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A B S T R A C T  

Generlclty. as in Ads or ML, and inheritance, as ill object-oriented languages, are two alternative techniques for 
ensuring better extendibility, reusability and compatibility of software components. This article is a comparative 
analysis of t.he~ two methods, it studies their similarities and differences and a.~se,~es to what, extent each may be 
sinlulated in a language offering only the other, it shows what, features are needed to suceesshdly combine the two 
approaches in a statically typed language and presents the main features of the programming language Eiffel, who~ 
design, resulting in part from this study, includes multiple inheritance and a limited form of generieity under full static 
ty ping. 

1 - O V E R V I E W  

In spite of its name. today's software is usually not 
soft enough: adapting it to new u~s turns out in most ease, 
to be a harder endeavor than should be. It is thus e~ent.ial 
to find ways of enhancing such .software quality factors as 
extendibility (the ea~ with which a software system may be 
changed to account for modifications of its requirements). 
reusability (the ability of a system to be reu~d, in whole or 
in parts, for the construction of new systems) and compati- 
bility ( the  e a ~  o f  c o m b i n i n g  a s y s t e m  with  others) .  

Good answers to these issues are not purely technical, 
but must inehide economical and managerial components as 
welh and their technical aspects extend beyond programming 
language features, to such obviously relevant, concerns as 
specification and design techniques, it would be wrong, how- 
ever. to underestimate the technical aspects and. among 
these, the role played by proper programming language 
featt,res: any acceptable solution must in the end be expressi- 
ble in terms of programs, and programming languages funda- 
mentally shape the ~ftware designe~' way of thinking. 

This article is a comparative analysis of two ela,~,~s of 
programming language featur~ for enhancing extendibility, 
ret,sability and compatibility. It a.~e..~es their respective 
strengths and weakne.~es, examines which of their com- 
ponent~ are equivalent and which are truly different, shows 
how the two approachc~ complement each other, and 
explain.~ how they have been combined in a Imrtieular pro- 
gramming language design. 

The two approaches studied are genericiql and 
inheritance: both address the above issues by allowing the 
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definition of flexible software elements amenable to exten- 
sion. reu~ and combination. The first is a technique for 
defining elements that have more than one interpretation. 
depending on parameters repre~nting types: the ~eond 
makes it possible to define elements as extensions or restric- 
tlons of previously defined ones. 

Both methods apply ~me  form of polymorphism, a 
notion that may be defined as the ability to define program 
entities that may take more than one form. A simple form 
of polymorphism, u~d in troth e:t~s, is overloading, the abil- 
ity to attach more than one meaning to the same name. 
and)iguities being resolved by examining tl~e context of eseh 
occurrence of the name. either at compile time (for statically 
tylw~l languages) or at run time. 

Although the two approaehe~ may be applied outside 
the strict realm of programming, for example to specification 
or design languages, we shall confine our study to program- 
ming languages. In this field, generieity is most. notably 
pre~nt in Ads; inheritance is a feature of object-oriented 
languages and was introdoeed by Simula 67. 

Ads and object-oriented languages have until now 
arou.q,d interest in rather different eommmfities and it is not 
surprising that no comparative analysis seems to have been 
published. (The only related work that we know of is the as 
yet. unpublished, more theor.v-oriented article by Cardelli and 
Wagner 10], of which we became aware as this paper was 
going to press). Ilowcver we reel that beyond "cultural" 
diffcrenee.~ the real goals pursued are tbe same. so that it is 
fruitful to perform an in-del)th comparison of the technical 
.qllntions obtained on both sides. 

Section 2 1nt'roduccs genericity; section 3 di.~.u.~s 
inheritance: .,~etions 4 and .5 compare the two approaches by 
studying whether the effect of each may be achieved with the 
other: ~et ion 6 de~ribes how a particular programming 
language° l'iffel, uses a balanced combination of the two 
techniques. Section 7 summarizes the results achieved. 
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2 - G E N E R I C I T Y  

(;encri('ity n~ offered by Ada is pre~nt in few olher 
i~rogrnn|n)ing Inngunges (exaini)le~ inchlde ('1,1. I [I0] and I,P({ 
[21). I)ul i'~ offered b)" ~vernl  formal ~lx~eification languages. 
~,,eh .~ Z IZl. CZc~r [r,] On.12 In] ~,,d LM 1~21. A var i . , ,  or 
! I i- .ipproneh wn~ developed in connec!ion wit h t he langlmge 
~ll, II I. 7] nnd ll,~ been inlegrnled into a number of fi.nc- 
l io,ml I:,ng.nge~. 

~V(. ~hnll ('olleclilrAlc on the A(la form. re.~lricling olir- 
-eh'(',, to type generieity, that i~ Io .~ay the al)i l i fy to 
Imr'~mctcrizc n ~r twnre elemen! (in ..~t(la. a Imckngc or .~ub. 
pro~rnm) by one or more I)pc~. Generic Imranletcr.~ have 
oil ier. I(,s~ hilcrexlhlg li~cs i l l  . '~( la. .~uch s.~ i)aramclerized 
(lilllcll-ii')ll~ for :)rrn)'s. 

%%e ~t,nll (li~lingllimh I~PI ~een unconstrained gonerlcily. 
~vherel)) no ~l)ccific re(inirelnenl i~ imitated on generic 
I);Ir:llll('ler-. ~lld constrained generieily, whereby a certain 
- |  r l l ( . I  l i r a  i~ re(l~lire(I. 

2.1 - Unconstrained genericity 

In il~ .~inH)lesl form. unconstrained genericity may be 
.cc,i ns n lechnique to b ) ' p ~  Ihe unnece.~nry requirements 
impo~,ed I)y .~tntic type checking. 

('onsldcr the example Of a simple procedure for 
cxchangi,g the values of two variables. In a language which 
i,~ nol ~,latic~lly typed, such as I,i~p. we would wrile some- 
lhing like the following..~yntaelie differences nolwi lhstand. 
ing: 

/~/ 
procedure  swap (z, y) is 

t: local 
begin 

t : f  z /  z : =  y ; y : =  t; 
end swap 

The type of the elements to be swapped and of the 
local variable t does not have to be specified. However this 
may be too much freedom since a call of the form swap (a, 
b). where a is. ~ay. an integer, and b a character siring, will 
no! be prohibited even lhough it is probably an error. 

• ~taticslly typed languages such as Papal  addres~ this 
problem by requiring programmers to declare explicitly the 
lype~ of all variables and formal parameters: they enforce a 
~ia~ically checkable type compatibility requirement between 
actual and formal parameters in calls, and between source 
and ~argel in assignments. In such a language, the procedure 
to exchange the values of two variables of type T becomes: 

/~/ 
procedure  T_swap (z ,  ~: in  out  7") is 

t: T 
begin 

t : = z ; z : ~  f l ; Y : =  t; 
end swap 

Demanding that T be specified as a single type averts 
t)pe incompatibility errors, bu! has the unpleasant cone, e- 

ql,ence of requiring a new procedure declaration for each 
type for which a swap operation is needed: in the absence of 
overloading, a different name mn.~t be a~igned to each .~uch 
procedure, for ex~ml)le int_swap, str_s~p and ~ on. ~uch 
mulliple declarations lengthen and obscure progrnm~. The 
example t h o r n  i.~ particularly lind since all the declar:~lion~ 
wil l  be identical excel)! for the two occurrenee~ of T. 

Static typing nlny be considered too restrictive here: 
the only real requirenient i~ that the two actual I)',r'mleter-; 
Im.'<',ed to nay call of swap .,4muld be of the ,~n,ne tylw. =u,I 
that their type ,'4muld n l ~  be applied to the dcclnrnt io,  of 
the local vari=lble t. 

A language wit h genericit y I)ro~:ide.,, n t rndeoff bet wee, 
too much freedom, n.~ with .unlyped Inngunge~. and Ioo ni,wh 
reslrainl ,  R,~ wi lh l )a~nl,  in .~lleh El language, one n)~,% 
declare T a.~ a generic type i)flr, uieler tO the swap pro- 
ca(hire, hi (lUn.~i-Ada. the i)roce(hlre may lie (lerlAred n~ fol- 
IoW,~: 

/s/ 
generic 

type T is private; 
procedure s ~ p  (z, ~: in out  T) is 

t: T 
begin 

t.~ffi z;  z . ~  y ; y .~- t; 

end swap 

The only differeuce with real Ada is that we have 
merged together, for ea~ of preparation, lhe two part.~ of 
an A(In .~ul)l)rogram declaration, header and body: their 
• eparnlion in Ada comes from a concern for informAtlon hid- 
ing. orlhogonal to this di~uaqion. 

The generic.., elau~ introduces type p~rameters. Fly 
specifying T as a "private" type. the writer or this procedlire 
allows him~If to apply to objects of type T (z. y and t) 
operations available on all types, such as a.~ignment or com- 
parison, and these only. 

A declaration such as the above doe.q not actually 
introduce a procedure but rather a procedure pattern: actual 
procedures will be obtained by instantiating the pattern with 
actual type parameters, as in: 

/41 
procedure  int_swap is new swap (INTEGER); 
procedure str_swap is new swap (STRING); 

etc. Now assuming that i and j are variables of  type 
INTEGER, s and t of type STRING, then of the following 
calls 

int_swap ( i, B; 
s i r_swap  Is, t); 
int.swap ( i, s); 
str_swap Is, j); 
str_swap ( i, j~; 

only the first two will be legal; the other are statically 
incorrect. 

More interesting than parameterized subprograms are 
parameterized packages. Ada packages "(and their 
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equivalent.~ in other modular languages, such as modules in 
Modula 2) are syntactical encapsulat.ions of groups of related 
program entities such as subprograms, types and variables. 
One of the most important applications of packages, and the 
only one considered in this article, is data abstraction: each 
package contains the implementation of a type and of the 
operations applicable to elements of that type. 

Ads packages may be declared with generic parame- 
ler.~. For example, the following generic package describes 
stacks of elements of an arbitrary type T: 

/ ; , /  
generic 

type T is p r iva te ;  
package STA CKS is 

t ype  STACK (size: POSITIVE) is 
record 

space: a r r a y  (l..size) of T; 
indez: NATURAL 

end record;  
funct ion empty ( s: in STACK) r e t u r n  BOOLEAN; 
procedure  push (t: in T; s: in ou t  STACK); 
procedure  pop ( 8: in ou t  STACK); 
funct ion top (s: in STACK) r e t u r n  T; 

end STACKS 

We have given only the public part. ("specification") of 
the package: the package implementation ("lx')dy"), which 
de.'~.ribes the subprogram bodies, must be declared 
.~paratcly. For lechnienl rea..~ons having to do with the prob- 
lem.,, of .Ada compilation, the inlplementation of the types 
.,,.Plmrt~l by n i)nckage, such as STACK here, is given in the 
puldic part. For information hiding puritans, t.hi~ in~plemen- 
ration may be given in the p r i va te  clau.,,e of the p,bl le part. 
a kiml of p.rgator.v between specification and body: however 
we do not need to u~  this feature for the present diseu~,4on. 

A.,, with generic subprograms, the above does not 
define a package bil l a package pattern; actual packages 
may Ix- obtained by instantiation, as in 

/0/ 
package INT_STA CKS is new STACKS ( INTEGI,,'R); 
package STR_STA CKS i t  new STACKS (STRING); 

In a program unit that has access to both of these 
in~tances of ,qTACKS, dot notation may be t.~d to distin- 
gui.~h between name.~ke elements: for example the type 
"stack of integers" will be denoted by 
INT_STACK,q.STACK. and the type "stack of strings" by 
STR_STACKS.STACK: the corresponding "push" procedures 
are INT_STA CKS.puah and STR_STA CK S.puah. 

We may note again the eompromi~ that generic 
deelaratio,s achieve between typed and untyped languages. 
STACKS provides a pattern for the declaration of modules 
implenlenling stacks of elements of all possible t.vpes T, 
while retaining the possibility to enforce type cheeks: for 
example it will not be possible to push an integer onto a 
st ack of st.ring~. 

Both examples above (swap and stack) evidence a form 
of generieity which we eall unconstrained since there is no 
specific n~luirement on the types that may be used as actual 

generic parameters. In the first case, one may swap the 
values of variables of any type: in the .~'ond, one may 
create stacks of values of any type, provided all values in a 
given stack are of the same type. 

in other ea~s, however, a generic definition will only 
be meaningful if the actual generic parameters satisfy sonie 
conditions. We define this form of genericity as constrained. 

2.2 - Cons t ra ined  generic i ty  

As wi th unconstrained generieity, we con~ider two con- 
strained examples: first a subprogram and then a package. 

A~sume we want to define a generic subprogram for 
finding the minimum of two values. Using the pattern of 
swap abo~'e, we may write the following function: 

/7/ 
Beneric 

type  T ia private;  
function minimum (z, 9: 7") return T ia begin 

if = < = / / t h e n  return z; 
eh.e return y end if; 

end swap 

Ilowever ~uch a funHion declaratio, b, .o! alway,, 
meaniugflll: it ,41ould only be in~tnnthilcd for lYl)e', 7' oil 
which n eompnri,,on oper'~tor < =  i,, defined, hi an tlntyped 
language we might dch, r chcckiilg of thi,~ property unti l  r .n-  
lime. bill thi~ i.~ no! ncceptahle in a hlllgli:lge lh;l! cnhnllees 
.~e('tlrJl.V through ~I,'Hic typing. %Ve head a wn.v to -~perify 
that type T alum! be eqiiipl)(,d with the righl operation. 

In Ado thi,, wil l he wr i l len by lreal ing the Ol)ernlor 
<-.- ns a generh, parameter of il~ own..~yntncticnl ly it wil l  
I~P a f i l ,ct ion: note thai. as a syntactic faeil i ly. Ada nlnkes~ it 
po~.,ible to declare functions to be invoked in i , f ix  form (n~, 
~---) by declaring them with a name enclosed in double 
guole,~, for example "~- - "  in the case at hand. Again" the fol- 
lowing declaration become.,, legal Ads i f  the public part aml 
hnpJenlentation are taken apart.. 

/e/ 
generic 

type  T ia private;  
with func t ion  "<=" (a, b- T) 

r e t u r n  BOOLEAN is < > ;  
func t ion  minimum (z, y: T) r e t u r n  T is 
begin 

if z <ffi y then  r e t u r n  =; 
e l k  r e t u r n  p end if; 

end swap 

The keyword with is used to introduce generie formal 
parameters representing subprograms, such as the hlnction 

This declaration may now be instantiated as follows 
for a type, say TI, for which a function, say TI_le, of type 
func t ion  (a, b: TI) r e t u r n  BOOLEAN is defined: 

/0/ 
func t ion  Tl_minimum is new minimum ( TI, Tl_le); 
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If. o.  the other hs.d. the Tl_le f .netion is i l l fact 
(':tiled "<=". Ih.~I is to ~a.v if its name and type nmtch tho.~, 
of Ihc (.orresponding formal sltbl)rogram, then one may omit 
if fl'Olll Ihc list of actual I)nrsmeters to the generic instanlia- 
ºloll of the sill)progrsln. For examl)le, the type INTEGER 
Iin'..q I)re(lelilted " < = "  funclion with Ihe right type. ~ thai. 
WC (':11) ~iml)ly declare 

/1o/ 
funct ion  tat_minimum is new minimum ( INTFGEI?); 

Thi', ahi l i ly  to ,,~c defa.II "wl .n l  sulq~rogrnms with 
m:~tching name~ and type~ i~ ol)lained I)y .~peeifying is <:~> ill 
lhe declnr'l l ion of the rornml generic ~l,I)progrnnl. as was 
(lone al)ove wi lh " < - " . . ~ o l e  lhnt tile overlo.l(llng of opcra- 
Ior~..q-. l)crlnllle(I (and il l fa('l encourage(I) I)y the desigu of 
A(la. play,, sn e~...enlisl role here: " < = "  ulay I)e defined for 
IIHI n v ¢liil('renl I ypes. 

Thi~ discussion of constrained gc,wricily in the subpro- 
grnm ca~e rcJl(lil.v ~l)l)lie~ to generic packages. Assume that 
we ~vnnl to write a generic matrix manipulation Imekage, 
al)ldff.al)lc to malriees of ohjc(.ts of ally type T. with matrix 
~um nll(I pro(loci as I)asie ol)eratlnos. S.(.h a (lefinil ion is 
only menningfnl if type T has a Still] and a pro(hl(.t of its 
own. avid each of the~e olwratiot,s has a zero elenwnl.: these 
fc~lt.re- of T will be needed in tile implemcntstion of matrix 
~.m nnd I)rodt,el. The pl,I)lie part of the matrix package 
snny I)c wri l tcn as follo~s: 

/ l l /  
generic 

type  T is p r iva te ;  
z e r o :  T; 
unity: T; 
with func t ion  "+" (a, b: 7") return T is < > ;  
with function "*" (o, b- 1") return Tie  < > ;  

package MA TRICES is 
type  MATRIX(lines,  columns: POSITIVE) is 

a r r a y  ( l..lines, l..eolumns) of T; 
funct ion  "+" ( ml,  m~: MATRIX) r e t u r n  MATRIX; 
funct ion  "*" (ml, m~: MA TRIX~ r e t u r n  MATRIX; 

end MA TRIClf.q; 

Instances of this package may be obtained as follows: 

/~2/ 
package INT_MA TRICES is 

MATRICES{INTEGER, 0, I); 

package BOOL_MA TRICES is 
MA TRICES (BOOLEAN, false, true, "or", "and"); 

As in the previous example, actual subprogram param- 
eters (corresponding here to "+" and "*") may be omitted for 
a type such as INTEGER which po.,~se~ses matching opera- 
lions: however they must be specified for BOOLEAN. (It is 
eom.'enient to declare optional l)arameters as the last ones in 
the formal parameter list: otherwise a keyword notation 
m.~t be u.~ed when the corresponding actual parameters are 
omitted). 

It is interesting here to show how the implementation 
Imrt of ~ueh a package will look. It is enough to give one of 

tile function bodies ill thi.~ package: we take matrix prodoet 
as an example. 

/i.~/ 
package body MA TRICES is 

........... other declarations ............. 
funct ion  "~" (ml, m~: 7") is 

result: MATRIX (ml  'lines, m~'columns); 
begin 

if ml 'columns/ffi m~'lines t hen  
raise INCOMPA TIBLFf_,qlZFS; 

end if; 
for i in ml 'RANGh] I) loop 

for j in mg'RANGh~£) loop 
result ( i, j~ :-- zero; 
for k in ml 'RANGI'~) loop 

result ( i, 3) :ffi 
resuit(i, j) + ml  (i, k) * me(k ,  j~ 

end loop; 
end loop; 

end loop; 
r e t u r n  result 

end "~"; 
end MA TRICES; 

Three comments are in order for the reader not, fami- 
l iar with nil the details of Adn: 

a for a I)nrameterized type such as MATRIX (lines, 
columns: POSITIVE). a variable declaration must pro- 
vide actual values for the parameters, e.g. ram: 
MATRIX (100, 75); these values may then be retrieved 
using the apostrophe notat ion as in tam'lines which in 
this case has value 100; 

• if a is an array, a'RANGE{i) denotes the range of 
values in its/-th dimension; for example mI 'RANGE{ I) 
above is the same as I . .ml  'lines: 

• if requested to multiply two dimension-wise incompa- 
tible matrices, the program raises an exception: it does 
not execute the code that follows the raise instruction. 
The package should include code to handle the excep- 
tion. 

The two examples given (minimum and matrices) are 
representative of the Ads techniques for constrained generl- 
city. They also show a serious limitation of languages such as 
Ads in this area: the fact that only syntactic constraints 
may be expressed. All that a programmer may require is the 
presence of certain subprograms ("<ffi", "+ ' ,  "a '  in the exam- 
pies) with given types: but the declarations are meaningless 
unless some semantic constraints are a l ~  satisfied. For 
example, minimum only makes ~nse if "<ffi" is a partial 
order relation on T (reflexive, antisymmetrie, transitive): and 
the MATRICES package should not be instantiated for a 
type T unle,~s the operations "+" and "*" not only have the 
right type (T X T - ' *  T) but also give T the structure of a 
ring (assoclativity, distributlvity, zero a zero element for "+" 
and unity for " f .  ete). 

To include such formal constraints, one has to leave 
the rcahn of programming languages such as Ada for such 
specification la~;uages as (!lear and OBJ2 (the latter execut- 
able) or the experimental programming language LPG. 



2.3 - Impl ic i t  gener ic i ty  

It is important to mention a form of generieity quite 
different from the almve Ada-style explicit paranwterization: 
tile implicit polymorphism exemplified by the work on the 
Nil, fnnetional language [11.7). 

This technique is based on the remark that explicit 
geqericity, as seen above, places an unnece~ary burden on 
the programmer, who must give generic types even when the 
context provides enough information to dedt,ee a correct 
lyping. It. may be argued, for example, that the very first 
version ( / I / )  given for procedure swap. with no type declara- 
lion. is acceptable as it stands: with adequate typing rules, a 
compiler has enough information to deduce that z. y and t 
must have the same type. Why not then let programmers 
omi! type declarations when they are not strictly needed 
coueept,ally, and have the compiler check that all uses of an 
identifier are consistent? 

This approach, ~metlmes called "unobtr,sive type 
eheckiqg'" [I.~]. attempts to reconcile the freedom of untyped 
languages with the security of typed ones. It has been 
elegantly implemented in Nil. and other functional languages. 
One may argue, of cour.~P, that some obtrusiw.ne.~q may be 
,~cfuh the redundancy entailed by explicit type declarations 
may enhance program readability. Whatever the answer to 
this debate may be, the qt.estion of explicit or implicit gener- 
icily is not directly connected to the present, discu~slon; for 
the purposes of comparison with inheritance, both forms of 
generlcity are ~mehow eqt.ivalent. 

Without committing ourselves as to which form is 
be~t. we have t h o r n  to rely on the explicit, form exemplified 
by Ada. which, for our study, has the obvious advantage 
that generic parameters stand out more visibly. 

3 - I N H E R I T A N C E  

Tile inheritance technique was introduced in 1967 by 
Simula 67 [3, 8. Ii]. It has been widely imitated in other 
object-orieuted languages. 

As with genericity, we will mostly introduce this tech- 
nique through examples. Since we need a notation, we shall 
rely on a particular one, that of the object-oriented language 
Eiffel [13]. ! Much of the discussion would readily transpose to 
other object-oriented languages; however Eiffel's emphasis on 
static typing, and its design as an object-oriented language 
for actual software engineering applications (as opposed to, 
say. artificial intelligence or exploratory programming) make 
it particularly suitable for this dlseusaion. Only the elements 
of Eiffel which are essential to this article are introduced; 
more details may be found in the reference quoted. 

The fundamental idea of inheritance is that new 
software elements may be defined as extensions of previously 
defined ones: existing elements do not have to be modified 
when used as a basis for new definitions. 

t Eiffel and the as.~ociated compilers and tools are products 
of Interactive Soft ware Engineering. Inc., Goleta (California). 

This concept blends particularly well with the object- 
oriented approach, in which basic software element~ are 
implementations of abstract data types: the extension~ of 
software elements mentioned above will then correspond Io 
refinements of hierarchies of .~bstraet data types. 

The basic tenet of object-oriented programming 
languages may be described as the idea that the fundamental 
elements, modules, are not only a.-,~oclated with implementa- 
tions of abstract data types (azl effect which may be achieved 
in any langnage offering mod,lar features and information 
hiding, such as Ads or N,1odula 2), but are such implemei~ta- 
tions. In other words, the defining equality of object-orieltted 
languages is 

Module -- Type 

This dogmatic identificat ion of two apparen! ly di,t inct 
programming notions, olle synl act ic, t he ot her ~emantic. may 
al)pear too strict and indeed has some disadvantages. B,! it 
al.,~ gives object-orlented programming language, and the 
a~,~oeiated design method s strong eo.weptual iutegrity, and 
provides imwcrful techniques for satisfying Ilia sofl ware qual- 
ity requirements mentioned above. 

As an example of such a modtile-type, called a ela~ in 
l"iffel as in Simula and many other object-oriented languages. 
consider the following outline of an implementatio.t of "'spe- 
cial files" in the Unix sense, that is to say. files a~qociated 
with devices: 

/14/ 
c las s  DEVICE e x p o r t  

open, close, opened 
f e a t u r e  

open (file_descriptor: INTEGER) is  
do  

e n d ;  -- open 

close Is 
d o  

e n d ;  -- close 

opened: BOOLEAN 
end -- class DEVICE 

This class is the implementation of an abstract data 
type characterized by three "features", open, close and 
opened. There are two kind of features: attributes and rou- 
tines. Routines, like open and close here. are operations 
applicable to objects of the class; routines are further divided 
into procedures which, as the two shown here, perform some 
actions, and functions (seen in later examples), which return 
avahle .  Attribute features, like opened here, are data ele- 
ments associated with each object of the type. 

As a type. a class such as DEVICE may be used to 
declare objects: their features may then be accessed through 
dot notation, as in: 

,Sqpt~mbw 1966 OOPSLA '88 Pro(~glings 395 



/1.~ l 
dl: DEVICE;/1: INTEGER 
dl.Create; 
dl.open Ill); 
if dl.opened then  .... 

Create i~ a universal procedure applicable to all 
clas~es: it allocates the nece~ary space for an object such as 
dl. if further initialization actions are required, they may be 
de~ribed in a procedure declared in the class with the name 
Create. possibly with parameters. 

Note that each routine always has, besides its normal 
list of arguments, a special argument, the object to which 
the procedure is applied Idl in the above call to open). This 
is one of the characteristics of object-oriented language: 
every operation is relative to a distinguished object. Within 
the cla~. unqualified feature names implicitly refer to this 
object: the predefined name Current may be used when an 
explicit reference is needed. 

The~ comments account for the "type" aspect of a 
class. From the "module" standpoint, it should be noted that 
the cla,~s is the only program structuring facility of Eiffel: 
thus the above example use of DEVICE must be in some 
class, say C. A class such as C which declares entities (that 
is to say features, routine parameters or function results) of 
t.vpe DEVICE is said to be a client of DEVICE. The expor t  
clau~ lists the features of a class which are accessible to 
clients, in read-only mode for attributes and execution mode 
for routines (here all features shown are exported). Since 
info[mation hiding is not a concern for this diseu.~slon, we 
~hall omit export . . ,  clauses in the '~luel. 

The notion of inheritance is a natural extension to this 
basic framework. Assume we want next, to define the notion 
of tape device. For our purpo~s, a tape unit has all the pro- 
putties of devices, as represented by the three f e a t u ~  of 
clas~ DEVICE, plus the ability to (say) rewind its tape. 
Rather than redefining a new class from scratch, we may 
declare class TAPE as an extension of DEVICE, as follows: 

/:8/ 
class TAPE i nhe r i t  DEVICE fea tu re  

rewind is 
d o  . . . . . .  e n d  

e n d  -- class TAPE 

With this declaration, objects of type TAPE automat- 
ically posse.~s (by "inheritance") all the features of DEVICE 
objects, plus their own (here rewind). We say that TAPE is 
an heir to DEVICE, which is a parent of TAPE. The "des- 
cendants" of a class are the class itself and the descendants 
of its heirs; the reverse notion is that of "ancestor". 

A class may of cour~ have more than one heir: for 
example. DEVICE could have DISK as another heir. with its 
own specific features (such as direct access read, etc.}, in 
Eiffel. ela.~es may a l ~  have more than one parent: this is 
known as mulliple inheritance, a very powerful technique for 
re:t-ability, allowing the combination of more than one pre- 
viously developed environment. Eiffel also introduces the 
t echnhlue of "repeated inheritance", making it possible to 
inherit more than once from the same clas~. 

From the module viewpoint, the ancestor relation is a 
program structuring mechanism; from the type viewpoim, it 
yields a rule on acceptable assignments. The rule is simple: 
an sssignment of the form 

z .'~ l/ 

where z and y are of class types, is only permitted if the 
type of = is a descendant of the type of I .  Thus the above 
assignment is legal if, for example, z has been declared as a 
device and I/ as a tape. This may be explained by noting 
that the inheritance relation is really the "is-a" relation [4]: 
every tape is a device, but every device is not a tape. 

it sometimes happens that a feature of a class should 
be implemented differently in some descendants of the class. 
For example there could be s special "open" mechanism for 
tape devices. Eiffel allows such redefinitions, as follows: 

1171 
e l a n  TAPE Inher i t  

DEVICE redef ine open 
fea ture  

open (file_descriptor: INTEGER) is 
do ..... special open for tape devices .... end; 

r e ~ n d  is 
d o  ...... e n d  

e n d  -- class TAPE 

This possibility must be seen in connection with the 
above assignment rule: if z is a device, then the call 

:.open (/1) 

may now be executed differently depending on the assign- 
ments that have been performed on z before the call is exe- 
cuted: for example, after z : t  y, where U is a tape, the tape 
version should be executed. Such feature redefinitions arc 
common in Eiffel programming, which also allows a parame- 
terless function to be redefined as an attribute (which is use- 
ful for changing representations in program refinement). 

This facility characterizes the powerful brand of 
polymorphism offered by object-oriented languages with 
inheritance: the same feature reference may have several 
interpretations depending on the actual form of the object at 
run-time. To achieve this effect, many object-oriented 
languages have renounced static type ehecklng; Eiffel, bow- 
ever, is statically typed (and the binding of feature names to 
actual features is done statically whenever possible). 

The remarkable benefits of the inheritance technique 
with respect to reusability, extendibility and compatibility 
come from the fact that software elements such as DEVICE 
are both usable as they are (they may be compiled as part of 
an executable program) and still amenable to extensions (if 
used as ancestors of new classes). Thus a compromise 
between usability and Flexibility, fundamental for the quali- 
ties mentioned, is achieved. 

One more property of Eiffel, borrowed from Simuls, 
will be useful for the discussion below: deferred features 
(corresponding to Simula's "virtual procedures"). Deferred 
features correspond to operations that must be provided on 
all objects of a class, but whose implementation may only be 
given in particular descendants of the class. 
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A.~sume for example that ,  as under Unix, devices are a 
special kind of files: DEVICE should thus be an heir to class 
FILE. whose other heirs may be T E X T _ F I L E  ( i t , l l  with 
heirs N O R M A L  and D I R E C T O R Y )  and B I N A R Y _ F I L E .  
Figure 1 shows the inheritance graph, a tree in this case. 

Figure 1: Inheri tance  g r a p h  fo r  files 

Any file may be opened or clo~sed: but how these 
operations are performed depends on whether the file is a 
device, a directory etc. Thus at  the FILE level we declare 
the corresponding procedures as deferred; this means that  
only a header is given, and that  the task of providing an 
intplementatlon is handed over to descendant classes: 

/ is/  
class FILE feature 

open (file_descriptor: INTEGER) ia deferred end; 
close is deferred end; 

end -- cla~ FILE 

Descendants of FILE should provide actual definitions 
of open and close. The rules of the language prohibit appli- 
cation of these features to ohjeet.s for which they might not 
be defined. 

An interesting application of this technique is for Ads 
or Modula-like ~parat ion between interface and implementa- 
tion of a module: although an Eiffel class is normally defined 
as a single piece, the effect of Ada's two level declaration 
(specification and body) may be achieved by declaring a first 
cla~ with deferred features only. and a second one. heir to 
the first, with the implementation of these features. An 
important advantage of this technique over its Ada 
equivalent is that it allows different, implementations of the 
same featttre to coexist in a single software system. 

4 - SIMULATING I N H E R I T A N C E  WITH GENERIo 
C I T Y  

To compare generieity with inheritance, we shall stt.dy 
ho~. if in any way, the effect, of each feature may be simu- 
Isled in a language offering the other. 

Fir.~l consider a language, such as Ads, which offers 
generieity but not inheritance. Is there any way we can 

achieve the effects of inheritance in ~uch a lang,agc? 

The easy part, is the overloading. In a language ~wh 
as Ads or Algol 68 where the same subprogram name may be 
reused as many times as needed provided it is applied to 
operands of different types, there is no dilficulty in defining 
types such as TAPE,  DISK,  etc., each with its own version 
of open. close etc.: 

li91 
p r o c e d u r e  open 

(p: in o u t  TAPE; descriptor: in INTEGER);  

procedure close (p: in o u t  DISK); 
etc. 

Provided the subprograms are disting,ished by the 
type of at least one operand, as is the case here, no ambi- 
guity will arise. 

[iowever this solution falls short of  providing true 
polymorphic entities as in languages with inheritance, where, 
as di~u.~sed above, an operation will be carried out 
differently depending on the particular form of an entity at 
run-time (even though it is possible, in a language like Eiffel, 
to check at compile time that  the operation will be definrd 
in all possible cases). The typical example is the call d.close. 
which will be carried out differently after the a.~slgnments 
d .'ffi di and d .~ ta (where di is a DISK and ta is a TAPE) .  

The above form of Ada-like overloading does not, pro- 
vide anything like this remarkable possibility. 

The only feature of Ads which could be u.~d to emu- 
late this property of object-orlented languages is in fact 
shared with P a p a l  and has nothing to do with overloading 
or genericity: it. is the record with variant  type. We could for 
example define mmething like 

I'ZOl 
t y p e  DFVICE (anit: DEVI('E_ TYPE) is 

r e c o r d  
....... fields common to all device types ........ 
c s s e  unit is 

w h e n  tape => ...... fields for tape devices ..... ; 
w h e n  disk => ...... fields for disk devices ..... ,: 
....... other  cases ...... ; 

end  c M e  
end  r e c o r d  

where DEVICE_TYPE is an em,meration type with elements 
tape, disk etc. Then there would be a single version of each 
the procedures on devices (open, close etc.), each containing 
a ea~ di.~rimination of the form 

/~l/ 
c u e  d'unit is 

w h e n  tape = >  ..... action for tape devices ..... ; 
w h e n  disk => ..... action for disk devices ..... ; 
....... other eases ...... ; 

end  c M e  

~uch a ~ lu t ion .  however, is unacceptable from a 
software engineering point of view: i t  runs contrary to the 
criteria of extendibil i ty, reusability and compatibi l i ty. Not 
only does it scatter case di~r iminat ions (here on 
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DEVIC:E_TYI'E) all over line program: worR yet. it closes 
the -~el of po,,,,il)lc choice,,: s.~ opposed t.o the Fiffel cla~s 
DI';VI6'E which can at an)" time be u.~d as parent or a new 
cla-,~, the Ads type DEVICE ha.~ a fixed list, of variants. 
(.nrre~l~)nding Io tlw elements of the fixed enunwralion type 
DI':VICE_TYI~E: to add an elenwnt to this list, one must 
m,dify Ihc declaration of DEVICE. invalidating any pro- 
gram uluit flint relied on the initial version. 

NO the answer to the question posed at the beginning 
of thi~, ,,(,orion - can inheritance be simulated with generi- 
city? -- i~ no. 

5 S I M U L A T I N G  G E N E R I C I T Y  W I T H  
I N H E R I T A N C E  

We now address the rever~ problem: can we achieve 
Ihe effect of Ads-style generieity in. an object-oriented 
language with inheritance? 

As before, we use Eiffel as our vehicle for expressing 
object-oriented techniques. As explained in section 6 below, 
Eiffel does provide a generic parameter  mechanism (included 
in the language as a result of the study reported here); but of 
course, since the object of this ~c t ion  is to analyze how one 
may ~imulate gencricity with inheritance, we must tem- 
porarily refrain from using the Eiffel generic mechanism. The 
reader should thus be warned that the solutions predated  in 
this section are sub.~tantially more complex than those 
obtainable with full Eiffel. described in section 6. 

The simulation turns out to be easier, or at  least less 
artificial, for constrained genericity - a surprising result 
sitnce unconstrained genericity is concepeually simpler. Thus 
we begin with the constrained ease. 

5.1 - C o n s t r a i n e d  g e n e r i c i t y :  o v e r v i e w  

The idea is to associate with a constrained formal gen- 
eric type parameter a cla~.  This is a natural  thing to do 
since a constrained generic type may be viewed, together 
with its constraining operations, as an abstract da ta  type. 
('on*ider for example the generic c lau~s  in our two con- 
strained examples, minimum and matrices: 

/2~/ 
generic 

type T i spr ivate ;  
with function " < = "  (a, b: T) 

return BOOLEANis < > ;  

/2.3/ 
gene r i c  

t y p e  T is p r i v a t e ;  
z c r o :  T; 
unity: T; 
with function "+" (a, b: 7") ia < > ;  
with function "*" (a, b: 7') is < > ;  

We may view the first a~ a definition of an abstract 
data type. say CO~PARABLE. characterized by a com- 
parison operation "<---': similarly, the ~cond  specifies a 

type. say RING'. with features zero, unitw, "+" and "*". 

In an object-oriented language, the~ types may he 
directly repre~nt.ed as ela.~es. Such eln.~cs may not he 
entirely specified since there is no general implementat ion for 
"<.ffi", "+" etc.; rather, they are to be u ~ d  as ancestors of 
actual cla.,L.~s corresponding to actual generic parameters. 
Iiere the deferred feature mechanism of Eiffel is exactly what 
is needed. Thus we define the following elax~es to repre~nt  
the generic parameters: 

I'Z,tl 
elmm COMPARABLE fea tu re  

le (other: COMPARABLE): BOOLEAN 
is deferred end 

end -- cla~ COMPARABLE 
- le corresponds to "<=" ;  
-- there are no infix fi,nctions in Eiffel. 

chum RING f e a t u r e  
plus (other: RING) is deferred end; 
times (other: RING) is deferred end; 
zero: RING; 
unitp: RING 

end -- class RING 

The comment made in ~Pction 2.'2 about  the lack of 
~ m a n t i c  specification in Ads constrained generieity would 
seem to apply twre too: we have not specified any of the 
required properties on is, ph~ etc. Eiffel does, however, per- 
mit the specification of such properties in the form of 
p r e c o n d l t i o n a  and p o s t c o n d i t i o n a  on routines. Simple 
examples of this facility will be given in section 5.4. 

The reader will also have noted that  plus and times 
are defined here as procedures rather than funetions; the con- 
vention we will follow in the Eiffel examples is that  
r.ples (r I) is an instruction that  performs a side-effect on r. 
adding to its value the value of r l ,  rather than an expression 
returning the sum of these values (and similarly for times). 
In contrast,  the Ads operators "+" and "*" were functions. 
The difference is not essential and we use procedures in Eiffel 
mainly for brevity, The examples may be changed into func- 
tions, as in 

plea (other: RING): RING ~ deferred end; 

subject to the discussion that follows. 

6.9  - C o n a t r a i n e d  gener ic i ty :  s u b p r o g r a m s  

A subprogram such as minimum may now be written 
by specifying its arguments to be of  type COMPARABLE. 
B a ~ l  on the Ada pattern, the function would be declared as 

12.V 
minimum (one: COMPARABLE; other: COMPARABLE): 

COMPARABLE hi 
- Minimum of one and other 

do ..... end  

in an object-oriented language, however, every routine 
(Eiffel term for subprogram) appears in a class and is relative 
to the "current" object of that class; thus i t  seems preferable 



to include minimum in class COMPARABLE, argument one 
becoming the implicit, current object.  The class becomes: 

1201 
¢laso COMPARABLE f e a t u r e  

ie (other: COMPARABLE'): BOOLEAN is d e f e r r e d  e n d ;  

minimum (other: COMPARABLE): COMPARABLE is 
-- Minimum of current element and other 

do 
if le (other) t h e n  Result .'~ Current 
else Result := other e n d  

end -- minimum 
end  -- ela~s COMPARABLE 

(The predefined variable Result contains the result to be 
returned by any function in which it appears; it is implicitly 
declared of the function's result type, here COMPARABLE). 
To compute the minimum of two elements, we must declare 
them of some descendant type of COMPARABLE. For 
example, we may declare: 

/..,7/ 
class  INT_COMPARABLE i n h e r i t  

COMPARABLE 
f e a t u r e  

le (other: INT_COMPARABLE): BOOLEAN is 
- Is current element less than or equal to other 

do Result :ffi value <ffi other.~lue e n d  

value: INTEGER; 
- Value a . ~ c i a t e d  with current element 

change_value (new: ~ 
-- Make new the value associated 
-- with current element 

do value .'ffi new end; 

end  -- e la~  INT_COMPARABLE 

To find the minimum of two integers, we may now 
apply function minimum, not to arguments of type integer. 
but to arguments of type INT_COMPARABLE, say iel and 
icE. as follows: 

1"2sl 
ic3 :ffi icl.minimum ( ie~) 

To use the gener ic /e  and minimum functions, we have 
Io renounce direct references to integers, using 
INT_COMPARABLE entities instead; hence the need for 
at t r ibute value and routine change_value to access and 
madly '  the associated integer values. 

We would similarly introduce heirs of COMPARABLE, 
say STR_COMPARABLE. REAL_COMPARABLE, and so 
on. for each type for which a version of minimum is desired. 

Of course, having to declare similar features value and 
change_value for all descendants of COMPARABLE is 
unplea.~ant. But by paying this relatively small price in 
terms of ea.~ of  program writing - renouncing the direct use 
of predefined types - we achieve the same effect as in a 
language with generieity. 

There is a hitch, however, if we are concerned about 
static typing. We clearly want to disallow a call such as 

/~9/ 
ie.I.minimum (¢) 

where c is a COMPARABLE but not an 
INT_COMPARABLE. Function ie has indeed been redefined 
to accept only INT_COMPARABLE arguments: the rules of 
Eiffel permit such redefinition of an entity of a c l a ~  in a des- 
cendant of that  class, if the new type is itself, as here, a des- 
cendant of the original type. But minimum has not been 
redefined: in fact this is the whole point of the game: to 
make sure that  minimum is a polymorphle feature, applica- 
ble to all kinds of "comparable"  objects. So, regrettably, c is 
in fact a legal argument i n / 2 9 / .  

To ensure type consistency we must redefine minimum 
in INT_COMPARABLE so that  its arguments and result are 
of type INT_COMPARABLE. The body of the routine does 
not change: only its header has to be modified. The class 
declaration may thus be rewritten ~s follows: 

/30/ 
class  INT_COMPARABLE i n h e r i t  

COMPARABLE 
rename minimum as general_minimum; 
redefine minimum 

feature 

le (other: INT_COMPARABLE): BOOLEAN is 
...... As i n / 2 7 /  ..... ; 

minimum 
(other: INT_COMPARABLE): INT_COMPARABLE 

is 
-- Minimum of current element and other 

do  
Result :ffi general_minimum (other) 

end;--  minimum 

value: INTEGER~ As above 

change_value (new: 7") is-- As above 
do value :ffi new end; 

e n d  -- class INT_COMPARABLE 

We have used here tile renaming mechanism of Eiffel: 
the r e n a m e . . ,  subelause of the i nhe r i t . . ,  clause makes it 
possible to acec.'~ the features of the ancestor ela~s (COM- 
PARABLE) even though they are redefined in the descen- 
dant.  Eiffel prohibits overloading of  names within a cla.~s, so 
that  renaming is necessary to allow use of both sets of  
features in the ela.~s. (Another use of  renaming is in multiple 
inheritance, to remove name clashes when features are inher- 
ited from more than one cla.~s). 

What  we have done is to redefine the header of  
minimum, not its body, which is simply that  of the original 
version, accessible here under the name general_minimum. 
This, apparently,  takes care of the static typing conflict to 
the expense of yet ~ m e  more complication. 

However, the careful reader will have noted that  a 
serious typing problem remains. The call to 
generaL_minimum is correct with respect to its argument  
other: since general_minimum ( that  is to say, 
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COMI'ARABI, E's ver.~ion of minimum, as given in /26/) 
cxpect~ COMPARABLE objects, an entity like other 
declared of the de~'endan! type INT_COMPARABLE is an 
aCCCl)lsble substitute under the a.~ignment rule. Fl,t there is 
a problem with the resul t  of the function: general_minimum 
ret.rn~ s COMPARABLE whereas INT_COMPARABLE's 
version of minimum shot,ld retl,rn an INT_COMPARABLE. 

Thus in the call mentioned i n /28 / above ,  namely 

ic3 := icl.minimum (icf) 

ic.9 sho,ld be an INT_COMPARABLE; the aasignment is ille- 
gal if the right-hand side rett, rns just a COMPARABLE. in 
fact. the permitted type combinations in assignments are the 
iqver.,~ ones: the source should be of a descendant type from 
t he target. 

With what we have ,~en ~ far there is not way to 
resolve thi.~ i.~tse other than by redefining minimum com- 
pletely - not only its header, but its body as well - so that 
it will indeed return an INT_COMPARABLE. This of course 
defeats the whole pl,rpo~ of genericity: a similar redefinition 
must be repeated in each descendant of COMPARABLE. 
with all instances of minimum identical except for the type 
declarations of arg,ments and results. 

We shall only be able to provide a satisfactory solu- 
tion to this problem by introducing declaration by association 
in ~ction 6. 

5 . 3  - C o n s t r a i n e d  g e n e r i e i t y :  p a e k a l ~ , ' e  

The previous discussion transposes to packages. We 
u~  a cla.~s to represent the matrix abstraction implemented 
in Ada by the MA TRICES package: 

/31/ 
class MATRIX fea tu re  

impl: ARRA YE [RIN~;  

entry ( i: INTEGER; j: INTEGER): RING is 
- Value of the (i, j) entry of the matrix 

do Result ~ impi.entry (i, j) end;  

enter ( i: INTEGER; j: ~NTEGER; v: RING) is 
- Assign value v to entry (i, 3) of the matrix 

do impl.enter ( i, L v) end ;  

plus (other: MATRIX) is 
- Add other to current matrix 

local tl: RING do 
......... loop ......... loop 

tl ~ entry ( i, S); 
tl.plas (other.entry ( i, S)); 
enter ( i, j ,  t l  ) 

end end end;  -- plus 

times (other: MATRIX) is 
-- Multiply current matrix by other 

local ....... do ...... e n d  
end -- class MATRIX 

llere ARRAYt  [~ denotes a predefined Eiffel class 
~ho~e elements are two-dimensional arrays of type T. Array 
types are treated in Eiffel as cla.~q types; the basle operations 
on an element a of type ARRA YP. are a.entrll (i, j), which 

returns the i, j entry of array a (that is to say. a [i, J] in 
standard Pascal notation), and o.enter (i, j, v), which a~igns 
value v to this entry (that is to say. a [i, ]1 := t~). 
Corresponding operations are declared above for matrices. 

We have left out some details (such as how the dimen- 
sions of a matrix are set) but outlined the plus proeedure. 
exhibiting the object-orlented form of overloading: the inter- 
nal call to plus is the operation on RING. not MATRIX. 
Similarly, routines enter and entry are u..~l in both their 
ARRA Y~ and MATRIX versions. 

To define the equivalent of the Ada generic package 
instantiation ( /1 '2/ )  

packa4ge BOOL_MA TRICES is 
MA TRICES (BOOLEAN,/abe, tree, "or",  "and"); 

we must declare the "ring" corresponding to booleans: 

/32/ 
e l m  BOOL_RING Inher i t  

RING redefine zero, unity 
freeae zero, unity fea tu re  

value: BOOLEAN; 

ehanfe_value ( b: BOOLEAN} is 
- Assign value b to current element 

do value .~ b end ;  

plus (other: BOOL_RING) Is 
- Boolean addition: or 

do change_value (value or other.value) end ;  

times (other: BOOL_RING) is 
- Boolean multiplication: and 

do change_value (value a nd  other.value) end ;  

zero is 
- Zero element for boolean addition 

do Result.Create; Result.chance_value (hdte) end ;  

unity is 
- Zero element for boolean multiplication 

do Result, Create; Result.¢hasqTe_ ealus ( true)  end  
end -- class BOOL_RING 

Note that zero and unity are redefined as functions 
returning a value of type BOOL_RING. However these are 
actually constant functions: the clause freeze .... not seen 
before, indicates that zero and uni~  are evaluated just once 
and their values shared among all instances of the eisss. 
This is how constants of class types may be introdueed in 
Eiffel. 

How do we provide the equivalent to the Ado package 
instantiation for boolean matrices recalled above? The same 
reasoning that was applied to class COMPARABLE and 
function minimum prevents us from keeping MATRIX as it 
is if type checking is a concern: we want to make sure that 
an integer element, say, may not be entered into a boolean 
matrix. To achieve this, we define an heir BOOL_MATRIX 
of MATRIX, where routines entr~, enter, plus and * are 
redefined to act only on objects or type BOOL_RING rather 
than any RING. As with minimum, only the headers of the 
routines have to be changed, not their implementations: this 
is achieved as follows, using again renaming to ~llow access 
to redefined features of the parent class. 
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I~.~/ 
class BOOL_MA TRIX 
i n h e r i t  

MATRIX 
r e n a m e  entry u general..matriz_entry, 

enter Jm general_matri=_enter, 
phts as general_matriz_pl~, 
times M general..matri=_times; 

redefine impl, entry, enter, ply ,  times 

feature 
impl: ARRA Ye IBOOI,..RING! 
entry ( i: INTEGER; j :  INTEGER): BOOL..RING ia 

- Value of the (i, J~ entry of the matrix 
do  Result := general..matriz_entry ( i, 3~ e n d ;  

... and similarly for enter, plus and times ... 

end  -- class BOOL_MA TRIX 

Tile reader may note the same problem for the result 
of function entry as previously discussed for minimum: this 
reside should be of type BOOL_RING, but 
general..matriz_entry will only return a RING. With the 
laugti~ge features seen so far. all we can do is to redefine the 
body of entry, making it a copy of the body of 
general_matrix_entry rather than a call to this routine; then 
the reside will be of  the right type. Note that  the problem 
only a r i~s  for functions, so the other  routines of the c l a~  
are not affected. 

This problem notwithstanding, this construction 
achieves with inheritance the efleet of constrained generieity. 
This restilt has been obtained at  the price of a certain heavi- 
ne.~s in exprexsion; note in particular that  what has been 
done for BOOL_MATRIX must be repeated for any descen- 
dant of MATRIX corresponding to a generic instantlation. 
e.g. INT_MATRIX,  REAL_MATRIX etc. In addition, 
features value and change_value must be declared anew in 
each de~endan t  of the associated class RING. We shall ~ e  
in ~e t ion  6 how such heaviness may be removed. 

6.4 - U n c o n s t r a i n e d  g e n e r i c l t y  

The mechanism for simulating uneonstrai.led generi- 
city is the same: this case is simply seen as a special form of 
constrained gcnericity, with an entpty ~t, of "eonstralnts. 
(;eneric formal type paranleters have heen interl)reted as 
ahstraet data  types: when unconstrained, they will be seen as 
abstract data  types with no relevant operations. The tech- 
nique works, but it. suffers from the heaviness mentioned 
above, becoming le.~s tolerable here as the dt.mmy types do 
not correspond to any obviously relevant da ta  abstraction. 

Let us apply the previous technique to both our uncon- 
.,,trained exam l)le,~, swap and stack, beginning with the latter. 
We need a elan,,, say STACKABLE, describing objects that 
may he pushed onto and retrieved from a stack. Since this is 
trite of Ally ohjeet, this ela~q has no property of it..~ own 
beyond its n a n l e ;  

13.11 
class  STA CKA HLE e n d  

We may now declare a class STACK,  w h o ~  opera- 
tions apply to STACKABLE ol>jects: 

/as/ 
c l a m  STACK f e a t u r e  

space: ARRA Y [STACKABLE~; 
index: INTEGER; 
size: INTEGER; 

empty is 
-- Is the stack empty? 

do  Result := (index ffi= O) e n d ;  

push (x: STACKABLE) is 
-- Add x on top of the stack 

require index < size do  
index :ffi index+I; 
space.enter (x) 

e n d ;  -- push 

top: STACKABLE is 
-- Last element pushed 

require n o t  empty do  
Result :=, space.entry (index) / 

end; -- pop 

pop is 
-- Remove last clement, pushed 

require n o t  empty do  index :ffi index - I e n d ;  

Create (m: INTk'GER) is 
- Create stack with space for m values 

do  space.Create (1, m); size :ffi m end  
e n d  -- class STACK 

The requ i re . . ,  elau~s i l lustrate how routine precondi- 
tions (which must be satisfied hy actual parameters upon 
entry to a routine) are written in Eiffel. Posteonditions and 
ela.~.q invariants may a l ~  be expre.~q~l (ill ensure . . ,  and 
keep. . ,  clauses). This aspect of the language falls beyond the 
scope of thls di~ussion; see [13] for more details. 

STACK relies on the predefined class A R R A Y  for 
one-dinwnsional arrays, whose Inain procedures are entry. 
enter and Create; tile lat ter  takes two arguments and allo- 
cates the array wh, h the values of these arguments as 
lmunds. The Create procedure for stacks takes jl,st one 
argument (t he st auk size). 

To i , lstantlate this delinition for stacks of specific 
types, we apply the ,~ame techniques a.~ above: define de,~'en- 
danes of STACKABLE. sl,eh as 

1361 
c l a m  INT_STACKABLE i n h e r i t  STACKABLE f e a t u r e  

value: INTEGER; 

change_value ( n: INTEGER) is 
-- Make n the vah,e of the current element 

do  value := n end  
end  -- INT_STACKABLE 

and similarly S'FR_STACKAIILE, etc. 

Ih, re we run again it |to the typing lwohlcm evidenced 
by minimum ( / 3 0 / ) a n d  IK)OI,_MATRIX (/33/). .~tack, 
declared sitnply of type STACK c a n n o t  he ",latically 
guaranteed to COlt|sin only ohjeel,, of a eerlain c.la,,,, of 
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"stackables". say INT_STACKABLE; and we have the prob- 
lem of the type of the result returned by function top. In 
the following sequence 

1371 
s: STACK; ins: INT_STACKABLE 

&Create (10); 
ins.Create; ins.change_value (50); 
s.pash (ins); 
ins ::  s.top 

the last a~ignment has a left-hand side of type 
INT_STACKABLE and a right-hand side of type STACK- 
ABLE: this is typewise wrong even though the code seems 
quite legitimate semantically (one pushes the value of a vari- 
able and retrieves it immediately into the same variable). 

For both these reasons, it is necessary to do as in the 
previous examples, that  is to say declare heirs to STACK, 
such as INT_STACK, STR_STACK etc. Features of 
STACK will be redefined in each of these e l m ,  but only to 
adapt  the types of their arguments and, in the case of top, of 
the result. Thus for example INT_STACK will contain 
feature redefinitions such as 

/3s/ 
space: ARRAY [INT_STACKABLE]; 
push (z: INT_STACKABLE) ia 

do general_stack.push (z) end; 

etc. (the reader may eomplete this example based on the 
MATRIX case). 

The other unconstrained example, procedure s ~ ,  
may be treated along the same lines; a class SWAPPABLE 
will be introduced. The treatment is left to the reader. 

B - G E N E R I C I T Y  A N D  I N H E R I T A N C E  IN E I F F E L  

We may draw the following conelusions from the previous 
discussion. 

• Inheritance is the more powerful mechanism. There 
is no way to provide a reasonable simulation with gen- 
ericity. 

• The equivalent or generic subprograms or packages 
may be expressed in a language with inheritance, but 
one does not avoid the need for certain spurious dupli- 
cations of code. The extra verbosity is particularly 
hsrd to justify in the case of unconstrained generlelty, 
for which the simulation mechanism is just as complex 
as for the conceptually more difficult constrained ea~.  

• Type checking introduces difficulties in the u~  of 
inheritance to expre.~ generic objects. 

"To address these issues. Eiffel offers a limited form of 
generlcily and the notion of declaration by association. (The 
specification language LM. a.~oeiated with the M 
specification method, [12]. relies on a similar tradcolT). 

(LI - S imple  p n e r l e i t y  

Since unconstrained genericity is both the simpler case 
and the one for which the pure inheritance solution is least 
acceptable, it seems adequate to provide a specific mechan- 
ism for this case, distinct from the inheritance mechanism. 
Consequently, Eiffel classes may have unconstrained generic 
parameters. A cle.~s may be defined as 

c l m  C [ T~, Te, .... , Tnl . . . . .  

where the parameters represent arbitrary types (simple or 
class). An actual use of the class will use actual type parame- 
ters, as in 

z: C [INTEGER, RING, ...., DEVIC~ 

We have in fact already encountered such parameter- 
ized classes: the basic classes ARRAY (section 5.4) and 
ARRAYe (section 5.3) are naturally generic. It should also 
be noted (although the present paper is about concepts 
rather than implementation) that  Eiffel compilation tech- 
niques make it possible to generate a single object module 
for a parameterised class, as opposed to Ads techniques 
which treat generic packages as macros to be expanded anew 
for each instantiation. 

The examples of the previous sections provide obvious 
cases where generic parameters are useful. Take for instance 
COMPARABLE (/26/),  which becomes 

/39/ 
e l m  COMPARABLE [7] feature 

le (other: COMPARABLE [7]): BOOLEAN is 
deferred 

end; 
minimum (other: COMPARABLE [7]): 

COMPARABLE [7] is 
... As in 1261 ..4 

value: T; 

change_valse (nero: T) is do valse .~ new end 
end -- class COMPARABLE 

Here we see an immediate and important beneEi of 
generie parameters: we ean solve almost completely the prob- 
lem of type checking by specifying that the arguments to /e 
and m/n/mum and the Ioeal variable m are of type 
COMPARABLE iT], for the same T as the class itself. Thus 
we rid ourselves of the necessity to redefine, at least for- 
mally, minimum for each descendant of COMPARABLE. 
which plagued our previous attempts.  The generic parame- 
ter T aim allows us to lift the declarations of features value 
and change_value from the various descendants of COM- 
PARABLE (see /27/or  /30/)  to a single instance in COM- 
PARABLE itself. 

However we have not yet solved the problem of the 
type of minimum's result, which is COMPARABLE[T] even 
in a descendant: more on this below. 

To define [NT_COMPARABLE all we have to write 
now is: 
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/ml 
clMs INT_COMPARABLE inher i t  

COMPARABLE [INTEGER] 
fea ture  

ie (other: INT_COMPARABLE): BOOLEAN is 
- Is current element less than or equal to other f 

do Result := value <~ffi other.value end 
end -- class INT_COMPARABLE 

The other examples are treated similarly: 

14,1 
chum RING [~ fea ture  

plus (other: RING [7~) b deferred  end;  
tames (other: RING [71) is defer red end;  
zero: RING ITS; 
unity: RING [~; 
vatue: T; 
ehange_valne (new: 7') is do value .~ new end  

end -- class RING 

14.>. 1 
e l m  MATRIX  [ 71 fea tu re  

impl: ARRA Y~ [RING 17]]; 

entr;I ( i: INTEGER; j: INTEGER): RING [ ~ is 
. . .  A s  b e f o r e  ... ( s e e / 3 1 1 ) ;  

... and similarly for enter, plus and timee . .  

end -- class MATRIX  

Note how the use of a generic parameter in two 
related classes. RING and MATRIX,  makes it possible to 
ensure type consistency (all elements of a matrix will be of 
type RING iT] for the same T). As with COMPARABLE 
(/39/), the declarations of features mlue and ehange_valne 
have been factored out: they now appear in class MATRIX  
rather than being repeated in all its descendants. 

in the unconstrained generieity ease. the need for 
dummy classes disappears: elass STACKABLE and its heirs 
INT_STACKABLE, STR..STACKABLE etc. are not needed 
any more. since STACK may be rewritten as 

/43/  
e l m  STACK [ ~ fea tu re  

space: A R R A Y  [71; 
indez: INTEGER; 
size: INTEGER; 

...... The rest. of the class as i n / 3 S /  

...... except that T is used in lieu of STACKABLE ....... 

end -- class STACK 

There is no more need for classes such as 
INT_STACK, STRING_STACK etc.; simply use 
STACK [INTEGER], STACK ]STRING[ and so on. The 
typiug problem for top disappears since the result of this 
fnnction is now simply of type T. 

A remarkable degree of simplification has been 
achieved. A.uxiliary classes are not needed any more for 
unconstrained generlcity. However we do not introduce con- 

strained gcnericity in the lang,age: this feature wo,dd be 
redundant with the inJwritance mechanism. To provide the 
equivalent of a constrained formal generic parameter, we 
retain the technique introduced in .section 5.1: declare a spe- 
cial class whose features correspond to the constraints (that 
is to say, the with subprograms in Ads terminology), and 
declare any corresponding actual parameters &s descendant, 
of this class. Providing the class with generic parameters 
simplifies its use and partly ~lves the type checking problem. 

O.B - Declara t ion  by associat ion 

Let us look more closely at the remaining part of the 
type checking problem. Consider again class COMPARABLE 
as defined last (/39/). Keeping in mind that COMPARABLE 
is intended for use as an ancestor for more specific classes. 
we do not really want other (in both functions), m and the 
result of minimum to be of type COMPARABLE iT]: what 
is required of these entities is to be of the type of the 
"current" entity, whatever this may be in a descendant of 
COMPARABLE. When this type changes, we want the other 
entities to follow suit. 

This possibility is achieved in Eiffel through the 
mechanism of declaration by association. Let a elass C con- 
tain a declaration of the form 

z : D  

where D is a class type. We may then declare another entity 
a s  

y: l ike  z 

Such a declaration means the following: the type of y 
is the same as the type of z; if z is redefined in a de~endant  
class of C as being of a class type D ', which must be a des- 
¢endant of D, then y will be considered to have been 
redefined likewise. Note that this is a purely static mechan- 
ism: it may be viewed as an abbreviation allow!ng the rede- 
elaration of just one from a grot, p of related entities to 
stand for the redeclaration of the whole group. 

When the distinguished element of the group, z above. 
is redeclared, it "drags" along all elements declared like it. 
We call it the anchor  of the association. The anchor may 
be the current entity, as in 

/I: l ike Current 

This readily applies to the previous example: 

/44/  
e l m  COMPARABLE [7~ fea tu re  - Contrast w i th /39 /  

le (other: like Current): BOOLEAN is deferred  end ;  

minimum (other: like Current): like Current is 
d o  ... ~ / 2 6 / . . .  end;  

value: T; 
change_value (new: T) is do value :ffi new end 

end -- class COMPARABLE 

Note how this device solves at once all the remaining 
type checking problems: not only are le and minimum con- 
strained to act. in all descendants of COMPARABLE, on 

Soptemba' 1908 OOPSLA '86 Procmdblg8 403 



honmgeneous enlities (comparing only integers with integers, 
strings wilh slrings etc.): it a l~  ensures that the result of 
minimum is of the right type, that  of  its arguments. 

The same technique readily applies to the other  cases. 
For example. RING (see/41/)  becomes: 

/4~/ 
class  RING [7] f e a t u r e  

plus (other: l ike  Current) is d e f e r r e d  e n d ;  
times (other: l ike  Current) is d e f e r r e d  e n d ;  
zero: l ike  Current; 
unity: l lke  Current; 
value: T; 
change_value (new: 7') is do  value .'ffi new e n d  

e n d  -- class RING 

In contrast  with the STACK Case, we do need here, 
because of the deferred procedures, to explicitly declare the 
de~endan ts  of RING corresponding to various implements-  
lions of plus and times; for example: 

1 4 6 1  

class  BOOL_RING i n h e r i t  
RING [BOOLEA/~ 

redefine zero, unitl/ 
freese 

zero, unity 
f e a t u r e  

..... as in / 3 2 /  ........ 
end  -- class BOOL_RING 

6 . 3  - Artificial a n c h o r s  

For MATRIX,  a small addition is necessary to ensure 
that  all entities of type RING [T] are always redefined con- 
sist ent ly. 

When a group of  entities are redefined together by 
s~*ociation, one of the entities must serve as the anchor for 
the ax~ociation. In the final versions obtained above for 
COMPARABLE and RING ( / 4 4 / a n d / 4 5 / ) ,  the current ele- 
ment is the anchor. 

In the MATRIX c a ~ .  the entities to be redefined are 
of a lype different, from the  current class, namely RING. in 
~,ch s case, there is usually in the current class a feature of 
the required type which can ~ r v e  as anchor. For  example, 
the definition of linked lists in the basic Eiffel library ]13] 
u~es a cls~s LINKED_LIST iT] for lists and a class 
LINK.4RI, E IT] for list cells, where a list cell contains s 
~al ,e  of type T and a reference to another  list cell. The 
implementat ion of a list contains a reference to the first cell 
of the list: this reference, expre.~*ed by a feature 
first_element, is u.~d as anchor for redefinitions of other  
LINKABLE entities of class LINKED.,LIST in descendants 
of LINKED_LIST (examples of  such descendants are the 
cln*,~,~ defining two-way linked lists and trees, both viewed 
~ special cases of one-way linked lists). 

C'ls~ MATRIX,  however, has no feature of  type 
RING: the reason is that all " r ing"  elements are entered into 
the malrix indirectly, as arguments  to procedure entr~. 

Thus we cannot avoid the need to introduce a dummy 
feature of type RING to serve as anchor, as follows. 

1471 
elm MATRIX [71 freese anchor feature 

anchor: RING [ ~; 

impl: ARRA Y£ ]like anchor]; 

entry ( i: INTEGER; j: INTEGER): like anchor 
is . . .  A s  before . . .  (1311)-; 

enter ( i: INTEGER; j: INTEGER; v: l ike  anchor) 
is ... As before ...; 

plus (other: l ike  Current) is ... As before ...; 

times (other: l ike  Current) is ... As before ...; 
e n d  -- class MATRIX  

(Listing anchor in the freese elau~ avoids the waste of run- 
time space that would result from physically storing an 
anchor within each object, of the cla~,s), tlere too specialized 
classes must be declared for various generic instantiations of 
MATRIX. However, the declarations are now trivial: all 
that needs to be done is to redefine anchor. For example: 

1481 
c lau  BOOL_MA TRIX inher i t  

/ViA TRIX [BOOLEA~ redefine anchor 
feature 

anchor: BOOL_RING 
end  -- class BOOL..~A TRIX 

Such a redeelaration closely models the corresponding 
Ada package instantiation (/12/). 

? - CONCLUSION 

Genericity and inheritance are two important tech- 
niques towards the software quality goals mentioned at the 
beginning of this article. We have tried to show which of 
their features are equivalent, and which are complementary. 

Providing a programming language with the full extent 
of both inheritance and Ads-like genericity would, as we 
think this dissuasion has shown, result in a redundant and 
overly complex design; but including only inheritance would 
make it too difficult for programmers to handle the simple 
cases for which unconstrained genericity offers an elegant 
expression mechanism, like in the stack example. 

Thus we have put the borderline at unconstrained gen- 
erieity. Eiffel classes may have unconstrained generle param- 
eters; constrained generic parameters are treated through 
inheritance. 

Declaration by association completes this architecture 
by allowing for completely static type checking, while retain- 
ing the necessary flexibility. 

We hope to have achieved in this design a good bal- 
ance between the facilities offered by two important but very 
different techniques for the implementation of extendible, 
compatible and reusable software. 
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