
- 8 5 -

EIFFEL:

PROGRAMMING FOR REUSABILITY AND EXTENDIBILITY

Bertrand Meyer

Interactive Software Engineering, Inc.
270 Storke Road, Suite 7, Goleta, CA. 93117 - (805) 685-1006

1 - Introduction

Eiffel is a language and environment intended for
the design and implementation of quality software in
production environments. The language is based on
the principles of object-oriented design, augmented
by features enhancing correctness, extendibility and
efficiency; the environment includes a basic class
library and tools for such tasks as automatic
configuration management, documentation and
debugging.

Beyond the language and environment aspects,
Eiffel promotes a method of software construction
by combination of reusable and flexible modules.

The present note is a general introduction to
Eiffel. More detailed informatioo [1, 2, 3] is
available.

2 - Design principles

Software quality is a tradeoff between many
factors [4]. In the current state of the software
industry, some of these factors appear worth a
particular effort. One is reusability, or the ability to
produce software components that may be used in
many different applications; observation of
programmers shows that many of the same program
patterns frequently recur, but that actual reuse of
program modules is much less widespread than it
ought to be. Another important factor is
extendibility: although software is supposed to be
"sof t " , it is notoriously hard to modify software
systems, especially large ones.

As compared to other quality factors, reusability
and extendibility play a special rble as their
satisfaction means that less software has to be
written, and thus, presumably, that more time may
be devoted to the other goals (such as efficiency,
ease of use etc.). Thus it may pay off in the long

run to concentrate on these two factors, and they
were indeed paramount in the design of Eiffel.

Other design goals also played a significant part.
Helping programmers ensure correctness and
reliability of their software is of course a prime
concern. Portability was one of the requirements on
the implementation. Finally, efficiency cannot be
neglected in a tool that is aimed at practical,
medium- to large-scale developments.

3 - Object-oriented design

To achieve reusability and extendibility, the
principles of object-oriented design seem to provide
the best known technical answer to date. This note is
not the place to discuss these principles in depth.
We shall simply offer a definition of this notion: as
discussed here, object-oriented design is the
construction of software systems as structured
collections of abstract data type implementations.
The following points are worth noting in this
definition:

• the emphasis is on structuring a system around
the objects it manipulates rather than the functions
it performs on them, and on reusing whole data
structures, together with the associated operations,
rather than isolated procedures.

- Objects are described as instances of abstract
data types - that is to say, data structures known
from an official interface rather than through their
representation.

® The basic modular unit, called the class,
describes the implementation of an abstract data
type (not the abstract data type itself, whose
specification would not necessarily be executable).

o The word collection reflects how classes should
be designed: as units which are interesting and
useful on their own, independently from the
systems to which they belong. Such classes may

SIGPLAN Notices, V22 #2, February 1987

- 8 6 -

then be reused in many different systems. System
construction is viewed as the assembly of existing
classes, not as a top-down process starting from
scratch.

® Finally, the word structured reflects the
existence of important relationships between
classes, particularly the multiple inheritance
relation.

Following Simula 67 [5], several object-oriented
languages have appeared in recent years, such as
Smalltalk [6], extensions of C such as C++ [7] and
Objective C [8], of Pascal such as Object Pascal [9],
of Lisp such as Loops [10], Flavors [11] and Ceyx
[12]. Eiffel shares the basic properties of these
languages but goes beyond them in several respects,
by offenng multiple inheritance (which, of the
systems quoted, is only available in recent versions
of Smalltalk, on an experimental basis, and in the
Lisp extensions), genetic classes, static type
checking (whereas most existing languages are either
untyped or offer dynamic checking only) and
facilities for redefinition and renaming (see below).
Furthermore, Eiffel combines the object-oriented
heritage with a strong software engineering
influence, through facilities for information hiding,
expression of formal program properties (assertions,
invariants) and a strict naming policy. Finally the
language comes with an environment geared towards
the development of sizable software in production
environments.

The rest of this presentation inlroduces the main
language features informally, through a set of
examples, and describes the pnncipal aspects of the
implementation and environment.

One remark is in order on the size of the
language. Eiffel includes more than presented in this
introduction, but not much more; it is a small
language, comparable m size (by such an
approximate measure as the number of keywords) to
Pascal. Thus Eiffel belongs to the class of
languages which programmers can master entirely
(as opposed to languages of which most
programmers know only a subset). Yet it is
appropriate for the development of significant
software systems, as evidenced by our own
experience with such programs as C~page [13]
(which, at the time of this writing, is a 45,000-line
Eiffel system) and other examples.

4 - Classes

We first introduce a typical class. As mentioned
above, a class represents the implementation of an
abstract data type, that is to say a class of data
structures known through an official interface. A
simple example would be a a bank account. Let
ACCOUNT be the corresponding class. Before we
show the class, we first describe how it would be
used; such a use has to be in another class, say X,
as classes are the only program unit in Eiffel.

To use ACCOUNT, class X may introduce an
entity and declare it of this type:

accl: ACCOUNT

The term "entity" is preferred here to "variable"
as it corresponds to a more general notion. An entity
declared of a class type, such as accl, may at any
time during execution refer to an object; an entity
which does not refer to any object is said to be void.
By default (at initialization) entities are void; objects
must be created explicitly, by an instruction

accl.Create

which associates accl with the newly created object
(see figure 1). Create is a predefined "feature" of
the language.

0
Figure 1: Entity and associated object

Once acc 1 has been associated with an object,
one may apply to it the features defined in the
corresponding class. Examples are:

accl.open ("John");
accl.deposit (5000);

if accl.may_withdraw (3000) then
accl.withdraw (3000)

end;
print (accl.balance)

All feature applications use the dot notation:
entity_name.featurename. There are two kinds of
features: routines (as open, deposit, may_withdraw
or withdraw), that is to say operations; and
attributes, that is to say data items associated with
objects of the class.

- 8 7 -

Routines are further divided into procedures
(actions, which do not return a value) and functions
(which return a value). Here may_withdraw is a
function with an integer parameter, returning a
boolean result; the other three routines invoked are
procedures.

The above extract of class X does not show
whether, in class ACCOUNT, balance is an attribute
or a function without parameters. This ambiguity is
intentional. A class such as X , said to be a client of
ACCOUNT, does not need to know how a balance is
obtained: it could be stored as attribute of every
account object, or re-computed by a function,
whenever requested, from other attributes such as
the list of previous deposits and withdrawals.
Deciding on one of these implementations is the
business of class ACCOUNT, not anybody else's.

Having shown class usage, we now present the
definition of the class itself, which might look like
the following. Following the Ada convention, fine
segments beginning with -- are comments.

class ACCOUNT export
open, deposit, may_withdraw,
withdraw, balance, owner

feature
balance: INTEGER .

minimum_balance: INTEGER is 1000 ;

owner: STRING ;

assign_owner (who: STRING) is
-- Assign the account to owner who

do
owner := who

end ; -- open

add (sum: INTEGER) is
-- Add sum to the balance
-- (Secret procedure)

do
balance := balance+sum

end ; -- deposit

deposit (sum: INTEGER) is
-- Deposit sum into the account

do
add (sum)

end ; -- deposit

withdraw (sum: INTEGER) is
-- Withdraw sum from the account

do
add (-sum)

end ; -- withdraw

maywithdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum
-- from the account?

do
Result := (balance >= minimunubalance)

end ; -- deposit
end -- class ACCOUNT

This class includes two clauses: feature, which
describes the features of the class, and export,
which simply fists those features which are available
to clients of the class. Non-exported features are said
to be secret. Here procedure add is secret, so that
accl.add (-3000) would have been illegal in X.
Similarly, attribute minimumbalance is secret.
(Selective export of a feature to some classes only is
also possible.)

Let us examine the features in sequence.
Routines are distinguished from attributes by having
a clause of the form is...do...end. Thus balance is
in fact an attribute. The clause is 1000 introduces
minimumbalance as a constant attribute, which will
not occupy any physical space in objects of the
class. Non-constant attributes such as balance do
use space for each object of the class; they are
similar to components of a record in Pascal.

Attributes balance and minimum_balance are
declared of type INTEGER. Eiffel is strongly typed:
every entity is declared of a certain type. A type is
either simple, that is to say one of INTEGER,
REAL, CHARACTER and BOOLEAN, or a class.
Arrays and strings belong to the second category;
they are described by predefined system classes,
ARRAY and STRING, treated exactly as user-defined
classes with one exception: a special notation, as in
"John", is available to denote literal string constants.

Automatic initialization is ensured by the
language definition, so that the initial balance of an
account object will be zero after a Create. Numeric
attributes are initialized to zero, booleans to false,
characters to the null character; those of class types
are initially void.

The other five features are straightforward
routines. The first four are procedures, the last one
(may_withdraw) a function returning a boolean
value; note that the special variable Result denotes
the function result. It is initialized on function entry
to the default value of the appropriate type, as
defined above.

To properly understand the routines, it is
necessary to remember that in an object-oriented
languages any operation is relative to a certain
object. In an external client invoking the operation,
this object is specified by writing the corresponding

- 8 8 -

entity on the left o f the dot, as accl in
accl.open ("John"). Within the class, however, the
"current" object to which operations apply usually
remains implicit, so that unqualified references, such
as owner in procedure assign_owner or add in
deposit, mean "the owner attribute or add routine
relative to the current object". The special variable
Current may be used, if needed, to explicitly denote
this object. Thus the unqualified occurrences of add
appearing in the above class are equivalent to
Current.add.

In summary, this simple example shows the basic
structuring mechanism of the language, the class. A
class describes a data structure, accessible to clients
through an official interface comprising some of the
class features. Features are implemented as
attributes or routines; the implementation of
exported features may rely on other, secret ones.

5 - Assert ions

It was said at the outset that classes are abstract
data type implementations. However an abstract
data type is defined not just by a list of available
operations, but also by the formal properties of these
operations, which do not appear in the above
example.

Eiffel indeed enables and encourages
programmers to express formal properties of classes
by writing assert ions , which may in particular
appear in the following positions:

• routine preconditions express conditions that
must be satisfied whenever a routine is called. For
example withdrawal might only be permitted if it
keeps the account's balance on or above the
minimum. Preconditions are introduced by the
keyword require.

• Routine postconditions, introduced by the
keyword ensure , express conditions that are
guaranteed to be true on routine return (if the
precondition was satisfied on entry).

• Class invariants must be satisfied by objects of
the class at all times, or more precisely after
object creation and after any call to a routine of
the class. They are described in the invariant
clause of the class and represent general
consistency constraints that are imposed on all
routines of the class.

Our ACCOUNT class may be rewritten with
appropriate assertions:

class ACCOUNT export (as before)
feature

-- Attributes as before:
--balance, minimumbalance, owner

assign_owner -- as before ;

add -- as before ;

deposit (sum: INTEGER) is
-- Deposit sum into the account

require
sum >= 0

do
add (sum)

ensure
balance = old balance + sum

end ; -- deposit

withdraw (sum: INTEGER) is
-- Withdraw sum from the account

require
sum >= 0 ;
sum <= balance - minimum_balance

do
add (-sum)

ensure
balance = old balance - sum

end ; -- withdraw

may_withdraw -- as before

Create (initial: INTEGER) is
require

initial >= minimum_balance
do

balance := initial
end -- Create

invariant
balance >= minimum_balance

end -- class ACCOUNT

The old.., notation may be used in an ensure
clause, with a self-explanatory meaning.

The reader will have noted that a Create
procedure has been added to the features of the
class. The reason is the following. Under the
previous scheme, an account was created by, say,
accl.Create. Because of the initialization rules,
balance is then zero and the invariant is violated. I f
a different initialization is required or, as here, an
initialization depending on a parameter supplied by
the client, then the class should include a procedure
called Create. Object creation will be obtained by
writing, say

accl.Create (5500)

whose effect is to allocate the object (as in the
default Create) and then to execute the procedure

- 8 9 -

called Create in the class, with the given actual
parameter. This example call is correct as the
precondition is satisfied and the invariant will hold
after the call

Note that procedure Create, when explicitly
provided, is recognized by the compiler as special; it
is automatically exported and should not be included
in the export clause.

Assertions, as they appear in preconditions,
postconditions and invariants, should primarily be
viewed as powerful tools for documenting
correctness arguments: they serve to make explicit
the assumptions on which programmers rely when
they write program fragments that they believe are
correct. In this respect, assertions are formalized
comments. For debugging purposes, the Eiffel
environment also makes it possible to monitor
assertions at run-time, producing a message if an
assertion is found to be violated.

Syntactically, expressions are boolean expressions,
with a few extensions (like the old notation). The
semicolon (see the precondition to withdraw) is
equivalent to an "and" , but permits individual
identification of the components, useful for
producing informative error messages at run-time.

It must be pointed out that assertions are not a
technique for exception handling. An exception (in
the CLU or Ada sense) is a run-time situation which
the programmer prefers to handle in code separate
from the main flow of control, but which (for the
very reason that the program is prepared to deal
with it) falls within the scope of the specification. In
contrast, an assertion denotes a condition that should
always be satisfied at the given control point; for
example, a precondition describes the requirements
for a routine body to be applicable. Assertion
violation reflects a progranlming error, not an
exceptional but planned situation from which it is
possible to recover gracefully.

Eiffel offers no specific mechanism for exception
handling. In our experience, standard algorithmic
techniques are appropriate for dealing with
exceptional conditions. Although we accept differing
views on the question, we considered this facility to
be of secondary importance and preferred to keep it
out of the language in the interest of design
simplicity. Encouraging programmers to express
correctness arguments precisely through well-placed
assertions appeared much more relevant.

6 - G e n e r i c c l a s s e s

Building software components (classes) as
implementations of abstract data types yields
systems with a solid architecture but does not in
itself suffice to ensure reusability and extendibility.
This section and the next two describe Eiffel
techniques for making the components as general
and flexible as possible.

The first technique is genericity, which exists
under different forms in Ada and CLU but is fairly
new to object-oriented languages. Classes may be
declared with generic parameters representing types.
For example, the following classes are part of the
basic Eiffel library:

ARRAY [T]
LIST [T]
LINKED_LIST [T]

They respectively describe one-dimensional
arrays, general lists (without commitment as to a
specific representation) and lists in linked
representation. All have a formal generic parameter
T representing an arbitrary type. To actually use
these classes, one provides actual generic
parameters, which may be either simple or class
types, as in the following declarations:

il: LIST [INTEGER];
aa: ARRAY [ACCOUNT];
aal: LIST [[ARRAY [ACCOUNT]] --etc.

An earlier article [2] discussed the rble of
genericity in comparison to inheritance and
explained their combination in Eiffel, especially in
the context of strict type checking. The solution
involves the notion of "declaration by association",
not addressed here.

7 - M u l t i p l e i n h e r i t a n c e

Multiple inheritance is a key technique for
reusability. The basic idea is simple: when defining
a new class, it is often fruitful to introduce it by
combination and specialization of existing classes
rather than as a new entity defined from scratch.

A simple example is provided by the classes of
the basic library mentioned above. LIST, as
indicated, describes lists of any representation. One
possible representation for lists with a fixed number
of elements uses an array. Such a class will be
defined by combination of LIST and ARRAY, as
follows:

- 9 0 -

class F I X E D L I S T [T] export
inher i t

LIST [T];
ARRAY [T]

feature

... Specific features of fixed-size lists ...
end -- class FIXED_LIST

The inherit.., clause lists all the "parents" of the
new class (which is said to be their "heir") . Thanks
to this clause, all the features and properties of lists
and arrays are applicable to fixed lists as well. This
simple idea makes it possible to achieve remarkable
economies of programming, of which we feel the
effects daily in our experience of Eiffel software
development. (Inheritance was introduced by Simula
67. In Simula, however, as in many other object-
oriented languages, inheritance is not multiple:
classes may have at most one parent.)

The very power of the mechanism demands
adequate means to control its effects. In Eiffel, no
name conflict is permitted between inherited
features. Since such conflicts will inevitably arise in
practice, especially in the case of software
components brought in by independent developers,
the language provides a technique to remove them:
explicit renaming, as in

class C export.., inherit
A r e n a m e x as xl, y as y l ;
B r e n a m e x as x2, y as y2

feature...

Here the inherit clause would be illegal without
renaming, since the example assumes that both A
and B have features named x and y .

Renaming also serves to provide more appropriate
feature names in heirs. In another example from the
basic library, class TREE IT] is defined by
inheritance from LINKED_LIST [T] and
LINKABLE [T], the latter describing dements of
linked lists. The idea is that a tree is a list (as it has
subtrees, to which the usual list operations of
insertion, change, deletion, traversal etc. apply), as
well as a list element, as it may itself be inserted as
subtree into another tree. (The class definition thus
obtained is simple and compact, while covering a
rich set of tree manipulation primitives which have
proved sufficient in such different contexts as a
multiple-windowing screen handler and a syntax-
directed editor.) In the inheritance clause, the feature
empty of linked lists, a boolean-valued function
which determines whether a list is empty, itself
inherited from LIST, is renamed is_leaf to conform
to standard tree terminology.

To further ensure that the multiple inheritance
mechanism is not misused, the invariants of all
parent classes automatically apply to a newly
defined class. Thus classes may not be combined if
their invariants are incompatible.

8 - Polymorphism

One important aspect of inheritance is that it
enables the definition of flexible program entities
that may refer to objects of various forms at run-
time (hence the name "polymorphic").

This possibility is one of the distinguishing
features of object-oriented languages. In Eiffel, it is
reconciled with static typing. The underlying
language convention is simple: an assignment of the
form a := b is permitted not only if a and b are of
the same type, but more generally if a and b are of
class types A and B such that B is a descendant of
A, where the descendants of a class include itself,
its heirs, the heirs of its heirs etc. (The inverse
notion is "ancestor".)

This corresponds to the intuitive idea that a value
of a more specialized type may be assigned to an
entity of a less specialized type - but not the
reverse. (As an analogy, consider the fact that if I
request vegetables, getting green vegetables is fine,
but if I ask for green vegetables, receiving a dish
specified as just "vegetables" is not acceptable, as
it could include, say, cauliflower.)

What makes this possibility particularly powerful
is the complementary facility: feature redef init ion.

A feature of a class may be redefined in any
descendant class; the type of the redefined feature (if
an attribute or a function) may be redefined as a
descendant type of the original feature, and, in the
case of a routine, its body may also be replaced by a
new one.

Assume for example that a class POLYGON,
describing polygons, has among its features an array
of points representing the vertices and a function
perimeter returning a real result, the perimeter of
the current polygon, obtained by summing the
successive distances between vertices. An heir of
POLYGON may be:

- 9 1 -

class RECTANGLE export ... inherit
POLYGON redefine perimeter

feature
-- Specific featvxes of rectangles, such as:
side]: REAL; side2: REAL;

perimeter: REAL is
-- Rectangle-specific version

do
Result := 2 • (side1 + side2)

end; -- perimeter
... other RECTANGLE features ...

Here it is appropriate to redefine perimeter for
rectangles as there is a simpler and more efficient
algorithm. Note the explicit redefine subclause
(which would come after the rename if present).

Other descendants of POLYGON may also have
their own redefinitions of perimeter. The version to
use in any call is determined by the run-time form
of the parameter. Consider the following class
fragment:

p: POLYGON; r: RECTANGLE;
........ p.Create; r.Create;
if c then p := r end;
print (p.perimeter)

The assignment p := r is vafid because of the
above rule. If condition c is false, p will refer to an
object of type POLYGON when p.perimeter is
evaluated, so the polygon algorithm will be used; in
the opposite case, however, p will dynamically refer
to a rectangle, so that the redefined version of the
feature will be applied.

This technique provides a high degree of
flexibility and generality. The remarkable advantage
for cfients is the ability to request an operation (here
the computation of a figure's perimeter) without
knowing what version of the operation will be
selected; the selection only occurs at run-time. This
is crucial in large systems, where many variants of
operations may be available, and each component of
the system needs to be protected against variant
changes in other components.

There is no equivalent to this possibility in non-
object-oriented languages. Note for example that
discrimination on records with variants, as permitted
by Pascal or Ada, is of a much more restrictive
nature, as the list of variants of a record type is
fixed: any extension may invafidate existing code. In
contrast, inheritance is open and incremental: an
existing class may always be given a new heir (with
new and/or redefined features) without itself being
changed. This is crucial in the development of
practical software systems which (whether by design

or circumstance) is invariably incremental.

Neither do the generic and overloading facilities
of Ada offer the kind of polymorphism shown here,
as they do not support a programming style in which
a client module may issue a request meaning:
"compute the perimeter of p , using the algorithm
appropriate for whatever form p happens to have
when the request is executed".

This mechanism is more disciplined in Eiffel than
in most other object-oriented languages. First,
feature redefinition, as seen above, is explicit.
Second, because the language is typed, the compiler
may always check statically whether a feature
application a.f is correct; in contrast, languages
such as Smalltalk and its descendants (such as
Objective-C) defer checks until run-time and hope
for the best: if an object "sends a message" to
another (Smalltalk terminology for calling a routine),
one just expects that the class of the receiving
object, or one of its ancestor classes, will happen to
include an appropriate "method" (Smalltalk term
for routine); if not, a run-time error will occur.
Such en~rs may not happen during the execution of
a correctly compiled Eiffel system.

A further disadvantage of the Smalltalk approach
is that it may imply costly run-time searches, as a
requested method may not be defined in the class of
the receiving object but inherited from a possibly
remote ancestor. What, on the other hand, may be
said in favor of the interpretive, dynamic Smalltalk
approach is that it makes it easy, in the Lisp
tradition, to modify the software while it is running,
for example by providing a missing method; such
facilities, useful for exploratory programming, are
harder to provide in a compiler-oriented system
which also includes correctness, reliability and
efficiency among its design goals.

Another tool for controlling the power of the
redefinition mechanism is provided in Eiffel by
assertions. If no precautions are taken, redefinition
may be dangerous: how can a cfient be sure that
evaluation of p.perimeter will not in some cases
return, say, the area? One way to maintain the
semantic consistency of routines throughout their
redefinitions is to use preconditions and
postconditions, which are binding on redefinitions.
More precisely, any redefined version must satisfy a
weaker or equal precondition and ensure a stronger
or equal postcondition than in the original. Thus, by
making the semantic constraints explicit, routine
writers may limit the amount of freedom granted to
eventual redefiners.

- 9 2 -

This concludes the overview of the language. As
it is well known that a programming language is in
practice no better than its implementation, we
conclude with a brief description of the Eiffel
compiler and associated environment.

9 - The i m p l e m e n t a t i o n

The current implementation of Eiffel runs on
various versions of Unix (System V, 4.2BSD,
Xenix). It is based on translation from Eiffel to C,
then C to machine code using the resident C
compiler. It may potentially be ported to any
environment including a C compiler and some basic
operating system capabilities.

Note that (as the above discussion should suffice
to show) Eiffel is in no way an extension of C; C is
only used as a vehicle for implementation and has
had no influence on the language design. Other
compilation techniques would be possible, but the
use of a portable assembly language such as C as
intermediate code has obvious advantages for
transferability of the implementation.

Great care has been taken to provide efficient
compilation and execution, so that the environment
would support the development of serious software.
The following points are particularly worth noting.

• As was seen above, the potential for redefinition
implies that a qualified routine reference, say
p.perimeter, may have many different
interpretations depending on the value of p at
run-time. As mentioned, this powerful facility
may result in serious inefficiencies if the search
for the appropriate routine is made at run-time, as
seems to be necessary. The maximum length of
such a search grows with the depth of the
inheritance graph, putting reusability (which tends
to promote the addition of new levels of
inheritance and feature redefinition) in direct
conflict with efficient performance. Note that the
situation becomes hopeless with multiple
inheritance, as not only a linear list but a
complete graph of ancestor classes must be
searched at run-time.

The Eiffel implementation always finds the
appropriate routine m constant time; the space
overhead associated with this technique is
negligible. We found this result rather difficult to
achieve in the presence of multiple inheritance -
but essential in fight of the previous discussion.
Whether you have one or one million routines in
your system, a.x always takes the same time.

o There is almost never any duplication of code.
Again this was difficult to achieve with multiple
inheritance and genericity: the implementation of
multiple inheritance included in recent versions of
Smalltalk [14] duplicates codes for parent classes
other than the first, precisely to avoid the graph
traversal mentioned above; most implementations
of generic packages in Ada systems also duplicate
code for various generic instances of a program
unit. The only case in which we do duplicate code
is a rather rare and special occurrence,
"repeated" inheritance with feature duplication,
not described here.

. Memory management is handled by a ran-time
system that takes care of object creation and
(system-controlled) de-allocation. Optionally, the
memory management system includes its own
virtual memory subsystem, which may be turned
off if the facilities of the underlying operating
system are sufficient. Garbage collection is also
provided; it is performed incrementally by a
parallel process which steals as little time as it
can from application programs [15]. (At the
moment garbage collection is parallel on the Unix
System V version only.)

® Compilation is performed on a class-by-class
basis, so that large systems can be changed and
extended incrementally. The translation time from
Eiffel to C is usually (in our experience) between
50% and 100% of the time for the next step,
translation from C to machine code.

One more property of the implementation
deserves a mention: its openness. Eiffel classes are
meant to be interfaced with code written in other
languages. This concern is reflected in the language
by the optional external clause which, in a routine
declaration, lists external subprograms used by the
routine. For example, an Eiffel routine for
computing square roots might rely on an external
function, as follows:

sqrt (x: REAL, eps: REAL): REAL is
-- Square root of x with precision eps

require
x > = O ; eps>O

external
csqrt (x: REAL, eps: REAL): REAL

n a m e "sqrt" language "C"
do

Result := csqrt (x, eps)
ensure

abs (Result ^ 2 - x) <= eps
end -- sqrt

- 9 3 -

The optional name.., subclause caters to the
various naming conventions of other programming
languages.

This mechanism makes it possible to use external
routines without impacting the conceptual
consistency of the Eiffel classes. Note in particular
how the C function sqrt is granted a more dignified
status as Eiffel routine with the addition of a
precondition and a postcondition.

This facility is essential in view of the design
objectives listed in section 2: an environment
promoting reusability should enable reuse of
software written prior to its introduction, not just of
future software to be developed with it. Beyond this
remark, the "external" construct lies at the basis of
one of the applications of Eiffel: as an integrating
mechanism for components written in other
languages. An example might be scientific software:
although numerical programs will benefit just as
much as others from such structuring mechanisms as
classes, multiple inheritance, geneficity, export
controls, assertions etc., programmers may prefer to
code the actual bodies of numerical routines in a
language specifically designed for this purpose, and
package them cleanly in Eiffel classes.

This application is one of the three main intended
uses of Eiffel. The second is the most obvious,
namely as a tool covering the whole design and
implementation process; this is how we apply Eiffel
at Interactive Software Engineering. The third may
appeal to users who, because of external
requirements, must produce final programs in some
other language (such as Ada); it consists in
employing Eiffel as an object-oriented PDL
(Program Design Language) covering the part of the
process extending from global to detailed design,
and translating the result into the required
implementation language. Eiffel may even be used
earlier, at the specification stage, thanks in particular
to a facility not described in this article, deferred
routines. (A deferred routine has no body:
implementations must be provided in descendants of
its class; semantics may, however, be specified by a
precondition and a postcondition.)

10 - T h e e n v i r o n m e n t

The construction of systems in Eiffel is supported
by a set of development tools.

Most important are the facilities for automatic
configuration management integrated into the
compilation commands. When a class C is

compiled, the system automatically looks for all
classes on which C depends directly or indkectly
(as client or heir), and re-compiles those whose
compiled versions have become obsolete. Unix
programmers will recognize this facility as giving
the power of Make without programmer-written
makefiles. This is far from being a trivial problem,
as the dependency relations are complex (a class
may be, say, a client of one of its descendants) and,
in the case of the client relation, may involve cycles.
However the solution to this problem completely
frees programmers from having to keep track of
changed modules to maintain the consistency of
their systems. Note that the algorithm used is able to
avoid many unneeded recompilations by detecting
that a modification made to a class has not impacted
its interface; this has proved very important in
practice, as it avoids triggering a chain reaction of
re-compilations in a large system when the
implementation of a feature is changed in a low-
level class.

The environment also contains debugging tools:
tools for run-time checking of assertions; a tracer
and symbolic debugger; a viewer for interactive
exploration of the object structure at run-time.

A documentation tool, short, produces a summary
version of a class showing only its official
information: the exported features only and, in the
case of routines, only the header, precondition and
postcondition.

A postprocessor, ep, performs various optional
modifications on the generated C code: removal of
unneeded routines, simplification of calls to non-
polymotphic routines, packaging of the entire
generating code as a library of routines callable from
other programs, "obscuring" of the C code (by
default, the generated C code is fairly readable, and
it is not too difficult to find the correspondence with
the original Eiffel; "obscured" code will make it
very hard to understand the algorithms). The last
two options are particularly interesting for software
implementors who use Eiffel for the development of
packages that will be delivered to their customers in
standard C form.

Finally the environment includes a set of basic
classes covering some of the most important data
structure implementations. Our goal is to extend
this library so as to cover the most common patterns
of everyday programming.

- 9 4 -

11 - Conclusion

A number of individual concepts embodied in
Eiffel were present in previous languages; our most
important conscious debts are (in order of decreasing
influence) to Simula 67, Ada and Alphard. Among
the new contributions are, from the language
standpoint, the safe treatment of multiple inheritance
through renaming, the combination between
genericity and inheritance, disciplined polymorphism
by expficit redefinition, the integration of the
assertion/invariant mechanism with multiple
inheritance, a clean interface with external routines,
and the introduction of full static typing into an
object-oriented language. From the implementation
standpoint, a number of our solutions are original:
constant-time routine access, separate compilation
with automatic configuration management in an
object-oriented world, support for debugging and
documentation, support for the preparation of
defiverable software packages.

More generally, we think that Eiffel is the first
language to combine the powerful ideas of object-
oriented languages with the modem concepts of
software engineering; these results have been made
available to practicing software developers in an
environment offering the facilities that are required
to develop serious software.

R e f e r e n c e s

1. Bertrand Meyer, Eiffel: a Language for
Software Engineering, Technical Report
TRCS85-19, University of California, Santa
Barbara, Computer Science Department,
November 1985 (Revised, August 1986).

2. Bertrand Meyer, "Genericity versus
inheritance," in Proceedings of ACM
Conference on Object-Oriented Programming
Systems, Languages and Applications, pp. 391-
405, Portland (Oregon), September 29 - October
2, 1986.

3. Bertrand Meyer, "Software Reusability: the
Case for Object-Oriented Design," Report TR-
86-06, Interactive Software Engineering, Santa
Barbara (California), 1986.

4. James McCall, (Ed.) Factors in Software
Quality, General Electric, 1977.

5. Graham Birtwistle, Ole-Johan Dahl, Bjom
Myrhaug, and Kristen Nygaard, Simula Begin,
Studentliteratur and Auerbach Publishers, 1973.

6. Adele Goldberg and David Robson, Smalltalk-
80: The Language and its Implementation,

Addison-Wesley, Reading (Massachusets),
1983.

7. Bjame Stroustrup, The C++ Programming
Language, Addison-Wesley, Menlo Park
(California), 1986.

8. Brad J. Cox, Object-Oriented Programming: An
Evolutionary Approach, Addison-Wesley,
Reading (Massachusetts), 1986.

9. Larry Tesler, "Object Pascal Report,"
Structured Language World, vol. 9, no. 3, 1985.

10. Daniel G. Bobrow and M.J. Stefik, LOOPS: an
Object-Oriented Programming System for
Interlisp, Xerox PARC, 1982.

11. H.I. Cannon, "Flavors," Technical Report,
MIT Artificial Intelligence Laboratory,
Cambridge (Massachussets), 1980.

12. Jean-Marie Hullot, "Ceyx, Version 15: I - une
Initiation," Rapport Technique no. 44, INRIA,
Rocquencourt, Et6 1984.

13. Bemand Meyer, "Ctpage: Towards Computer-
Aided Design of Software," Computer
Language, vol. 3, no. 9, pp. 43-53, September
1986.

14. Alan H. Boming and Daniel H. H. Ingalls,
"Multiple Inheritance in Smalltalk-80," in
Proceedings of AAAI-82, pp. 234-237, 1982.

15. Edsger W. Dijkstra, Leslie Lamport, A.J.
Martin, C.S. Scholten, and E.F.M. Steffens,
"On-the-Fly Garbage Collection: An Exercise
in Cooperation," Communications of the ACM,
vol. 21, no. 11, pp. 966-975, November 1978.

Trademarks: Unix (AT&T Bell Laboratories); Ada
(AJPO); Objective C (Productivity Products
International); Smalltalk (Xerox); Eiffel (Interactive
Software Engineering, Inc.).

