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1 - Introduction 

Eiffel is a language and environment intended for 
the design and implementation of quality software in 
production environments. The language is based on 
the principles of object-oriented design, augmented 
by features enhancing correctness, extendibility and 
efficiency; the environment includes a basic class 
library and tools for such tasks as automatic 
configuration management, documentation and 
debugging. 

Beyond the language and environment aspects, 
Eiffel promotes a method of software construction 
by combination of reusable and flexible modules. 

The present note is a general introduction to 
Eiffel. More detailed informatioo [1, 2, 3] is 
available. 

2 - Design principles 

Software quality is a tradeoff between many 
factors [4]. In the current state of the software 
industry, some of these factors appear worth a 
particular effort. One is reusability, or the ability to 
produce software components that may be used in 
many different applications; observation of 
programmers shows that many of the same program 
patterns frequently recur, but that actual reuse of 
program modules is much less widespread than it 
ought to be. Another important factor is 
extendibility: although software is supposed to be 
"sof t " ,  it is notoriously hard to modify software 
systems, especially large ones. 

As compared to other quality factors, reusability 
and extendibility play a special rble as their 
satisfaction means that less software has to be 
written, and thus, presumably, that more time may 
be devoted to the other goals (such as efficiency, 
ease of use etc.). Thus it may pay off in the long 

run to concentrate on these two factors, and they 
were indeed paramount in the design of Eiffel. 

Other design goals also played a significant part. 
Helping programmers ensure correctness and 
reliability of their software is of course a prime 
concern. Portability was one of the requirements on 
the implementation. Finally, efficiency cannot be 
neglected in a tool that is aimed at practical, 
medium- to large-scale developments. 

3 - Object-oriented design 

To achieve reusability and extendibility, the 
principles of object-oriented design seem to provide 
the best known technical answer to date. This note is 
not the place to discuss these principles in depth. 
We shall simply offer a definition of this notion: as 
discussed here, object-oriented design is the 
construction of software systems as structured 
collections of abstract data type implementations. 
The following points are worth noting in this 
definition: 

• the emphasis is on structuring a system around 
the objects it manipulates rather than the functions 
it performs on them, and on reusing whole data 
structures, together with the associated operations, 
rather than isolated procedures. 

- Objects are described as instances of abstract 
data types - that is to say, data structures known 
from an official interface rather than through their 
representation. 

® The basic modular unit, called the class, 
describes the implementation of an abstract data 
type (not the abstract data type itself, whose 
specification would not necessarily be executable). 

o The word collection reflects how classes should 
be designed: as units which are interesting and 
useful on their own, independently from the 
systems to which they belong. Such classes may 
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then be reused in many different systems. System 
construction is viewed as the assembly of existing 
classes, not as a top-down process starting from 
scratch. 

® Finally, the word structured reflects the 
existence of important relationships between 
classes, particularly the multiple inheritance 
relation. 

Following Simula 67 [5], several object-oriented 
languages have appeared in recent years, such as 
Smalltalk [6], extensions of C such as C++ [7] and 
Objective C [8], of Pascal such as Object Pascal [9], 
of Lisp such as Loops [10], Flavors [11] and Ceyx 
[12]. Eiffel shares the basic properties of these 
languages but goes beyond them in several respects, 
by offenng multiple inheritance (which, of the 
systems quoted, is only available in recent versions 
of Smalltalk, on an experimental basis, and in the 
Lisp extensions), genetic classes, static type 
checking (whereas most existing languages are either 
untyped or offer dynamic checking only) and 
facilities for redefinition and renaming (see below). 
Furthermore, Eiffel combines the object-oriented 
heritage with a strong software engineering 
influence, through facilities for information hiding, 
expression of formal program properties (assertions, 
invariants) and a strict naming policy. Finally the 
language comes with an environment geared towards 
the development of sizable software in production 
environments. 

The rest of this presentation inlroduces the main 
language features informally, through a set of 
examples, and describes the pnncipal aspects of the 
implementation and environment. 

One remark is in order on the size of the 
language. Eiffel includes more than presented in this 
introduction, but not much more; it is a small 
language, comparable m size (by such an 
approximate measure as the number of keywords) to 
Pascal. Thus Eiffel belongs to the class of 
languages which programmers can master entirely 
(as opposed to languages of which most 
programmers know only a subset). Yet it is 
appropriate for the development of significant 
software systems, as evidenced by our own 
experience with such programs as C~page [13] 
(which, at the time of this writing, is a 45,000-line 
Eiffel system) and other examples. 

4 - Classes 

We first introduce a typical class. As mentioned 
above, a class represents the implementation of an 
abstract data type, that is to say a class of data 
structures known through an official interface. A 
simple example would be a a bank account. Let 
ACCOUNT be the corresponding class. Before we 
show the class, we first describe how it would be 
used; such a use has to be in another class, say X, 
as classes are the only program unit in Eiffel. 

To use ACCOUNT, class X may introduce an 
entity and declare it of this type: 

accl: ACCOUNT 

The term "entity" is preferred here to "variable" 
as it corresponds to a more general notion. An entity 
declared of a class type, such as accl, may at any 
time during execution refer to an object; an entity 
which does not refer to any object is said to be void. 
By default (at initialization) entities are void; objects 
must be created explicitly, by an instruction 

accl.Create 

which associates accl with the newly created object 
(see figure 1). Create is a predefined "feature" of 
the language. 

0 
Figure 1: Entity and associated object 

Once acc 1 has been associated with an object, 
one may apply to it the features defined in the 
corresponding class. Examples are: 

accl.open ("John"); 
accl.deposit (5000); 

if accl.may_withdraw (3000) then 
accl.withdraw (3000) 

end; 
print ( accl.balance ) 

All feature applications use the dot notation: 
entity_name.featurename. There are two kinds of 
features: routines (as open, deposit, may_withdraw 
or withdraw), that is to say operations; and 
attributes, that is to say data items associated with 
objects of the class. 
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Routines are further divided into procedures 
(actions, which do not return a value) and functions 
(which return a value). Here may_withdraw is a 
function with an integer parameter, returning a 
boolean result; the other three routines invoked are 
procedures. 

The above extract of class X does not show 
whether, in class ACCOUNT, balance is an attribute 
or a function without parameters. This ambiguity is 
intentional. A class such as X ,  said to be a client of 
ACCOUNT, does not need to know how a balance is 
obtained: it could be stored as attribute of every 
account object, or re-computed by a function, 
whenever requested, from other attributes such as 
the list of previous deposits and withdrawals. 
Deciding on one of these implementations is the 
business of class ACCOUNT, not anybody else's. 

Having shown class usage, we now present the 
definition of the class itself, which might look like 
the following. Following the Ada convention, fine 
segments beginning with -- are comments. 

class ACCOUNT export  
open, deposit, may_withdraw, 
withdraw, balance, owner 

feature 
balance: INTEGER . 

minimum_balance: INTEGER is 1000 ; 

owner: STRING ; 

assign_owner (who: STRING) is 
-- Assign the account to owner who 

do 
owner := who 

end ; -- open 

add (sum: INTEGER) is 
-- Add sum to the balance 
-- (Secret procedure) 

do 
balance := balance+sum 

end ; -- deposit 

deposit (sum: INTEGER) is 
-- Deposit sum into the account 

do 
add (sum) 

end ; -- deposit 

withdraw (sum: INTEGER) is 
-- Withdraw sum from the account 

do 
add (-sum) 

end ; -- withdraw 

maywithdraw (sum: INTEGER): BOOLEAN is 
-- Is it permitted to withdraw sum 
-- from the account? 

do 
Result := (balance >= minimunubalance) 

end ; -- deposit 
end -- class ACCOUNT 

This class includes two clauses: feature, which 
describes the features of the class, and export,  
which simply fists those features which are available 
to clients of the class. Non-exported features are said 
to be secret. Here procedure add is secret, so that 
accl.add (-3000) would have been illegal in X. 
Similarly, attribute minimumbalance is secret. 
(Selective export of  a feature to some classes only is 
also possible.) 

Let us examine the features in sequence. 
Routines are distinguished from attributes by having 
a clause of the form is...do...end. Thus balance is 
in fact an attribute. The clause is 1000 introduces 
minimumbalance as a constant attribute, which will 
not occupy any physical space in objects of the 
class. Non-constant attributes such as balance do 
use space for each object of  the class; they are 
similar to components of  a record in Pascal. 

Attributes balance and minimum_balance are 
declared of type INTEGER. Eiffel is strongly typed: 
every entity is declared of a certain type. A type is 
either simple, that is to say one of INTEGER, 
REAL,  CHARACTER and BOOLEAN, or a class. 
Arrays and strings belong to the second category; 
they are described by predefined system classes, 
ARRAY and STRING, treated exactly as user-defined 
classes with one exception: a special notation, as in 
"John", is available to denote literal string constants. 

Automatic initialization is ensured by the 
language definition, so that the initial balance of  an 
account object will be zero after a Create. Numeric 
attributes are initialized to zero, booleans to false, 
characters to the null character; those of  class types 
are initially void. 

The other five features are straightforward 
routines. The first four are procedures, the last one 
(may_withdraw) a function returning a boolean 
value; note that the special variable Result denotes 
the function result. It is initialized on function entry 
to the default value of the appropriate type, as 
defined above. 

To properly understand the routines, it is 
necessary to remember that in an object-oriented 
languages any operation is relative to a certain 
object. In an external client invoking the operation, 
this object is specified by writing the corresponding 
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entity on the left o f  the dot, as accl in 
accl.open ("John"). Within the class, however, the 
"current"  object to which operations apply usually 
remains implicit, so that unqualified references, such 
as owner in procedure assign_owner or add in 
deposit, mean "the owner attribute or add routine 
relative to the current object".  The special variable 
Current may be used, if  needed, to explicitly denote 
this object. Thus the unqualified occurrences of add 
appearing in the above class are equivalent to 
Current.add. 

In summary, this simple example shows the basic 
structuring mechanism of  the language, the class. A 
class describes a data structure, accessible to clients 
through an official interface comprising some of the 
class features. Features are implemented as 
attributes or routines; the implementation of 
exported features may rely on other, secret ones. 

5 - Assert ions  

It was said at the outset that classes are abstract 
data type implementations. However an abstract 
data type is defined not just by a list of  available 
operations, but also by the formal properties of these 
operations, which do not appear in the above 
example. 

Eiffel indeed enables and encourages 
programmers to express formal properties of classes 
by writing assert ions ,  which may in particular 
appear in the following positions: 

• routine preconditions express conditions that 
must be satisfied whenever a routine is called. For 
example withdrawal might only be permitted if it 
keeps the account's balance on or above the 
minimum. Preconditions are introduced by the 
keyword require.  

• Routine postconditions, introduced by the 
keyword ensure ,  express conditions that are 
guaranteed to be true on routine return (if the 
precondition was satisfied on entry). 

• Class invariants  must be satisfied by objects of 
the class at all times, or more precisely after 
object creation and after any call to a routine of 
the class. They are described in the invariant  
clause of  the class and represent general 
consistency constraints that are imposed on all 
routines of the class. 

Our ACCOUNT class may be rewritten with 
appropriate assertions: 

class ACCOUNT export  .... (as before) 
feature 

-- Attributes as before: 
--balance, minimumbalance,  owner 

assign_owner ..... -- as before ; 

add ..... -- as before ; 

deposit (sum: INTEGER) is 
-- Deposit sum into the account 

require 
sum >= 0 

do 
add (sum) 

ensure  
balance = old balance + sum 

end ; -- deposit 

withdraw (sum: INTEGER) is 
-- Withdraw sum from the account 

require  
sum >= 0 ; 
sum <= balance - minimum_balance 

do 
add (-sum) 

ensure  
balance = old balance - sum 

end ; -- withdraw 

may_withdraw ..... -- as before 

Create (initial: INTEGER) is 
require 

initial >= minimum_balance 
do 

balance := initial 
end -- Create 

invariant  
balance >= minimum_balance 

end -- class ACCOUNT 

The old.., notation may be used in an ensure  
clause, with a self-explanatory meaning. 

The reader will have noted that a Create 
procedure has been added to the features of the 
class. The reason is the following. Under the 
previous scheme, an account was created by, say, 
accl.Create. Because of the initialization rules, 
balance is then zero and the invariant is violated. I f  
a different initialization is required or, as here, an 
initialization depending on a parameter supplied by 
the client, then the class should include a procedure 
called Create. Object creation will be obtained by 
writing, say 

accl.Create (5500) 

whose effect is to allocate the object (as in the 
default Create) and then to execute the procedure 
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called Create in the class, with the given actual 
parameter. This example call is correct as the 
precondition is satisfied and the invariant will hold 
after the call  

Note that procedure Create, when explicitly 
provided, is recognized by the compiler as special; it 
is automatically exported and should not be included 
in the export clause. 

Assertions, as they appear in preconditions, 
postconditions and invariants, should primarily be 
viewed as powerful tools for documenting 
correctness arguments: they serve to make explicit 
the assumptions on which programmers rely when 
they write program fragments that they believe are 
correct. In this respect, assertions are formalized 
comments. For debugging purposes, the Eiffel 
environment also makes it possible to monitor 
assertions at run-time, producing a message if an 
assertion is found to be violated. 

Syntactically, expressions are boolean expressions, 
with a few extensions (like the old notation). The 
semicolon (see the precondition to withdraw) is 
equivalent to an "and" ,  but permits individual 
identification of the components, useful for 
producing informative error messages at run-time. 

It must be pointed out that assertions are not a 
technique for exception handling. An exception (in 
the CLU or Ada sense) is a run-time situation which 
the programmer prefers to handle in code separate 
from the main flow of control, but which (for the 
very reason that the program is prepared to deal 
with it) falls within the scope of the specification. In 
contrast, an assertion denotes a condition that should 
always be satisfied at the given control point; for 
example, a precondition describes the requirements 
for a routine body to be applicable. Assertion 
violation reflects a progranlming error, not an 
exceptional but planned situation from which it is 
possible to recover gracefully. 

Eiffel offers no specific mechanism for exception 
handling. In our experience, standard algorithmic 
techniques are appropriate for dealing with 
exceptional conditions. Although we accept differing 
views on the question, we considered this facility to 
be of secondary importance and preferred to keep it 
out of the language in the interest of design 
simplicity. Encouraging programmers to express 
correctness arguments precisely through well-placed 
assertions appeared much more relevant. 

6 - G e n e r i c  c l a s s e s  

Building software components (classes) as 
implementations of abstract data types yields 
systems with a solid architecture but does not in 
itself suffice to ensure reusability and extendibility. 
This section and the next two describe Eiffel 
techniques for making the components as general 
and flexible as possible. 

The first technique is genericity, which exists 
under different forms in Ada and CLU but is fairly 
new to object-oriented languages. Classes may be 
declared with generic parameters representing types. 
For example, the following classes are part of the 
basic Eiffel library: 

ARRAY [T] 
LIST [T] 
LINKED_LIST [T] 

They respectively describe one-dimensional 
arrays, general lists (without commitment as to a 
specific representation) and lists in linked 
representation. All have a formal generic parameter 
T representing an arbitrary type. To actually use 
these classes, one provides actual generic 
parameters, which may be either simple or class 
types, as in the following declarations: 

il: LIST [INTEGER]; 
aa: ARRAY [ACCOUNT]; 
aal: LIST [[ARRAY [ACCOUNT]] --etc. 

An earlier article [2] discussed the rble of 
genericity in comparison to inheritance and 
explained their combination in Eiffel, especially in 
the context of strict type checking. The solution 
involves the notion of "declaration by association", 
not addressed here. 

7 - M u l t i p l e  i n h e r i t a n c e  

Multiple inheritance is a key technique for 
reusability. The basic idea is simple: when defining 
a new class, it is often fruitful to introduce it by 
combination and specialization of existing classes 
rather than as a new entity defined from scratch. 

A simple example is provided by the classes of 
the basic library mentioned above. LIST, as 
indicated, describes lists of any representation. One 
possible representation for lists with a fixed number 
of elements uses an array. Such a class will be 
defined by combination of LIST and ARRAY, as 
follows: 
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class F I X E D L I S T  [T] export .... 
inher i t  

LIST [T]; 
ARRAY [T] 

feature  

... Specific features of  fixed-size lists ... 
end -- class FIXED_LIST 

The inherit.., clause lists all the "parents" of the 
new class (which is said to be their "heir") .  Thanks 
to this clause, all the features and properties of lists 
and arrays are applicable to fixed lists as well. This 
simple idea makes it possible to achieve remarkable 
economies of programming, of which we feel the 
effects daily in our experience of Eiffel software 
development. (Inheritance was introduced by Simula 
67. In Simula, however, as in many other object- 
oriented languages, inheritance is not multiple: 
classes may have at most one parent.) 

The very power of the mechanism demands 
adequate means to control its effects. In Eiffel, no 
name conflict is permitted between inherited 
features. Since such conflicts will inevitably arise in 
practice, especially in the case of software 
components brought in by independent developers, 
the language provides a technique to remove them: 
explicit renaming, as in 

class C export.., inherit 
A r e n a m e  x as xl, y as y l ;  
B r e n a m e  x as x2, y as y2 

feature... 

Here the inherit clause would be illegal without 
renaming, since the example assumes that both A 
and B have features named x and y .  

Renaming also serves to provide more appropriate 
feature names in heirs. In another example from the 
basic library, class TREE IT] is defined by 
inheritance from LINKED_LIST [T] and 
LINKABLE [T], the latter describing dements of 
linked lists. The idea is that a tree is a list (as it has 
subtrees, to which the usual list operations of 
insertion, change, deletion, traversal etc. apply), as 
well as a list element, as it may itself be inserted as 
subtree into another tree. (The class definition thus 
obtained is simple and compact, while covering a 
rich set of tree manipulation primitives which have 
proved sufficient in such different contexts as a 
multiple-windowing screen handler and a syntax- 
directed editor.) In the inheritance clause, the feature 
empty of linked lists, a boolean-valued function 
which determines whether a list is empty, itself 
inherited from LIST,  is renamed is_leaf to conform 
to standard tree terminology. 

To further ensure that the multiple inheritance 
mechanism is not misused, the invariants of all 
parent classes automatically apply to a newly 
defined class. Thus classes may not be combined if 
their invariants are incompatible. 

8 - Polymorphism 

One important aspect of inheritance is that it 
enables the definition of flexible program entities 
that may refer to objects of various forms at run- 
time (hence the name "polymorphic"). 

This possibility is one of the distinguishing 
features of object-oriented languages. In Eiffel, it is 
reconciled with static typing. The underlying 
language convention is simple: an assignment of the 
form a := b is permitted not only if a and b are of 
the same type, but more generally if a and b are of 
class types A and B such that B is  a descendant of 
A, where the descendants of a class include itself, 
its heirs, the heirs of its heirs etc. (The inverse 
notion is "ancestor".) 

This corresponds to the intuitive idea that a value 
of a more specialized type may be assigned to an 
entity of a less specialized type - but not the 
reverse. (As an analogy, consider the fact that if I 
request vegetables, getting green vegetables is fine, 
but if I ask for green vegetables, receiving a dish 
specified as just "vegetables" is not acceptable, as 
it could include, say, cauliflower.) 

What makes this possibility particularly powerful 
is the complementary facility: feature  redef init ion.  

A feature of a class may be redefined in any 
descendant class; the type of the redefined feature (if 
an attribute or a function) may be redefined as a 
descendant type of the original feature, and, in the 
case of a routine, its body may also be replaced by a 
new one. 

Assume for example that a class POLYGON, 
describing polygons, has among its features an array 
of points representing the vertices and a function 
perimeter returning a real result, the perimeter of 
the current polygon, obtained by summing the 
successive distances between vertices. An heir of 
POLYGON may be: 
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class RECTANGLE export ... inherit 
POLYGON redefine perimeter 

feature 
-- Specific featvxes of rectangles, such as: 
side]: REAL; side2: REAL; 

perimeter: REAL is 
-- Rectangle-specific version 

do 
Result := 2 • (side1 + side2) 

end; -- perimeter 
... other RECTANGLE features ... 

Here it is appropriate to redefine perimeter for 
rectangles as there is a simpler and more efficient 
algorithm. Note the explicit redefine subclause 
(which would come after the rename if present). 

Other descendants of POLYGON may also have 
their own redefinitions of perimeter. The version to 
use in any call is determined by the run-time form 
of the parameter. Consider the following class 
fragment: 

p: POLYGON; r: RECTANGLE; 
........ p.Create; r.Create; ........ 
if c then p := r end; 
print (p.perimeter) 

The assignment p := r is vafid because of the 
above rule. If condition c is false, p will refer to an 
object of type POLYGON when p.perimeter is 
evaluated, so the polygon algorithm will be used; in 
the opposite case, however, p will dynamically refer 
to a rectangle, so that the redefined version of the 
feature will be applied. 

This technique provides a high degree of 
flexibility and generality. The remarkable advantage 
for cfients is the ability to request an operation (here 
the computation of a figure's perimeter) without 
knowing what version of the operation will be 
selected; the selection only occurs at run-time. This 
is crucial in large systems, where many variants of 
operations may be available, and each component of 
the system needs to be protected against variant 
changes in other components. 

There is no equivalent to this possibility in non- 
object-oriented languages. Note for example that 
discrimination on records with variants, as permitted 
by Pascal or Ada, is of a much more restrictive 
nature, as the list of variants of a record type is 
fixed: any extension may invafidate existing code. In 
contrast, inheritance is open and incremental: an 
existing class may always be given a new heir (with 
new and/or redefined features) without itself being 
changed. This is crucial in the development of 
practical software systems which (whether by design 

or circumstance) is invariably incremental. 

Neither do the generic and overloading facilities 
of Ada offer the kind of polymorphism shown here, 
as they do not support a programming style in which 
a client module may issue a request meaning: 
"compute the perimeter of p ,  using the algorithm 
appropriate for whatever form p happens to have 
when the request is executed". 

This mechanism is more disciplined in Eiffel than 
in most other object-oriented languages. First, 
feature redefinition, as seen above, is explicit. 
Second, because the language is typed, the compiler 
may always check statically whether a feature 
application a.f is correct; in contrast, languages 
such as Smalltalk and its descendants (such as 
Objective-C) defer checks until run-time and hope 
for the best: if an object "sends a message" to 
another (Smalltalk terminology for calling a routine), 
one just expects that the class of the receiving 
object, or one of  its ancestor classes, will happen to 
include an appropriate "method" (Smalltalk term 
for routine); if not, a run-time error will occur. 
Such en~rs may not happen during the execution of 
a correctly compiled Eiffel system. 

A further disadvantage of the Smalltalk approach 
is that it may imply costly run-time searches, as a 
requested method may not be defined in the class of 
the receiving object but inherited from a possibly 
remote ancestor. What, on the other hand, may be 
said in favor of the interpretive, dynamic Smalltalk 
approach is that it makes it easy, in the Lisp 
tradition, to modify the software while it is running, 
for example by providing a missing method; such 
facilities, useful for exploratory programming, are 
harder to provide in a compiler-oriented system 
which also includes correctness, reliability and 
efficiency among its design goals. 

Another tool for controlling the power of the 
redefinition mechanism is provided in Eiffel by 
assertions. If no precautions are taken, redefinition 
may be dangerous: how can a cfient be sure that 
evaluation of p.perimeter will not in some cases 
return, say, the area? One way to maintain the 
semantic consistency of  routines throughout their 
redefinitions is to use preconditions and 
postconditions, which are binding on redefinitions. 
More precisely, any redefined version must satisfy a 
weaker or equal precondition and ensure a stronger 
or equal postcondition than in the original. Thus, by 
making the semantic constraints explicit, routine 
writers may limit the amount of freedom granted to 
eventual redefiners. 
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This concludes the overview of the language. As 
it is well known that a programming language is in 
practice no better than its implementation, we 
conclude with a brief description of the Eiffel 
compiler and associated environment. 

9 - The  i m p l e m e n t a t i o n  

The current implementation of Eiffel runs on 
various versions of Unix (System V, 4.2BSD, 
Xenix). It is based on translation from Eiffel to C, 
then C to machine code using the resident C 
compiler. It may potentially be ported to any 
environment including a C compiler and some basic 
operating system capabilities. 

Note that (as the above discussion should suffice 
to show) Eiffel is in no way an extension of C; C is 
only used as a vehicle for implementation and has 
had no influence on the language design. Other 
compilation techniques would be possible, but the 
use of a portable assembly language such as C as 
intermediate code has obvious advantages for 
transferability of the implementation. 

Great care has been taken to provide efficient 
compilation and execution, so that the environment 
would support the development of serious software. 
The following points are particularly worth noting. 

• As was seen above, the potential for redefinition 
implies that a qualified routine reference, say 
p.perimeter, may have many different 
interpretations depending on the value of p at 
run-time. As mentioned, this powerful facility 
may result in serious inefficiencies if the search 
for the appropriate routine is made at run-time, as 
seems to be necessary. The maximum length of 
such a search grows with the depth of the 
inheritance graph, putting reusability (which tends 
to promote the addition of new levels of 
inheritance and feature redefinition) in direct 
conflict with efficient performance. Note that the 
situation becomes hopeless with multiple 
inheritance, as not only a linear list but a 
complete graph of ancestor classes must be 
searched at run-time. 

The Eiffel implementation always finds the 
appropriate routine m constant time; the space 
overhead associated with this technique is 
negligible. We found this result rather difficult to 
achieve in the presence of multiple inheritance - 
but essential in fight of  the previous discussion. 
Whether you have one or one million routines in 
your system, a.x always takes the same time. 

o There is almost never any duplication of code. 
Again this was difficult to achieve with multiple 
inheritance and genericity: the implementation of 
multiple inheritance included in recent versions of 
Smalltalk [14] duplicates codes for parent classes 
other than the first, precisely to avoid the graph 
traversal mentioned above; most implementations 
of generic packages in Ada systems also duplicate 
code for various generic instances of a program 
unit. The only case in which we do duplicate code 
is a rather rare and special occurrence, 
"repeated" inheritance with feature duplication, 
not described here. 

. Memory management is handled by a ran-time 
system that takes care of object creation and 
(system-controlled) de-allocation. Optionally, the 
memory management system includes its own 
virtual memory subsystem, which may be turned 
off if the facilities of the underlying operating 
system are sufficient. Garbage collection is also 
provided; it is performed incrementally by a 
parallel process which steals as little time as it 
can from application programs [15]. (At the 
moment garbage collection is parallel on the Unix 
System V version only.) 

® Compilation is performed on a class-by-class 
basis, so that large systems can be changed and 
extended incrementally. The translation time from 
Eiffel to C is usually (in our experience) between 
50% and 100% of the time for the next step, 
translation from C to machine code. 

One more property of the implementation 
deserves a mention: its openness. Eiffel classes are 
meant to be interfaced with code written in other 
languages. This concern is reflected in the language 
by the optional external  clause which, in a routine 
declaration, lists external subprograms used by the 
routine. For example, an Eiffel routine for 
computing square roots might rely on an external 
function, as follows: 

sqrt (x: REAL, eps: REAL): REAL is 
-- Square root of x with precision eps 

require  
x > = O  ; eps>O 

external  
csqrt (x: REAL, eps: REAL): REAL 

n a m e  "sqrt" language "C" 
do 

Result := csqrt (x, eps) 
ensure  

abs (Result ^ 2 - x) <= eps 
end -- sqrt 
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The optional name.., subclause caters to the 
various naming conventions of other programming 
languages. 

This mechanism makes it possible to use external 
routines without impacting the conceptual 
consistency of the Eiffel classes. Note in particular 
how the C function sqrt is granted a more dignified 
status as Eiffel routine with the addition of a 
precondition and a postcondition. 

This facility is essential in view of the design 
objectives listed in section 2: an environment 
promoting reusability should enable reuse of 
software written prior to its introduction, not just of 
future software to be developed with it. Beyond this 
remark, the "external" construct lies at the basis of 
one of the applications of  Eiffel: as an integrating 
mechanism for components written in other 
languages. An example might be scientific software: 
although numerical programs will benefit just as 
much as others from such structuring mechanisms as 
classes, multiple inheritance, geneficity, export 
controls, assertions etc., programmers may prefer to 
code the actual bodies of numerical routines in a 
language specifically designed for this purpose, and 
package them cleanly in Eiffel classes. 

This application is one of the three main intended 
uses of Eiffel. The second is the most obvious, 
namely as a tool covering the whole design and 
implementation process; this is how we apply Eiffel 
at Interactive Software Engineering. The third may 
appeal to users who, because of external 
requirements, must produce final programs in some 
other language (such as Ada); it consists in 
employing Eiffel as an object-oriented PDL 
(Program Design Language) covering the part of the 
process extending from global to detailed design, 
and translating the result into the required 
implementation language. Eiffel may even be used 
earlier, at the specification stage, thanks in particular 
to a facility not described in this article, deferred 
routines. (A deferred routine has no body: 
implementations must be provided in descendants of 
its class; semantics may, however, be specified by a 
precondition and a postcondition.) 

10  - T h e  e n v i r o n m e n t  

The construction of systems in Eiffel is supported 
by a set of  development tools. 

Most important are the facilities for automatic 
configuration management integrated into the 
compilation commands. When a class C is 

compiled, the system automatically looks for all 
classes on which C depends directly or indkectly 
(as client or heir), and re-compiles those whose 
compiled versions have become obsolete. Unix 
programmers will recognize this facility as giving 
the power of Make without programmer-written 
makefiles. This is far from being a trivial problem, 
as the dependency relations are complex (a class 
may be, say, a client of one of its descendants) and, 
in the case of the client relation, may involve cycles. 
However the solution to this problem completely 
frees programmers from having to keep track of 
changed modules to maintain the consistency of 
their systems. Note that the algorithm used is able to 
avoid many unneeded recompilations by detecting 
that a modification made to a class has not impacted 
its interface; this has proved very important in 
practice, as it avoids triggering a chain reaction of 
re-compilations in a large system when the 
implementation of a feature is changed in a low- 
level class. 

The environment also contains debugging tools: 
tools for run-time checking of assertions; a tracer 
and symbolic debugger; a viewer for interactive 
exploration of the object structure at run-time. 

A documentation tool, short, produces a summary 
version of a class showing only its official 
information: the exported features only and, in the 
case of routines, only the header, precondition and 
postcondition. 

A postprocessor, ep, performs various optional 
modifications on the generated C code: removal of 
unneeded routines, simplification of calls to non- 
polymotphic routines, packaging of the entire 
generating code as a library of routines callable from 
other programs, "obscuring" of the C code (by 
default, the generated C code is fairly readable, and 
it is not too difficult to find the correspondence with 
the original Eiffel; "obscured" code will make it 
very hard to understand the algorithms). The last 
two options are particularly interesting for software 
implementors who use Eiffel for the development of 
packages that will be delivered to their customers in 
standard C form. 

Finally the environment includes a set of basic 
classes covering some of the most important data 
structure implementations. Our goal is to extend 
this library so as to cover the most common patterns 
of everyday programming. 
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11 - Conclusion 

A number of individual concepts embodied in 
Eiffel were present in previous languages; our most 
important conscious debts are (in order of decreasing 
influence) to Simula 67, Ada and Alphard. Among 
the new contributions are, from the language 
standpoint, the safe treatment of multiple inheritance 
through renaming, the combination between 
genericity and inheritance, disciplined polymorphism 
by expficit redefinition, the integration of the 
assertion/invariant mechanism with multiple 
inheritance, a clean interface with external routines, 
and the introduction of full static typing into an 
object-oriented language. From the implementation 
standpoint, a number of our solutions are original: 
constant-time routine access, separate compilation 
with automatic configuration management in an 
object-oriented world, support for debugging and 
documentation, support for the preparation of 
defiverable software packages. 

More generally, we think that Eiffel is the first 
language to combine the powerful ideas of object- 
oriented languages with the modem concepts of 
software engineering; these results have been made 
available to practicing software developers in an 
environment offering the facilities that are required 
to develop serious software. 
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