines
in classes inheriting from a library class and/or following a certain nam-
ing convention, so that the tool can automatically detect the manual test
cases. The tools also allow defining set-up and tear-down routines, which
are executed before and respectively after any test routine. Typically xUnit
tools further provide various assert predicates, allowing to check equal-
ity and inequality of variables, equality to certain constants, etc. Some
tools allow specifying a timeout for the tests, or specifying that the test is
expected to throw a certain exception.
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4.3.2 Automated input generation

A wide variety of strategies exists for automatically generating test inputs,
some black-box and some white-box, some guided and some unguided,
some using a formal specification to select inputs, others using only the
implementation, some relying on static analysis techniques, others purely
dynamic. In the following we briefly describe some of the existing strate-
gies for automated test input generation, grouped by their main charac-
teristics.

Random-based input generation

Random testing is a strategy which picks values at random from the in-
put domain. It thus purposely rejects any system in choosing the inputs
and hence ensures that there is no correlation between tests [75]. Ran-
dom testing presents several benefits in automated testing processes: ease
of implementation, efficiency of test case generation, and the existence of
ways to estimate its reliability.

Hamlet [75] provides a comprehensive overview of random testing.
He stresses the point that it is exactly the lack of system in choosing inputs
that makes random testing the only strategy that can offer any statistical
prediction of significance of the results. Hence, if such a measure of reli-
ability is necessary, random testing is the only option. Furthermore, ran-
dom testing is also the only option in cases when information is lacking to
make systematic choices [74].

Although random testing had until recently been applied mostly to
numeric test data, interest has grown in applying it to object-oriented soft-
ware. Tools like JCrasher [47], Eclat [124], Jartege [122], RUTE-J [16], or
Jtest [4] are evidence of this interest. All these tools employ random strate-
gies for input generation for object-oriented systems; Jartege also allows
users to define inputs.

JCrasher [47] was implemented for testing Java programs and builds
test inputs by calling sequences of creation procedures and other routines.
It does this by first building a graph of routines that can be called to cre-
ate instances of the needed types and then exploring this graph to gen-
erate test inputs. For primitive types it chooses values randomly from
predefined sets. JCrasher thus generates test cases in JUnit format, uses
the framework for running them and reports as failed any test cases that
threw an exception.

Eclat [124] also targets Java classes and uses a constructive approach
for generating test inputs: it either calls a creation procedure — poten-
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tially followed by calls to other routines of the class that return null —
or a routine that returns the necessary type. Once created, such an input
is stored in a pool, together with the corresponding code snippet. Eclat
initializes the pool with a few values for primitive types and null for ref-
erence types. Eclat uses an operational profile (inferred from successful
executions) of the system under test as oracle for the tests: any test violat-
ing this operational profile is either illegal (if it violated the precondition
of the routine under test) or fault-revealing (in all other cases). Objects
participating in illegal and fault-revealing tests are not stored in the pool,
so that they cannot be used for building other inputs.

RANDOOP [125] builds inputs incrementally, by randomly selecting a
routine or creation procedure to call using previously-computed values as
arguments. Once it has generated a value through such a sequence of rou-
tine calls, it only retains the value if no exception was thrown during its
creation and if the value is not redundant. RANDOOP determines redun-
dant values by using the Java equals routine: any two values for which
this routine returns True are considered redundant and one of them gets
discarded. Thus, RANDOOP’s approach is not purely random.

Jartege [122] is similar to JCrasher and Eclat in that it also builds test
inputs by combining creation procedure and regular routine calls. It also
targets Java classes equipped with JML [96] contracts, which it uses as
filters for invalid inputs and as automated oracle. Jartege gives users some
level of control over the input generation process, by allowing weights
to be associated with classes and routines and also by providing users
the possibility of specifying the number of instances of a certain type that
should be generated.

RUTE-J [16] (Randomized Unit Testing Engine for Java) also uses a con-
structive approach towards input generation, but leaves much of the test
fine-tuning work (such as specifying ranges for numeric types and initial-
izing reference objects) to users, who have to write so-called test fragments
— Java classes tightly coupled with some library classes, which set up the
test cases. Test fragments can have associated weights. RUTE-J provides
a GUI that allows users to specify the number of test cases to be run and
their length. RUTE-J classifies any thrown exception as a failed test case.

Jtest [4] is a commercial product developed by Parasoft Inc. and there
is little available technical documentation on it. Jtest generates sequences
of creation procedure and routine calls up to a depth of 3 to create inputs
and uses runtime exceptions as indications of faults.

Yet other tools combine random testing with other strategies. For ex-
ample, DART [65] (Directed Automated Random Testing) implements a
symbolic execution-based approach, which uses random input generation
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to overcome the limitations of symbolic execution. DART combines con-
crete and symbolic execution: it starts by executing the routine under test
with randomly generated inputs and, as execution proceeds, calculates an
input vector for the next execution, which ensures that a different path in
the code will be followed. DART builds this vector by solving symbolic
constraints gathered during the execution from predicates in branch state-
ments. DART overcomes the limitations of constraint solvers by simply
replacing constraints that it cannot solve with their actual value observed
during the previous execution, and then continuing both the concrete and
the symbolic execution.

The research community has split views on random testing. Many au-
thors of reference texts are critical towards it. Glenford J. Myers deems
it the poorest testing methodology and “at best, an inefficient and ad hoc
approach to testing” [114]. Nevertheless, random testing has proved ef-
fective at uncovering faults in many different applications, such as Unix
utilities [111], Windows GUI applications [60], Haskell programs [46], and
Java programs [47, 124]. Furthermore, several studies [53, 73] disproved
this assessment by showing that random testing can be more cost-effective
than partition testing. Andrews et al. [14] show that, when specific recom-
mended practices are followed, a testing strategy based on random input
generation finds faults even in mature software, and does so efficiently.
They also state that, in addition to lack of proper tool support, the main
reason for the rejection of random testing is lack of information about best
practices.

Adaptive random testing

Some approaches start from the idea of random testing and try to improve
its performance by adding some guidance to the algorithm. Such guidance
can mean pruning out invalid and duplicate inputs as RANDOOP [125]
does, combining random and systematic techniques as DART [65] does,
or trying to spread out the selected values over the input domain, as is the
case for Adaptive Random Testing [35] (ART) and quasi-random testing
[37].

ART is based on the intuition that an even distribution of test cases in
the input space allows finding faults through fewer test cases than with
purely random testing. The implementation of ART requires keeping two
disjoint sets of test cases: a candidate set and an executed set. The test cases
in the candidate set are generated randomly. The executed set is initially
empty; then, as testing progresses, test cases that are executed are added
to it and removed from the candidate set. The first test case that gets ex-
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ecuted is selected at random from the candidate set and is added to the
executed set; in the subsequent steps, the test case from the candidate set
that is furthest away from the executed ones is selected from the candidate
set. The distance between two test cases is computed using the Euclidean
measure: for an n-dimensional input domain, the distance between two
test cases a and b whose inputs are ai and bi respectively, for i ∈ {1, ..., n}, is
dist(a,b) =

√∑n
i=1(ai − bi)2. To evaluate the efficiency of ART, the authors

use the F-measure: the number of test cases required to reveal the first
fault. Their experimental results show that, in terms of this measure, ART
can be more efficient than random testing by more than 50%.

Based on the ART intuition, a series of related algorithms have been
proposed. Mirror ART [34] (MART) and ART through dynamic partition-
ing [38] reduce the overhead of ART. In MART, the input space is par-
titioned into disjoint subdomains. Test cases are generated in only one of
these subdomains, using the ART algorithm, and then these generated test
cases are mirrored into the other subdomains. This reduces the number of
distance calculations that ART must perform. Restricted Random Testing
[32] (RRT) is also closely related to ART and is based on restricting the re-
gions of the input space where test cases can be generated. As opposed
to ART, which generates the elements of the candidate set randomly, RRT
always generates test cases so that they are outside of the exclusion zones
(a candidate is randomly generated, and, if it is inside an exclusion zone, it
is disregarded and a new random generation is attempted). Lattice-based
ART [106] and ART by bisection with restriction [105] bring further per-
formance improvements to ART.

All the above algorithms need a measure of the distance between two
test cases, which is calculated based on the distances between their integer
(or real) inputs. To extend the applicability of these distance-based testing
algorithms to object-oriented systems, we introduced the notion of object
distance, which allows calculating distances between complex data struc-
tures. Chapter 6 describes this notion and new testing algorithms based
on it.

Coverage-oriented approaches

Many testing strategies aim at achieving high coverage levels, either re-
lated to data or to code, and the algorithms they implement are especially
targeted at increasing coverage.

Korel [92] developed a dynamic test data generation method that tar-
gets path coverage. For every path in the program, it starts by executing
the program with a particular input and checks for every reached branch-



24 CHAPTER 4. APPROACHES TO TESTING OBJECT-ORIENTED SOFTWARE

ing point if the currently used inputs cause the desired branch to be taken.
If this is not the case, then a hill climbing algorithm is used to find inputs
that would cause execution to follow the desired branch. This algorithm
takes each input value in turn and increases and decreases its value by a
small amount, trying to optimize a fitness function which measures how
close the input is to triggering the execution of the desired branch. The
program is executed for the two new inputs (the increased and the de-
creased version), and the new value that improves the fitness function is
kept. When the value for one input variable cannot be optimized further,
the algorithm continues by changing the values for the other input vari-
ables in the same way. This approach of optimizing one variable at a time
is known as the “alternating variable method”.

Ferguson and Korel [58] developed the chaining approach, which also
targets path coverage, but uses information from the data flow graph of
the program too, not only from the control flow graph, to determine the
statements that could influence whether a certain instruction gets executed
or not. The sequence of statements identified in this way must be executed
in order for the target instruction to get executed.

Offutt et al. [119] developed the dynamic domain reduction (DDR)
procedure, which determines sets of values having the property that all
values in a certain set will cause the same program path to be taken. To
achieve this, DDR executes a path in the program control flow graph be-
tween a start node and an end node, and at every decision node reduces
the domains of the variables involved in the decision so that the condition
is either true or false (depending on the branch it must take next) for all
remaining values. When DDR reaches the end node in the control flow
graph, the domains of all input variables will be reduced to sets having
the desired property. Thus, the DDR approach is similar to Korel’s [92]
but DDR does not use any initial values and the result of running DDR
are sets of values that have the property of triggering the same path in the
program.

Gupta et al. [70] developed an iterative relaxation method for generat-
ing test inputs that achieve path coverage. This method starts by running
the program with arbitrary input. Then it iteratively refines this input so
that all the branch predicates on the given path evaluate to the desired out-
come. This refinement is achieved by monitoring constraints that cause the
path to be taken, constraints which provide information on the amounts
by which the input should be adjusted.

In later work, Gupta et al. [68] developed an approach to test data gen-
eration aimed at achieving branch coverage. They start with an arbitrary
input and then modify it to get new inputs so as to force execution through
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a path containing the desired branch. They employ a concept of “path re-
sistance”, measuring how difficult it is to force execution through a certain
path.

Visser et al. [139] use the Java PathFinder model checker [138] to gen-
erate test data that achieves branch coverage of code involving complex
data structures. In particular, in this work Visser et al. show how precon-
ditions can be used on structures that are not fully initialized to prune the
search for inputs that increase coverage.

Concolic testing (standing for the combination of concrete and sym-
bolic execution) and its flagship implementations in the CUTE [132] and
jCUTE [131] tools aim at achieving path coverage. They specifically ad-
dress testing of code taking memory graphs as inputs.

Other approaches focus on data coverage. The Korat tool [27] can gen-
erate all non-isomorphic inputs up to a given bound by using the precon-
dition of the routine under test and pruning the search space. Korat mon-
itors attribute reads in the precondition to determine the attributes whose
values can influence the evaluation of the precondition and only looks for
alternative values for these attributes for inputs which violate the precon-
dition. Because it sets attribute values directly (rather than building test
inputs through sequences of creation procedure and routine calls), Korat
must check that every generated input object fulfills its class invariant. If
this is not the case, the input is discarded.

The Symstra tool [146] employs a different technique for achieving data
coverage: given a set of methods from the class under test and a bound on
the length of sequences of method calls, Symstra uses symbolic execution
and comparisons of symbolic states to exhaustively explore the state space
of the class under test.

DeMillo and Offutt [51] target a completely different type of coverage:
mutation operator coverage. Their approach, implemented in the Godzilla
tool, is designed so that it uncovers particular types of faults in programs,
essentially represented through mutation operators. Test cases are gener-
ated by solving constraints which describe these types of faults.

Search-based test data generation

An increasing body of research applies search methods for generating test
inputs, using the test goal as the fitness function. Miller and Spooner [112]
were the first ones to apply a search technique to the results of program
executions. In his above-cited work, Korel [92] extended their approach to
a Pascal-like language and in later work he and Ferguson developed the
chaining approach [58].
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The disadvantage of such local search methods as those employed by
Korel is that they may determine a local minimum instead of a global one.
Other research [137] hence employs simulated annealing instead of hill
climbing for similar purposes.

Evolutionary testing, the application of evolutionary algorithms to test
data generation, has also seen rapidly growing interest in the last few
years. Coverage-oriented approaches [87, 130, 110, 136] use measures of
code coverage as fitness criteria. Jones et al. [87] target branch coverage,
hence they use the branch distance as fitness function. They also handle
loop testing, for which the fitness function is the difference between the
actual and the desired number of iterations of the loop.

Other research directions investigate how to provide some guidance to
the search. Harman et al. [77] introduced the idea of analyzing variable
dependence relationships to determine the variables that cannot influence
the evaluation of a branch condition.

Tonella [136] applies evolutionary testing to O-O systems and repre-
sents test cases as chromosomes, containing information on how to create
input objects and how to change their state. Any primitive input values
are also represented in the chromosome. Test cases are then mutated to
produce new populations, whose fitness function can be any coverage cri-
terion.

Baudry et al. [22] use the mutation score (the proportion of mutants
killed by a test suite out of all mutants) as fitness function and use a modi-
fied version of the classical genetic algorithm: they introduce a memoriza-
tion function and do not perform crossover.

Evolutionary testing has not only been applied for checking the func-
tionality of software systems but also for other types of testing activities,
such as stress testing of real-time systems [29], verifying timing constraints
on real-time systems [141], etc.

Harman and McMinn [79] analyzed theoretically when evolutionary
testing should be used and compared this testing technique to hill climb-
ing and to random testing. They found that under some circumstances
hill climbing can perform better than evolutionary testing, but there are
also cases in which evolutionary testing can explore cases unreachable by
random testing and by hill climbing.

Specification-based test generation

Specifications can be used for testing in several ways: as filter for invalid
inputs, as guidance for test generation, as coverage criterion, as an auto-
mated oracle, etc. Many testing strategies rely on these properties. Here
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we list some approaches that use specifications for generating inputs, and
in section 4.3.3 we discuss approaches that use executable specifications as
oracles.

Richardson et al. [129] extended implementation-based testing tech-
niques existent at the time to specification-based test selection. Dick and
Faivre [52] developed automated techniques for deriving partitions from
state-based specifications. Chang [33] et al. present techniques to derive
test conditions from ADL specifications. Hierons [84] presents algorithms
for rewriting Z specifications so that partitions of the input domain and
the states for a finite-state automaton model can be derived from the new
form. Such a model can then be used to control an automated testing
process. Offutt et al. [120] define coverage criteria for tests generated
from state-based specifications. In later work [121] they developed a tool
called SpecTest for the automatic generation of test inputs from formal
state-based specifications. Weyuker et al. [142] present a method for gen-
erating tests from boolean specifications of the software.

Combinations of static and dynamic approaches

Several testing strategies combine static and dynamic analysis. A rich
body of research work uses symbolic execution to drive the testing
process. The first such system was EFFIGY [90] developed by King for
a PL/I-style language. EFFIGY integrated symbolic execution, a pro-
gram verifier, a test manager component, and features for debugging. The
already-cited Symstra and Java PathFinder also integrate symbolic execu-
tion and testing. Khurshid et al. [89] combine Korat and Java PathFinder
in a testing process that can handle dynamically allocated structures such
as lists and trees, method preconditions, and concurrency. Beyer et al. [24]
extended the BLAST model checker to determine the set of all program
locations where a predicate can be true and to generate test cases which
cause it to be true at all such program locations. Tillmann and Schulte [135]
introduced the notion of parameterized unit tests (PUTs), which are essen-
tially unit tests taking inputs that can change their behavior. Tillmann and
Schulte employ symbolic execution to generate inputs for PUTs.

The Check’n’Crash tool [48] derives abstract error conditions using the
ESC/Java static checker, uses a constraint solver to derive concrete error
conditions from the abstract ones, and generates concrete test cases with
JCrasher that should trigger the errors. The DSD-Crasher tool [49] aug-
ments Check’n’Crash with a dynamic analysis to filter out illegal input
parameters.
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Testability transformations

Many of the mentioned approaches for automated test data generation re-
quire a specific structure of the program or are impeded by the presence of
particular patterns in the code. Harman et al. [78] introduced a general no-
tion of testability transformation, which is a source-to-source transformation
of a program with the aim of allowing a test generation method to more
easily create test input data for the program. The notion of testability of a
program was introduced by Voas and Miller [140] as the likelihood that
a fault is executed and produces a failure. Voas and Miller thus defined
the PIE (Propagation, Infection, and Execution) framework for measuring
testability. Harman et al. use the notion of “testability” of a program in a
more restricted sense: the ease of automatically generating test input data
for the program.

Testability transformations differ from traditional program transfor-
mation methods in that the former do not need to ensure functional equiv-
alence; testability transformations only ensure that the test data generated
for the transformed program is adequate for the original program and for
the original testing criterion. Testability transformations are applicable to
any automated approach for generating test data.

4.3.3 Automated oracles

Fully automated testing requires the existence of an automated oracle. The
expected output can be provided at different levels of abstraction. In an ex-
treme case, it can be as general as “no exception thrown”, approach taken
by tools such as JCrasher [47], RUTE-J [16], and Jtest [4].

The expected output can be made more specific by the existence of
specification checkable at runtime. Some tools assume the presence of
such specification embedded in the source code: Cheon and Leavens [39]
propose an approach for testing Java classes equipped with JML contracts,
approach in which users have to provide the test inputs; the Jartege tool
[122] also assumes the presence of JML specifications in the Java classes
under test, but automates input generation, as explained in section 4.3.2;
Edwards [54] addresses component testing and advocates the use of ab-
stract mathematical models in specifications rather than of the internal
representation of the component under test.

Other testing tools do not assume that the code is equipped with exe-
cutable specification and hence use assertion inference tools for producing
such specification.
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Automated assertion inference

Arguably the best-known tool for dynamic assertion inference is Daikon
[55], which infers specifications from successful executions of a system by
checking, at various program points, a set of conditions derived from tem-
plates on the variables in scope. Section 7.1 contains detailed information
about this tool.

DIDUCE [76] is another tool which infers assertions from program ex-
ecutions. DIDUCE is built on the same principles as Daikon, but can op-
erate in two modes: the training mode and the checking mode. In the
training mode, the tool infers assertions from executions of the system,
by starting out with the most restrictive conditions and relaxing them as
if finds states that violate them. The checking mode is an extension of
the training mode, in the sense that in the checking mode, when an as-
sertion violation occurs, DIDUCE also reports the violation, in addition to
relaxing the assertion in question. DIDUCE works for Java code, but there
exists also an implementation of it for C programs called C-DIDUCE [57].

Pytlik et al. [128] developed the Carrot assertion detector which uses
the same principles as Daikon, but has a different implementation. Fur-
ther work [81, 82] investigates dynamic inference techniques for algebraic
specifications.

Several tools aim at determining legal sequences of routine calls, rather
than specifications. Ammons et al. [13] developed a machine learning
approach: sequences of routine calls observed in system executions are
fed to a machine learner, which generates a grammar of permitted call
sequences. Whaley et al. [144] propose a system with the same goal of
inferring constraints on sequences of legal routine calls; their system com-
bines static and dynamic approaches to achieve this goal and represents
the routine sequences through finite state machines.

Some of the ideas developed in academic research on assertion infer-
ence were also adopted by industry. AgitatorOne [26], previously called
Agitator, developed at Agitar Software, implements a Daikon-like ap-
proach for inferring assertions. Users have the option of promoting these
inferred assertions to contracts included in the program or discarding
them. The Axiom Meister tool [134] developed at Microsoft Research uses
symbolic execution for finding routine assertions for .NET programs.

Testing based on automated assertion inference

Eclat [124], described above, uses assertions inferred by Daikon as filters
for invalid inputs and as automated oracles. Xie and Notkin [147] de-
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veloped the operational violation approach, which uses Daikon to infer
likely assertions and automatically generates tests, verifying the inferred
assertions. Tests violating these assertions are presented to users for exam-
ination, since they exercise behavior that the tool has not seen before. The
DSD-Crasher tool [49], mentioned above, employs Daikon for inferring
assertions, exports the assertions that Daikon generates as JML contracts,
and uses these to guide the input generation of the Check’n’Crash tool
[48]. Substra [149] generates integration tests based on Daikon-inferred
constraints on component interfaces.

Test extraction for reproducing failures

Other tools do not create test cases themselves, but try to extract test cases
from failing runs of a system, where a failing run is defined as an execution
of the system triggering an exception or contract violation. Extracted test
cases are saved to disk, typically in xUnit format, and ideally can repro-
duce the observed failure. This is the idea behind the CDD tool developed
by Leitner et al [100]. CDD was created starting from the observation that
software developers typically prefer testing a system in an informal man-
ner, usually by triggering its execution through a GUI and assessing the
visual output that they get from it, rather than by writing tests. If a fail-
ure (exception or contract violation) occurs during this informal testing
process, it is hard for the developers to reconstruct the system state that
led to it so that they can identify the fault, and this is where CDD helps
them.

A related tool developed by Artzi et al. [17] is ReCrash, which ad-
dresses the same problem of capturing states that lead to failures, but for
a production setting, in which the software is already deployed and in
use. ReCrash employs a concept called “second chance”, due to which it
can capture a failure-reproducing state the second time a particular failure
occurs.

4.4 Evaluations of testing strategies

Given this very wide variety of tools and approaches to software testing,
it is essential for any proposed tool to be evaluated throughly, so that the
tools’ applicability and strong and weak points are clear to potential users.
Indeed, many such evaluations exist; in the following we concentrate on
these evaluations relevant to the contributions of this thesis.
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The evaluations of the random testing tools mentioned above (JCrasher
[47], Eclat [124], Jtest [4], Jartege [122], RUTE-J [16]) are focused on vari-
ous quality estimation methods for the tools themselves: finding real er-
rors in existing software (JCrasher, Eclat, RUTE-J), in code created by the
authors (Jartege), in code written by students (JCrasher), the number of
false positives reported (JCrasher), mutation testing (RUTE-J), code cov-
erage (RUTE-J). As such, the studies of the behaviors of these tools stand
witness for the ability of random testing to find defects in mature and
widely used software and to detect up to 100% of generated mutants for
a class. These studies do not, however, employ any statistical analysis
which would allow drawing more general conclusions from them about
the nature of random testing.

The evaluations of tools that combine random testing with systematic
approaches (RANDOOP [125], DART [65], ART [35], Agitator [26]) use
purely random testing as a basis for comparison: RANDOOP and DART
are shown to uncover defects that random testing does not find, DART
achieves higher code coverage than random testing, ART finds defects
with up to 50% less tests than random testing. These results, although
highly interesting in terms of comparing different testing strategies, do not
provide much information about the performance of random testing itself
or about the predictability of its performance.

Mankefors et al. [104] also investigate random testing and introduce
a new method for estimating the quality of random tests. As opposed
to the study presented in section 8.1, their focus is on random testing of
numerical routines and on quality estimations for tests that do not reveal
bugs.

Andrews et al. [14] state that the main reasons behind the so far poor
adoption of random generation for object-oriented unit tests is the lack of
tools and of a set of recognized best practices. The authors provide such
a set of best practices and also compare the performance of random test-
ing to that of model checking. They show that random testing produces
good results both when used on its own and when used as preparation for
model checking.

There are several studies which empirically compare the performance
of various testing strategies against that of random testing. Some such
studies [53, 73, 143, 36] compare random testing and partition testing.
Their results are centered around the conditions under which partition
testing (with its several flavors such as data-flow-oriented testing, path
testing, etc.) can perform better than random testing. Their empirical
investigations (or, in the case of Hamlet and Taylor [73], theoretical stud-
ies) also show that, outside of these restraining conditions, random testing
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outperforms partition testing. Gutjahr [71] shows that, for equal expected
failure rates of all blocks in a partition, random testing is outperformed
by partition testing. However, not knowing expected failure rates does not
necessarily mean they are indeed equal, and we hence consider this as-
sumption to be very strong.

Pretschner et al. [127] found that random tests perform worse than
both model-based and manually derived tests. D’Amorim et al [50] com-
pare the performance of two input generation strategies (random genera-
tion and symbolic execution) combined with two strategies for test result
classification (the use of operational models and of uncaught exceptions).
The results of the study show much lower applicability of the symbolic-
execution-based strategy than of the random one: the authors could only
run the symbolic-execution-based tool on about 10% of the subjects used
for the random strategy and, even for these 10% of subjects, the tool could
only partly explore the code. Although, as the study shows, the symbolic-
execution-based strategy does find faults that the random one does not,
the tool has extremely restricted practical applicability.

Numerous other studies have compared structural and functional test-
ing strategies as well as code reading (among others, [63, 21, 88, 145, 61]).
Most of them have used small programs with seeded faults and compared
results of two or three strategies. The five cited studies compare the au-
tomated selection of test cases using the control flow or the all-uses – re-
spectively mutation or the all-uses – criteria and their outcome in terms of
faults uncovered by each strategy. In the case of functional vs control flow
vs code reading, human testers applied successively these 3 strategies to
several programs. In each case they wrote the test cases if needed (for con-
trol flow and functional testing) following the given approach. None of
these studies compares manual testing to automated techniques.

A different and unfortunately not thoroughly explored avenue of work
investigates the ways in which testing strategies are evaluated. Since the
purpose of testing is to find faults, all other measures of its effectiveness
and efficiency (such as code/data coverage, mutation testing, etc.) should
directly relate to its fault-revealing capability. Surprisingly, only very few
researchers have so far investigated these relationships.

Offutt [118] showed empirically that detection of simple faults (such as
those introduced by mutation) correlates with detection of complex faults,
i.e. combinations of several simple faults, finding which validates the
premise of mutation testing. Andrews et al. [15] performed an empiri-
cal study of how mutation testing and some measures of code (block and
decision) and data (C-use and P-use) coverage relate to real fault finding.
They found that the mutation score is a good predictor for the detection ef-
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fectiveness of real faults and that achieving coverage levels close to 100% is
effective in terms of fault detection. According to their results, the higher
part of the coverage range brings a significant increase in fault detection.
Furthermore, for comparable test suite sizes, all the mentioned coverage
criteria detected a similar percentage of faults. In short, in their empirical
study, code and data coverage proved useful in increasing test suite effec-
tiveness. Previous empirical studies [86, 61] also reported similar results.

4.5 Fault classifications

Although this is naturally not their only applicability, fault classifications
are also essential to evaluations of testing strategies, because they allow
these strategies to be compared not only in terms of the number of faults
they uncover, but also in terms of the nature of these faults.

Knuth [91] pioneered the work on classification of defects by defining
9 categories reflecting the faults that occurred most often during the de-
velopment of TeX. Many fault classification models have been proposed
since then [66, 23, 40, 103, 11]. This includes the Orthogonal Defect Clas-
sification (ODC) [40], which combines defect types and defect triggers. In
a sense our classification presented in section 8.4.1 is an ODC in itself, but
our classification of defect types is finer while the defect location is simpler
than defect triggers.

The IEEE classification [11] aims at building a framework for a com-
plete characterization of the defect. It defines 79 hierarchically organized
types that are sufficient to understand any defect, but do not address the
particular constructs of contract-enabled languages. Lutz [103] describes
a safety checklist that defines categories of possible errors in safety-critical
embedded systems. The classification probably most similar to ours is the
one used by Basili et al. [21], organized in two dimensions: whether the
fault is an omission or a commission fault, and to which of 6 possible types
it belongs. Our classification takes into account specifications (contracts)
and is more fine-grained.

Bug patterns (e.g., [12, 85, 56]) are also related to our fault classifica-
tion. Allen [12] defined 14 types of defects in Java programs, and hence
did not consider contracts and multiple inheritance. The FindBugs ap-
proach [85, 18] relies on the definition of bug patterns that are syntactically
automatically recognizable. This results in a classification that comprises
hundreds of fault types that are not grouped into coarser categories.
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4.6 Static approaches for automated fault detec-
tion

Testing, the execution of a system in order to find faults in it, is not the
only way in which program faults can be identified. Especially in recent
years, the research community has developed a variety of static methods
for fault detection.

Static analysis tools such as PREfix [30], the Extended Static Checker
for Java [59] (ESC/Java), or SLAM [19] typically use a combination of
predicate abstraction, model checking, symbolic reasoning, and iterative
refinement to uncover faults in programs.

A different category of tools are the so-called “bug pattern detectors”.
These are tools that look for predefined templates in the code, templates
considered indicative of the presence of faults. Arguably the best known
such tool is FindBugs [85], which currently checks more than 300 bug pat-
terns, classified in several categories and with various degrees of serious-
ness: correctness, multithreaded correctness, security, malicious code vul-
nerability, performance, bad practice, and dodgy. Users can also add their
own patterns.

Hallem et al. [72] also propose a method for static detection of faults,
based on user-specified analyses. Xie and Engler [148] statically look
for redundancies in source code, considered indicative of the presence of
faults. They show that the presence of harmless redundancies indeed cor-
relates with that of serious faults.

The major weakness of bug pattern matchers consists in the spurious
warnings (also called false positives) that they generate; FindBugs, for in-
stance, reportedly generates around 50% false positives. Hence, signifi-
cant effort has been put into reducing the number of such false positives
[94, 93].



CHAPTER 5

AUTOTEST: A FRAMEWORK FOR
CONTRACT-BASED TESTING

AutoTest, the tool used as vehicle for implementing the testing strate-
gies described in the following chapters and for performing evaluations
of their performance, was developed together with Andreas Leitner, who
had a decisive contribution in creating and shaping the tool; this chapter
hence describes joint work. AutoTest is available in open source [97].

This chapter starts with an overview of the tool and then describes in
detail each of the steps involved in its automated testing strategy: find-
ing the test scope, creating inputs, executing generated tests, using con-
tracts as automated oracle, and minimizing failure-reproducing test cases.
The chapter ends with a discussion of the integration of manual and auto-
mated testing in AutoTest.

5.1 Overview

AutoTest is a fully functional tool, but has an extensible architecture, so
that other testing strategies than the basic one, described in this chapter,
can be seamlessly plugged in.

AutoTest implements a fully automated testing process, which allows
it to be a truly push-button testing tool. Through the tool’s command line
interface, a user can specify the classes to be tested and the time interval
for which AutoTest should test them, as in the following example:

auto test --time-out=15 banking system.ace --class
BANK ACCOUNT

AutoTest is thus instructed to test class BANK ACCOUNT for 15 minutes.
banking system.ace is a configuration file describing the project to which
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the class under test belongs, much like a makefile in C1. Hence, in the given 15
minutes, AutoTest:

• Generates a set of wrapper classes (necessary as support for reflection as
explained in section 5.4) for the classes under test and all classes that they
directly or indirectly depend on

• Generates an interpreter using these wrapper classes and compiles it

• Identifies and runs any existing manual tests which apply to the classes
under test

• Starts the actual automated testing process consisting of calling all exported
routines of the classes under test, with inputs generated randomly, and
checking that contracts are fulfilled during these calls. Any contract vio-
lation or other thrown exception signals a fault in the classes under test.

When the 15 minutes have elapsed, AutoTest stops testing the given class and
minimizes all failure-reproducing test cases that it generated, to support pro-
grammers in the debugging process and to reduce the size of the test cases it
stores for regression testing. The rest of this chapter explains each of these steps
in detail.

Figure 5.1 presents a high-level overview of the architecture of AutoTest. As
shown in this figure, AutoTest takes as input the system under test (actually, as
explained above, a make-like configuration file describing it) and the test scope
within this system (one or several classes). AutoTest uses a two-process model
to generate and run tests, as explained in detail in section 5.4: a master process
implements the test generation strategy and uses a proxy component to commu-
nicate with the other process — an interpreter responsible for executing the tests.
The proxy receives responses from the interpreter showing the status and out-
come of the execution. The proxy parses these responses and passes them to the
oracle component of AutoTest, which decides on the outcome (pass/fail) of run-
ning the test case and generates test result files, the output of AutoTest. Both the
component implementing the test generation strategy and the one implementing
the oracle can easily be replaced, allowing the seamless integration of different
testing strategies in the tool.

AutoTest targets Eiffel code but can be applied with minor modifications to
any other O-O language supporting static typing and dynamic binding, and hav-
ing a common root for the class inheritance hierarchy. In the absence of embedded
executable specification, AutoTest can still use thrown exceptions as indications
of failures, but this is naturally a less precise automated oracle.

1LACE is the language in which such files were written for versions of EiffelStudio
up to and including 5.6. Version 5.7 used a an XML-based format called “acex” and
later versions use the “ecf” format, which is also XML-based. Therefore, the extension
associated with such files differs between different versions of EiffelStudio.
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Figure 5.1: Overview of the architecture of AutoTest
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5.2 Test scope
AutoTest was designed as a unit testing tool and, as such, its test scope consists
of one or several classes, or more precisely of these classes’ routines exported to
ANY2.

AutoTest tries to test all the routines in the test scope in a fair manner. To
achieve this, it uses a system of priorities as follows. Each routine has a dynamic
and a static priority. The static priorities are set at the start of the testing session
and do not change anymore afterwards. These static priorities reflect how inten-
sively each routine should be tested. For instance, setting the static priorities of
routines inherited from ANY to 0 and the static priorities of all other routines to
the same strictly positive integer would insure that routines inherited from ANY
are not tested at all and all other routines are tested in a fair manner. Assigning
to some routines higher static priorities than to others ensures that the former
routines are tested proportionally more intensively than the latter.

Initially AutoTest sets all routines’ dynamic priorities to their static priorities.
At every step when it needs to select the next routine to test, AutoTest selects the
one with the highest dynamic priority. Whenever it calls one of the routines in a
test case, it decreases its dynamic priority by 1. When the dynamic priorities of all
routines under test are equal to 0, AutoTest resets them all to the static priorities.
AutoTest thus ensures that the routines under test are exercised in a fair manner
in the time given for the testing session.

5.3 Contracts as oracles
As discussed in chapter 4, when specification is embedded in the software itself
and is executable, it can be used as an automated oracle for testing. AutoTest thus
exploits the presence of contracts in software written in Eiffel to gain a fully au-
tomatic and freely available oracle. But contracts play a double role in software
testing: the preconditions of the routines under test specify constraints on the range
of acceptable inputs; all other contracts specify conditions that must be fulfilled at
various points in the execution. Thus, if AutoTest directly violates the precondi-
tion of a routine under test, this just means that the test engine has generated an
invalid test case and the inputs are discarded, without executing the routine under
test. All other cases of contract violations signal faults in the software under test,
hence AutoTest has produced a failing test case.

When contracts are used as oracle, a failing test case can signal a fault either
in the contract or in the implementation. As discussed in more detail in section
8.4.1, both cases are possible and do occur in practice, and a fault should be re-
ported in both situations. It may not be obvious at first glance why reporting

2Since ANY is the root of the class inheritance hierarchy in Eiffel and all classes inherit
by default from it, a routine exported to ANY can be called from any class.



5.4. TEST EXECUTION 39

faults in contracts is interesting at all, since in most cases contract checking is dis-
abled in released software. The reason is that most often a developer writes both
the contract and the body of a routine. A fault in the contract signals a mistake
in the developer’s thinking just as a fault in the routine body does. Once the
routine has been implemented, client programmers who want to use its function-
ality from other classes look at its contract to understand under what conditions
the routine can be called (conditions expressed by its precondition) and what the
routine does (the postcondition expresses the effect of calling the routine on the
state). Hence, if the routine’s contract is incorrect, the routine will most likely be
used incorrectly by its callers, which will produce a chain of faulty routines. The
validity of the contract is thus as important as the correctness of the implementa-
tion.

Because in Eiffel it is allowed to call functions from contracts, evaluating a
contract at runtime can have side effects. Hence, when AutoTest monitors con-
tracts during test execution, it may actually be influencing the run of the system
under test. This is not a flaw in the testing strategy itself; it is the programmer’s
responsibility to ensure that there are no side effects in contracts.

AutoTest also uses exceptions as part of the automated oracle, so any test case
that raises an exception is classified as failing. This is possible due to Eiffel’s spe-
cial treatment of exceptions: unlike other languages, which use exceptions for
control flow, in Eiffel exceptions are evidence of anomalous program states that
should not occur in the execution of a system. In other words, in Eiffel a correct
program should never throw an exception. AutoTest uses this property to filter
fault-revealing test cases. Technically, contract violations also trigger exceptions
in Eiffel, but, for increased precision, we refer to contracts and exceptions as sep-
arate components of the automated oracle.

5.4 Test execution

AutoTest uses a two-process model for executing the tests: the master process im-
plements the actual testing strategy; the slave process is responsible for the test
execution. The slave, an interpreter, gets simple commands (such as object cre-
ation, routine call, etc.) from the master and can only execute such instructions
and return the results. This separation of the testing activity in two processes has
the advantage of robustness: if test execution triggers a failure in the slave from
which the process cannot recover, the driver will shut it down and then restart it
where testing was interrupted. The entire testing process does not have to restart
from the beginning and, if the same failure keeps occurring, the driver can decide
to abort testing that routine so the rest of the test scope can still be explored.

The driver and the interpreter communicate through standard I/O: the driver
outputs commands to the interpreter as strings, which the latter parses and exe-
cutes. These commands are of two types:
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1. Instructions that use a simplified and dynamically typed version of Eiffel.
Once the interpreter has executed such an instruction, it will output a sta-
tus message indicating if the execution was carried out successfully. Any
output produced during execution, including stack traces for thrown ex-
ceptions, is also recorded. These instructions can have one of the following
forms:

• create <TYPE> <Variable>[.<Creation procedure name>
[<Arguments>]] — creates an instance of TYPE associated to
Variable

• <Variable> := Constant|<Variable>.<Query name>
[<Arguments>] — assigns to a variable a constant or the return
value of a query

• <Variable>.<Feature name> [<Arguments>] — calls a feature
on the object associated to a variable

2. Meta-commands, unrelated to the actual test execution, but necessary for
the driver to keep track of the testing activity:

• :type <Variable> — instructs the interpreter to output the name
of the type of the object that a certain variable denotes

• :quit — stops the interpreter

Both the commands that the driver sends to the interpreter and the latter’s
responses are recorded in a log file. The interpreter’s responses are recorded as
comments, because this way the entire file can be re-fed to the interpreter as it is,
and hence the testing session can be replayed. Figure 5.1 shows a fragment from
such a log file.

v_1 := Void
-- > done:

3 :type v_1
-- > NONE
-- > done:

6 v_2 := 9
-- > done:

:type v_2
9 -- > INTEGER

-- > done:
create {FIXED_LIST [ANY]} v_3.make (v_2)

12 -- > ---multi-line-value-start---
-- > ---multi-line-value-end---
-- > status: success
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15 -- > done:
-- Test case number: 1
create {CURSOR} v_4

18 -- > ---multi-line-value-start---
-- > ---multi-line-value-end---
-- > status: success

21 -- > done:
v_5 := 1
-- > done:

24 :type v_5
-- > INTEGER
-- > done:

27 create {FIXED_LIST [ANY]} v_6.make_filled (v_2)
-- > ---multi-line-value-start---
-- > ---multi-line-value-end---

30 -- > status: success
-- > done:

-- Test case number: 2
33 v_6.copy (v_3)

-- > ---multi-line-value-start---
-- > ---multi-line-value-end---

36 -- > status: success
-- > done:

-- Test case number: 3
39 v_7 := v_6.is_inserted (v_3)

-- > ---multi-line-value-start---
-- > ---multi-line-value-end---

42 -- > status: success
-- > done:

-- Test case number: 4

Listing 5.1: Fragment from a log file recording the interactions between
the driver and the interpreter.

AutoTest needs reflection support in order for the interpreter to be able to exe-
cute feature calls that it receives as strings from the driver. This particular ability
to call routines via introspection was not present in Eiffel’s reflection support,
so it had to be implemented for AutoTest. The resulting tool was developed by
Andreas Leitner and is called ERL-G (Eiffel Reflection Library Generator) [101].
ERL-G first parses the classes under test and determines the transitive closure of
the classes that they depend on, thus determining the set of alive classes in the test
session. For each class in this set, it generates a meta-class, which the interpreter
uses to exercise the routines under test.

This separation into 2 processes also has the consequence that the objects used
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in tests only exist on the interpreter side. The driver only knows the variable
identifiers of the objects in the pool and their types. (As explained in the next
section, AutoTest keeps a pool of objects from which it selects inputs to use in
tests.) Hence, when the interpreter dies, the object pool is emptied and must be
rebuilt anew. Thus, interpreter restarts put a limit to the complexity of the object
structures that can be reached in the testing session.

5.5 The random strategy for generating inputs
Random input generation for object-oriented applications can be performed in
one of two ways:

• In a constructive manner, by calling a creation procedure of the targeted
class and then, optionally, other routines of the class in order to change the
state of the newly created object.

• In a brute force manner, by allocating a new object and then setting its fields
directly (technique applied by the Korat tool [27], for instance).

The second approach has the disadvantage that objects created in this way
can violate their class invariant. If this is the case, the effort for creating the object
has been a waste and a new attempt must be made. (Invariant violations can also
be triggered through the constructive approach, but, if that is the case, a fault has
been found in the system under test.) Also, it can be the case that objects created
in this way could never be created by executions of the software itself. For these
reasons, AutoTest implements the first approach.

Any such constructive approach to generating objects (test inputs) must an-
swer the following questions:

• Are objects built simply by creation procedure calls or are other routines
of the class called after the creation procedure, in an attempt to bring the
object to a more interesting state?

• How often are such diversification operations performed?

• Can objects used in tests be kept and re-used in later tests?

• How are values for basic types generated?

With AutoTest, answers to these questions take the form of explicit parameters
provided to the input generation algorithm.

AutoTest keeps a pool of objects available for testing. All objects created as
test inputs are stored in this pool, then returned to the pool once they have been
used in tests. The algorithm for input generation proceeds in the following man-
ner, given a routine r of a class C currently under test. To test r, a target object
and arguments (if r takes any) are needed. With some probability PGenNew, the
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algorithm either creates new instances for the target object and arguments or uses
existing instances, which it takes from the pool. If the decision is to create new
instances, then AutoTest calls a randomly chosen creation procedure of the cor-
responding class (or, if the class is deferred, of its closest non-deferred descen-
dant). If this creation procedure takes arguments, the same algorithm is applied
recursively. The input generation algorithm treats basic types differently: for an
argument declared of a basic type, with some probability PGenBasicRand, a value
will be chosen randomly either out of the set of all values possible for that type or
out of a set of predefined, special values. These predefined values are assumed
to have a high fault-revealing rate when used as inputs. For instance, for type
INTEGER, these values include the minimum and maximum possible values, 0,
1, -1, etc. Figure 5.2 depicts an overview of the use of these probabilities in the
input generation algorithm.

Keeping a pool of objects which can be reused in tests raises the question
of whether an attempt should be made to bring these existing objects to more
interesting states as would occur during the actual execution of a program (for
example with a list class, not just a state occurring after creation but one resulting
from many insertions and deletions). To provide for this, we introduce the prob-
ability PDiv which indicates how often, after running a test case, a diversification
operation is performed. Such a diversification operation consists of calling a pro-
cedure (a routine with no return value, which most likely changes the state of the
object on which it is called) on an object selected randomly from the pool. Figure
5.3 shows where diversification occurs in the testing process.

Supplying different values for these three probabilities (PGenNew,
PGenBasicRand, PDiv) changes the behavior of the input generation algorithm.

Other tools that use a constructive approach to random input generation also
rely on calling sequences of creation procedures and other routines to create in-
put data. Eclat [124], very much like AutoTest, stores objects in a pool and uses
existing values to call creation procedures and routines which create new values.
After this initial generation phase, it applies heuristics to classify and select which
of the available inputs it will use in tests. AutoTest performs no such selection,
because it implements a purely random strategy. JCrasher [47] builds sequences
of creation procedure and routine calls starting from a routine under test and sys-
tematically building required input objects, by calling either creation procedures
or queries returning objects of the desired type. Section 4.3.2 presents more exam-
ples of tools implementing constructive approaches to random input generation.

Example

The following describes how AutoTest’s generation algorithm produces a test
case via an example, which assumes that the class BANK_ACCOUNT shown in list-
ing 3.1 is being tested. Figure 5.4 shows an extract from the generated tests. In
this example, variables v1, v2, v3, and v4 represent the object pool.
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Need instance of a 
reference type

Create new 
instance and store 
it in the object pool

Select an object 
from the pool

PGenNew

1-PGenNew

Need instance of a 
basic type

Assign new

PGenNew

Choose randomly 
from all possible 

values

Choose randomly 
from “interesting” 

values

Select an object 
from the pool

1-PGenNew
PGenBasicRand 1-PGenBasicRand

Figure 5.2: Input generation. AutoTest proceeds differently if it needs to
create an instance of a reference type or of a basic type.
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Select next 
routine to test Select inputs Run test

PDiv
Diversify

1-PDiv

Figure 5.3: A high-level view of a step in the testing process. Diversifica-
tion can be performed after every call to a routine under test.

1 create {STRING} v1.make_empty
2 create {BANK_ACCOUNT} v2.make (v1)

3 3 v3 := 452719
4 v2.deposit (v3)
5 v4 := Void

6 6 v2.transfer (v3, v4)
...

Figure 5.4: Example test case generated by AutoTest. Routines deposit

and transfer of class BANK_ACCOUNT are being tested.
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The class under test is BANK_ACCOUNT, so all its routines must be tested. At
every step, AutoTest chooses one of the routines which have been tested the least
up to that point. When the testing session starts, no routines have been tested,
so one of the routines of class BANK_ACCOUNT is chosen at random. Assume
routine deposit is chosen. In order to execute this routine, AutoTest needs an
object of type BANK_ACCOUNT and an integer representing the amount of money
to deposit.

The test generator randomly chooses inputs with the required types from the
object pool. However, before it makes this choice, with probability PGenNew it
can also create new instances for the required types and add them to the pool. In
the example test case, the generator decides at this point to create a new object of
type BANK_ACCOUNT. Therefore it chooses a creation procedure (make) and now
works on the sub-task of acquiring objects serving as parameters for this creation
procedure. make requires only one argument which is of type STRING, so a string
object must be created. The type of string objects in Eiffel is a regular reference
type. The algorithm decides again to create a new object, and uses the creation
procedure make_emptywhich does not take any arguments (line 1). After calling
this creation procedure, the object pool is:

v1: STRING

AutoTest now synthesizes the creation instruction for the bank account object
(line 2) using the newly created string object. This updates the object pool to:

v1: STRING
v2: BANK_ACCOUNT

Now AutoTest needs an integer as argument to deposit. Integers are basic
objects and in the example, a random integer (452719) is chosen and assigned to
a fresh pool variable (line 3). This changes the object pool to:

v1: STRING
v2: BANK_ACCOUNT
v3: INTEGER

AutoTest can now synthesize the call to BANK_ACCOUNT.deposit, using the
newly created bank account and the randomly chosen integer (line 4).

At this point, AutoTest selects another routine for testing. Assume
BANK_ACCOUNT.transfer is chosen. This routine transfers an amount from the
bank account object on which it is called to the bank account that is provided as
argument. One target object and two arguments are necessary. For each of these
three inputs, an object of the corresponding type might be created and added to
the pool. In the case of the call to BANK_ACCOUNT.transfer, the decision is to
create a new instance of BANK ACCOUNT. Whenever AutoTest has to create a
new object, it may also choose to add Void to the pool instead of a new object.
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This happens in the example, so the pool now consists of:

v1: STRING
v2: BANK_ACCOUNT
v3: INTEGER
v4: NONE

Now, two instances of BANK_ACCOUNT and an integer are chosen randomly
from the pool and the result is the call to transfer as shown on line 6. (Since
class NONE, the type of Void, conforms to all other types, Void can be used when-
ever an instance of a reference type is required.) Test case generation continues
after this point, but for brevity the example stops here.

5.6 Test case minimization
AutoTest tries to minimize all failure-triggering test cases that it generates. Min-
imization is particularly important for randomly generated test cases exactly be-
cause of their lack of system, which leads to many parts of the test case not being
necessary for reproducing the failure. Eliminating such parts is essential:

• As support for the developers who use the test case to debug the software,
since this way it is easier for them to locate the fault in the code

• As support for regression testing: the reduced size of the test case means
less necessary storage space and shorter execution time.

AutoTest employs a static slicing technique for minimizing test cases, as de-
scribed in [98]. This technique does not guarantee the absolute minimal version
of the test case, but it does guarantee to produce a version of the test case that still
triggers the failure.

The technique proceeds as follows. It maintains a set of variables that are nec-
essary for reproducing the failure. It initializes this set with the variables involved
in the routine call that triggered the failure and examines each of the preceding
routine and creation procedure calls to determine if they could have an effect on
the variables. An instruction is considered to have an effect on a variable if it uses
the variable as target for a routine or creation procedure call or if it assigns to it.
When such instructions are found, the other variables used in it are also added
to the set. If a variable is assigned to or used as target for a creation procedure
call, then it is eliminated from the set of variables, since such instructions assign
it new values and are completely independent from any values that the variable
had previously.

The minimizer proceeds this way, examining each instruction from the test
session, until it reaches the start of the testing session. The minimizer then checks
that the thus determined set of instructions indeed reproduces the same failure
as the original test case by simply running the minimized version. If the fail-
ure is not triggered again, then minimization has failed and AutoTest retains the
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original test case. Otherwise minimization was successful, so AutoTest stores the
minimized test case and displays it at the end of the testing session together with
the other results.

Experiments [98] have shown that this minimization technique reduces the
size of randomly generated test cases on average by a factor of 96% and is around
50 times faster than delta debugging [150].

In AutoTest minimization takes place after testing is completed, hence after
the timeout given by the user has occurred, so minimization takes extra time. It
is also possible to disable minimization through a command line argument.

5.7 Combining manual and automated testing
AutoTest seamlessly integrates manual tests with automated ones, as described
in [99]. Classes representing manual tests must inherit from a library class called
AUT TEST CASE. This is a deferred class containing only two empty routines,
set up and tear down, which descendant classes can redefine to contain actions to
be performed before and after executing every test case. Test cases are themselves
routines of the classes inheriting from AUT TEST CASE with names starting with
“test”. This practice of encapsulating manual test cases in classes inheriting from
a certain library class is common with frameworks automating test execution,
such as the xUnit family of tools mentioned in section 4.3.1.

By checking this inheritance relation AutoTest can determine the classes con-
taining manual test cases. To determine which classes they test, AutoTest uses
the transitive closure of the client relation between classes: it considers that those
classes are tested, whose functionality the manual test classes use, directly or in-
directly.

Figure 5.5 shows an example illustrating these ideas. Suppose AutoTest is in-
structed to test class STUDENT. Because class TEST UNIVERSITY inherits from
class AUT TEST CASE, AutoTest identifies it as containing manual tests. Now
AutoTest must determine if TEST UNIVERSITY can exercise the functionality of
STUDENT, the class under test. This is the case, since TEST UNIVERSITY is a
client of UNIVERSITY, which is a client of STUDENT. Hence AutoTest executes
TEST UNIVERSITY’s routines whose names start with “test” as part of the man-
ual testing phase for class STUDENT.

AutoTest runs manual tests before it starts the automated test generation.
Running manual tests can be disabled through a command-line option.
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STUDENT COURSE PROFESSOR

UNIVERSITYTEST_UNIVERSITY

AUT_TEST_CASE

Inheritance

Dependency 
(client relationship)

Figure 5.5: Example illustrating manual test case selection in AutoTest.
AutoTest uses the inheritance relation to identify classes containing man-
ual test cases and the client relation to identify the tested classes. Hence, in
this example AutoTest determines that TEST UNIVERSITY contains man-
ual test cases and can exercise the functionality of class STUDENT, for in-
stance (through class UNIVERSITY, which is in turn a client of class STU-
DENT).
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CHAPTER 6

EXTENDING AUTOTEST WITH
OTHER STRATEGIES FOR INPUT
GENERATION

As explained in chapter 5, AutoTest is designed as a framework in which var-
ious strategies for generating inputs can be plugged. The input generators can
thus easily be changed, while the rest of the support for the testing process stays
the same: a driver process orchestrates the testing activity, while another process,
an interpreter, carries out the actual test execution (5.4); contracts and exceptions
provide for an automated oracle (5.3); fault-reproducing test cases are minimized
when testing is finished (5.6). This design also has the advantage of making thor-
ough comparisons between input generation strategies possible.

This chapter presents another strategy for generating inputs which we devel-
oped and implemented in AutoTest, other than the random one presented in sec-
tion 5.5. It then describes how this strategy, the random one, and manual testing
can all be combined to deliver the best results.

6.1 The object distance
Adaptive Random Testing (ART) [35], as explained in section 4.3.2, is based on the
intuition that an even distribution of test cases in the input space allows finding
faults through fewer test cases than with purely random testing. ART generates
candidate inputs randomly, and at every step selects from them the one that is fur-
thest away from the already used inputs. Work on ART has so far only considered
inputs of numeric types, for which the notion of “even spacedness” immediately
makes sense: any such input belongs to a known interval on which there exists a
total order relation.

The ideas behind ART are attractive for testing O-O applications too. The
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challenge is to define what it means to “spread out” instances of arbitrarily com-
plex types as ART does for numeric values. We have developed a method for
automatically calculating an “object distance” [41] and applying it to adaptive
random testing of object-oriented applications [43]. This section presents the ob-
ject distance and the next section its application to adaptive random testing of
O-O software.

There are many ways of defining a notion of distance between two objects. It
is important to specify a framework for acceptable definitions, then make explicit
any choices behind a specific proposal within that framework, and justify them.
This discussion starts with a very general framework and makes a number of
such choices until it arrives at a directly implementable notion, with an associated
algorithm.

In general objects are characterized by:

• Their direct values

• Their dynamic types

• Their fields1

Hence, the object distance must take into account these three dimensions. Thus,
the distance between two composite objects p and q should be a monotonically
non-decreasing function of each of the following three components:

• Elementary distance: a measure of the difference between the direct values
of the objects (the values of the references in the case of reference types and
the embedded values in the case of basic types).

• Type distance: a measure of the difference between the objects’ types, com-
pletely independent of the values of the objects themselves.

• Field distance: a measure of the difference between the objects’ individual
fields. This will be the same notion of object distance, applied recursively.
The fields should be compared one by one, considering only “matching”
fields corresponding to the same attributes in both objects; non-matching
fields also cause a difference, but this difference is captured by the type
distance.

Thus, we may express the formula for the distance p ↔ q:

p ↔ q = combination (
elementary distance (p, q),
type distance (type (p), type (q)),
field distance ({[p.a ↔ q.a]

|a ∈ Attributes (type (p), type (q))}))

(6.1)

1We use the term field as a dynamic notion corresponding to the static notion of at-
tribute. In other words, classes have attributes, while objects have fields.
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where Attributes(t1, t2) is the set of attributes applicable to both objects of type
t1 and objects of type t2. We look below at possible choices for the functions
combination, elementary distance, type distance, and field distance.

For the elementary distance we define fixed functions for each possible type
(basic or reference) of the compared values p and q:

1. For numbers: F(|p − q|) (where F is a monotonically non-decreasing func-
tion with F(0) = 0).

2. For characters: 0 if identical, C otherwise.

3. For booleans: 0 if identical, B otherwise.

4. For strings: the Levenshtein distance [102].

5. For references: 0 if identical, R if different but none is void, V if only one of
them is void.

In this definition, C, B, R, and V are positive values chosen conventionally.
The distance between two types is a monotonically increasing function of the

sum of their path lengths to any closest common ancestor, and of the number
of their non-shared features. In languages where all classes have a common an-
cestor (ANY in Eiffel, Object in Java), any two classes have a closest common
ancestor. If the types of the two compared objects do not have a closest common
ancestor, then the object distance is not defined for them, since the objects must
always be compared with respect to a common type of which they are direct or
indirect instances. Non-shared features are features not inherited from a common
ancestor.

We thus obtain the following formula for the type distance between two types
t and u:

type distance (t, u) =

λ ∗ path length (t, u) + ν ∗
∑

a∈non shared (t,u) weighta

(6.2)

where path length denotes the minimum path length to a closest common ances-
tor, and non shared the set of non-shared features. λ and ν are two non-negative
constants. weighta denotes the weight associated with attribute a. It allows for
increased flexibility in the distance definition, since thus some attributes can be
excluded from the distance (by an associated weight of 0) or can be given in-
creased weight relative to others.

The field distance is obtained by recursively applying the distance calculation
to all pairs of matching fields of the compared objects:

field distance (p, q) =
∑

a

weighta ∗ (p.a ↔ q.a) (6.3)
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where a iterates over all matching attributes of p and q. We take the arithmetic
mean (the sum divided by the number of its elements) to avoid giving too much
weight to objects that have large numbers of fields.

The combination function is a weighted sum of its three components. The
weights (ε for the elementary distance, τ for the type distance and α for the field
distance) allow for more flexibility in the distance calculation. Furthermore, each
of the three components of the distance must be normalized to a bounded inter-
val with the lower limit 0, so that the distances remain comparable. A normaliza-
tion function norm(x) should be monotonically increasing and fulfill the property
norm(0) = 0. By convention, we take 1 as the upper bound of the normalization
interval.

The following formula gives the full distance definition combining the previ-
ous definitions:

p ↔ q = 1
3 ∗ (

norm (ε ∗ elementary distance (p, q))

+norm (τ ∗ λ ∗ path length (type (p), type (q))

+τ ∗ ν ∗
∑

a∈non shared (type(p),type(q)) weighta)

+norm (α ∗
∑

a

weighta ∗ (p.a ↔ q.a)))

(6.4)

where in the last term a ranges over all matching fields.

This definition uses several constants and a function, for which any applica-
tion must choose values. The implementation described in the next section uses
the following values:

• 1 for all constants except α = 1
2 and R = 0.1

• the normalization function applied to each component of the distance:
(1 − 1

1+x) ∗ max distance, where max distance is the upper limit of the
interval to which the distance must be normalized. As mentioned above,
we used a value of 1 for this limit.

While our experience with the model indicates that these simple values suf-
fice, more experiments are needed to determine correlations between the nature
of the application under test and the choice of parameters.
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used_objects: SET [ANY]
candidate_objects: SET [ANY]
current_best_distance: DOUBLE
current_best_object: ANY
v0, v1: ANY
current_accumulation: DOUBLE
...

current_best_distance := 0.0
foreach v0 in candidate_objects
do

current_accumulation := 0.0
foreach v1 in used_objects
do

current_accumulation :=
current_accumulation + distance(v0, v1)

end
if (current_accumulation > current_best_distance)
then

current_best_distance := current_accumulation
current_best_object := v0

end
end
candidate_objects.remove(current_best_object)
used_objects.add(current_best_object)
run_test(current_best_object)

Figure 6.1: Algorithm for selecting a test input. The object that has the
highest average distance to those already used as test inputs is selected.

6.2 Adaptive Random Testing for object-
oriented software (ARTOO)

6.2.1 Algorithm
The object distance allows the development of several testing algorithms. We
have proposed an algorithm [41] which keeps track of the already used and the
available objects and always chooses as input from the available set the object that
has the highest average of distances to the already used objects. The algorithm is
shown in Figure 6.1.

This algorithm uses pseudo-code but borrows some notations and conven-
tions from Eiffel. In particular, ANY is the root of the class hierarchy: all classes
inherit from it by default. The distance function is implemented as described in
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the previous section. For simplicity, the algorithm only computes the sum of the
distances and not their average; this is a valid approximation since, to get the av-
erage distance for every object in the available set, this sum of distances would
have to be divided by the number of objects in the already used set, which is
constant for a run of the algorithm.

This algorithm is applied every time a new test input is required. For example,
for testing a routine r of a class C with the signature r (o1: A; o2: B), 3
inputs are necessary: an instance of C as the target of the routine call and instances
of A and B as arguments for the call. Hence, ARTOO maintains a list of the objects
used for all calls to r, and applies the algorithm described above every time a new
input is required. In other words, when an instance of C is necessary, ARTOO
compares all instances of C available in the pool of objects to all the instances of
C already used as targets in test calls to r. It selects the one that has the highest
average distance to the already used ones, and then repeats the algorithm for
picking an instance of A to use as first argument in the call, and then does the
same for B.

This strategy is similar to the one originally proposed for ART [35], the differ-
ences being the selection criterion (average distance rather than maximum mini-
mum distance) and the computation of the distance measure.

6.2.2 Implementation
We implemented ARTOO as a plug-in strategy for input gen-
eration in AutoTest. ARTOO is available in open source at
http://se.inf.ethz.ch/people/ciupa/artoo.html.

ARTOO only affects the algorithm used for selecting inputs. The random cre-
ation of inputs stays the same, as described in section 5.5. Figure 6.2 represents
this graphically, by reproducing figure 5.2 from section 5.5 and pointing out the
level at which ARTOO works.

The other parts of the testing process (execution in the two processes, using
contracts as an oracle) also remain in AutoTest as described in chapter 5. This is
particularly important if one wants to compare the performance of the two strate-
gies (random testing and ARTOO): the conditions under which the experiments
are run must be the same.

ARTOO creates new objects and applies diversification operations with the
same probabilities as the random strategy. It proceeds differently from the latter
only with respect to the selection of the objects (composite and basic) to be used
in tests. Its implementation is similar to the algorithm presented above. The
main difference is that, while the latter algorithm does not consider the creation
of new objects as it proceeds (in other words, no new objects are added to the set
of available inputs), in the implementation new instances are created constantly
and then considered for selection as test inputs.

The implementation of ARTOO solves infinite recursion in the field distance

http://se.inf.ethz.ch/people/ciupa/artoo.html
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Figure 6.2: ARTOO integrated in the input generation process in AutoTest.
ARTOO only affects selection of inputs, which are created with the ran-
dom strategy of AutoTest.
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by cutting the recursive calculation after a fixed number of steps (2 in the case of
the experiment results presented in section 8.3). Also, the calculation of the ob-
ject distance is slightly different in the implementation of ARTOO than in formula
6.4, in that no normalization is applied to the elementary distances as a whole: for
characters, booleans, and reference values the given constants are directly used,
and for numbers and strings the normalization function given in section 6.1 is ap-
plied to the absolute value of the difference (for numbers) and to the Levenshtein
distance respectively (for strings). For the field distance, no normalization is nec-
essary, since the averaged distances between the objects referred by the attributes
are themselves bounded to the same interval.

ARTOO needs to store inputs used in calls to routines under test before these
calls are performed, so that, in case the interpreter encounters an error it cannot
recover from during the execution of the call, the information about the used
inputs is not lost. ARTOO hence serializes test inputs before every call to a routine
under test.

The results of an experimental evaluation of ARTOO’s performance are pre-
sented in section 8.3.

6.2.3 Example
The following example shows how the implementation of ARTOO in AutoTest
proceeds. Suppose ARTOO tests the class BANK ACCOUNT, given in List-
ing 6.1.

class BANK_ACCOUNT
create

3 make

feature -- Bank account data
6 owner: STRING

balance: INTEGER

9 feature -- Initialization
make (s: STRING; init_bal: INTEGER) is

-- Create a new bank account.
12 require

positive_initial_balance: init_bal >= 0
owner_not_void: s /= Void

15 do
owner := s
balance := init_bal

18 ensure
owner_set: owner = s
balance_set: balance = init_bal
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21 end

feature -- Operation
24

withdraw (sum: INTEGER) is ...

27 deposit (sum: INTEGER) is ...

transfer (other_account: BANK_ACCOUNT; sum: INTEGER) is
30 -- Transfer ‘sum’ to ‘other_account’.

require
can_withdraw: sum <= balance

33 do
other_account.deposit (sum)
balance := balance - sum

36 ensure
balance_decreased: balance < old balance
sum_deposited_to_other_account: other_account.balance

> old other_account.balance
39 end
invariant
owner_not_void: owner /= Void

42 positive_balance: balance >= 0
end

Listing 6.1: Part of the code of class BANK ACCOUNT, which ARTOO
must test.

For testing routine transfer, ARTOO needs an instance of BANK ACCOUNT
as the target of the call, another instance of BANK ACCOUNT as the first
argument, and an integer as the second argument. For the first test call to this
routine, there are no inputs previously used, so ARTOO will pick objects with
corresponding types at random from the pool. Suppose at this point the pool
contains the following objects:

ba1: BANK_ACCOUNT, ba1.owner="A", ba1.balance=675234
2 ba2: BANK_ACCOUNT, ba2.owner="B", ba2.balance=10
ba3: BANK_ACCOUNT, ba3.owner="O", ba3.balance=99
ba4 = Void

5 i1: INTEGER, i1 = 100
i2: INTEGER, i2 = 284749
i3: INTEGER, i3 = 0

8 i4: INTEGER, i4 = -36452
i5: INTEGER, i5 = 1
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Suppose ARTOO picks ba3 as target, ba1 as first argument and i5 as second
argument for the first call to transfer. These 3 values are saved to disk and then
the call is executed:

ba3.transfer(ba1, i5)

The state of the object pool is now as follows:

ba1: BANK_ACCOUNT, ba1.owner="A", ba1.balance=675235
2 ba2: BANK_ACCOUNT, ba2.owner="B", ba2.balance=10
ba3: BANK_ACCOUNT, ba3.owner="O", ba3.balance=98
ba4 = Void

5 i1: INTEGER, i1 = 100
i2: INTEGER, i2 = 284749
i3: INTEGER, i3 = 0

8 i4: INTEGER, i4 = -36452
i5: INTEGER, i5 = 1

For the next call to transfer, ARTOO chooses a target by picking the non-void
object of type BANK ACCOUNT that is furthest from the already used target.
For the first argument it picks the instance of BANK ACCOUNT that is furthest
from the first argument previously used, and likewise for the integer argument. It
thus chooses ba1 as target, ba4 as first argument (void references always have the
maximum possible distance to non-void references), and i2 as second argument.
These values are saved and the call is executed:

ba1.transfer(ba4, i2)

This triggers an attempt to call a routine on a Void target (through the instruc-
tion other_account.deposit (sum) in the body of routine transfer), which
results in an exception, so ARTOO has found a fault in routine transfer. The pre-
condition of this routine should state that other account must be non-void.

The pool is not changed and ARTOO picks again the objects with the highest
average distances to the already used ones. So ba2 is chosen as both target and
first argument, and i4 as second argument. The values are saved and the call is
executed:

ba2.transfer(ba2, i4)

This triggers a postcondition violation in transfer since trying to transfer a neg-
ative amount from the current account does not reduce the balance of the cur-
rent account. ARTOO has thus found another fault, since transferring negative
amounts should not be allowed. It is interesting to note that this call actually
exposes another fault, namely that transferring money from an account to itself
should not be allowed.

For simplicity this example did not consider the creation of objects between
test calls. In practice, objects are created with a certain probability and added to
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the pool between calls to routines under test, so ARTOO also considers these new
instances when selecting the inputs.

6.2.4 Optimization

The ARTOO algorithm described above computes, before each call to a routine
under test, distances between all pairs of already used and available objects. As
testing proceeds, both the number of already used and the number of available
objects increases2, and so does the time required to run the ARTOO algorithm.

To remove this performance penalty, we have developed a version of the AR-
TOO algorithm that considers a constant number of objects for every input se-
lection. In the following we refer to this version of the ARTOO algorithm as
ARTOO*. ARTOO* was implemented by Cosmin Mitran in his Diploma Thesis
[113] as an input generation plug-in for AutoTest.

ARTOO* proceeds in the following way for every input:

1. It generates N candidate inputs. A candidate input can either be a newly
created object or an object selected randomly from the pool and diversified.
If no objects of the required types are yet available in the pool, ARTOO*
skips the diversification step. Otherwise, it selects randomly one of the
objects of the required type available in the pool and calls on it one of its
procedures. If this procedure needs arguments, they are created with the
basic random strategy.

2. It randomly selects K of the already used objects.

3. It computes the distances between the N candidate inputs and the K al-
ready used objects.

4. It selects the candidate that is the furthest away from the K already used to
be used as input for the test.

5. Out of the α objects that are closest to the K already used ones, the newly
created ones are removed from the object pool.

In this algorithm N , K, and α are constants. Experimental results detailed in
[113] indicate that the values chosen for N and α have the biggest influence on
testing results. Overall, N = 3, α = 2 and K = 5 delivered the best results.

2It must be noted that, due to the interpreter restarts during the testing session emp-
tying the object pool, the number of available inputs does not grow constantly during the
testing session.
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6.3 Combining random testing, ARTOO, and
manual testing

Manual tests generally reflect a tester’s intuition of which inputs could uncover
faults in the software under test. Starting from this assumption and based on the
ideas of ARTOO, we developed a testing strategy that selects inputs based on two
criteria:

• Minimal distance to inputs used in manual tests and

• Maximal distance to inputs already used in automated tests.

We first present the details of this testing algorithm and then its implementa-
tion in AutoTest.

6.3.1 Algorithm
To combine the two criteria for input selection, this testing strategy computes,
for every automatically generated candidate input, a combination of its average
distance to already used inputs (AD) and its average distance to manual inputs
(MD). Combining these two measures into a formula yields: D = A ∗ AD + B ∗
MD, where A and B are constants.

To be selected, a candidate should have a high AD and a low MD. For the
implementation of this testing strategy we chose A = 1 and B = -1, hence D =
AD−MD. The candidate with the highest value for D is chosen to be used in the
test.

As an optimization, we further group the manual objects into clusters and then
compute the distances of candidate objects only to the cluster centers, rather than
to individual manual objects. We used the maxi-minimum clustering algorithm,
which proceeds as follows, given a set S of objects that must be grouped into
clusters:

1. Select the 2 objects that are furthest away and create 2 clusters having them
as centers. Remove these 2 objects from set S.

2. Select an object from the set S and compute its distance to the centers of all
clusters. Assign the object to the cluster to whose center it is closest and
remove it from set S.

3. Repeat step 2 until set S is empty.

4. Compute the average distance D between the centers of all clusters.

5. Take one of the existing clusters, C, and select its member object O that is
furthest away from the center of the cluster. If the distance between O and
the center of C is greater than D/2, then create a new cluster with the center
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in O and remove all members from cluster C except its center, and add them
to S.

6. Repeats step 5 until all clusters are processed.

7. If there is at least one new cluster, go to step 2, otherwise the algorithm is
finished.

6.3.2 Implementation
In the spirit of the optimization for ARTOO described in section 6.2.4, the im-
plementation for this testing strategy also uses constant numbers of objects for
calculating distances. It proceeds very similarly to ARTOO*, with the exception
of the selection criterion:

1. It generates N candidate inputs, by creating new objects and by diversify-
ing existing ones from the pool. Manual objects are never diversified.

2. It randomly selects K of the already used objects.

3. It computes the average distance AD between each of the N candidate in-
puts and the K already used objects.

4. It computes the average distance MD between each of the N candidate
inputs and the manual inputs used for testing the feature.

5. It selects the candidate with the highest D = AD−MD to be used as input
for the test.

6. Out of the α objects with the lowest D, the newly created ones are removed
from the object pool.

Experiments using a prototype implementation [113] showed that such a com-
bined strategy can reduce the number of tests to first fault by an average factor of
2 compared to the basic implementation of ARTOO.
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CHAPTER 7

TOWARDS BETTER CONTRACTS:
CONTRACT INFERENCE WITH
CITADEL

As shown in chapter 5, the presence of contracts embedded in software source
code is essential for automated testing solutions. Contracts are also important
in debugging, because they help locate faults: a precondition violation signals
a fault in the caller of a routine, while a postcondition or an invariant violation
signals a fault in the routine itself. Thus the location of the contract violation
is typically very close to the location of the actual fault in the software. This
property of contracts is important for all types of tests, from the unit level to
the system level: because classes in O-O programs are typically closely coupled
and need to cooperate for achieving tasks, in the event of a software failure it is
hard, in the absence of contracts, to accurately lay blame on the software module
containing the fault. Briand et al. [28] show that the effort of isolating a fault once
a failure occurred is reduced approximately 8 times in the presence of contracts.

Given these benefits of contracted code, Eiffel developers do indeed include
assertions in the programs they write, as shown in Chalin’s study [31]. However,
these assertions are most often incomplete and sometimes incorrect, in the sense
that they do not reflect the intended specification of the software, as discussed in
detail in section 8.4.1.

One way to improve these existing contracts is by inferring additional ones
from the implementation. This is the approach that the Daikon tool [55] takes:
given a set of passing test cases that exercise the code, Daikon infers assertions
that hold at various program points (e.g. routine entry and exit) for the executions
of the system through the test cases. Generalizing from these observations, one
concludes that these assertions may hold for all program runs.

Daikon has already been used by several testing tools for automatically infer-
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ring the program specification, as detailed in section 4.3.3, but to our knowledge
no studies have yet been carried out about how programmer-written assertions
compare to inferred ones. A clear characterization of how programmer-written
and inferred assertions compare is necessary in order to understand if and how
assertions inference tools can assist humans in writing assertions and if they play
distinct roles in producing high-quality executable specification.

To investigate these questions, we developed an Eiffel front-end for Daikon
which allows us to infer contracts for Eiffel programs using the Daikon engine.
The resulting tool is called CITADEL (Contract Inference Tool Applying Daikon
to the Eiffel Language) and was implemented as a Master’s project by Nadezda
Polikarpova [126].

This chapter first gives an overview of the Daikon tool (section 7.1) and de-
scribes the Eiffel front-end (section 7.2). It then presents the experiments we ran to
compare inferred to programmer-written contracts, and analyzes and interpretes
the experimental results (section 7.3).

7.1 Daikon

7.1.1 Overview
Daikon was created by Michael Ernst in the late 1990’s and is still being further
developed and improved today. It has been used both unchanged and with var-
ious modifications by numerous other research projects1 and has also been in-
cluded in industrial tools, such as Agitar’s AgitarOne, previously called Agitator
[26].

Daikon is a contract inference tool. Its contract detection process is based on
checking a set of assertion templates over all variables and combinations thereof
in scope at a certain program point. More exactly, Daikon maintains a list of as-
sertion templates which it instantiates using various program variables at routine
entry and exit and checks if they hold for the executions of the program through
a given set of test cases. As soon as an assertion does not hold for an execution, it
is eliminated and not checked again for further executions.

Figure 7.1 shows an overview of the architecture of the tool. The main steps
involved in the assertion inference process are the following:

• The program is instrumented so that, at certain program points, it saves the
values of the variables in scope to a data trace file.

• The instrumented program is exercised through a test suite. Each run of the
program results in a data trace file.

1A continuously updated list is available at http://groups.csail.mit.edu/
pag/daikon/pubs/#daikon-methodology.

http://groups.csail.mit.edu/pag/daikon/pubs/#daikon-methodology
http://groups.csail.mit.edu/pag/daikon/pubs/#daikon-methodology
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Figure 7.1: Architecture of the Daikon tool (adapted from [55]).

• Daikon creates the list of potential assertions and checks them against the
variable values recorded in the data trace files.

• During assertion checking, Daikon also performs two other actions: it fil-
ters out those assertions that are likely not relevant to programmers and it
introduces derived variables.

The following subsections present some of these steps in more detail.

7.1.2 Contract detection process
As explained above, Daikon detects assertions by checking if they hold for the
variable values recorded in the data trace file. For simplicity and language in-
dependence, Daikon supports only a small set of data formats: integers, floating
point numbers (only minimally supported), booleans, strings, hashcode (a special
type for representing memory addresses) and sequences of these types. Hence all
values recorded in the data trace files must have one of these formats.

The assertion templates that Daikon checks fall into the following categories,
where x, y and z are variables and a, b and c are constants:

• Assertions over any variable: constant value (x = a), small value set (x ∈
{a, b, c}), uninitialized

• Assertions over a numeric variable: range limits (x ≥ a, x ≤ b), modulus (x
mod a = b), etc.

• Assertions over 2 numeric variables: linear relationship (y = a ∗ x + b),
ordering (x < y, etc.), functions (y = fn(x), where fn is a built-in unary
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function), etc.

• Assertions over 3 numeric variables: linear relationship (z = a∗x+b∗y+c,
etc.), functions (z = fn(x, y), where fn is a built-in binary function)

• Assertions over a sequence variable: minimum and maximum sequence
values, element ordering, invariants over all sequence elements, etc.

• Assertions over 2 sequence variables: linear relationship elementwise, lex-
icographic comparison (x < y, etc.), subsequence relationships, etc.

• Assertions over a sequence and a numeric variable: membership (x ∈ y)

The complete list of assertion templates that Daikon checks can be found in
[55]. Users can also add their own assertion templates and variable derivation
rules. In the experiments described in section 7.3, we used a subset of Daikon’s
standard template library — we did not check for a few very seldom occurring
templates such as those involving bit-wise operations, the “OneOf” template for
references (stating that the address of an object attached to the reference is always
the same or has only very few values), the “NonEqual” template (which results
in many irrelevant inequalities) and for most classes also the “Numeric” template
(which yields assertions with multiplication, division, power, modulo).

Daikon checks assertions at routine entry and exit. This way it can infer rou-
tine pre- and postconditions. Daikon also identifies assertions that hold at both
entry and exit of all public routines, promoting them to class invariants. Daikon
can also detect assertions involving static class variables, but, as Eiffel does not
support such variables, this property is not relevant to our study.

7.1.3 Selection of reported contracts
Daikon implements several strategies for selecting, out of the complete list of
assertions that held during the program executions, those that are most likely to
be relevant to programmers. In the Daikon terminology, an assertion is relevant
“if it assists a programmer in the programming activity” [55].

Additionally, to achieve the same purpose of generating assertions relevant
to programmers, Daikon can derive variables from the ones recorded in the data
trace file. These variables also participate in the invariant inference process just
like the normal ones. Here are some examples of variables that Daikon derives:

• Variables derived from sequences: length of the sequence, extremal ele-
ments (first, second, last, last but one)

• Variables derived from numeric sequences: sum of the sequence elements,
minimum and maximum element

• Variables derived from numeric sequences and numeric variables: se-
quence element at a certain index, subsequences based on an index
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• Variables derived from function invocations: number of calls

Daikon can also derive variables from derived variables. The derivation
process stops at depth 2.

A further optimization that Daikon performs relates to variables that it de-
termines to be equal: it chooses one variable from the set of equal variables and
removes the others from the set of variables that it analyzes and derives from.

Daikon only reports assertions that it considers to not hold by chance, only in
the executed tests. To determine this, for each inferred assertion it calculates the
probability that the assertion would hold for random input. Only if this proba-
bility is lower than a user-specified confidence threshold does Daikon report the
assertion. This is called a confidence test. Every assertion template has its own
confidence test.

These confidence tests are dependent on the number of times an assertion is
observed to hold at a certain program point. However, if the program point is
executed several times without a variable in the assertion being assigned to be-
tween the executions of the program point, the statistical tests for that variable
can be unjustly influenced. Therefore Daikon implements several strategies for
deciding if an observation of a variable value should contribute to the confidence
level in an assertion or not. We do not present all these strategies here; details can
be found in [55]. Out of these strategies, experiments performed by the Daikon
developers showed the “changed value” strategy to work best. In this approach,
a variable value observed in a sample only contributes to the assertion confidence
level if the variable value has changed since the last time the assertion was eval-
uated at that program point.

So overall Daikon applies 3 tests to decide if it should report an assertion:

• There should be sufficiently many observations of the variable values

• There should be sufficiently many samples contributing to the confidence
level

• The statistical confidence level of the assertion should be above the user-
provided limit

Daikon also tries to not report assertions that are already implied by others.
It achieves this by:

• Not introducing redundant derived variables (ones that are equal to exist-
ing variables)

• Not checking assertions whose evaluation it already knows

• Pruning more redundant assertions before displaying the results
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The first two steps have the highest impact on Daikon’s performance.
Daikon does not use a general-purpose theorem prover for deriving implica-

tion relationships between assertions. Rather, it uses a set of hard coded checks
for ways in which such implications can occur between the known assertions
templates.

Daikon eliminates further assertions by determining that they in-
volve unrelated variables. As an example, as assertion of the form
person.age > person.number_of_children stating that a person’s
age is always greater than the number of children that person has is true, but
very likely uninteresting for programmers. Several approaches for deciding if
two variables are comparable (related) or not are possible: variables declared
of the same type are always comparable; variables whose types are coercible
are comparable; variables that occur in the program in the same expression
are comparable (this is the basis of the Lackwit typing mechanism [117]); all
variables are comparable. The experiments reported in [55] suggest that the
Lackwit approach is the most appropriate in terms of performance and detection
of relevant assertions.

7.1.4 Test suite selection
The test suite used to exercise the program has a clear influence on the quality of
the inferred assertions. Several questions arise:

• How does test suite size influence the inferred assertions?

• How do other measures of test suite quality (such as code coverage) influ-
ence the inferred assertions?

• Can automatically generated tests be used for assertion inference and, if so,
which generation method produces the best results?

Increasing test suite size affects inferred assertions through (1) increased con-
fidence levels (due to the higher number of executions of the program points)
and (2) potentially more falsified invariants. Increasing a quality measure of the
test suite, such as coverage, is intuitively also likely to produce better inferred
assertions by falsifying more irrelevant assertions.

Several studies of the effect of the test suite on Daikon-inferred assertions
have been carried out both by the Daikon developers and by other researchers.
Nimmer and Ernst [115] showed that Daikon produces, even from relatively
small test suites, assertions that are consistent and sufficient for automatic ver-
ification (proving the absence of runtime errors) with very little change. Nimmer
and Ernst [116] also showed that test cases exercising mainly corner cases are
not suited for assertion inference. Gupta et al. [69] showed that existing code
coverage criteria (branch coverage, definition-use pair coverage) do not provide
test suites that are good enough for invariant detection (they produce many false,
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test-suite-dependent invariants); however, test suites that satisfy these traditional
criteria produce more relevant assertions than random.

7.1.5 Performance and usability
The most important factor affecting Daikon’s performance is the number of vari-
ables it has to examine at every program point. In the worst case, assertion in-
ference is cubic in this number of variables, due to the invariant templates over 3
variables. Assertion inference is also linearly dependent on the following:

• The number of program points

• The number of times a program point is executed

• The number of assertions that are checked at every program point (In prac-
tice this number keeps decreasing as execution progresses, because invari-
ants are not checked anymore after they are falsified once.)

The best single predictor for the time required by the assertion detector is the
number of pairs of variable values that the assertion detector encounters [55].
This number correlates in turn with the total number of values, but cannot be
predicted from other factors.

A study of users’ experience with Daikon [116] showed that using Daikon
does not speed up or slow down users trying to annotate programs with asser-
tions, but it improves recall (how many of the assertions written by users are
correct) and bonus (ratio of verifiable assertions to the minimal set). Half of the
users participating in this study considered Daikon to be helpful, especially be-
cause they could use the generated assertions as support for finding others. More
than half the users found removing incorrect assertions easy. About a third of the
users complained about the textual size of the generated assertions.

7.2 CITADEL
The Daikon front-end for Eiffel is called CITADEL. It was implemented as part of
a master’s thesis by Nadezda Polikarpova [126].

CITADEL performs the following steps:

• It instruments the Eiffel class(es) for which it must infer assertions so that
its/their execution produces a trace file in the format required by Daikon.

• It generates a declarations file describing the format of the data trace file.

• After running the given tests on the instrumented program, it feeds the
generated data trace files to the Daikon engine, which infers likely asser-
tions.
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Figure 7.2: Overview of the assertion inference process for Eiffel pro-
grams. Adaptation of Figure 7.1, showing which steps are performed by
CITADEL and which by Daikon.

• It adds these inferred assertions to the program text.

Figure 7.2 shows an overview of the process, evidencing which steps are per-
formed by CITADEL and which by Daikon.

Instrumentation and examined variables
The instrumenter component of CITADEL adds logging instructions to Eiffel pro-
grams at points of interest. In its current implementation, these points are: routine
entry (for inferring preconditions), routine exit (for inferring postconditions) and
loops (for inferring loop invariants). At each such point, the instrumented ver-
sion of the program will output the values of variables in scope to the data trace
file. These variables are the following:

• At routine entry: the Current object, routine arguments (if any), and all
zero-argument queries of the enclosing class exported to the same clients
as the routine itself

• At routine exit: the Current object, routine arguments (if any), all zero-
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argument queries of the enclosing class, and Result

• For object invariants (inferred from assertions that hold at all entry and exit
points for exported routines): the Current object and all zero-argument
queries of the enclosing class

• For loop invariants: the Current object, routine arguments (if any), all
zero-argument queries of the enclosing class, Result (if the routine is a
query), and local variables, if any

Using function results as part of the variables whose values Daikon examines
raises two problems. First, executing the functions to get the return values can
have side effects. The Daikon front-end for Java solves this problem by requir-
ing that users who turn on the option of including functions in assertions pro-
vide a so-called “purity file”, listing all functions which are side-effect free and
hence safe to evaluate at runtime as part of the assertion inference process. In
Eiffel the situation is different, because of the command-query separation prin-
ciple, which states that it is should be transparent to clients if a zero-argument
query is implemented through a function or attribute. Hence, to be consistent
with this principle, in CITADEL we opted for including both attributes and func-
tions with no arguments in inferred assertions. There is indeed no mechanism
in Eiffel preventing side-effects in functions, but such side-effects are strongly
discouraged. Therefore we consider that the added expressiveness of inferred
assertions including zero-argument functions outweighs the potential danger of
changing system state through assertion evaluation.

Second, it can be the case that the programmer-written precondition of a func-
tion is not satisfied when the function is called as part of the state-logging process;
any valued returned by a function when executed outside of its precondition is
not representative of the functions’s behavior. CITADEL hence checks, before any
function evaluation, that the function’s precondition holds. If this is not the case,
CITADEL just indicates that the function cannot be evaluated by using the spe-
cial Daikon value “nonsensical”. This value is also used when the target object
on which the query should be evaluated is Void.

The instrumenter also creates the declarations file, which contains declara-
tions of program points. Such declarations must contain the name of the program
point and information about the variables whose values are recorded in the data
trace file for the program point: the variable’s name, its type, and whether the
variable is comparable or not.

Given this declarations file and the data trace files, Daikon infers likely asser-
tions at the program points listed in the declarations file. It outputs these inferred
invariants to standard output in textual form and also serializes them to a file
as Java objects representing the inferred invariants. The annotator component of
CITADEL takes these inferred assertions and adds them to the source code of the
Eiffel classes on which it was run.



74
CHAPTER 7. TOWARDS BETTER CONTRACTS: CONTRACT INFERENCE WITH

CITADEL

CITADEL currently supports almost all Eiffel’s advanced language constructs
and allows inferring contracts for real-world classes. It also has some limitations:
for example, currently deferred and external features (written in other languages)
cannot be instrumented, and the return values of functions with arguments are
not monitored and hence cannot be included in the inferred assertions.

7.3 Inferred vs. programmer-written contracts
We developed CITADEL in order to investigate how automatically inferred as-
sertions compare to the ones written by programmers, with the final purpose of
determining to what degree an assertion inference tool can assist programmers in
the assertion-writing process.

In the context of Design by Contract, the benefits of a Daikon-like assertion
inference tool are inherently limited by the tool’s dependency on the existence of
an executable for the target system: as explained in detail above, Daikon works
by monitoring the states reached at runtime by a system executed through a set
of passing test cases, and by inferring the conditions that these states fulfill. This
naturally implies the existence of a fully functional system or at least one imple-
menting a subset of its use cases, whereas in the Design by Contract software
development method programmers are encouraged to write contracts before or
at the same time as the implementation. The reason for this is that contracts play a
role starting from the analysis and design phases of software development: writ-
ing contracts helps developers understand requirements and split up functional-
ity between software modules, so that each module implements a certain subset
of the system functionality, and it achieves this under certain conditions. These
benefits cannot be achieved by a tool like Daikon.

In the experiment we set out to answer the following questions, relating
to the absolute quality of the inferred assertions and to how these compare to
programmer-written ones:

• How many of the assertions inferred by CITADEL are correct and interest-
ing?

• How many of the programmer-written assertions are implied by the in-
ferred assertions and vice-versa? Is there an inclusion relationship between
these two types of assertions?

• How can assertion inference be used to assist programmers or to improve
the programmer-written assertions?

• What factors influence the quality of the inferred assertions? More pre-
cisely, can we find correlations between any code metrics and the quality of
the assertions inferred for that code?
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It is likely that a developer examining the correct and interesting inferred as-
sertions would find some of them more important than others. We did not in-
vestigate the question of how many inferred assertions would be classified by
a developer as “important” or “worth adding to the code”, because for such a
subjective decision the input of a creator or maintainer of the code would be nec-
essary and we did not have the possibility of involving such a person in the study.

7.3.1 Experimental setup
To answer these questions, we ran CITADEL on 15 Eiffel classes, 11 of them taken
from 3 widely-used Eiffel libraries and 4 written by students of Computer Sci-
ence. None of these classes were written especially for the study or modified in
any way. We tried to choose classes of different size, depth in the inheritance
hierarchy, with and without loops and also with diverse, but clear semantics.

Table 7.9 shows various code metrics for each class used in the experiment.
In the last column, it shows the percent of programmer-written assertions from
the instrumented routines that are expressible in Daikon’s grammar. This percent
varies widely, from a fourth of assertions for class GENEALOGY 2 to all asser-
tions for class ST WORD WRAPPER.

In the figures given below, to save space, we did not include the full names of
the classes, but used the abbreviations shown in table 7.9 instead.

The classes taken from libraries come from Base, Time and Gobo, libraries
which are included in the standard distribution of the most popular IDE for Eiffel
(EiffelStudio [2]) and are used by virtually all applications written in Eiffel. We
used the versions of these library included in version 6.2 of EiffelStudio. These
classes are highly reusable and presumably the effort spent to ensure their qual-
ity is accordingly high. In particular, library classes are usually equipped with
relatively high quality contracts.

Because we wanted to also include in the study code written by less expe-
rienced programmers, we also ran CITADEL on classes created by students of
Computer Science at the ETH Zurich: classes FRACTION1 and FRACTION2
were implemented as assignments in an introductory programming course in fall
2007 and classes GENEALOGY1 and GENEALOGY2 were implemented as part
of a project given in a software engineering course in spring 2008, course which
could be taken by students starting from the third year of their undergraduate
studies. These last two classes had a given common interface, including some
contracts. The students were not allowed to change the routine preconditions,
but they could add clauses to the other contracts. This must be considered when
interpreting the results of our study, because the contracts were not written by the
students alone, hence it can be assumed that the contract quality is higher than
for applications written entirely by students.

We ran CITADEL on each class with 3 manually-constructed test suites of
different sizes:
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• A small test suite, containing approximately 10 calls with different random
inputs to each instrumented routine and exercising the most typical behav-
ior of the class

• A medium-size test suite, which adds some partition tests that exercise less
typical behavior and contains about 50 calls to each instrumented routine,
and

• A large test suite, which does not differ from the medium one qualitatively,
but has 10 times more routine calls (naturally using different inputs); this
test suite hence contains about 500 calls to each instrumented routine.

As there have been previous investigations [55, 115, 116, 69] of the effect of
test suite size and other characteristics on the quality of assertions inferred by
Daikon, the purpose of our study was not related to such an investigation. Nev-
ertheless, we still evaluated CITADEL’s results on each class for 3 different test
suites because, as previous studies show, various characteristics of the test suite
influence the results of the tool.

7.3.2 Results
To give the reader an idea of the number and kind of assertions that CITADEL
infers, appendix A contains the listing of class ST SPLITTER annotated with the
contracts inferred by CITADEL based on the medium test suite.

In the following we present the results grouped by the overarching questions
that they are trying to answer: investigating the quality of the inferred assertions
(IA) in absolute terms and comparing them to programmer-written assertions
(PA). Since we use 3 different test suites to generate IA and the test suite has a
significant influence on the results, we present the quality measures for each test
suite separately.

Investigating the quality of the inferred assertions

To define the quality of the IA, we looked at two measures: the percent of correct
assertions out of all IA and the percent of relevant assertions out of all IA. By
definition, we say that an IA is correct if it reflects a property of the source code.
We say that an IA is relevant if it is correct and it expresses a property that is
interesting. We identify uninteresting IA based on:

• semantics – IA involving unrelated variables whose relation is purely ac-
cidental are uninteresting. For instance, an assertion of the form person.
birth_year > person.number_of_siblings is true (assuming that
years are represented as integers with 4 digits), but most likely uninterest-
ing.
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Table 7.1: Averages of the percentages of correct inferred assertions.
Small TS Medium TS Large TS

Loop invariants 80% 90% 93%
Preconditions 46% 80% 83%
Postconditions & 68% 90% 92%
class invariants
Total 67% 89% 91%

• constant definitions – IA that are trivially true because they refer to con-
stants (e.g. time1.hours_in_day = time2.hours_in_day, where
time1 and time2 are instances of the TIME class, which has a constant at-
tribute hours in day) are uninteresting.

• trivial implication (no knowledge of the source code is necessary to deduce
it) – IA that are trivially implied by other IA at the same program point
are uninteresting. As an example of a trivial implication, if it is already
inferred that (sorted_items /= Void)= Result, then an assertion
(sorted_items = Void)= (not Result) is uninteresting.

• misplacement of assertions – IA that conceptually belong in another type
of contract than where they were inferred are uninteresting. For instance, a
pre- or postcondition about an entity x that is implied by x’s class invariant
is uninteresting.

This provides an admittedly lenient definition of relevancy, but it is also an
objective definition. Another option would have been to ask a developer or main-
tainer of the tested code to rate the relevancy of the IA, but this was not possible
in our case.

Figure 7.3 shows the percent of correct IA other than loop invariants for each
class, for each test suite size. Figure 7.4 shows the percent of correct inferred loop
invariants for the classes containing loops. Figure 7.5 shows the total percent of
correct IA. Table 7.1 shows the averages, over all classes, of the percent of correct
IA, for each test suite size.

The medium-size test suite generally brings a substantial improvement over
the small one. The large test suite only brings a small improvement over the
medium-size one, if at all. For 13 of the classes, more than 80% of the assertions in-
ferred for the medium-size and large test suites are correct; this percentage drops
under 50% only for one class. For 4 classes, 100% of the assertions inferred for
the medium and large test suites are correct. For 4 other classes, this proportion
exceeds 95%. For the large test suite, the average correctness of IA exceeds 90%.

Figure 7.6 shows the percent of relevant IA other than loop invariants for each
class, for each test suite size. Figure 7.7 shows the same information for inferred
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Figure 7.3: Percentage of correct inferred assertions excluding loop invari-
ants.

Figure 7.4: Percentage of correct inferred loop invariants (only for the
classes containing loops).
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Figure 7.5: Total percentage of correct inferred assertions.

Table 7.2: Averages of the percentages of relevant inferred assertions.
Small TS Medium TS Large TS

Loop invariants 63% 70% 72%
Preconditions 33% 53% 54%
Postconditions & 57% 69% 67%
class invariants
Total 53% 66% 66%

loop invariants (only for the classes containing loops) and figure 7.8 shows the
total percent of relevant IA. Table 7.2 shows the averages, over all classes, of the
percent of relevant IA, for each test suite size.

Again, the medium-size test suite generally brings an improvement over the
small one, but for 4 classes smaller percents of relevant assertions are found
through the medium and large test suites than through the small one. The per-
cents of relevant assertions vary widely, from less than 20% to 100%; section 7.3.4
discusses various code metrics to which relevancy correlates and provides possi-
ble explanations for its variations. On average, around 65% of IA are relevant for
the medium and large test suites.

Comparing inferred assertions to programmer-written assertions

The first measure that we use to compare inferred to programmer-written asser-
tions is recall, showing what proportion of the PA were inferred or implied by
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Figure 7.6: Percentage of relevant inferred assertions excluding loop in-
variants.

Figure 7.7: Percentage of relevant inferred loop invariants.
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Figure 7.8: Total percentage of relevant inferred assertions.

inferred assertions. We consider two types of recall: recall of PA expressible in
Daikon, which we refer to as “expressible recall”, and recall of all PA, which we
refer to as “total recall”.

Figure 7.9 shows the expressible recall and figure 7.10 shows the total recall,
for each class and for each test suite size. Tables 7.3 and 7.4 show the averages of
the expressible recall and of the total recall over all classes.

While the expressible recall is higher than 0.9 for 6 out of the 15 classes for
the medium-size and the large test suites, the total recall exceeds 0.9 only for 1
class for the large test suite. This is also reflected in the averages: 0.86 for the
expressible recall and 0.51 for the total recall for the medium test suite. These
values show that not all PA are inferred by CITADEL, not even all expressible
ones.

It is also interesting to note that for all classes containing programmer-written
loop invariants, the expressible recall is 100% for all test suites for these loop in-
variants. The same stands for the total recall, with the exception of class FRAC-
TION1, for which the total recall is 67% for all test suite sizes. So overall the recall
for loop invariants is very high, but the low number of programmer-written loop
invariants in the code we examined suggests special care in generalizing this re-
sult.

IA and PA can also be compared based on the numbers of clauses they con-
tain. In general, the number of relevant IA is much higher than the number
of clauses of programmer-written assertions, as illustrated in figure 7.11, which
shows a comparison of the number of clauses in PA and the number of relevant
IA for the different test suite sizes.

Table 7.5 shows the averages of the relevant IA to PA for all test suite sizes.
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Figure 7.9: Expressible recall: proportion of programmer-written asser-
tions expressible in Daikon that are inferred or implied by the inferred
assertions.

Figure 7.10: Total recall: proportion of all programmer-written assertions
that are inferred or implied by the inferred assertions.
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Table 7.3: Averages of the expressible recall.
Small TS Medium TS Large TS

Loop invariants 100% 100% 100%
Preconditions 72% 97% 98%
Postconditons & 68% 81% 80%
class invariants
Total 67% 86% 86%

Table 7.4: Averages of the total recall.
Small TS Medium TS Large TS

Loop invariants 89% 89% 89%
Preconditions 54% 73% 74%
Postconditions & 42% 49% 48%
class invariants
Total 41% 51% 51%

For loop invariants, which programmers hardly ever write, the ratios are very
high. Somewhat surprisingly, the ratios are different for preconditions than for
postconditions and class invariants: with the small test suite, CITADEL finds
fewer relevant preconditions than programmers write; for the medium and large
test suites, it finds only marginally more preconditions than written by program-
mers. This factor is significantly higher for postconditions and class invariants:
CITADEL finds about 5 times more relevant assertions in these categories than
programmers write.

A possible reason for this striking difference between preconditions on the
one side and postconditions and class invariants on the other side has to do with
the way in which developers write code: they take care to accurately specify pre-
conditions, because preconditions make the job of implementing routines easier
(these conditions can be assumed and must not be checked for in the implemen-
tation), while postconditions and class invariants do not have such an effect, so
developers tend to neglect them. Another possible explanation has to do with
the way in which assertion inference tools work, namely with the dependency
between their results and the quality of the test suites they use: while finding
the postconditions from given preconditions is easy (it only requires executing
the routines), finding the correct preconditions is much harder, as the test cases
have to exercise enough calling situations, which requires inter-procedural rather
than intra-procedural cover. Thus, it is hard to come up with good test cases for
inferring preconditions, and this affects the performance of the tool.
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Figure 7.11: Comparison of the number of clauses in programmer-written
assertions and the number of relevant assertions inferred for the small,
medium-size and large test suite.

Table 7.5: Averages of the ratios of relevant inferred assertions to
programmer-written assertions.

Small TS Medium TS Large TS
Loop invariants 12.4 13.3 14.1
Preconditions 0.6 1.4 1.6
Postconditons & 4.5 5.8 5.4
class invariants
Total 4.5 5.9 5.8

We also calculated the percent of program points where no PA exist, but for
which there are relevant IA. Program points are routine entry and exit points
(corresponding to pre- and postconditions), loops (for loop invariants), and one
point per class for the class invariant. So the number of program points per class
is 2 * number of processed routines + number of loops + 1.

Figure 7.12 shows the percent of program points without PA but for which
relevant assertions were inferred. (The numbers in this figure include loop in-
variants. The results excluding loop invariants are not significantly different, be-
cause the examined classes contain only very few loops.) This percent varies a
lot, from 0% for class COMPARABLE to over 50% for the large test suite for class
BASIC ROUTINES. The averages of this percent for loop invariants, precondi-
tions, and postconditions and class invariants (shown in table 7.6) show again
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Figure 7.12: Percent of total program points where there are no
programmer-written assertions, but relevant assertions could be inferred.

Table 7.6: Averages of the percent of program points with relevant inferred
assertions and no programmer-written assertions.

Small TS Medium TS Large TS
Loop invariants 68% 70% 70%
Preconditions 2% 3% 5%
Postconditions & 28% 33% 35%
class invariants
Total 20% 23% 25%

that programmers write more preconditions than postconditions and class in-
variants, and that they write very few loop invariants. Naturally, these results
are highly dependent on the number of contracts written by developers, which
vary with the class and author of the code, so it is hard to generalize from them.
What these results do show, however, is that contract-inference tools can indeed
produce relevant assertions for program points for which programmers did not
write any assertions.

We also calculated two factors showing how PA and IA complement each
other:

• The strengthening factor of IA over PA α1 reflects how much stronger PA be-
come when IA are added and is calculated as the sum of the number of
relevant IA and PA, from which the IA implied by PA are subtracted, and
the result is divided by the number of PA:
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Table 7.7: Averages for the strengthening factor of inferred assertions over
programmer-written assertions.

Small TS Medium TS Large TS
Loop invariants 12.6 13.4 14.2
Preconditions 1.1 1.1 1.2
Postconditions & 5.3 6.1 5.9
class invariants
Total 5.2 6.1 6.0

α1 = relevantIA+PA−IA implied by PA
PA

• The strengthening factor of PA over IA α2 reflects how much stronger IA be-
come when PA are added and is calculated as the sum of the number of
relevant IA and PA, from which the PA implied by IA are subtracted, and
the result is divided by the number of relevant IA:
α2 = PA+relevantIA−PA implied by IA

relevantIA

Values strictly greater than 1.00 for these factors mean that strengthening occurs.
Table 7.7 shows the averages for α1 for loop invariants, preconditions, post-

conditions and class invariants, and finally the averages for α1 for all assertions.
Figures 7.13, 7.14 and 7.15 show the values of α1 for preconditions (figure 7.13),
postconditions and class invariants (figure 7.14), and for all inferred assertions, so
preconditions, postconditions, class invariants, and loop invariants (figure 7.15).
Classes BASIC ROUTINES and BI LINKABLE (abbreviated C2 and C14 respec-
tively) do not contain any programmer-written preconditions, hence the gap in
the graph for it for the strengthening factor for preconditions. The experiment
results thus show that overall IA can strengthen PA, but the strengthening factors
for preconditions are generally much lower than those for postconditions and
class invariants.

Table 7.8 shows the averages for α2 for loop invariants, preconditions, post-
conditions and class invariants, and finally the averages for α2 for all assertions.
Figures 7.16, 7.17 and 7.18 show the values of of α2 for preconditions (figure 7.16),
postconditions and class invariants (figure 7.17), and for all inferred assertions, so
preconditions, postconditions, class invariants, and loop invariants (figure 7.18).
The experiment results thus show that overall PA can strengthen IA, but to a
lesser degree than IA can strengthen PA.

7.3.3 Discussion
The experiment results show that inferred assertions can be used to strengthen
programmer-written contracts (postconditions and invariants) and that inferred
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Figure 7.13: Strengthening factor of inferred preconditions over
programmer-written preconditions.

Figure 7.14: Strengthening factor of inferred postconditions and class in-
variants over programmer-written postconditions and class invariants.
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Figure 7.15: Strengthening factor of all inferred assertions over all
programmer-written assertions.

Figure 7.16: Strengthening factor of programmer-written preconditions
over inferred preconditions.
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Figure 7.17: Strengthening factor of programmer-written postconditions
and class invariants over inferred postconditions and class invariants.

Figure 7.18: Strengthening factor of all programmer-written assertions
over all inferred assertions.
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Table 7.8: Averages for the strengthening factor of programmer-written
assertions over inferred assertions.

Small TS Medium TS Large TS
Loop invariants 1.0 1.0 1.0
Preconditions 2.2 1.2 1.2
Postconditions & 2.1 1.4 1.4
class invariants
Total 1.6 1.2 1.2

assertions can be sometimes used to correct existing contracts (strengthening pre-
conditions). Still, not all PA are inferred or implied by the IA and there are
about 20% program points where the programmer found nothing to specify and
Daikon could infer relevant assertions. So, in short, although IA strengthen PA
to a greater extent than vice versa, automated assertion inference does not find a
superset of the PA.

There is a further methodological point to be discussed here. In the Design
by Contract software development method, the manual process of writing con-
tracts starts already before the implementation work and can expand until after
the implementation is finished. Assertion inference tools can only be used when
the implementation is ready. Hence, by relying only on such a tool to produce
contracts, all the benefits involved in writing contracts already in the software
analysis and design phases and during implementation are lost. Thus, even if an
assertion inference tool could find all contracts written by programmers, such a
tool should not completely replace the manual work of writing contracts, but only
be used to strengthen existing contracts when the implementation is finished.

7.3.4 Correlations
In trying to establish which, if any, properties of the classes influence the quality
of the IA, we examined correlations between class metrics and the quality of as-
sertions inferred for each class. All correlations listed below were computed for
the experiment results using the Pearson product-moment correlation coefficient
and calculated for the set of assertions inferred for the medium-size test suite,
including the generated loop invariants. We define as strong correlations those for
which the correlation coefficient is between 0.7 and 1.0 for positive correlations
and -1.0 and -0.7 for negative correlations. We define as medium correlations those
for which the correlation coefficient is between 0.5 and 0.7 for positive correla-
tions and -0.7 and -0.5 for negative correlations.

Correctness and relevancy have strong negative correlations to the total num-
ber of IA (-0.95 and -0.69 respectively).

Correctness and relevancy of IA also have strong negative correlations to the
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number of integer zero-argument queries in a class (-0.81 and -0.73 respectively).
Integer queries with no arguments increase Daikon’s assertion search space sig-
nificantly, because Daikon has many assertion templates for integer variables,
some of these templates involving relations between 2 or 3 variables. The strong
positive correlation (0.76) between the number of integer queries with no argu-
ments and the total number of IA also shows this.

The number of immediate routines of a class (routines implemented in the
class itself, not inherited) also correlates negatively to the correctness (-0.59) and
relevancy (-0.55) of the IA. Since the number of immediate routines of a class
determines the number of program points where assertions can be inferred, the
number of immediate routines also increases the search space for assertions. The
positive correlation (0.62) between the total number of IA and the number of im-
mediate routines of a class also shows this.

Thus, all these results point to the conclusion that the increased search space
has a strong negative influence on the correctness and relevancy of the IA.

7.3.5 Threats to generalizations
Probably the biggest threat to generalizations of these results is the limited num-
ber of classes examined in the experiment. We selected classes written by pro-
grammers with various degrees of experience, classes having different semantics
and sizes in terms of various code metrics, but naturally their representativeness
is limited.

Furthermore, we only unit tested library classes; testing entire applications
would likely have produced different results. Examining classes from applica-
tions written by other developers is difficult mainly because the semantics of such
classes is often clear only to the programmers who originally wrote the code.
Without clear understanding of the semantics of a class it is hard to devise test
cases for it. In the present study we did not have the opportunity to involve
industrial developers.

As shown both by the results of this study and of previous investigations
[116, 69], the quality and size of the test suite has a strong influence on the quality
of the inferred assertions. We ran the experiment for 3 different test suites for
each class, but test suites of other sizes and with other characteristics would have
led to different results.

Since we could not discuss the IA with the developers of the classes used in
the study, we judged the correctness of the IA based on the implementation and
we used a fixed set of rules for determining which IA are interesting and which
not, as explained in section 7.3.2. It is likely that the results of the study would
have been different if the code developers had performed these classifications.

The results of our study are influenced by the technical characteristics of
Daikon and of the Eiffel front-end we developed for it. As such, the results apply
only to assertions inferred with this tool combination and are naturally sensitive
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to the presence of faults in either of the tools.

7.3.6 Conclusions
From the experiment results we can draw the following conclusions:

• A high proportion of inferred assertions are correct (reflect true properties
of the source code): around 90% for the medium and large test suites.

• A high proportion of inferred assertions are also relevant (correct and in-
teresting): around 66% for the medium and large test suites.

• Assertion inference can be used to strengthen programmer-written con-
tracts, as shown by a strengthening factor averaging at 6 for the medium
and large test suites.

• Assertion inference cannot find all contracts written by programmers; this
is proved by an average recall value of 0.5, hence only around half of the
programmer-written assertions are inferred or implied by the inferred as-
sertions.

• The quality of inferred assertions decreases with the size of the search
space: the more zero-argument integer queries and routines a class con-
tains, the more incorrect and uninteresting assertions are inferred. (Inte-
ger queries with no arguments increase Daikon’s assertion search space
because of the numerous assertion templates involving integer variables
used by the tool; the number of routines directly influences the number of
program points where assertions can be inferred.)

As a general conclusion, assertion inference cannot completely replace the
manual work of writing contracts, nor should it: contracts are a support in soft-
ware development starting from its very first phases of requirements engineer-
ing and analysis, and the task of writing them should not be postponed to the
stage when a full implementation of the system is already available. Neverthe-
less, at this stage assertion inference tools can be used to strengthen the exist-
ing programmer-written contracts, resulting in more accurate specification. This
comes at a price though: test suites are necessary for exercising the system and
programmers still need to sort out the irrelevant assertions (around a third of all
generated ones).
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CHAPTER 8

ANALYSIS OF RANDOM-BASED
TESTING STRATEGIES

A great variety of testing strategies and tools have been developed in recent years
both by the research community and in industry, based on different ideas and
assumptions, trying to tackle various issues in various ways. It is thus important
to thoroughly evaluate all these approaches’ areas of applicability and strengths
and weaknesses, because serious advances in software testing require a sound
experimental basis to assess the effectiveness of proposed techniques. Such an
assessment can be the basis of guidelines for testing practitioners for choosing a
testing strategy matching their purposes and constraints.

Such experimental evaluation can focus either on just one testing strategy and
investigate its applicability and performance, or on comparing several strategies
to find their relative strengths and weaknesses. Both types of investigations are
necessary.

This chapter presents and discusses the results of experiments we ran to

• Evaluate the performance of random testing

• Compare random testing to ARTOO

• Investigate the kind of faults that manual testing, automated random test-
ing, and user reports reveal

For each experiment, we describe the issues we wanted to investigate, the
hypotheses we started from, the setup of the experiment, and the results and
their interpretation. We also discuss threats to the validity of generalizations of
the results.
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8.1 Random contract-based testing
In the software testing literature, the random strategy is often considered to be
one of the least effective approaches. The advantages that random testing does
present (wide practical applicability, ease of implementation and of understand-
ing, execution speed, lack of bias) are considered to be overcome by its disadvan-
tages. However, what stands behind this claim often seems to be intuition, rather
than experimental evidence. A number of years ago Hamlet [75] already pointed
out that many of the assumptions behind popular testing strategies, and many
ideas that seem intuitively to increase testing effectiveness, have not been backed
by experimental correlation with software quality.

We have investigated the effectiveness of random testing at finding faults in a
significant code base with two distinctive properties: it is extensively used in
production applications and it contains a number of faults, which can be found
through automated testing. This makes it possible to assess testing strategies
objectively, by measuring how many of these faults they find and how fast. More
precisely, we set out to answer the following questions:

• How does the number of faults found by random testing evolve over time?

• How much does the version of the random algorithm used influence the
results and which such version produces the best results?

• Are more faults found due to contract violations or due to other exceptions?

Here is a summary of the main results:

• The number of found faults has a surprisingly high increase in the first few
minutes of testing.

• The version of the random testing algorithm that works best for a class for
a testing timeout as small as 2 minutes will also deliver the best results for
higher timeouts (such as 30 minutes).

• This version is not the same for all classes, but one can identify a solution
that produces optimal results for a specified set of tested classes.

• For testing timeouts longer than 5 minutes, more faults are found through
contract violations than through other exceptions.

We have also reported these results in [42].

8.1.1 Experimental setup
The experiment was performed using AutoTest and the ISE Eiffel compiler ver-
sion 5.6 on 32 identical machines, each having a Dual Core Pentium III at 1 GHz
and 1 Gb RAM, running Fedora Core 1.
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Table 8.1: Properties of the classes under test
Class LOC LOCC #Routines #Parent classes
STRING 2600 283 175 7
PRIMES 262 52 75 1
BOUNDED STACK 249 44 66 2
HASH TABLE 1416 156 135 3
FRACTION1 152 36 44 1
FRACTION2 180 32 45 1
UTILS 54 34 32 1
BANK ACCOUNT 74 43 35 1

We chose the classes to test in the experiment so that they come from different
sources and have varying purposes, sizes, and complexity:

• Classes from EiffelBase 5.6 [8], an industrial-grade library used by virtually
all projects written in ISE Eiffel, similar to the System library in Java or C#:
STRING, PRIMES, BOUNDED STACK, HASH TABLE.

• Classes written by students of the Introduction to Programming 2006/2007
course at ETH Zurich for an assignment: FRACTION1, FRACTION2.

• Classes created by us exhibiting some common faults found in object-
oriented applications: UTILS, BANK ACCOUNT.

The last four classes are available at
http://se.inf.ethz.ch/people/ciupa/test results. The others
are available as part of the EiffelBase library version 5.6 [8]. The classes from the
EiffelBase library and those written by students were not modified in any way
for this experiment.

Table 8.1 shows various data about the classes under test: number of lines of
code (LOC), number of lines of contract code (LOCC), number of routines (includ-
ing those inherited), number of parent classes (also those that the class indirectly
inherits from).

We ran AutoTest on each class for 30 minutes, for three different seeds for the
pseudo-random number generator, for all combinations of the following values
for each parameter to the input generation algorithm:

• PGenNew (the probability of creating new objects rather than directly using
existing ones) ∈ {0; 0.25; 0.5; 0.75; 1}

• PDiv (the probability of calling a procedure on an object chosen randomly
from the pool after running each test case) ∈ {0; 0.25; 0.5; 0.75; 1}

http://se.inf.ethz.ch/people/ciupa/test_results
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• PGenBasicRand (the probability of generating values for basic types ran-
domly rather than selecting them from a fixed predefined set of values) ∈
{0; 0.25; 0.5; 0.75; 1}

These parameters are explained in more detail in section 5.5.
Thus, we ran AutoTest for each of these classes for 30 minutes, for every com-

bination of the 3 seed values, 5 values for PGenNew, 5 values for PDiv, and 5 values
for PGenBasicRand. So there were 3 * 5 * 5 * 5 = 375 30-minute test sessions per class,
amounting to a total test time of 90000 minutes or 1500 hours.

We then parsed the saved test logs to get the results for testing for 1, 2, 5, 10,
and 30 minutes. (This approach is valid since AutoTest tests routines in the scope
in a fair manner, by selecting at each step the routine that has been tested the least
up to the current moment. This means that the testing timeout does not influence
how AutoTest selects which routine to test at any time.)

Hence, for each combination of class, seed, timeout, and probability values,
we get the total number of found faults and the number of these faults which
were found due to contract violations and due to other exceptions, respectively.
Since there are 5 timeout values and 375 test sessions/class, this produced 5 * 375
= 1875 test session results per class.

Here we only reproduce part of the raw data. The results
and conclusions are based on the entire raw data, available at
http://se.inf.ethz.ch/people/ciupa/test results.

The criterion we used for evaluating the efficiency of the examined strate-
gies is the number of faults found in a set time. Although several other criteria are
commonly used to evaluate testing strategies, we consider this criterion to be the
most useful, since the main purpose of unit testing is to find faults in the modules
under test.

8.1.2 Results and analysis
This section analyzes the results with respect to the questions stated as the goals
of the experiment.

How does the number of found faults evolve over time?
To determine how the number of found faults evolves with the elapsed time we
look at the highest number of faults (averaged over the three seeds) found for
each timeout for every class. For the classes tested in the experiment, the evolu-
tion was inversely proportional to the elapsed time: the best fitting that we could
find was against a function f(x) = a

x +b. Table 8.2 shows, for each class under test,
the parameters characterizing the fitting of the evolution of the number of found
faults over time against this function with 95% confidence level. The parameters
quantifying the goodness of fit are:

• SSE (sum of squared errors): measures the total deviation of the response

http://se.inf.ethz.ch/people/ciupa/test_results
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Table 8.2: Parameters characterizing the fitting of the evolution of the
number of found faults over time against the function f(x) = a/x + b.

Class name a b SSE R-square RMSE
BANK ACCOUNT -1.25 2.58 0.03 0.96 0.10
BOUNDED STACK -4.20 11.6 0.11 0.98 0.23
FRACTION1 -0.45 3.14 0.01 0.86 0.10
FRACTION2 -2.19 2.93 0.45 0.86 0.38
HASH TABLE -14.48 19.57 9.64 0.93 1.79
PRIMES -4.8 6.96 0.39 0.97 0.36
STRING -10.37 11.47 1.24 0.98 0.64
UTILS -3.16 3.82 0.15 0.97 0.22

values from the fit. A value closer to 0 indicates that the fit will be more
useful for prediction.

• R-square: measures how successful the fit is in explaining the variation of
the data. It can take values between 0 and 1, with a value closer to 1 indi-
cating that a greater proportion of variance is accounted for by the model.

• RMSE (root mean squared error): an estimate of the standard deviation of
the random component in the data. An RMSE value closer to 0 indicates a
fit that is more useful for prediction.

Figures 8.1, 8.2, and 8.3 illustrate the results of the curve fitting for classes
STRING, PRIMES, and HASH TABLE respectively. They show both the best fit-
ting curves (as given in Table 8.2) and the actual data obtained in the experiment.

How much do the values of the probabilities influence the number of
found faults for every timeout?
Table 8.3 shows the minimum and maximum number of faults found (averaged
over the three seeds) for every timeout using all combinations of probability val-
ues for each class.

These results show that the minimum number of faults found stays constant
or increases very little with the increase of the timeout. In other words, for each
timeout, there exists at least one combination of probabilities which performs sur-
prisingly badly compared to others. For all classes under test (with the exception
of PRIMES) a value of 0 for the probability of generating new objects delivered
bad results. A value of 1 for the probability of generating basic values randomly
had the same effect.

Classes HASH TABLE, STRING, and BOUNDED STACK especially show a
high difference between the maximum and minimum numbers of faults found for



100 CHAPTER 8. ANALYSIS OF RANDOM-BASED TESTING STRATEGIES

Figure 8.1: Evolution of the number of found faults over time for class
STRING

every timeout. This shows that the performance of the random testing algorithm
can vary widely with the combination of probabilities that is chosen.

Which version of the random generation algorithm maximizes the
number of found faults?
The goal of this analysis is to find the combination of probability values that max-
imizes the number of found faults, first over all tested classes and over all time-
outs, and then individually per class and timeout (1, 2, 5, 10, and 30 minutes).
Since the seed influences the results, the results are averaged over the 3 seed val-
ues.

The best combination of probabilities averaged over all classes and timeouts
is C0 such that PGenNew0 = 0.25, PDiv0 = 0.5, and PGenBasicRand0 = 0.25. With this
combination of probabilities, the average percent of faults that is lost by timeout
and by class compared to the highest number of faults that could be found (by
the optimal combination of probability values for that specific class and timeout)
is 23%.

If the low timeout values (1 and 2 minutes) are excluded from this calcula-
tion, then combination C0 does not find at most 44% of the faults. This is not
significantly different from the best value: 43%.

Another analysis groups results by classes and looks for tendencies over each
of the classes. Table 8.4 gives a more detailed view of the results. For each
class and for each timeout of 2, 5, 10, and 30 minutes, the table shows values
for PGenNew and PGenBasicRand that uncover the highest number of faults. When
there is more than one value, several values uncover the same number of faults or
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Figure 8.2: Evolution of the number of found faults over time for class
PRIMES

the difference between the highest and second highest numbers of faults is very
low. The question marks stand for inconclusive results, that is cases where there
were several values for the probabilities which uncovered the same maximum
number of faults, and there was no clearly predominant value for the probabil-
ity in question. The probability of diversifying is not shown in the table because
clear correlation could not be made between its value and the number of faults.
Results for classes FRACTION1 and FRACTION2 were also unclear. The issue
with these classes was that the total number of faults is small (3) and a minimal
variation impacts greatly on the tendency.

The results show that the most effective probability values differ from class to
class, but, in most cases, they either change very little or not at all with the timeout
for a particular class. In other words, for a certain class, the same combinations
provide the best results regardless of the timeout of testing.

According to the results in Table 8.4, a value of 0.25 for PGenNew seems gen-
erally to deliver good performance, confirming the result explained above. Ex-
ceptions from this rule are classes BOUNDED STACK, PRIMES, and UTILS. A
likely explanation for the different results for the last two classes is that very lit-
tle of their behavior is dependent on their state, so, if they contain any faults,
these faults will manifest themselves on newly created objects too, and not only
on objects in a certain state.

Low values for PGenBasicRand (0, 0.25) also seem to deliver the best results in
most cases. Again, classes BOUNDED STACK and PRIMES have different be-
havior: in these classes and in class HASH TABLE, the most faults are uncovered
for PGenBasicRand = 0.75 or 1. In the case of class PRIMES, the most obvious rea-
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Figure 8.3: Evolution of the number of found faults over time for class
HASH TABLE

son is its very nature: a class implementing the concept of prime numbers is best
tested with random values, not with values chosen from a limited set, which have
no relation to the characteristics of the class.

As a general conclusion, the combination of factors C0 gives the best overall
result but the process can be fine-tuned depending on the classes that are tested.
This fine-tuning is not dependent on the timeout value chosen. However, if time
permits, one should run random testing several times with different values for
the parameters, because, even though a certain combination of parameters may
find fewer faults than another, it may find different faults.

Are more faults found due to contract violations or due to other ex-
ceptions?
The Design by Contract software development method recommends that the con-
tracts be written at the same time as (or even before) the implementation. Eiffel
programmers generally follow this practice, but the contracts that they write are
most often weaker than the intended specification of the software and sometimes
even contradictory to this intended specification. When contracts are used as or-
acles in testing, any condition that is not expressed in them cannot be checked,
so faults might be missed. For this reason we consider uncaught exceptions also
to signal faults. But what contribution does each of these two factors have to the
total number of found faults?

Figure 8.4 shows the evolution over time of the number of faults found
through contract violations and that of the number of faults found through other
exceptions for class STRING. The values shown on the graph are obtained by av-
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Table 8.3: Minimum and maximum number of faults found for each time-
out, averaged over the 3 test runs for each class using different seeds.

Time- UTILS PRIMES BANK ACCOUNT
out Min Max Min Max Min Max

1 0.00 0.66 0.33 2.00 0.00 1.33
2 0.00 2.33 3.00 5.00 0.00 2.00
5 0.00 3.00 3.33 5.66 0.00 2.33

10 0.00 3.33 3.33 6.33 0.00 2.33
30 0.00 4.00 3.33 7.00 0.00 2.66

FRACTION1 FRACTION2 HASH TABLE
Min Max Min Max Min Max

1 0.00 2.66 0.00 1.00 1.00 6.00
2 2.00 3.00 0.00 1.33 1.00 11.00
5 2.00 3.00 0.00 2.33 1.00 15.33

10 2.00 3.00 0.00 3.00 1.00 17.66
30 2.00 3.00 0.00 3.00 1.00 21.33

STRING BOUNDED STACK
Min Max Min Max

1 0.00 1.33 0.66 7.33
2 0.00 6.00 1.00 9.66
5 0.00 9.00 1.00 11.00

10 0.00 10.00 1.00 11.00
30 0.00 12.00 1.00 11.00

eraging over the numbers of faults found for every timeout by all versions of the
random algorithm. For most other classes this evolution is similar. One concludes
that over time the proportion of faults found through contract violations becomes
much higher than that of faults found through other thrown exceptions. For short
timeouts (1 or 2 minutes) the situation is reversed.

Extreme cases are those of classes BOUNDED STACK, BANK ACCOUNT,
and PRIMES. Figure 8.5 shows the evolution over time of the number of faults
found through contract violations and that of the number of faults found through
other exceptions being thrown for class BOUNDED STACK. One notices that,
regardless of the timeout, the number of faults found by contract violations is
always higher than the number of faults found through other exceptions. Fur-
thermore, this latter number increases only slightly from timeout 1 to timeout 2,
and then does not increase at all. For classes BANK ACCOUNT and PRIMES,
all versions of the random generation algorithm constantly find more or an equal
number of faults through contract violations than through other exceptions.
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Table 8.4: Probability values that maximize the number of found faults for
each timeout

Class name PGenNew PBenBasicRand

2 5 10 30 2 5 10 30

BANK ACCOUNT 0.25 0.25 0.25 0.25 ? 0 0.25 0
0.5 0.25 0.25

BOUNDED STACK 0.5 0.75 0.75 0.75 0.5 0.75 0.75 0.75
0.75

HASH TABLE 0.25 0.25 0.25 0.25 >0 0.75 0.5 0.5
0.5 0.5 0.5 0.5 0.75 0.75

PRIMES 1 1 1 1 0.75 0.75 0.75 1
1

STRING 0.25 0.25 0.25 0.25 0.75 0.25 0 0
UTILS ? 0.75 0.75 0.5 0 0 0 0

0.75 0.25

8.1.3 Threats to the validity of generalizations of the results

As is the case for any experimental study, the conclusiveness of the results de-
pends on the representativeness of the samples examined. Testing a higher num-
ber of classes would naturally have increased the reliability of the results. The
very high number of tests that we had to run for each class in order to explore
all possible combinations of parameters (the probabilities and the seed) and the
duration of each such test (30 minutes) made it impossible for us to test more
classes in the time during which we had exclusive access to the hardware nec-
essary for the experiment. Hence, we chose the classes that we tested so that
they come from different sources, implement different concepts and functional-
ity, were produced by programmers with different levels of expertise, and have
different sizes. Despite this, these classes do not exhibit all types of faults that
can be found in object-oriented software; hence, it is likely that, for some of these
faults, the behavior of a random testing algorithm would be different.

In any random-based testing approach, the seed used to initialize the pseudo-
random number generator introduces some variability in the results. In this ex-
periment we tested each class for each combination of probabilities for 3 seeds.
Using a higher number of seeds would have improved the reliability of the re-
sults, but practical time constraints prevented this.

Furthermore, the results reported here apply only to the random testing algo-
rithm implemented in AutoTest. Other strategies for randomly generating inputs
for testing O-O applications are also possible, and the behavior of such strategies
would likely be different.
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Figure 8.4: Evolution over time of the number of faults found through
contract violations and through other exceptions for class STRING

In AutoTest, the notions of faults and failures are largely determined by the
contract-based oracle. In general, a failure is an observed difference between ac-
tual and intended behaviors. In AutoTest we interpret every contract violation
(except for immediate precondition violations) as a failure. However, program-
mers are interested in faults in the software: wrong pieces of code that trigger
the failures, and the same fault may trigger arbitrarily many failures. Hence, an
analysis of random testing should consider the detected faults, not the failures.
Mapping failures to faults is part of the debugging process and is usually done
by humans. This was not feasible for the experiment reported here. Instead we
rely on an approximation that groups failures based on the following assumption:
two failures are a consequence of the same fault if and only if they manifest them-
selves through the same type of exception, being thrown from the same routine
and the same class. This automatic mapping from failures to faults could have
led to faults being missed.

8.1.4 Conclusions

This study answered several questions about the performance of random testing
in general and about the factors that influence it. It has shown that, despite its
simplicity and unguided nature, random testing does indeed find faults, not only
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Figure 8.5: Evolution over time of the number of faults found through con-
tract violations and through other exceptions for class BOUNDED STACK

seeded ones, but also faults present in widely used, industrial-grade code. Of
particular importance is the observation that random testing finds a very high
number of faults in the first few minutes of testing a certain class. This indicates
that, although this strategy might not find all faults present in the code, its rate of
finding faults over short timeouts makes it a good candidate for combining with
other testing strategies, more expensive in terms of the computational resources
they require.

8.2 How predictable is random testing?

The experiments described in the previous section exhibited a seemingly high
variation of the number of faults detected over time. From an engineer’s point
of view, a high variance means low predictability of the process – which immedi-
ately reduces its value. One might argue that random testing can be performed
overnight and when spare processor cycles are available; the sheer amount of
continuous testing would then compensate for any potential variance. However,
arbitrary computation resources may not be available, and insights into the ef-
ficiency of a testing strategy are useful from the management perspective: such
numbers make it comparable to other strategies.
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Problem We set out to answer the following questions. How predictable is
random testing? What are the consequences? In particular, how would this tech-
nique be best used?

More concretely, the questions that we study include the following:

1. What percentage of defects can we expect to detect after n minutes of ran-
dom testing? (This percentage will be computed with respect to the overall
number of defects that we found when performing random tests.) What is
the variance, and thus the predictability, of the associated random variable?

2. Does running a long uninterrupted testing session uncover more defects
than running several short sessions with different seeds?

3. How much time can we expect to spend before the first defect is found?
How predictable is random testing with respect to this?

While the effectiveness of random testing has been studied before, we do not
know of any other investigations of the predictability of the process.

Solution Using AutoTest, we generated and ran random tests for 27 classes
from EiffelBase. Each class was tested for 90 minutes. To assess the predictability
of the process, we repeated the testing process for each class 30 times with dif-
ferent seeds for the pseudo-random number generator. This results in an overall
testing time of 1215 hours with more than 6 million triggered failures. The main
results are the following.

1. When averaging over all 27 classes, 30% of the overall number of faults de-
tected during the experiments are found after 10 minutes. After 90 minutes,
on average, an additional 8 percent points of the overall number of ran-
domly detected faults are found.

2. In terms of the relative number of detected faults (relative to the overall
number of faults detected via random testing), random testing is highly
predictable, as measured by a low standard deviation.

3. Different runs of the testing process reveal different faults.

4. For 24 out of the 25 classes in which faults were found, at least one out
of the 30 experiments detected a fault within the first second. This can be
read as follows: random testing very likely detects a fault within at most 30
seconds.

We have reported on these results in [45]. A package including the results and
the source code of AutoTest is available online.1 It contains everything needed for
the replication and extension of our experiments.

1 http://se.inf.ethz.ch/people/ciupa/public/random oo testing
experiment.zip

http://se.inf.ethz.ch/people/ciupa/public/random_oo_testing_experiment.zip
http://se.inf.ethz.ch/people/ciupa/public/random_oo_testing_experiment.zip
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8.2.1 Experimental setup
In the experiments, each of 27 classes was tested in 30 sessions of 90 minutes
each, where in each session a different seed was used to initialize the pseudo-
random number generator used for input creation. The total testing time was thus
30∗27∗90 minutes = 50.6 days. All the tested classes were taken unmodified from
the EiffelBase library version 5.6. The tested classes include widely used classes
like STRING or ARRAY and also more seldom used classes such as FIBONACCI
or FORMAT DOUBLE. Table 8.5 shows various code metrics of the classes under
test: lines of code (LOC), number of routines, attributes, contract clauses (LOCC)
and total number of faults found in the experiments. The number of routines,
attributes and contracts includes the part that the class inherits from ancestors, if
any.

We set the AutoTest parameters to the values shown to deliver the best results:
PGenNew = 0.25 and PGenBasicRand = 0.25 and did not use diversification. Hence,
the strategy for creating inputs that we used is not purely random: it is random
combined with limit testing (because we only use truly random basic values in
25% of the cases and in the rest 75% we select basic values from predefined sets).
The experiments reported in the previous section showed that this strategy is
much more effective at uncovering faults than purely random testing at no extra
cost in terms of execution time, so we consider it more relevant to investigate
the more effective strategy. As this strategy is still random-based but also uses
special predefined values (which influence the results), we refer to it from now
on as random+ testing.

During the testing sessions, AutoTest may trigger failures in the class under
test and also in classes on which the tested class depends. There are two ways
in which failures can be triggered in other classes than the one currently under
test. First, a routine of the class under test calls a routine of another class, and the
latter contains a fault which affects the caller. Second, the constructor of another
class, of which an instance is needed as argument to a routine under test, contains
a fault.

AutoTest reports faults from the first category as faults in the class under test.
This is because, although the routine under test is not responsible for the fail-
ure, this routine cannot function correctly due to a faulty supplier and any user
of the class under test should be warned of this. Faults from the second cate-
gory, however, are not counted. This is because in these experiments we focus on
faults found in the class under test only. Such tests are nevertheless also likely
to reveal faults (according to the related analysis on the benefits of “interwoven”
contracts [95]). How many of them are found there and how this impacts the
predictability of random testing is a subject of further studies.

Computing infrastructure The experiments ran on 10 dedicated PCs
equipped with Pentium 4 at 3.2GHz, 1Gb of RAM, running Linux Red Hat En-
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Table 8.5: Metrics of the tested classes

Class name LOC #Routines #Att. #LOCC #Faults
ACTION SEQUENCE 382 156 16 164 71
ACTIVE INTEGER 141 77 6 75 43
INTERVAL
ACTIVE LIST 115 145 9 140 76
ARRAY 694 86 4 98 74
ARRAYED LIST 684 139 6 146 74
ARRAYED SET 95 152 6 155 27
BOUNDED QUEUE 335 63 5 53 22
CHARACTER REF 450 77 1 60 0
CLASS NAME 206 128 13 141 39
TRANSLATIONS
FIBONACCI 166 70 2 55 8
FIXED LIST 355 124 6 123 38
FORMAT DOUBLE 304 111 12 116 8
FORMAT INTEGER 599 83 8 93 5
HASH TABLE 1416 122 13 178 49
HEAP PRIORITY 367 96 5 107 27
QUEUE
INTEGER INTERVAL 484 75 5 87 44
INTEGER REF 618 99 1 106 1
LINKED CIRCULAR 401 129 4 88 59
LINKED LIST 719 106 6 92 25
LINKED TREE 366 152 9 128 71
RANDOM 256 98 5 65 10
STRING 2600 171 4 296 32
STRING SEARCHER 304 37 2 64 0
TWO WAY CHAIN 120 71 2 98 36
ITERATOR
TWO WAY CIRCULAR 62 129 4 70 94
TWO WAY CURSOR 170 117 7 107 87
TREE
TWO WAY LIST 488 113 8 94 47
Average 477.7 108.4 6.3 111 39.5
Median 366 111 6 98 38
Minimum 62 37 1 53 0
Maximum 2600 171 16 296 94
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terprise 4 and ISE Eiffel 5.6. The AutoTest session was the only CPU intensive
program running at any time.

8.2.2 Results and analysis
Over all 27 classes, the number of detected faults ranges from 0 to 94, with a
median of 38 and a standard deviation of 28. In two of the classes (CHARAC-
TER REF and STRING SEARCHER) the experiments did not uncover any faults.
Figure 8.6 shows the median absolute number of faults detected over time for
each class.

Figure 8.6: Medians of the absolute numbers of faults found in each class

In order to get aggregated results, we look at the normalized number of faults
over time. For each class, we normalize by dividing the number of faults found
by each test run by the total number of faults found for this particular class. The
result is shown in Figure 8.7. When averaging over all 27 classes, 30% of the over-
all number of faults detected during our experiments are found after 10 minutes,
as witnessed by the median of medians reaching .3 after 10 minutes in Figure 8.7.
After 90 minutes, on average, an additional 8 percent of the overall number of
randomly detected faults are found.

The main question is: how predictable is random+ testing? We consider two
kinds of predictability: one that relates to the number of faults, and one that re-
lates to the kind of faults and that essentially investigates if we are likely to detect
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Figure 8.7: Medians of the normalized numbers of faults found in each
class; their median. On average 30% of the faults are found in the first 10
minutes. Testing for 80 additional minutes uncovers a further 8% of faults.

the same faults, regardless of which of the thirty experiments is chosen. This
provides insight into the influence of randomness (or, in more technical terms,
the influence of the seed that initializes the pseudo-random number generator).
Furthermore, we also consider how long it takes to detect a first fault and how
predictable random+ testing is with respect to this duration.

In terms of predictability of the number of detected distinct faults, we provide
an answer by considering the standard deviations of the normalized number of
faults detected over time (Figure 8.8). With the exception of INTEGER REF, an
outlier that we do not show in the figure, the standard deviations lie roughly
in-between 0.02 and 0.06, corresponding to 2% to 6% of the relative number of
errors detected. Because we want to get one aggregated result across all classes,
we display the median and the standard deviation of the standard deviations of
the normalized number of detected faults in the same figure (median of standard
deviations: upper thick line; standard deviation of standard deviations: lower
thick line in Figure 8.8). The median of the standard deviations of the normalized
numbers of detected faults decreases from 4% to 2% in the first 15 minutes and
then remains constant. Similarly, the standard deviation of the standard devia-
tions of the normalized number of detected faults linearly decreases from 3% to
1.5% after 10 minutes, and then remains approximately constant.



112 CHAPTER 8. ANALYSIS OF RANDOM-BASED TESTING STRATEGIES

Figure 8.8: Standard deviations of the normalized numbers of faults found
in each class; their median and standard deviation. This median and stan-
dard deviation being rather small suggests that random+ testing is, in
terms of the relative number of detected faults, rather predictable in the
first 15 minutes, and strongly predictable after 15 minutes.

The median and standard deviation of the standard deviations being rather
small suggests that random+ testing is, in terms of the relative number of detected
faults, rather predictable in the first 15 minutes, and strongly predictable after 15
minutes. In sum, this somewhat counter-intuitively suggests that in terms of the
relative number of detected faults, random+ testing OO programs is indeed predictable.

An identical relative number of faults does not necessarily indicate that the
same faults are detected. If all runs detected approximately the same errors, then
we could expect the normalized numbers of detected faults to be close to 1 after 90
minutes. This is not the case (median 38%) in our experiments: random+ testing
exhibits a high variance in terms of the actual detected failures, and thus appears
rather unpredictable in terms of the actual detected faults.

In order to investigate more closely what are the overlappings and differences,
in terms of the actual faults found, between different runs of the test generator for
each class, we looked at the number of experiments that revealed each fault. Each
fault can be found 1 to 30 times, that is, it can be found only in 1 or in several and
up to all 30 experiments (for a particular class). Figure 8.9 shows how many



8.2. HOW PREDICTABLE IS RANDOM TESTING? 113

faults were found 1 to 30 times and it reveals an interesting tendency of random+

testing: 25% of all faults are uncovered by only 1 or 2 out of 30 experiments, 19%
of all faults are uncovered in all 30 experiments.

The sharp increase in the number of faults found in all 30 experiments com-
pared to those found in 23 to 29 experiments may be surprising at first, but is
explainable through the nature of the testing process that we performed: ran-
dom testing combined with special value testing. There are certain faults that
AutoTest finds with high probability because it tries the inputs that trigger them
(Void, minimum/maximum integer) with high probability. It is hence more likely
that AutoTest finds, for example, a Void-related fault in all 30 experiments than
that it finds it in 23 to 29 experiments. Of course, occasionally this still happens,
hence the relatively small numbers of faults found in 23 to 29 experiments.

Figure 8.9: Number of faults found in 1, 2, ..., all 30 experiments for every
class. 25% of all faults are uncovered by only 1 or 2 out of 30 experiments,
19% of all faults are uncovered in all 30 experiments.

Finally, when analyzing the results, we were surprised to see that for 24 out
of the 25 classes in which we found faults, at least one experiment detected a fault in the
first second. Taking a slightly different perspective, we could hence test any class
thirty times, one second each. This means that within our experimental setup,
random+ testing is almost certain to detect a fault for any class within 30 seconds. In
itself, this is a rather strong predictability result.

This unexpected finding led us to investigate a question that we originally
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did not set out to answer: in terms of the efficiency of our technology, is there a
difference between long and short tests? In other words, does it make a difference
if we test one class once for ninety minutes or thirty times for three minutes?

To answer this question, we analyzed how the number of faults detected
when testing for 30 minutes and changing the seed every minute compares to the
number of faults found when testing for 90 minutes and changing the seed every
3 minutes and to the number of faults found when testing for 90 minutes without
changing the seed, with longer test runs being an approximation of longer test
sequences. Changing the seed also means restarting the testing session, in par-
ticular emptying the object pool. Figure 8.10 shows the results of a class-by-class
comparison.

Figure 8.10: Cumulated normalized numbers of faults after 30*3 and 30*1
minutes; median normalized number of faults after 90 minutes. Collating
30*3 minutes of test yields considerably better results than testing for 90
minutes.

The results indicate that the strategy using each of the 30 seeds for 3 minutes
(90 minutes altogether) detects more faults than using each of the thirty seeds for
1 minute (30 minutes altogether). Because the testing time is three times larger in
the former when compared to the latter case, this is not surprising. Note, how-
ever, that the normalized number of faults is not three times higher. On more
comparable grounds (90 minutes testing time each), collating thirty times 3 minutes
of test yields considerably better results than testing for 90 minutes.
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This suggests that short tests are more effective than longer tests. However, a
more detailed analysis reveals that this conclusion is too simple. For the technical
reasons described in section 5.4, the interpreter needs to be restarted at least once
during most of the experiments. In fact, there were only 60 experiments during
which no interpreter restart occurred. Such a restart is similar to beginning a new
experiment, in that the object pool is emptied and must be constructed anew. In-
terpreter restarts do not, however, affect the scheduling of calls to routines under
test: AutoTest preserves the fairness criteria and tries to call first routines that
were tested the least up to that point. Because of these interpreter restarts, we
cannot directly hypothesize on the length of test cases. In fact, we do not have
any explanation of this stunning result yet, and its study is the subject of ongoing
and future work.

8.2.3 Threats to the validity of generalizations of the results

The classes used in the experiment belong to the most widely used Eiffel library
and were not modified in any way. They are diverse both in terms of various code
metrics and of intended semantics, but naturally their representativeness of OO
software is limited.

A further threat to the validity of this empirical evaluation is a technical detail
in the implementation of the used tool, AutoTest. As explained in section 5.4, Au-
toTest uses a two-process model: a driver process is responsible for orchestrating
the test generation and execution process, while an interpreter process receives
simple commands from the driver (such as object creation, routine call, value as-
signment) and can execute them and output the result. Thus, the interpreter car-
ries out the actual test execution. If any failures occur during test execution from
which the interpreter cannot recover, the driver will shut it down and restart it.
Such restarts have the consequence that the object pool is emptied, hence sub-
sequent calls to routines under test will start from an empty pool and build it
anew. Interpreter restarts do not cause the routine priorities to be reset, hence
the fairness criterion is fulfilled. The emptying of the pool, however, puts a limit
to the degree of complexity that the test inputs can reach. In our experiments,
interpreter restarts occurred at intervals between less than a minute and over an
hour. Even for the same class, these restarts occur at widely varying intervals, so
that some sessions reach presumably rather complex object structures, and others
only very simple ones.

AutoTest implements one of several possible algorithms for randomly gen-
erating inputs for OO programs. Although we tried to keep the algorithm as
general as possible through various parameters, there exist other methods for
generating objects randomly, as explained in section 4.3.2. As such, the results of
this study apply only to the specific algorithm together with specific choices for
technical parameters (e.g., PGenNew )) for random+ testing implemented in Au-
toTest.



116 CHAPTER 8. ANALYSIS OF RANDOM-BASED TESTING STRATEGIES

The full automation of the testing process – necessary also due to the sheer
number of tests generated and executed in the experiment – required an auto-
mated oracle: contracts and exceptions. This means that naturally any fault which
does not manifest itself through a contract violation or another exception could
not be detected and included in the results presented here.

Mapping failures to faults manually was not feasible for the over 6 million
failures triggered in this experiment. Instead we used the same approximation
as in the experiments reported in the previous section: two failures are a conse-
quence of the same fault if they manifest themselves through the same type of
exception, being thrown from the same routine and the same class. This is natu-
rally only an approximation and may have led to faults being missed.

The experiments reported here were performed only on classes “in isolation,”
not on a library as a whole or on an entire application. This means that the rou-
tines of these classes were the only ones tested directly. The routines that they
transitively call are also implicitly tested. The results would probably be different
for a wider testing scope, but timing constraints did not allow testing of entire
applications and libraries.

As explained above, for 24 out of the 25 classes in which our experiments un-
covered faults, there was at least one experiment in which the first fault for a class
was found within the first second of testing. The vast majority of these faults are
found in constructors when using either an extreme value for an integer or Void
for a reference-type argument. It is thus questionable if these results generalize
to classes which do not exhibit one of these types of faults. However, as stated
above, in our experiment 24 out of the 27 tested classes did contain a maximum
integer or Void-related fault.

8.2.4 Conclusions

Random+ testing, by its very nature, is subject to random influences. Intuitively,
choosing different seeds for different generation runs should lead to different
results in terms of detected defects. Earlier studies had given initial evidence
for this intuition. We set out to do a systematic study on the predictability of
random+ tests. To the best of our knowledge (and somewhat surprisingly), this
question has not been studied before.

In sum, the main results are the following. Random+ testing is predictable in
terms of the relative number of defects detected over time. In our experiments,
random+ testing detects a defect within 30 seconds, if a fault exists in the class
under test. On the other hand, random+ testing is much less predictable in terms
of the actual defects that are detected.
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8.3 Random testing vs. ARTOO

8.3.1 Experimental setup
The subjects used in the evaluation of ARTOO are classes from the EiffelBase
library [8] version 5.6. No changes were made to this library for the purposes of
this experiment: the classes tested are taken from the released, publicly-available
version of the library and all faults mentioned are real faults, present in the 5.6
release of the library.

Table 8.6 presents some properties of the classes under test: number of lines
of code (LOC), number of lines of contract code (LOCC), and number of routines,
of attributes and of parent classes. All the metrics except the last column refer
to the flat form of the classes, that is a form of the class text that includes all the
features of the class at the same level, regardless of whether they are inherited or
introduced in the class itself.

Class LOC LOCC #Routines #Attributes #Parents
ACTION SEQUENCE 2477 164 156 16 24
ARRAY 1208 98 86 4 11
ARRAYED LIST 2164 146 39 6 23
BOUNDED STACK 779 56 62 4 10
FIXED TREE 1623 82 125 6 4
HASH TABLE 1791 178 122 13 9
LINKED LIST 1893 92 106 6 19
STRING 2980 296 171 4 16

Table 8.6: Properties of the classes under test

All tests were run using the ISE Eiffel compiler version 5.6 on a machine hav-
ing a Pentium M 2.13 GHz processor, 2 GB of RAM, and running Windows XP
SP2. The tests applied both the basic random strategy of AutoTest (called RAND
for brevity below) and ARTOO, testing one class at a time. Since the seed of the
pseudo-random number generator influences the results, the results presented
below are averaged out over 5 10-minute tests of each class using different seeds.

It is important to note that the testing strategy against which we compare AR-
TOO is in fact not purely random, as explained in Section 5.5: values for primitive
types are not selected randomly from the set of all possible values, but from a re-
stricted, predefined set of values considered to be more likely to uncover faults.
We chose this strategy as the basis for comparison because the experiments re-
ported in section 8.1 have shown it to be more efficient than purely random test-
ing.

The results were evaluated according to two factors: number of tests to first fault
and time to first fault. Other criteria for the evaluation are also possible. Measuring
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the time elapsed and the number of test cases run until the first fault is found
is driven by practical considerations: software projects in industry usually run
under tight schedules, so the efficiency of any testing tool plays a key role in its
success.

8.3.2 Results

Tables 8.7 and 8.8 show a routine-by-routine comparison of the tests to first fault
and time to first fault respectively for both ARTOO and RAND applied to classes
ARRAYED LIST and ACTION SEQUENCE. The tables show, for each routine in
which both strategies found faults, the number of tests and time required by each
strategy to find a fault in that particular routine. Both the tests and the time
are averages, over the five seeds, of the time elapsed since the beginning of the
testing session and the decimal part is omitted. All calls to routines and creation
procedures of the class under test are counted as test cases for that class. The
tables also show, for each of these two factors, the ratios between the performance
of ARTOO and that of RAND rounded to two decimal digits, showing in bold the
cases for which ARTOO performed better.

At coarser granularity, Table 8.9 shows for every class under test the average
(over all routines where both strategies found at least one fault) of the number
of tests to first fault and time to first fault for each strategy and the proportions
ARTOO/RAND, rounded to two decimal digits. Figures 8.11 and 8.12 show the
same information, comparing for every class the number of tests to first fault and
the time to first fault, respectively.

In most cases ARTOO reduces the number of tests necessary to find a fault
by a considerable amount, sometimes even by two orders of magnitude. How-
ever, calculating the object distances is time-consuming. The overhead ARTOO
introduces for selecting which objects to use in tests (the distance calculations, the
serializations of objects, etc.) causes it to run fewer tests over the same time than
RAND. For the tested classes, which all have fast-executing routines, although
ARTOO needs to run fewer tests to find faults, RAND needs less time.

The experiments also show that there are cases in which ARTOO finds faults
which RAND does not find (over the same test duration). Table 8.10 lists the
classes and routines where only ARTOO was able to find some faults, the number
of tests and the time that ARTOO needed to find the first fault, and the number
of faults it found in each routine.
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Class Routine Tests to first fault
ARTOO RAND ARTOO

RAND

ARRAYED append 432 5517 0.08
LIST do all 296 737 0.40

do if 16 1258 0.01
fill 159 7130 0.02
for all 303 517 0.59
is inserted 31 126 0.25
make 23 3 7.44
make filled 13 117 0.11
prune all 51 10798 0.00
put 96 89 1.08
put left 146 9739 0.01
put right 278 8222 0.03
resize 355 1143 0.31
there exists 307 518 0.59
wipe out 594 3848 0.15

ACTION arrayed list make 748 6800 0.11
SEQUENCE call 109 2382 0.05

duplicate 378 410 0.92
for all 286 623 0.46
is inserted 115 95 1.21
make filled 183 449 0.41
put 81 67 1.21
remove right 448 17892 0.03
resize 399 5351 0.07
set source connection agent 265 3771 0.07
there exists 215 104 2.07

Table 8.7: Results for two of the tested classes, showing the number of tests
required by ARTOO and RAND to uncover the first fault in each routine
in which they both found at least one fault, and their relative performance.
In most cases ARTOO requires significantly less tests to find a fault.

RAND also finds faults which ARTOO does not find in the same time. This
suggests that the two strategies have different strengths and, in a fully automated
testing process, should ideally be used in combination. As shown in section 8.1,
experimental data indicates that the evolution of the number of new faults that
RAND finds is inversely proportional to the elapsed time. This means in par-
ticular that after running random tests for a certain time, it becomes unlikely to
uncover new faults. At this point ARTOO can be used to uncover any remaining
faults. In cases where the execution time of the routines under test is high, AR-
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Class Routine Time to first fault (seconds)
ARTOO RAND ARTOO

RAND

ARRAYED append 311 191 1.62
LIST do all 137 18 7.48

do if 2 39 0.05
fill 40 256 0.16
for all 138 17 7.93
is inserted 3 7 0.43
make 2 1 2.80
make filled 2 4 0.50
prune all 3 367 0.01
put 11 4 2.67
put left 32 331 0.10
put right 132 291 0.45
resize 320 30 10.40
there exists 151 17 8.78
wipe out 546 123 4.41

ACTION arrayed list make 564 174 3.24
SEQUENCE call 10 67 0.15

duplicate 196 13 14.46
for all 64 21 3.00
is inserted 5 2 2.36
make filled 49 13 3.65
put 4 4 1.15
remove right 201 475 0.42
resize 187 160 1.17
set source connection agent 96 112 0.86
there exists 67 2 33.83

Table 8.8: Results for two of the tested classes, showing the time required
by ARTOO and RAND to uncover the first fault in each routine in which
they both found at least one fault, and their relative performance. In most
cases ARTOO requires more time than RAND to find a fault.

TOO is more attractive due to the reduced number of tests it generates before it
uncovers a fault.

8.3.3 Discussion
We chose to compare the performance of the two strategies when run over the
same duration, although other similar comparative studies in the literature use
rather the number of generated tests or an achieved level of code coverage as
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Class Tests to first fault
ARTOO RAND ARTOO/RAND

ACTION SEQUENCE 293.72 3449.76 0.09
ARRAY 437.19 856.39 0.51
ARRAYED LIST 206.80 3317.80 0.06
BOUNDED STACK 282.50 357.17 0.79
FIXED TREE 333.99 463.91 0.71
HASH TABLE 581.21 2734.42 0.21
LINKED LIST 238.20 616.71 0.38
STRING 279.64 1561.60 0.17
Average 331.66 1669.72 0.19
Class Time to first fault (seconds)

ARTOO RAND ARTOO/RAND
ACTION SEQUENCE 131.53 95.11 1.38
ARRAY 133.21 21.23 6.27
ARRAYED LIST 122.16 113.42 1.07
BOUNDED STACK 128.00 11.45 11.18
FIXED TREE 127.73 136.64 0.93
HASH TABLE 164.41 65.85 2.49
LINKED LIST 98.39 18.14 5.42
STRING 85.03 144.28 0.58
Average 123.81 75.77 1.63

Table 8.9: Averaged results per class. ARTOO constantly requires fewer
tests to find the first fault: on average 5 times less tests than RAND. The
overhead that the distance calculations introduce in the testing process
causes ARTOO to require on average 1.6 times more time than RAND to
find the first fault.

Class Routine Tests to Time to #faults
first fault first fault

(seconds)
ARRAYED LIST remove 167 46 1
FIXED TREE child is last 717 283 1
FIXED TREE duplicate 422 134 1
STRING grow 492 163 2
STRING multiply 76 17 2

Table 8.10: Faults which only ARTOO finds
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Figure 8.11: Comparison of the average number of tests cases to first fault
required by the two strategies for every class. ARTOO constantly outper-
forms RAND.

the stopping criterion. We preferred to use time because, in industrial projects
and especially in the testing phases of these projects, time is probably the most
constraining factor.

These results show that, compared to a random testing strategy combined
with limit testing, ARTOO generally reduces the number of tests required until a
fault is found, but suffers from a time performance penalty due to the extra com-
putations required for calculating the object distances. The times reported here
are total testing times; they include both the time spent on generating and select-
ing test cases and the time spent on actually running the tests. Total time is the
measure that most resembles how the testing tool would be used in practice, but
this measure is highly dependent on the time spent running the software under
test. The test scope of the experiment described above consists of library classes
whose routines generally implement relatively simple computations. When test-
ing more computation-intensive applications, the number of tests that can be run
per time unit naturally decreases, hence the testing strategy that needs less tests
to uncover faults would be favored.
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Figure 8.12: Comparison of the average time to first fault required by the
two strategies for every class. RAND is generally better than ARTOO.

8.3.4 Threats to the validity of generalizations of the results
The biggest threat to the validity of generalizations of these results is probably
the test scope: the limited number of seeds and the tested classes. The results pre-
sented here were obtained by averaging out over 5 seeds of the pseudo-random
number generator. Given the role randomness plays in both the compared testing
algorithms, averaging out over more seeds would produce more reliable results.
Likewise, we have chosen the tested classes so that they are fairly diverse (in
terms of their semantics and of various code metrics), but testing more classes
would yield more generalizable results.

8.3.5 Conclusions
The experimental results show that ARTOO finds real faults in real software.
Compared to RAND (random testing combined with limit value testing), ARTOO
significantly reduces the number of tests generated and run until the first fault
is found, on average by a factor of 5 and sometimes by as much as two orders
of magnitude. The guided input selection process that ARTOO employs does,
however, entail an overhead which is not present in unguided random testing.
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This overhead leads to ARTOO being on average 1.6 times slower than RAND in
finding the first fault. These results indicate that ARTOO, at least in its current
implementation, should be applied in settings where the number of test cases
generated until a fault is found is more important than the time it takes to gen-
erate these test cases; in other words, settings in which the cost of running and
evaluating test cases is higher than the cost of generating them. This can be the
case, for instance, when there is no automated oracle and thus manual inspection
of test cases is necessary.

The results also show that both ARTOO and RAND find faults that the other
does not find in the same time, so they should be used in combination.

8.4 Finding faults: manual testing vs. random
testing vs. user reports

As stated in the beginning of this chapter, we consider that progress in testing
requires comparing the various testing tools and methods that exist nowadays in
terms of their fault detection ability. Many studies [61, 64, 62, 86, 71, 143, 53, 73,
127, 80] have tried to answer this question, but none of the studies focusing on
the number of faults detected by different strategies conclusively shows that one
testing strategy clearly outperforms another.

We hence conjecture that the number of faults is too coarse a criterion for as-
sessing testing strategies. Consequently, in the experiments described below, we
investigate whether or not the kind of faults is a more suitable discriminator be-
tween different fault detection strategies. To this end, we classify faults into cate-
gories, and analyze which strategies find which categories of faults. This work’s
main result is empirical evidence that different strategies do indeed uncover sig-
nificantly different kinds of faults [44]. This complements the seminal work by
Basili and Selby [21] who compared the types of faults found by code reading,
manual functional testing, and manual structural testing.

The three fault detection strategies we analyzed are manual unit testing, field
use (with corresponding bug reports), and automated random testing. They are
representative of today’s state of the art: the first two are widely used in industry,
and the last one reflects the research community’s current interest in automated
testing solutions. Although random testing is only one among trends in current
research, it is attractive because of its simplicity and because it makes test case
generation comparatively cheap. Moreover, there is no conclusive evidence that
random testing is any worse at finding faults than other automated strategies.

To investigate the performance of random testing we ran AutoTest on 39 classes
from EiffelBase, which we did not modify in any way. AutoTest found a total of
165 faults in these classes. To investigate the performance of manual testing, we an-
alyzed the faults found by students who were explicitly asked to test three classes,
two created by us and one slightly adapted from EiffelBase. Faults in the field are
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taken from user-submitted bug reports on the EiffelBase library. We evaluated
these three ways of detecting faults by comparing the number and distribution of
faults they detect via a custom-made classification containing 21 categories.

Fault classifications have previously been used to analyze the difference be-
tween inspections and software testing. Yet, as far as we know, this is the first
study that

• Develops a classification of faults specifically adapted to contracted O-O
software

• Uses this classification to compare an automated random testing strategy
to manual testing, and to furthermore compare testing results to faults de-
tected in the field.

8.4.1 Classifications of faults
Two dimensions characterize a fault in programming languages with support for
embedding executable specifications: the fault’s location — whether it occurs in
the specification or in the implementation; the fault’s cause, the real underlying
issue.

The following paragraphs discuss both dimensions and introduce the result-
ing fault categories. The classification is not domain-specific. Although other
fault classification schemes exists, as discussed in section 4.5, we are not aware of
any such schemes for contracted code.

Specification and implementation faults
In contract-equipped programs, the software specification is embedded in the
software itself. Contract violations are one of the sources of failures. Hence,
faults can be located both in the implementation and in the contracts. From this
perspective we distinguish between the following two types of faults:

• A specification fault is a mismatch between the intended functionality of a
software element and its explicit specification (in the context of this study,
the contract). Specification faults reflect specifications that are not valid, in
the sense that they do not conform to user requirements. The correction of
specification faults requires changing the specification (plus possibly also
the implementation). As an example, consider a routine deposit of a class
BANK ACCOUNT with an integer argument representing the amount of
money to be deposited into the account. The intention is for that argu-
ment to be positive, and the routine only works correctly in that case. If
the precondition of deposit does not list this property, the routine has a
specification fault.
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• In contrast, an implementation fault occurs when a piece of software does
not fulfill its explicit specification, here its contract. The correction of im-
plementation faults never requires changing the specification. Suppose the
class BANK ACCOUNT also contains a routine add value that should add
a value, positive or negative, to the account. If the precondition does not
specify any constraint on the argument but the code assumes that it is a
positive value, then there is a fault in the implementation.

Figure 8.13 represents graphically the levels where each kind of fault occurs.

Figure 8.13: Specification vs. implementation faults

The notion of specification fault assumes that we have access to the “intended
specification” of the software: the real specification that it should fulfill. When
analyzing the faults in real-world software, this is not always possible. Access to
the original developers is generally not available. To infer the intended specifica-
tion, one must rely on subjective evidence such as:

• The comments in the routines under test

• The specifications and implementations of other routines in the same class
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• How the tested routines are called from various parts of the software sys-
tem

This strategy resembles how a developer not familiar with the software would
proceed to find out what it is supposed to do.

Classification of faults by their cause
Some kinds of specification and implementation faults tend to recur over and
over again in practice. Their study makes it possible to obtain a more detailed
classification by grouping these faults according to the corresponding human
mistakes or omissions — their causes. By analyzing the cause for all faults en-
countered in our study, we obtained the categories described below. The classi-
fication was created with practical applicability in mind and mainly focuses on
either a mistake in the programmer’s thinking or a misused programming mech-
anism.

Specification faults. An analysis of specification faults led to the following
cause-based categories, grouped by the type of contract that they apply to.

1. We identified the following faults related to preconditions:

• Missing non-voidness precondition: a precondition clause is miss-
ing, specifying that a routine argument, class attribute, or other refer-
ence denoted by an argument or attribute should not be void.

• Missing min/max-related precondition: a precondition clause is
missing, specifying that an integer argument, class attribute, or other
integer denoted by an argument or attribute should have a certain
value related to the minimum/maximum possible value for integers.

• Missing other precondition part: a precondition is under-specified in
another way than the previous cases.

• Precondition disjunction due to inheritance: with multiple inheri-
tance it can be the case that a routine merges several others, inherited
from different classes. In this case, the preconditions of the merged
routines are composed, using disjunction, with the most current ones.
Faults in this category appear because of this language mechanism.

• Precondition too restrictive: the precondition of a routine is stronger
than it should be.

2. Faults related to the postcondition include:

• Wrong postcondition: the postcondition of a routine is incorrect.
• Missing postcondition: the postcondition of a routine is missing.

3. Faults related to class invariants include only one kind: the missing invari-
ant clause — a part of a class invariant is missing.
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4. Faults related to check assertions include only one kind: the wrong check
assertion — the routine contains a check condition that does not necessar-
ily hold.

5. Finally, the following faults apply to all contracts:

• Faulty specification supplier: a routine used by the contract of the
routine under test contains a fault, which makes the contract of the
routine under test incorrect.

• Calling a routine outside its precondition from a contract: the fault
appears because the contract of the routine under test calls another
routine without fulfilling the latter’s precondition.

• Min/max int related fault in specification (other than missing pre-
condition): the specification of the routine under test lacks some con-
dition(s) related to the minimum/maximum possible value for inte-
gers. (Our examples so far do not cover floating-point computation.)

The categories in this classification have various degrees of granularity. The
reason is that the classification was derived from faults obtained through widely
different mechanisms: by AutoTest; by manual testers; by users of the software.
The categories emerged by inductively identifying recurring patterns in existing
faults, rather than by trying to fit faults deductively into a scheme defined a priori.
Where such patterns could not be found, the categories are rather coarse-grained.

Implementation faults. The analysis of implementation faults led to the fol-
lowing cause-based categories.

• Faulty implementation supplier: a routine called from the body of the rou-
tine under test contains a fault, which does not allow the routine under test
to function properly.

• Wrong export status: this category refers particularly to the case of creation
procedures, which in Eiffel can also be exported as normal routines. The
faults classified in this category are due to routines being exported as both
creation procedures and normal routines, but which, when called as normal
routines, do not fulfill their contract, as they were meant to be used only as
creation procedures.

• External fault: Eiffel allows the embedding of routines written in C. This
category refers to faults located in such routines.

• Missing implementation: the body of a routine is empty, often signaling
an uncompleted attempt at top-down algorithm design.

• Case not treated: the implementation does not treat one of the cases that
can appear, typically in an if branch.

• Catcall: due to the implementation of type covariance in Eiffel, the com-
piler cannot (in the Eiffel version used) detect some routine calls that are
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not available in the actual type of the target object. Such violations can
only be detected at runtime. This class groups faults that stem from this
deficiency of the type system.

• Calling a routine outside its precondition from the implementation: the
fault appears because the routine under test calls another routine without
fulfilling the latter’s precondition.

• Wrong operator semantics: the implementation of an operator is faulty, in
the sense that it causes the application of the operator to have a different
effect than intended.

• Infinite loop: executing the routine can trigger an infinite loop, due to a
fault in the loop exit condition.

Three of the above categories are specific to the Eiffel language and would
not be directly applicable to languages which do not support multiple inher-
itance (precondition disjunction due to inheritance), covariant definitions (cat-
calls), or the inclusion of code written in other programming languages (external
faults). All other categories are directly applicable to other object-oriented lan-
guages with support for embedded and executable specifications.

8.4.2 Experimental setup
To see how random testing performs, we ran AutoTest on classes from the Eiffel-
Base library. Overall, we randomly tested 39 classes from the 5.6 version of the
library and found a total of 165 faults in them.

We then examined bug reports from users of the EiffelBase library. From the
database of bug reports, we selected those referring to faults present in version 5.6
of the EiffelBase library and excluded those which were declared by the library
developers to not be faults or those that referred to the .NET version of EiffelBase,
which we cannot test with AutoTest. Our analysis hence refers to the remaining
28 bug reports fulfilling these criteria.

To determine how manual testing compares to random testing, we organized
a competition for students of computer science at ETH Zurich. 13 students par-
ticipated in the competition. They were given 3 classes to test. The task was to
find as many faults as possible in these 3 classes in 2 hours. Two of the classes
were written by us (with implementation, contracts, and purposely introduced
faults from various of the above categories), and one was an adapted version of
the STRING class from EiffelBase. Table 8.11 shows some code metrics for these 3
classes: number of lines of code (LOC), number of lines of contract code (LOCC),
and number of routines. We intentionally chose one class that was significantly
larger and more complex than the others to see how the students would cope
with it. Although such a class is harder to test, intuition suggests that it is more
likely to contain faults.

The students had various levels of experience in testing O-O software; most
of them had had at least a few lectures on the topic. 9 out of the 13 students stated
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Table 8.11: Classes tested manually
Class LOC LOCC #Routines
MY STRING 2444 221 116
UTILS 54 3 3
BANK ACCOUNT 74 13 4

Table 8.12: Random Testing vs. User Reports. Random tests find many
specification faults; users find many implementation faults.

Spec. faults Implem. faults
AutoTest 103 (62.42%) 62 (37.58%)
User reports 10 (35.71%) 18 (64.29%)

in a questionnaire they filled in after the competition that they usually or always
unit test their code as they write it. They were allowed to use any technique to
find faults in the software under test, except for running AutoTest on it. Although
they would have been allowed to use other tools (and this was announced before
the competition), all the students performed only manual testing. In the end they
had to produce test cases revealing the faults that they had found, through a
contract violation or another exception.

8.4.3 Random testing vs. user reports
Table 8.12 shows the distribution of specification and implementation faults (1)
found by random testing (labeled “AutoTest” in the table) 39 classes from the
EiffelBase library and (2) recorded in bug reports (provided by the maintainers
of the library) from professional users. Note that the results in this table refer to
more classes tested with AutoTest than for which there are user reports: even if
there are no user reports on a specific class, the class may still have been used in
the field.

Almost two thirds of the faults found by random testing were located in the
specification of the software, that is, in the contracts. This indicates that random
testing is especially good at finding faults in the contracts. In the case of faults
collected from users’ bug reports, the situation is reversed: almost two thirds of
user reports refer to faults in the implementation.

Table 8.13 shows the identifiers used for brevity for each fault category. Ta-
ble 8.14 presents a more detailed view of the specification and implementation
faults found by AutoTest and recorded in users’ bug reports, grouping the faults
by their cause, as explained above.

This sheds more light on differences between faults reported by users and
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Table 8.13: Identifiers for the fault categories
Cause Id
Specification faults
Missing non-voidness precondition S1
Missing min/max-related precondition S2
Missing other precondition part S3
Faulty specification supplier S4
Calling a routine outside its precondition from a contract S5
Min/max int related fault in spec (other than missing precondition) S6
Precondition disjunction due to inheritance S7
Missing invariant clause S8
Precondition too restrictive S9
Wrong postcondition S10
Wrong check assertion S11
Missing postcondition S12
Implementation faults
Faulty implementation supplier I1
Wrong export status I2
External fault I3
Missing implementation I4
Case not treated I5
Catcall I6
Calling a routine outside its precondition from the implementation I7
Wrong operator semantics I8
Infinite loop I9

those found by automated testing, and exposes strengths and weaknesses of both
approaches. One difference that stands out relates to faults related to extreme
values (either Void references or numbers at the lower or higher end of their rep-
resentation interval) in the specification. Around 30% of the faults uncovered by
AutoTest are in one of these categories, whereas users do not report any such
faults. Possible explanations are that such situations are not encountered in prac-
tice; that users do not consider them to be worth reporting; or that users rely on
their intuition on the range of acceptable inputs for a routine, rather than the rou-
tine’s precondition, and their intuition corresponds to the intended specification,
not to the erroneous one provided in the contracts.

A further difference results from AutoTest’s ability to detect faults from the
categories “faulty specification supplier” and “faulty implementation supplier.”
They mean that AutoTest can report that certain routines do not work properly
because they depend on other faulty routines. In our records users never report
such faults: they only indicate the routine that contains the fault, without men-
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tioning other routines that also do not work correctly because of the fault in their
supplier. An important piece of information gets lost this way: after fixing the
fault, there is no incentive to check whether the clients of the routine now work
properly, meaning to check that the correction in the supplier allows the client to
work properly too.

Random testing is particularly bad at detecting some categories of faults: too
strong preconditions, faults that are a result of wrong operator semantics, infinite
loops, missing routine implementations. None of the 165 faults found by Au-
toTest and examined in this study belonged to any of the first three categories,
but the users reported at least one fault in each. It is not surprising that AutoTest
has trouble detecting such faults, because:

• If AutoTest tries to call a routine with a too strong precondition and does
not fulfill this precondition, the testing engine will simply classify the test
case as invalid and try again to satisfy the routine’s precondition by using
other inputs.

• AutoTest also cannot detect infinite loops: if the execution of a test case
times out, it will classify the test case as “bad response”; this means that it
is not possible for the tool to decide if a fault was found or not — the user
must inspect the test case and decide.

• Users of the EiffelBase library could report faults related to operators be-
ing implemented with the wrong semantics. Naturally, to decide this, it is
necessary to know the intended specification of the operator.

• AutoTest also cannot detect that the implementation of a routine body is
missing unless this triggers a contract violation. An automatic tool can of
course, through code analysis, find empty routine bodies statically, but not
decide if this is a fault. Note that in these cases, the overall number of
detected faults is rather low, which suggests special care in generalizing
these findings.

We also ran AutoTest exclusively on the classes for which users reported faults
to see if it would find those faults (except three classes which AutoTest cannot
currently process as they are either expanded or built-in). When run on each
class in 10 sessions of 3 minutes (where each session used a different seed for the
pseudo-random number generator), AutoTest found a total of 268 faults2. 4 of
these were also reported by users, so 21 faults are solely reported by users and
264 solely by AutoTest. AutoTest detected only one of the 18 implementation
faults (5%) reported by users and 3 out of the 7 specification faults (43%). While
theoretically it could, AutoTest did not find the user-reported faults belonging to

2However, 183 of these faults were found through failures caused by the classes
RAW FILE, PLAIN TEXT FILE and DIRECTORY through operating system signals and
I/O exceptions, so it is debatable if these can indeed be considered faults in the software.
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such categories as “wrong export status” or “case not treated.” Longer testing
times might, however, have produced different results.

8.4.4 Random testing vs. manual testing
To investigate how AutoTest performs when compared to manual testers (the stu-
dents participating in the competition), we ran AutoTest on the 3 classes that were
tested manually. The tool tested each class in 30 sessions of 3 minutes, where each
session used a different seed for the pseudo-random number generator. Table 8.15
shows a summary of the results. It displays a categorization of the fault according
to our classification scheme (the category ids are used here; they can be looked up
in Table 8.13), the name of the class where a fault was found by either AutoTest
or the manual testers, how many of the manual testers found the fault out of the
total 13 and a percent representation of the same information, and finally, in the
last column, x’s mark the faults that AutoTest detected.

The table shows that AutoTest found 9 out of the 14 (64%) faults that hu-
mans detected and 2 faults that humans did not find. The two faults that only
AutoTest found do not exhibit any special characteristics, but they occur in class
MY STRING, which is considerably larger than the other 2 classes. We conjecture
that, because of its size, students tested this class less thoroughly than the others.
This highlights one of the clear strengths of the automatic testing tool: the sheer
number of tests that it generates and runs per time unit and the resulting routine
coverage.

Conversely, three of the faults that AutoTest does not detect were found by
more than 60% of the testers. One of these faults is due to an infinite loop; Au-
toTest, as discussed above, classifies timeouts as test cases with a bad response
and not as failures. The other two faults belong to the categories “missing non-
voidness precondition” and “missing min/max-related precondition.” Although
the strength of AutoTest lies partly in detecting exactly these kinds of faults, the
tool fails to find them for these particular examples in the limited time it is given.
This once again stresses the role that randomness plays in the approach, with
both advantages and disadvantages.

8.4.5 Summary and consequences
Three main observations emerge from the preceding analysis. First, random test-
ing is good at detecting problems in specifications. It is particularly good with
problems related to limit values. Problems of this kind are not reported in the
field but tend to be caught by manual testers.

Second, AutoTest is not good at detecting problems with too strong precon-
ditions, infinite loops, missing implementations and operator semantics. This is
due to the very nature of automated contract-based random testing.

Third, in a comparison between automated and manual testing (i.e., not tak-
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ing into consideration bug reports), AutoTest detects around two thirds of faults
also detected by humans, plus a few others. This speaks strongly in favor of run-
ning the tool on the code before having it tested by humans. The human testers
may find faults that the tool misses, but a great part of their work will be done at
no other cost than CPU power.

8.4.6 Discussion
AutoTest finds significantly more faults in contracts than in implementations.
This might seem surprising, given that contracts are boolean expressions and typ-
ically take up far fewer lines of code than the implementation (14% of the code on
average in our study). Two questions naturally arise. One, are there more faults
in contracts than in implementations, i.e., do the results obtained with AutoTest
reflect the actual distribution of faults? Two, is it interesting at all to find faults in
contracts, knowing that contract checking is usually disabled in production code?

We do not know the answer to the first question. We cannot deduce from our
results that there are indeed more problems in specifications than in implementa-
tions. The only thing we can deduce is that random testing that takes special care
of extreme values detects more faults in specifications than in implementations.
Around 45% of the faults are uncovered in preconditions, showing that program-
mers often fail to specify correctly the range of inputs or conditions on the state
of the input accepted by routines.

It is also important to point out that a significant proportion of specification
errors are due to void-related issues, which are scheduled to go away as the new
versions of Eiffel, starting with 6.2 (Spring 2008), implement the “attached type”
mechanism [109] which removes the problem by making non-voidness part of the
type system and catches violations at compile time rather than run time.

On whether it is useful or interesting to detect and analyze faults in contracts,
one must keep in mind that most often the same person writes both the contract
and the body of a routine. A fault in the contract signals a mistake in this per-
son’s thinking just as a fault in the routine body does. Once the routine has been
implemented, client programmers who want to use its functionality from other
classes look at its contract to understand under what conditions the routine can be
called (expressed by its precondition) and what the routine does (the postcondi-
tion expresses the effect of calling the routine on the state). Hence, if the routine’s
contract is incorrect, the routine will most likely be used incorrectly by its callers,
which will produce a chain of faulty routines. The validity of the contract is thus
as important as the correctness of the implementation.

The existence of contracts embedded in the software is a key assumption both
for the proposed fault classification and for the automated testing strategy used.
We do not consider this to be too strong an assumption because it has been shown
[31] that programmers willingly use a language’s integrated support for Design
by Contract, if available.
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The evaluation of the performance of random testing performed here always
considers the faults that AutoTest finds over several runs, using different seeds
for the pseudo-random number generator. We have shown that random testing
is predictable in the number of faults that it finds, but not in the kind of faults that
it finds (section 8.2). Hence, in order to reliably assess the types of faults that
random testing finds, it is necessary to sum up the results of different runs of the
tool.

In addition to pointing out strengths and weaknesses of a certain testing strat-
egy, a classification of repeatedly occurring faults based on the cause of the fault
also brings insights into those mechanisms of the programming language that
are particularly error-prone. For instance, faults due to wrong export status of
creation procedures show that programmers do not master the property of the
language that allows creation procedures to be exported both for object creation
and for being used as normal routines.

8.4.7 Threats to the validity of generalizations of the results
The biggest threat to the generalization of the results presented here is the small
size of the set of manually tested classes, of the analyzed user bug reports, and of
the group of human testers participating in the study. In future work this study
should be expanded to larger and more diverse code bases.

As explained above, we only had access to bug reports submitted by users for
the EiffelBase library. Naturally, these are not all the faults found in field use, but
only the ones that users took the time to report. Interestingly, for all but one of
these reports the users set the priority to either “medium” or “high”; the severity,
on the other hand, is “non-critical” for 7 of the reports and either “serious” or
“critical” for the others. This suggests that even users who take the time to report
faults only do so for faults that they consider important enough.

As we could not perform the study with professional testers, we used bache-
lor and master students of computer science; to strengthen the incentive for find-
ing as many faults as possible, we ran this as a competition with attractive prizes
for the top fault finders. In a questionnaire they filled in after the competition,
4 of the students declared themselves to be proficient programmers and 9 esti-
mated they had “basic programming experience”. 7 of them stated that they had
worked on software projects with more than 10,000 lines of code and the others
had only worked on smaller projects. As mentioned above, two of the classes
under test given to the students were written by us and we also introduced the
faults in them. These faults were meant to be representative of actual faults oc-
curring in real software, so they were created as instances of various categories
described above, but the very approach introduces a bias. All these aspects limit
the generality of our conclusions.

A further threat to the generalization of our results stems from the peculiar-
ities of the random testing tool used. AutoTest implements one particular algo-
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rithm for random testing and the results described here would probably not be
identical for other approaches to the random testing of O-O programs (e.g., [47]).
In particular, we make use of extreme values to initialize the object pool (5.5).
While void objects are rather likely to occur in practice, extreme integer values
are not. In other words, the approach, as mentioned, is not entirely random.

Also as noted, compile-time removal of void-related errors will affect the re-
sults, for ISO Eiffel and other languages that have the equivalent of an “attached
type” mechanism (e.g. Spec# [20]).

Another source of uncertainty is the assignment of defects to a classification.
Finding a consistent assignment among several experts is difficult [83]. In our
study, the author performed this task. While this yields consistency, running the
experiment with a different person might produce different results.

Finally, the programming language used in the study, Eiffel, also influenced
the results. As explained above, a few of the fault categories are closely related to
the language mechanisms that are misused or that allow the fault to occur. This
is to be expected in a classification of software faults based on the cause of the
faults.

8.4.8 Conclusions
One of the main goals of this work is to understand if different ways of detect-
ing faults detect different kinds of faults. This would help answer a question of
utmost importance: which testing strategy should be applied under which cir-
cumstances? A further motivation was the conjecture that a reason for the incon-
clusiveness of earlier comparative studies is that the number of detected faults
alone is too strong an abstraction for comparing testing strategies.

We examined the kind of faults that random testing finds, and whether and
how these differ from faults found by human testers and by users of the software.
The experiments suggest that these three strategies for finding software faults
have different strengths and areas of applicability. None of them subsumes any
other in terms of performance. Random testing with AutoTest has the advantage
of being completely automatic and the experiments show that the tool indeed
finds a high number of faults in little time. Humans, however, find faults that
AutoTest misses. AutoTest also finds faults that testers miss. The conclusion
is that random tests should be used alongside with manual tests. Given earlier
results on comparing different QA strategies, this is not surprising, but we are
not aware of any systematic studies that showed this for random testing.
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Table 8.14: Random Testing vs. User Reports: a finer-grained classification
of specification and implementation faults. AutoTest is good at detecting
limit value problems and bad at detecting problems such as too strong
preconditions, missing implementations, and infinite loops.

Category id Number of faults Percentage of faults
AutoTest Users AutoTest Users

Specification faults
S1 22 0 13.33% 0.00%
S2 23 0 13.94% 0.00%
S3 28 3 16.97% 10.71%
S4 7 0 4.24% 0.00%
S5 0 0 0.00% 0.00%
S6 4 0 2.42% 0.00%
S7 2 0 1.21% 0.00%
S8 3 0 1.82% 0.00%
S9 0 2 0.00% 7.14%

S10 12 2 7.27% 7.14%
S11 2 0 1.21% 0.00%
S12 0 3 0.00% 10.71%

Specification faults total 103 10 62.42% 35.71%
Implementation faults

I1 47 0 28.48% 0.00%
I2 0 2 0.00% 7.14%
I3 1 0 0.61% 0.00%
I4 2 2 1.21% 7.14%
I5 4 7 2.42% 25.00%
I6 3 1 1.82% 3.57%
I7 5 1 3.03% 3.57%
I8 0 1 0.00% 3.57%
I9 0 4 0.00% 14.29%

Implementation faults total 62 18 37.58% 64.29%
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Table 8.15: Random Testing vs. Manual Testing AutoTest finds almost all
faults detected by humans, plus two extra faults.

Id Class # testers AutoTest
S1 BANK ACCOUNT 8 (61.5%)
S1 UTILS 5 (38.5%) x
S1 MY STRING 1 (7.7%) x
S2 BANK ACCOUNT 8 (61.5%)
S2 UTILS 7 (53.8%) x
S2 MY STRING 1 (7.7%) x
S2 MY STRING 5 (38.5%) x
S2 MY STRING 1 (7.7%) x
S2 MY STRING 0 (0%) x
S3 BANK ACCOUNT 1 (7.7%) x
S3 UTILS 4 (30.8%) x

S10 MY STRING 1 (7.7%)
I2 BANK ACCOUNT 4 (30.8%) x
I6 MY STRING 1 (7.7%)
I7 MY STRING 0 (0%) x
I9 MY STRING 9 (69.2%)



CHAPTER 9

FUTURE WORK

This thesis explores and contributes to several research directions related to ran-
dom contract-based tests and opens the way for investigating several other re-
search questions. In this chapter we discuss possible directions for future re-
search, grouped by the topic they address.

9.1 Random contract-based testing and AutoTest
Several improvements of the AutoTest tool are possible, both in terms of the al-
gorithms that it implements and of improving its performance and usability.

AutoTest allows the easy integration and objective comparison of various test-
ing strategies, due to the tool’s pluggable architecture. In the same manner in
which we implemented ARTOO as a plug-in strategy for AutoTest and could
compare purely random testing to adaptive random testing on the same grounds,
other test generation strategies can be implemented in the tool and then be objec-
tively compared to its other plug-ins. Modifications of the existing algorithms are
of course possible:

• Tweaking the random-based algorithm to improve its performance, for in-
stance by selecting values for basic types from values used verbatim in the
program source code rather than from the predefined sets.

• Using dynamic inference of abstract types [67]. This method finds sets of
related variables (such as variables declared as integers which actually rep-
resent sums of money, or others declared as integers which represent ages
of people). Determining these sets allows for them to be treated differently
by the testing strategy.

• Investigating new ways of integrating manual and generated tests and
of allowing testers more control over the testing process of AutoTest (for
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instance, specifying initializations, associating weights with routines and
classes, providing oracles).

AutoTest currently does not use the preconditions of the routines under test
except as filters for invalid generated inputs. Finding ways of guiding the input
generation process so that it produces only inputs satisfying these preconditions
is another avenue of interesting research.

AutoTest can also still be improved in terms of its usability by any software
developer. Although the tool has been available in open source on the Internet for
several years [97] and has a constantly growing community of users, we believe
the tool’s popularity would greatly increase if it were seamlessly integrated into
EiffelStudio, the standard development environment for Eiffel. Ongoing work is
focusing on this task.

9.2 Adaptive random testing for object-oriented
systems

The basic algorithm presented in section 6.2 for applying adaptive random testing
techniques to O-O software can be modified in several ways.

Having the possibility to compute a distance between objects allows cluster-
ing techniques to be applied to objects. Any of the known clustering algorithms
can be applied based on this distance, so it is possible to group together objects
that are similar enough. This allows ARTOO to be optimized by computing the
distances to the cluster centers only, and not to each individual object. The preci-
sion is dependent on the maximum distance between two distinct objects within
a given cluster. A preliminary implementation of this testing strategy shows an
average improvement of the time to first fault over ARTOO of 25% at no cost in
terms of faults found.

The implementation of ARTOO used in the experiments presented in section
8.3 uses the “complete” definition of the object distance, as described in Sec-
tion 6.1. Using a less computationally intensive definition of the object distance
might still require fewer tests to uncover a fault than random testing, but also less
time. Such alternatives can be explored in order to improve the performance of
ARTOO.

The definition of the object distance provided in Section 6.1 uses several con-
stants, whose values can be changed to tweak the distance computation and to
change the contribution of each component of the distance to the overall mea-
sure. How these constants affect the performance of ARTOO remains to be inves-
tigated.

The definition of the object distance only uses the syntactic form of the objects
and does not take their semantics into account in any way. This approach has the
merit of being completely automatable. Integrating semantics into the compu-
tation would require human intervention, but would certainly enrich the model
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and its accuracy and allow finer-grained control of the developer over the testing
process in ARTOO. Some support for this is already available through the con-
stants used in the object distance calculation, whose values can easily be changed
for fine tuning the distance. Future work can investigate this idea and other pos-
sibilities for providing further support for integrating semantics into the object
distance.

Furthermore, other applications of the object distance than to testing are pos-
sible, but have not been addressed in the work presented here.

9.3 Contract inference

The case study that we performed to compare programmer-written to inferred
contracts only considered library classes and student code (which also consisted
of library-style classes). It would be interesting to also investigate how assertions
inferred for applications compare to programmer-written assertions.

A promising idea seems to be “push-button inference”: using automated test-
ing tools to generate the test suites necessary for the assertion inference instead
of handmade tests.

Furthermore, other applications for assertion inference are possible, such as
improving a test suite: since the quality of the inferred assertions depends on
the test suites used to exercise the system, the quality of the inferred assertions
(both in absolute terms and compared to programmer-written assertions) can be
used to estimate the quality of the test suite. This assumption can be verified
through an experiment checking if tests that produce better inferred assertions
also uncover more faults.

Future work also includes improving both Daikon and its Eiffel front-end,
based on the insights gained through the study described in section 7.3.

9.4 Evaluations of testing strategies

Comparisons between testing strategies, both in absolute and in relative terms,
are a wide and important field of study. The results presented in chapter 8 con-
tribute to the knowledge about the absolute performance of random testing and
how it compares to ARTOO and to manual testing, but they do not offer com-
parisons between random testing and other strategies. We consider such com-
parisons are essential, because the great variety of automated testing strategies
that are now available leaves developers and testers wondering as to the choice
of testing tool that would deliver the best results for their projects.

Further investigations into the performance of random testing are also possi-
ble and should answer questions such as:
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• What are the characteristics of randomly-generated fault-revealing tests
and test inputs? Are they simple or relatively complicated?

• What are the characteristics of the programs to which random testing is
best suited?

• What is the performance of random testing over timeouts longer than the
ones used in our experiments?

• What influence does a system’s coupling and cohesion have on the effi-
ciency of random tests?

• What other strategy best complements random testing, hence should be
used in combination with it?

Studying the evolution over time of the number of faults found by a strategy
could provide an answer to one of the fundamental questions in software test-
ing: when should one stop testing?1 If an approximation of the curve describing
this evolution is known in advance or can be deduced from existing data, then
it should also be possible to estimate, at any given time t in the testing session,
the time interval δt after which the next fault will be found. When this interval
exceeds a preset limit, one can decide to stop the testing session. (This naturally
does not take into account a varying degree of severity for the faults, but assumes
that all faults are equally important.)

In section 8.1.2 we presented an estimation for random testing of the evolu-
tion of found faults over time based on an experiment involving 1500 hours of
testing 8 classes. However, because each class was tested in several sessions of 30
minutes, these results do not provide any insight into the evolution of the num-
ber of faults found by random testing after this timeout. Experiments are hence
necessary which examine this evolution for longer timeouts. We are currently
working on such experiments.

As an automated oracle is indispensable for and largely influences the per-
formance of any automated testing strategy, more research into automatable or-
acles is necessary. Assertion inference tools and static analyzers are a first step
in this direction. We investigated (section 8.1.2) the influence in random testing
of the two oracles used widely by automated testing tools (contract violations
and exceptions), but experiments are necessary to study their contributions when
integrated in other testing strategies too.

The fault classification presented in section 8.4.1 can be used for and possibly
extended by comparing other testing strategies. Additionally, it is necessary to
further research the grounds, methods and metrics for comparing testing strate-
gies. In particular, since the purpose of testing is to find faults, all other possible

1Often measures of code coverage are used to provide an estimate of how much testing
is enough, but there is no conclusive evidence yet on the existence of correlations between
code coverage and the remaining number of faults in a system.
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measures of its efficiency must directly relate to its fault-finding ability. Thus,
more evidence is necessary for showing that code/data coverage correlates with
finding faults and that mutation testing is indeed indicative of the fault-revealing
capability of a test suite.

A series of questions that have been investigated only very little so far relates
to the psychology of testing: how do testers decide what to test? How do novices
learn how to test? Why are testers reluctant to use automating tools? What and
how can tools learn from the way a tester proceeds when testing a program?
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CHAPTER 10

SUMMARY AND CONCLUSIONS

The state-of-the-art in software testing has evolved greatly in recent years. Both
academia and industry have been investing significant resources in improving
existing testing strategies and tools and creating new ones. Since testing accounts
for between 30% and 90% of the total software development effort [23] and the
costs of inadequate testing infrastructure reach tens of billions of dollars annualy
in the US alone [133], this effort is justified.

Research on software testing can follow many directions: proposing new al-
gorithms and tools, improving existing ones, investigating the performance of
existing techniques both theoretically and empirically, defining best practices, de-
veloping automated approaches, combining such approaches with manual ones,
improving the support for testing during the other phases of the software de-
velopment process, improving testing through other artifacts that it depends
on (specifications, models, design, usage scenarios, etc.), combining testing and
proving techniques, investigating developers’ needs and adapting the testing
tools to them, etc.

Despite significant recent contributions from academia in all these directions,
industry has adopted very few of the emerging ideas and technologies. Even
when such adoptions occur, they are slow and difficult. The challenges that in-
dustry cites most often with respect to this are usability, scalability, reliability, per-
formance requirements, the lack of research work attempting to address analysis
and generation of test inputs across several programming languages, the lack of
sufficient information and documentation on research prototypes, etc. Because of
these challenges, significant investments are necessary to turn research ideas into
industrial-strength tools. Furthermore, the psychology of programming is also
involved: developers must be motivated to make the effort involved in adopting
new tools; if this motivation is not present, developers will not be willing to make
the adoption effort, however small it may be.

One of the most pressing needs of the software industry is for automated test-
ing solutions. Consequently, much of the recent research on software testing has
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been focusing on developing such solutions, with different degrees of automa-
tion. The challenges in developing techniques and tools for automated testing
lie not only in creating new algorithms and approaches, but also in comparing
existing tools and coming up with recommendations for testing practitioners.

This thesis contributes to both directions: it proposes new testing techniques
integrated into an open source tool, which is already being used in industry, and
it investigates the performance of existing and newly-proposed testing strategies.

Most of the developments and experiments performed are based on the Au-
toTest tool. AutoTest is an open source tool for the fully automated testing of
contract-equipped Eiffel programs, but can be applied with minor modifications
to other pure object-oriented programming languages using static typing and
dynamic binding and with support for embedded executable specification. Au-
toTest uses contracts present in the code for input selection (any generated input
that does not satisfy the precondition of the routine under test is discarded) and
as automated oracle (any contract violation, except for direct precondition viola-
tions by the tool, signals a fault in the code). By default, AutoTest uses a random
strategy for generating inputs, but other algorithms for creating test inputs can
easily be plugged in.

We extended AutoTest with another method for input creation which tries to
maximize the diversity of the test inputs, based on the ideas of Adaptive Ran-
dom Testing [35]. This new testing strategy, called ARTOO, generates candidate
inputs randomly and selects at each step the candidate that is most different from
the already used test inputs. To compute a measure of how different two test in-
puts (objects) are, we developed the object distance, a distance function based on
the types of the objects, their immediate values, and the distances between their
attributes. Compared to the random input generation algorithm of AutoTest, AR-
TOO needs about 5 times less tests to uncover a first fault, but needs on average
about 1.6 times more time. This measure of the testing time, however, comprises
both test generation and test execution time, and is hence dependent on the run-
ning time of the tested routines.

We also explored ways of integrating automated and manual tests, by using
the testers’ knowledge contained in manual tests in the creation and selection of
automated tests.

The contracts present in the tested classes are essential to the quality of the
results delivered by AutoTest, because any property not specified in the contracts
cannot be checked by the tool. Eiffel programmers are aware of the benefits that
contracts bring and do include contracts in their code, as shown in a large-scale
study [31], but most often they do not write complete or even correct contracts.
We hence investigated the benefits that a contract inference tool can bring by per-
forming a comparative study of assertions written by programmers and inferred
by such a tool. In this study we used CITADEL, an Eiffel front-end for the Daikon
assertion inference tool [55]. The study showed that such a tool produces around
6 times more relevant assertion clauses than programmers write, but only infers
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about 50% of all programmer-written assertions. Hence a tool like CITADEL can
be used to strengthen assertions written by the programmers, but cannot com-
pletely replace their work. Among the disadvantages of such tools are the fact
that they require a running system and a set of passing test cases and that they
produce many incorrect and uninteresting assertions (around a third of all gener-
ated assertions).

As noted above, progress in testing requires not only the introduction of new
techniques and the improvement of existing ones, but also thorough evaluations
of techniques and comparisons between them, making clear the absolute and
relative advantages and disadvantages of each approach. We hence performed
extensive case studies in this direction, investigating the performance of purely
random testing, of random testing combined with boundary value testing (we
call this strategy “random+ testing”), the predictability of random+ testing, and
how the faults found through random+ testing compare to faults found through
manual testing and by users of the software. Among the results:

• Random testing extended with boundary value testing finds significantly
more faults than purely random testing

• The number of new faults found by random+ testing per time unit is in-
versely proportional to the elapsed time

• Random testing uncovers more faults due to contract violations than to
other exceptions

• Parameters of the random input generation algorithm have a strong influ-
ence on its performance

• Random+ testing is predictable in the relative number of faults it uncov-
ers over a particular timeout, but different runs of the algorithm uncover
different faults

• Random+ testing finds around 66% of faults in contracts and the rest in
implementation, while for manual testing the situation is reversed

• Random+ testing finds a much higher number of faults than manual test-
ing and than users of the software, but it does not find all faults revealed
through manual testing or reported by the users

This thesis thus brings contributions in a few of the directions of current re-
search, in an attempt to advance the state-of-the-art in software testing and to
contribute to the ultimate goal in software engineering: to enable the faster and
easier development of better quality software.
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APPENDIX A

EXAMPLE OF CONTRACT
INFERENCE

Listing A.1 shows an example illustrating the assertions that CITADEL, our Eiffel
front-end for the Daikon tool, infers for class ST SPLITTER from the Gobo library,
based on a test suite combining random and partition testing and executing each
routine of the class around 50 times. All CITADEL-inferred assertions have the
inferred tag. The original contracts of the class are also shown. The listing
shows all inferred contracts, including the incorrect and uninteresting ones. For
brevity, the listing only shows some of the routines of class ST SPLITTER.

indexing

3 description: "Split a string into tokens"
library: "Gobo Eiffel String Library"
copyright: "Copyright (c) 2004, Eric Bezault and others"

6 license: "MIT License"
date: "$Date: 2007-01-26 10:55:25 -0800 (Fri, 26 Jan

2007) $"
revision: "$Revision: 5877 $"

9

class ST_SPLITTER

12 inherit

ANY
15 KL_IMPORTED_STRING_ROUTINES

export
{NONE} all

18 end
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create
21

make,
make_with_separators

24

feature {NONE}
-- Initialization

27 make is
-- Create a new string splitter.

do
30 set_separators (Default_separators)

ensure
inferred: separators = Default_separators

33 inferred: not has_escape_character
inferred: escape_character = 0
default_separators: separators = Default_separators

36 no_escape_character: not has_escape_character
end

39 make_with_separators (a_string: STRING) is
-- Create a new string splitter with separators

specified in ‘a_string’.
require

42 inferred: a_string /= Void
inferred: not a_string.is_empty
a_string_not_void: a_string /= Void

45 a_string_not_empty: not a_string.is_empty
do
set_separators (a_string)

48 ensure
inferred: separators = a_string
inferred: has_escape_character = a_string.is_empty

51 inferred: has_escape_character = old a_string.is_empty
inferred: a_string.count = old a_string.count
inferred: not has_escape_character

54 inferred: escape_character = 0
inferred: a_string.is_equal (old a_string.string)
separators_set: separators = a_string

57 no_escape_character: not has_escape_character
end

60 feature
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-- Access
separators: STRING

63 -- Characters used as token separators

has_escape_character: BOOLEAN
66 -- Is there an escape character set?

escape_character: CHARACTER
69 -- Escape character

-- (When in an input string, it is removed and
replaced

-- with the character following it. This following
72 -- character is not treated as a separator.)

Default_separators: STRING is " %T%R%N"
75 -- Space, Tab, CR, Newline

feature
78 -- Setting

set_separators (a_string: STRING) is
-- Set characters used as separators within string.

81 require
inferred: a_string /= Void
inferred: not a_string.is_empty

84 inferred: a_string.count >= 1
a_string_not_void: a_string /= Void
a_string_not_empty: not a_string.is_empty

87 escape_character_not_separator: has_escape_character
implies not a_string.has (escape_character)

local
i, nb: INTEGER

90 do
separators := a_string
-- Initialize codes hash set from separators.

93 nb := a_string.count
create separator_codes.make (nb)
from

96 i := 1
invariant
inferred: separators = a_string

99 inferred: a_string.count = nb
inferred: separators /= Void
inferred: escape_character >= 0
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102 inferred: Default_separators /= Void
inferred: separator_codes /= Void
inferred: not a_string.is_empty

105 inferred: i >= 1
until
i > nb

108 loop
separator_codes.put (a_string.item_code (i))
i := i + 1

111 end
ensure
inferred: separators = a_string

114 inferred: has_escape_character = old
has_escape_character

inferred: escape_character = old escape_character
inferred: Default_separators = old Default_separators

117 inferred: a_string.is_empty = old a_string.is_empty
inferred: a_string.count = old a_string.count
inferred: not a_string.is_empty

120 inferred: a_string.count >= 1
inferred: a_string.is_equal (old a_string.string)
separators_set: separators = a_string

123 end

set_escape_character (a_character: CHARACTER) is
126 -- Set escape character.

require
escape_character_not_separator: not separators.has (

a_character)
129 do

escape_character := a_character
has_escape_character := True

132 ensure
inferred: separators = old separators
inferred: escape_character = a_character

135 inferred: Default_separators = old Default_separators
inferred: has_escape_character
has_escape_character: has_escape_character

138 escape_character_set: escape_character = a_character
end

141 feature
-- Operation(s)
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split (a_string: STRING): DS_LIST [STRING] is
144 -- Split a string according to separator

-- and escape character settings.
-- A sequence of separators is a single separator,

147 -- a separator at start/end of string is ignored.
require
inferred: a_string /= Void

150 inferred: a_string.count >= 0
a_string_not_void: a_string /= Void

do
153 Result := do_split (a_string, False)

ensure
inferred: has_escape_character = old

has_escape_character
156 inferred: escape_character = old escape_character

inferred: Default_separators = old Default_separators
inferred: Result.off = Result.before

159 inferred: Result.after = Result.is_first
inferred: Result.after = Result.is_last
inferred: Result /= Void

162 inferred: Result.index = 0
inferred: Result.new_cursor /= Void
inferred: Result.cloned_object /= Void

165 inferred: Result.count >= 0
inferred: Result.off
inferred: Result.equality_tester = Void

168 inferred: Result.to_array /= Void
inferred: not Result.after
inferred: (Result /= Void) and then (not Result.

is_empty or else not Result.is_empty) implies
Result.first /= Void

171 inferred: (Result /= Void) and then (not Result.
is_empty or else not Result.is_empty) implies
Result.last /= Void

inferred: a_string.is_equal (old a_string.string)
inferred: Result.index <= Result.count

174 inferred: Result.index <= old a_string.count
inferred: Result.count <= old a_string.count
separators_as_sequence: split (separators).is_empty

177 split_not_void: Result /= Void
no_void_item: not Result.has (Void)
no_empty_item: not has_empty (Result)

180 count_ceiling: Result.count <= a_string.count // 2 + 1
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last_escape_character_verbatim: (a_string.count >= 2
and then a_string.item (a_string.count) =
escape_character and then a_string.item (a_string.
count - 1) /= escape_character) implies (Result.
last.item (Result.last.count) = escape_character)

end
183

join (a_linear: DS_LINEAR [STRING]): STRING is
-- Join sequence to a string using the first of the

186 -- ‘separators’ as separator, and escape separators
-- within tokens.

require
189 inferred: a_linear.is_empty = a_linear.off

inferred: has_escape_character
inferred: a_linear /= Void

192 inferred: (a_linear /= Void) and then not a_linear.
is_empty implies a_linear.first /= Void

inferred: a_linear.new_cursor /= Void
inferred: not a_linear.after

195 inferred: a_linear.to_array /= Void
inferred: a_linear.cloned_object /= Void
inferred: a_linear.count >= 0

198 inferred: (a_linear /= Void) and then not a_linear.off
implies a_linear.item_for_iteration /= Void

has_escape_character: has_escape_character
a_linear_not_void: a_linear /= Void

201 no_void_item: not a_linear.has (Void)
no_empty_item: not has_empty (a_linear)

do
204 Result := do_join (a_linear, False)

ensure
inferred: has_escape_character = old

has_escape_character
207 inferred: escape_character = old escape_character

inferred: Default_separators = old Default_separators
inferred: Result.is_empty = old a_linear.is_empty

210 inferred: Result.is_empty = old a_linear.off
inferred: has_escape_character
inferred: Result /= Void

213 inferred: Result.count >= 0
inferred: Result.count >= old a_linear.count
join_not_void: Result /= Void

216 same_count: split (Result).count = a_linear.count
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stable_reversible: STRING_.same_string (join (split (
Result)), Result)

end
219

feature {NONE}
-- Implementation

222 separator_codes: DS_HASH_SET [INTEGER]
-- Character codes of separators
-- (Hashed, and integer for unicode compatibility.)

225

do_join (a_linear: DS_LINEAR [STRING]; a_greedy: BOOLEAN)
: STRING is
-- Join sequence to a string using the first of the

228 -- ‘separators’ as separator, and escape separators
-- within tokens.

require
231 inferred: a_linear.is_empty = a_linear.off

inferred: separators /= Void
inferred: has_escape_character

234 inferred: Default_separators /= Void
inferred: separator_codes /= Void
inferred: a_linear /= Void

237 inferred: (a_linear /= Void) and then not a_linear.
is_empty implies a_linear.first /= Void

inferred: a_linear.new_cursor /= Void
inferred: not a_linear.after

240 inferred: a_linear.to_array /= Void
inferred: a_linear.cloned_object /= Void
inferred: a_linear.count >= 0

243 inferred: (a_linear /= Void) and then not a_linear.off
implies a_linear.item_for_iteration /= Void

has_escape_character: has_escape_character
a_linear_not_void: a_linear /= Void

246 no_void_item: not a_linear.has (Void)
local
a_cursor: DS_LINEAR_CURSOR [STRING]

249 a_separator: STRING
do
create Result.make_empty

252 -- Using a string for separator is unicode compatible
.

a_separator := separators.substring (1, 1)
a_cursor := a_linear.new_cursor
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255 from
a_cursor.start

invariant
258 inferred: a_cursor.container = a_linear

inferred: a_cursor.after = a_cursor.off
inferred: a_linear.after = a_separator.is_empty

261 inferred: a_linear.is_empty = a_linear.off
inferred: separators /= Void
inferred: has_escape_character

264 inferred: Default_separators /= Void
inferred: separator_codes /= Void
inferred: a_cursor /= Void

267 inferred: a_cursor.container /= Void
inferred: (a_cursor /= Void) and then not a_cursor.

off implies a_cursor.item /= Void
inferred: (a_linear /= Void) and then not a_linear.

is_empty implies a_linear.first /= Void
270 inferred: a_linear.new_cursor /= Void

inferred: a_linear.to_array /= Void
inferred: a_linear.cloned_object /= Void

273 inferred: a_linear.count >= 0
inferred: (a_linear /= Void) and then not a_linear.

off implies a_linear.item_for_iteration /= Void
inferred: a_separator /= Void

276 inferred: not a_separator.is_empty
inferred: a_separator.count = 1
inferred: Result /= Void

279 inferred: Result.count >= 0
until
a_cursor.after

282 loop
Result := escape_appended_string (Result, a_cursor.

item)
a_cursor.forth

285 if not a_cursor.after then
Result := STRING_.appended_string (Result,

a_separator)
end

288 end
ensure
inferred: has_escape_character = old

has_escape_character
291 inferred: escape_character = old escape_character
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inferred: Default_separators = old Default_separators
inferred: Result.is_empty = old a_linear.is_empty

294 inferred: Result.is_empty = old a_linear.off
inferred: separators /= Void
inferred: has_escape_character

297 inferred: Default_separators /= Void
inferred: separator_codes /= Void
inferred: Result /= Void

300 inferred: Result.count >= 0
join_not_void: Result /= Void

end
303

...

306 invariant

inferred: separators /= Void
309 inferred: escape_character >= 0

inferred: Default_separators /= Void
inferred: separator_codes /= Void

312 separators_not_void: separators /= Void
separators_not_empty: not separators.is_empty
escape_character_not_separator: has_escape_character

implies not separators.has (escape_character)
315

end

Listing A.1: Class ST SPLITTER, annotated with inferred assertions.
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