
Bertrand Meyer

S Y S T E M A T I C C O N C U R R E N T
O B J E C T - O R I E N T E D

P R O G R A M M I N G

udging by the looks of the two parties, the
marriage between concurrent computa-
tion and object-oriented programming--
a union much desired by practitioners in
such fields as telecommunications, high-
performance computing, banking and
operating systems--appears easy enough
to arrange. This appearance, however, is
deceptive: the problem is a hard one.

This article points the way toward a
pos,;ible solution. The precise problem
examined here is restricted to:

What is the simplest, smallest and most convincing extension to
the method of systematic object-oriented software construction that
can address the needs oJ concurrent and distributed computing as well
as those of sequential computation?

The article does not claim to discuss concurrency and
distribution in a general and unbiased way. Rather, it takes
the object-oriented paradigm as a given (on the basis of
its contributions to the production of quality software) and
investigates how best to adapt it so it covers both concur-
rent and sequentia;[applications.

The word "systematic" as used in the title of the article
will provide strong gqaidance to our search for this minimal
extension. We are interested in an approach that makes it
possible to reason about software systems in a precise way,
by extending to the concurrent case the systematic tech-
niques, known as 'design by contract', which can be applied
to the systematic (~dthough not necessarily fully formal)
development of sequential object-oriented software.

A word ofwaming as to the actual ambition of the model
discussed here. No claim is made that the work as reported
is final, and a number of possible criticisms are discussed
in the final section. I do think, however, that in its discussion

of how the mutual attraction between
object orientation and concurrency can
be turned into a reasonably happy
marriage, this article raises a number
of questions. Although crucial for both
theoretical understanding and prac-
tical implementation of concurrent
object-oriented computation, these
questions have not been addressed (or
in some cases even mentioned) by
previous work on the subject, and will
have to be resolved before a solution
can be widely accepted and applied.

Similarities and Contradictions
The property which initially suggests
an easy match between the ideas of
concurrency and object orientation is
the remarkable similarity between the
basic constructs of both object orienta-
tion and concurrency. It is hard to miss
the analogies between objects and pro-
cesses, or more accurately between the
underlying abstractions: classes and
process types. Both categories of con-
structs support:
• Local variables (attributes of a class,
variables of a process or process type)
• Persistent data, keeping their value
between successive activations.
• Encapsulated behavior (a single cycle
for a process; any n u m b e r of routines
for a class)
• Heavy restrictions on how modules
can exchange information
• A c o m m u n i c a t i o n m e c h a n i s m
usually based on some form of message
passing.

It is not surprising, then, that re-
searchers have tried to unite the two
areas. But although existing designs
(for surveys see [1, 19] as well as a recent
thesis [17]) have introduced many pro-
ductive ideas, it is fair to state that so
far none has succeeded in providing a
widely accepted mechanism for con-
current object-oriented programming.
The primary reason is probably the
undue complexity of most of the pro-
posed solutions, which tend to add the

S6 September 1993/Vo1.36, No.9 ¢O i41MUNICAT IONS OF THR ACM

full power of an independent concur-
rency facility to an object-oriented
language, or vice versa. Ano the r
reason is that little of the existing
l i terature devotes much attention to
correctness issues, and more generally
to the possibility of systematic reason-
ing about concurrent object-oriented
programs.

The mechanism described here
at tempts to remedy these limitations
at least in part. The syntactical exten-
sion, which it brings to an object-
or iented language (Eiffel) is the
smallest feasible: one new keyword.
A new library class with procedures
for setting two options is also pro-
vided to adjust the behavior in spe-
cial cases. The mechanism makes the
greatest possible use of existing ob-
ject -or iented facilities--classes, in-
heritance, assertions, a rgument pass-
ing, de fe r red c lasses-- to cover such
concepts of concurrent computat ion
as exclusive access, processes and
synchronization.

Criteria
The design of a p rope r concurrent
object-oriented mechanism must sat-
isfy a number of criteria. The combi-
nation of these criteria, as def ined in
the following subsections, places
ra ther strict constraints on the possi-
ble concurrency mechan i sm- - to the
extent that one might wonder at first
whether any solution is possible.

Minimallty of Mechanism
Object-oriented software construc-
tion is a rich and powerful paradigm,
which, as noted previously, would
intuitively seem to be ready for sup-
por t ing concurrency, I t is essential,
then, to aim for the smallest possible
extension. Minimalism here is not
jus t a question of good language de-
sign, I f the concurrent extension is
not minimal, some concurrency con-
structs will be r edundan t with the
object-oriented constructs, or conflict
with them, making the program-
mer 's task difficult or impossible. To
avoid such a situation, we must find
the smallest syntactic and semantic
epsilon that will give concurrent exe-
cution capabilities to our object-
or iented programs.

C O

G R B C N

Full Use of Inheritance and Other
Object-Oriented Techniques
It would be unacceptable to have a
concurrent object-oriented mecha-
nism that does not take advantage of
all object-oriented techniques, in
part icular inheritance.

One of the most interest ing contri-
butions of object-oriented technol-
ogy is its ability to suppor t many dif-
ferent pat terns o f computat ion.
Once a useful type of behavior is
identified, it can be encapsulated in a
defe r red class (see "Deferred Classes
and Features" sidebar) from which
any class that uses that behavior will
inherit . Such a class is similar to a
process type in concurrent p rogram-
ming and its general form may be
expressed as:

deferred class PROCESS feature
live is

- - General structure with variants.
do

from setup until over loop
step

end;
finalize

end;
feature {NONE}

setup is deferred end;
over: BOOLEAN is deferred end;

step is deferred end;
finalize is deferred end

end

(The clause f ea ture (NONE} intro-
duces features that are not available
to clients, being meant for internal
use only. Features declared in a
clause beginning with jus t feature
without qualification are available for
calls by any client and are said to be
exported.)

Since routines initialize, over, step
and finalize are defer red , descen-
dants of PROCESS may provide ef-
fective implementat ions of these rou-
tines, cor responding to individual
variants. The re may be as many such
classes as variants are needed. The
overall behavior, however, is the
same for all variants; it is de te rmined
by the effective rout ine live. In the
example the structure of live involves
a loop, but the same ideas are appli-
cable to any other structure. Also,
there will often be more than one
rout ine such as live, covering several
pat terns of behavior that are known
at the level of the defe r red class.

This technique and many others
(such as the use of polymorphism,
static typing and dynamic binding to
obtain flexible and safe software ar-
chitectures) are essential to the ob-
jec t -or iented approach, and are po-
tentially beneficial to concurrent
p rog ramming as well. This has been
recognized for example by recent
changes to the parallel object-
or iented language (POOL) [3], early
versions o f which did not suppor t
inheritance. The model presented
here makes full use of all object-
or iented techniques.

Compatibility with Design
by Contract
Another central idea of what may be
called the Eiffel methodology of ob-
ject -or iented software construction is
the notion of Design by Contract [11,
15]. According to this view, the de-
sign of a reliable software system
should use a number of components
(classes) that communicate with one
another on the basis of precise defi-
nitions of obligations and benefits:
contracts. The obligations and bene-
fits are documented in the text of the
software itself, where they appear in
the form of assertions.

A contract governs the relation
between client objects requesting ser-
vices (by calling a feature) and sup-
plier objects providing services. The
services are expressed by the rou-
tines of the supplier 's class. For each
routine, an assertion known as the
precondi t ion expresses the input
requirements; it binds the clients and
protects the supplier. Another asser-
tion, the postcondition, expresses the
propert ies ensured by any call to the
routine; it binds the supplier and
guarantees a certain result to the cli-
ents. Beyond the precondi t ion and
postcondition of its individual rou-
tines, a class is also characterized by
its invariant, which applies to all ex-
por ted routines, being in effect
added to both their precondit ions
and postconditions.

A convenient example that will aid
in the search for the p roper concur-
rent extension is a class describing
queues (first-in-first-out container
structures) of bounded size. The cor-
responding concurrent notion, de-
veloped in the following p rogram

C O M M U N I C A T I O N S OP TH I I ACM September 1993/'VoL36, No.9 ~ l /

text, will describe bounded buffers.
Following is a sketch of the class, with
the implementat ion details omitted.
Preconditions are introduced by re-
quire, postconditions by ensure.

class BOUNDED_QUEUE[G] feature
empty: BOOLEAN is

- - I s rhere no accessible element?
do Result: = ... end;

full: BOOLEAN is
- - I s there no room left
- - f o r more elements?

do Result: = ... end;
put (x:G) is

- - Add x as newest element.
require

not fu l l
do

~ l ~ u g e

not empty
end;

remove is
- - Remove oldest element.

require
not empty

do

ensure
not fu l l

end;
item is

--Oldest element
- - n o t yet consumed

require
not empty

do Result: = ... end
feature {NONE}

... Secret features (used for
the implementation) ...

invariant
... See below ...

end

Through its assertions, class
B O U N D E D _ Q U E U E de,;cribes a
number of contracts gow.wning the
use of its features by clients. For ex-
ample, the contract for p ~ t (x) is ex-
pressed in Table 1.

An important property of precon-
ditions, which we will haw. ~ to exam-
ine again in the concurrent context,
is that they express the sole obliga-
tions the client has to meet. This may
be called the n o h i d d e n c l a u s e s rule
of Design by Contract. For example,
a call to p u t J[s guaranteed to succeed
if the client has ensured the precon-
dition, perhaps by writing it (with q
of type B O U N D E D _ Q U E U E IX] and a
of type X for some type X) as:

O N
C O G

- - / 1 /
i f not qfull then

q.put (a)
end

or by prefacing it with a call to re-

move, whose postcondition implies
the precondition of p u t (assuming
that the call to remove is itself correct,
that is to say, the precondition not
q.empty initially holds):

- - / 2 /
q.remove; q.put (x)

Another important use of asser-
tions is the class invariant, which
characterizes the consistency of a
class. Assume for example that an
implementat ion of B O U N D E D _

Q U E U E relies on the well-known
technique of using an array of ar-

ray_count elements, managed in a cir-
cular way as illustrated in Figure 1.
The details of the implementat ion
are left to the reader; the following
invariant will express its fundamen-
tal properties, in particular the need
to keep one position unused in order
to be able to distinguish between the
empty and full cases:

array_count = capacity - 1;
abs (next - oldest) < capacity
0 < =oldest; oldest < =capacity;
0 < = next; next < = capacity;

Any call to an exported routine
may assume that the invariant is ini-
tially satisfied (i.e., it may expect to
find the object in a consistent state);
but it must also restore the invariant,
in addition to ensur ing its postcondi-
tion, on exit (i.e., it must leave the
object in a consistent state). We may
thus picture the life of the object as a
sequence of transitions between con-
sistent states. The shaded squares in
Figure 1 represent states satisfying
the invariant; the transitions repre-
sent calls to exported features, exe-
cuted by clients. These states are the
only ones in which the object is acces-
sible to a new client.

The notion of invariant is essential
to the design of a proper exception
mechanism. In the Design by Con-
tract approach, an exception occurs
when a routine is unable to fulfill its
contract through the initially
p lanned strategy. The routine may
try again through a Retry instruc-

tion, usually after at tempting to cor-
rect the source of trouble. Otherwise,
the routine will execute to the end its
(implicit or explicit) Rescue clause,
fail, and cause an exception in the cli-
ent, which will then be faced with the
same choice--Retry or failure. In
case of failure the Rescue clause is
not required to fulfill the contract as
expressed by the postcondition (this
would be success, not failure!), but it
must restore the invariant, leaving
the object in a consistent state for any
later attempt at Retry.

Another reason why the notion of
invariant is important for concur-
rency is that it enables us to put the
notion of "express message" [19] into
a proper perspective. Express mes-
sages, as proposed, allow interrupt-
ing the execution of a routine on a
certain supplier object, on behalf of
some client, when a call comes in
from another client which is deemed
more important. An incoming ex-
press message will then get served
right away; only then will the original
client's execution resume. Defined in
this way, however, such a mechanism
conflicts with correctness require-
ments: if we allow executions to be
interrupted, we cannot guarantee
they will preserve the invariant. Pro-
ducing an object which does not sat-
isfy the invariant of its own class is
probably the worst disaster that may
occur dur ing the execution of an ob-
ject-oriented program. (Another
well-known source of such a situation
is static binding.)

As a consequence of this analysis,
the mechanism described does not
support express messages in the
sense of [19]. It will, however, allow a
VIP client to in terrupt an earlier cli-
ent, causing an exception in that cli-
ent. Such a facility is compatible with
Design by Contract, since the invari-
ant will be restored as a result of the
exception handling.

The relevance of invariants to con-
current programming was expressed
by Hailpern [8], who uses a concept
of "monitor invariant, [which] must
be true when no process owns the
monitor." Starting from an object-
oriented basis, we do not need a spe-
cial notion; class invariants will pro-
vide a way to characterize the invari-
ant properties associated with

1•8 September 1993/Vol.36, No,9 ¢ O N M U N I C A T I O N | O P T H I I A C t l

monitors, processes and other con-
structs of nonobject-or iented concur-
rent p rogramming.

Provability
Design by Contract provides the
starting point for a potential formal
approach to object-oriented compu-
tation. Assuming p roof rules were
available for the inner details of an
object-oriented language, we could
use a general p roo f rule for calls to
prove entire object-oriented systems.
The p roof rule for calls is fundamen-
tal because at the heart of object-
or iented computat ion lie operat ions
of the form

t.f (.... a)

which call a feature f , possibly with
arguments such as a, on a target t
represent ing an object. The basic
p roo f rule may be informally stated
as follows:

I f we can prove that the body of f ,
started in a state satisfying the pre-
condition of f, terminates in a state
satisfying the postcondition, then we
can deduce the same proper ty for
the preceding call, with actual argu-
ments such as a substituted for the
corresponding formal arguments ,
and every clause o f the form
some_boolean_property in the assertions
replaced by the corresponding prop-
erty on t, o f the form
t.some_boolean_property.

For example, if we are able to
prove that the actual implementat ion
of put in class BOUNDED_QUEUE,
assuming not full initially, produces a
state satisfying not empty, then for any
queue q and element a the rule allows
us to deduce

{not q.full} q.put (x) {not q.empty)

where the assertions in braces de-
scribe the input and output assump-
tions respectively.

The proof rule, an adaptat ion to
the object-oriented form of compu-
tation of Hoare 's inference rule for
procedures [9, 13] may be expressed
as shown in Figure 3, where INV is
the class invariant, Pre (f) is the set of
precondi t ion clauses o f f and Post Of)
the set of its postcondition clauses.
Recall that an assertion is the con-
junct ion of a set of clauses, of the
form

O
U

0 ~

G ~ N G

Bas ic Terminology
development is based on the notion of class.

les a set of potential run-time objects, defin-
• ely by the applicable operations, or features.

Any object created at run time from the pattern defined by the class
is called an instance of the class.

The features of a class are of two kinds: routines, which describe
computations applicable to instances of the class; and attributes,
which describe data fields associated with instances Of the class. For
example, a class CAR may have attributes weight and speed, and rou-
tines start, stop, accelerate, average_speed. A routine is either a pro-
cedure, which may change the object to which it is applied but does
not directly return a result, or a function, which computes some in-
formation about the object and returns that information as a result.
In both cases, the routine may have one or more arguments. In the
example start, stop, accelerate will be procedures, and average_speed
will be a function, computing the average speed since a certain
starting time; the funct ion will have one argument, representing
that time.

The basic computational mechanism is feature call, which applies a
feature to a certain object, known through a name in the software
text, or entity. All entities are declared. For example, wi th the decla-
rations

c: CAR; x: REAL
a call to feature average_speed, used here in an assignment, could
have the form

x: = c.average_speed (0)
which assigns to x the value of the average speed of the object at-
tached to c (an instance of CAR) since time 0. The notation used here
for calls is dot notation, which includes the fol lowing components:
an enti ty representing the target object of the call; a dot (.); a lea-
ture name; a list of actual arguments, i f any, in parentheses.

Other examples of calls are
c.accelerate (20);
x: = c.speed

A call such as any of the preceding ones is executed as part of the
text of some rout ine-- i tsel f executed on a certain object C_OBJ, the
client object of the call. The object to which a call applies (the object
attached to c in the examples) is called the supplier object.

A feature such as speed may be implemented as either an attri.
bute or a function. Principles of information hiding and uniform ac-
tess imply that this choice of implementation should make no differ-
ence to clients. The notation for feature calls, and the standard form
for class documentation, known as the short form of a class, are in-
deed the same in both cases.

Table 1. The con t rac t f o r put (x)

Client

Supplier

C O M M U N I C A T I O N S O I Z T N I E A C M September 1993/%1.36, No,9 s g

clause1; ... clausen

The large /% signs in Figure 3 indi-
cate conjunction of all the given
clauses. T h e actual arguments of f
have not been explicitly included in
the call, but the p r imed expressions
such as t.q' indicate substitution of
the actual arguments of the call for
the formal arguments of J. The rule
is stated in Figure 3 in the form
which does not suppor t proofs of
recursive routines. Add ing such sup-
port, however, does not affect the
present discussion. For details of
handl ing recursion, see [9] or [13].

T h e reason for consiciering the
assertion clauses separately and then
"anding" them is that this form pre-
pares the rule's adapta t ion to "sepa-
rate" calls in the concurrent exten-
sion. Ano the r p roper ty of the
nonconcurren t rule which is of inter-
est as prepara t ion for that extension
is the presence of the invariant I N V
in the p roof of the rout ine body
(above the line), with no directly visi-
ble benefit tor the p roo f of the call
(below the line). More assel:tions with
that p roper ty will appear in the con-
current rule.

The provability requi rement and
the cri terion of compatibili ty with
Design by Contract have a major
immediate consequence for concur-
rent computat ion. The bad news
about proving the correctness of a
class is that for every expor ted rou-
tine f you must prove a proper ty of
the form

{INV /% aUpre (f)} body 0 c) {INV /%
allpost (f)}

The good news, however, is that
you only have as many proper t ies of
this kind to prove as the class has
expor ted routines. (Attributes do not
require any specific proof, but they
may be involved in the invariant.)
This provides a very s trong guideline
for choosing the granulari ty of ex-
clusive object access in concurrent
computat ion. I f we allowed a sup-
plier object to accept a new call f rom
a client while a call f rom another cli-
ent is in progress, the "ge,od news"
would not hold any more; the prop-
erty depicted[in Figure 2, where the
shaded state,~ (before and after exe-
cution of expor ted features) are the

C C t} R G

only ones in which an object is acces-
sible from the outside, would also fail
to be satisfied. Consequently, a p roof
of correctness would have to take
into account all possible interleav-
ings, p roducing a combinatorial ex-
plosion of proper t ies to prove. This
would in fact remove any hope of
p roduc ing realistic proofs, even in-
formal ones, or jus t o f being able to
reason about software texts in a sys-
tematic fashion.

As a result, any client accessing an
object th rough a feature must be
guaranteed exclusive access to the
object th roughout the dura t ion of
the call. The smallest permissible
level o f granulari ty for exclusive ac-
cess to an object is the execution of a
call to an expor ted feature.

This observation generalizes the
comments made about express mes-
sages. Nothing prevents us from in-
t e r rup t ing an ongoing call as long as
this is done properly: the previous
client must receive an exception, so it
will be forced ei ther to fail or to take
corrective action. A facility support -
ing such a scheme, which we may call
a duel, will be part o f the mechanism.

Support for Command-Query
Distinction
An impor tan t par t o f the object-
or iented method which we should try
to preserve in concurrent p rogram-
ming is the necessity to maintain,
whenever possible, a strict distinction
between two kinds of features: com-
mands and queries. A query, imple-
mented as an at tr ibute or function, is
a feature that re turns some informa-
tion about an object. A command,
implemented as a procedure , is a fea-
ture which may modify the state of
an object.

The command-query distinction
directs p rogrammers to refrain from
using a p rog ramming style that has
become popular in recent years, es-
pecially in connection with the
spread of C: functions that produce
visible side effects. This practice en-
dangers referential t ransparency
(substitutivity of equal for equals).

The a t tempt to maintain a strict
command-query distinction explains
why class BOUNDED_QUEUE intro-
duced previously has two separate
features, remove and item. Function

item, a query, accesses the oldest ele-
ment not yet removed, but does not
remove it; successive calls to this fea-
ture will r e tu rn the same value. Pro-
cedure remove, a command, removes
the oldest element. A designer who
does not apply the command-query
distinction might be tempted to re-
place these routines by a side-effect-
p roducing function get, which both
removes an e lement and re turns its
value. The presence o f several con-
cur rent clients accessing the same
suppl ier will initially make it difficult
to ensure the command-query dis-
tinction; but this rule will in fact sug-
gest some of the impor tan t p roper -
ties of the concurrent mechanism.

Applicability to Many Forms
of Concurrency
A general cri terion for the design o f
a concurrent mechanism is that it
should suppor t many dif ferent
forms of concurrency: shared mem-
ory, multitasking, network program-
ming, dis tr ibuted processing, real-
t ime applications.

With such a broad set of applica-
tion areas, a language mechanism
cannot be expected to provide all the
answers. But it should lend itself to
adapta t ion to all the in tended forms
of concurrency. Mechanisms exter-
nal to the language itself will make it
possible to describe a mapp ing be-
tween the physically available pro-
cessing units and the abstract threads
of control needed by the software
text.

Support for CoroutJne
Programming
An interest ing form of computat ion
is the use of coroutines. Present in
the first object-oriented language,
Simula 67 [5, 18], coroutines (see
Figure 4) are sequential p rogram
units that communicate on an equal
basis (rather than the master-subor-
dinate relationship of a calling unit
and a routine). Between its successive
reactivations, a coroutine retains the
value of its data, and the location of
its active p rogram c o u n t e r - - a s op-
posed to a routine, which is always
restar ted at the beginning. Corou-
tines restart each other explicitly
th rough operat ions called resume in
Simula.

0 September 1993/Vol.36, No.9 ¢OMIhlUNICATIONSOFTHIEACM

Corout ine computat ion may be
viewed as an ext reme form of con-
currency in which only one process-
ing unit is available. Any general-
purpose concurrency mechanism
should reduce to a coroutine mecha-
nism in this case. An impor tant con-
sequence of this proper ty will be to
ease the transit ion from a simulation
to the actual system. To write a com-
puter p rogram simulating a real-
world system that involves concur-
rent activities (as most do), it is often
convenient to use a coroutine-based
scheme, such as Simula's discrete
event simulation facilities. I f the
same language mechanism is used
for coroutines and for actual concur-
rency, dist inguished only by the
number of available processing units,
writing the simulation helps write the
actual system; conversely, if the sys-
tem has already been written, it is
easier to write a simulation.

Adaptability through Libraries
Many concurrency mechanisms have
been proposed over the years, f rom
semaphores and conditional critical
regions to Petri nets, monitors and
CSP. Each has its partisans, and each
may provide the best approach for a
certain problem area. It is impor tant
that the proposed mechanism should
suppor t at least some of these mecha-
nisms. More precisely, the solution
must be general enough to allow us
to program various concurrency con-
structs in terms of the basic mecha-
nism we will have obtained.

One of the most impor tant aspects
of the object-oriented method is that
it supports the construction of librar-
ies for widely used schemes. The li-
brary construction facilities (classes,
assertions, constrained and uncon-
strained genericity, multiple inheri-
tance, defer red classes and others)
should allow us to express many con-
currency mechanisms in the form of
l ibrary components.

Support for Reuse of
Nonconcurrent Software
A criterion of the desirable (rather
than essential) category is the ability
to reuse existing, nonconcurrent
software, especially libraries of reus-
able software components. This may
not always be achievable, since con-

o u

o 4'
G 4" £ C '¢

N

Occupied position

- - n e x t

ion kept free

/ o l d e s t

F igure 1.

Object
,, .L creation n . , [~ l - - ~ ~

! ! a a . f ' a . g a . f

Figure 2.

/x /x }
 .olr) }

t.p'} t.f { A t.q'}
p ~ Pre (f) q e Post (f)

F l I u r e I .

a

resume/ resume/ r.su...X/
F igure 4.

currency places new demands on the
software structure; for example we
must specify the scope of exclusive
access segments. But even when ex-
isting software cannot be reused ex-
actly "as is" the work involved in
making it applicable to concurrent
development should be reasonable,
involving for example the writing of
simple "wrapper" classes encapsulat-
ing existing sequential classes. This
cri terion may be viewed as another
form of the minimality requirement ,
appl ied here not to the job of the lan-

guage designer but to that of soft-
ware developers.

Suppor t for Deadlock Avoidance
A specific but impor tant question is
how the sought mechanism will help
solve a difficult problem of concur-
rent p rogramming: avoiding dead-
lock. A solution which guarantees
deadlock avoidance in all cases would
probably be too limited. For exam-
ple, the requi rement to suppor t
many dif ferent forms of concurrency
suggests that our mechanism should

COMMUNICATIOHSOPTNliACM September 1993/VoL36, No.9 6 ~

allow writing a class describing sema-
phores. But as soon as we have sema-
phores we have the possibility of
deadlock. A more realistic require-
ment, then, is that the mechanism
should make it possible to avoid
deadlock by observing certain stati-
cally enforceable res t r ic t ions--which
must remain reasonable. Making this
possible was an impor tan t concern in
the design of the mechanism de-
scribed here. So far, however, the
question of deadlock avoidance has
not been pursued very far, and no
result on this topic is included in the
r ema inde r ,of this article.

Designing a Solution
Let us now examine how i he preced-
ing requirements de te rmine a con-
currency mechanism that remains
compatible with the letter and spirit
o f object-oriented software construc-
tion.

No Active-Passive Distinction
The first concern is whether we need
a special notion of "active object" and
process. Most cur rent proposals for
object-oriented concurrency mecha-
nisms include such notions. Two ex-
amples among many are the article
by Caromel on a concurrent Eiffel
extension [7], which incl,ades: "The
first choice faced when designing a con-
current lang~,.age is process genesis. What
language construct and concept permit
process definition?" and a descript ion
of the POOL language by America
[3], which in an in t roductory para-
graph, states "each object also has a
body, a local process that starts as soon as
the object is created and rum in parallel
with all the other objects in the system."
The present discussion differs from
such approaches by refusing to in-
clude an explicit notion of process or
of active object.

The reasoning behind proposals
suppor t ing active objects is as fol-
lows: In the usual, sequential form of
object-oriented computat ion, objects
are "sitting there" waiting for re-
quests addressed to them. Such re-
quests are fi.~ature calls, o f the form
t.f (...), meaning "apply the feature
associated with f to the object at-
tached to t, with the given arguments
if any."

G C O G
1¢

Such a feature call is executed on
behalf of a requesting object, the cli-
ent, and is addressed to a target ob-
ject, the supplier. In this scheme a
suppl ier object is just a passive repos-
itory of features, ready to be trig-
gered at the client's behest. The cli-
ent is in the same position with
respect to its own clients. In fact,
every object except the one created
first (the root) is used as suppl ier of
o ther objects. Execution of a system
is started by creating a root object
and applying a feature to it, f ir ing off
a chain o f feature calls.

For concurrent computat ion, the
a rgument goes, we need active ob-
jects with their own computat ional
p o w e r - - t h e i r own agenda. Such ob-
jects will cor respond to the processes
found in most nonobject-or iented
models of concurrent computat ion.
Thus we will have objects of two
kinds: passive objects, as in sequen-
tial object-oriented computat ion; and
active objects. Such a distinction was
in fact previewed in Simula [5, 18],
where a class could, in addi t ion to its
features, include a b o d y - - a sequence
of instructions describing a behavior
associated with the instances of the
class. This made instances of such
classes the forerunners to active ob-
jects. This facility served in part icular
for the use o f Simula classes as co-
routines, and for discrete-event sim-
ulation.

On closer examination, however,
the passive-active distinction appears
unjustif ied and in fact harmful . I t is
useless to associate a special algo-
r i thm with an object when, through
the routines of its class, it can have as
many as the class au thor desires.

A typical example of an active ob-
ject would be the process associated
with a printer . The process would
describe the algori thm that governs
the printer 's life: initialize; repeat-
edly process user jobs; shutdown. In
object-oriented programming, how-
ever, this will jus t be one of the fea-
tures associated with the printer . The
cor responding class, using tech-
niques of behavior encapsulation il-
lustrated previously with class
P R I N T E R , could appear in sketched
form as:

class PRINTER inherit

PROCESS
rename over as off_line, finalize as stop

end
feature

off-line: BOOLEAN;
- - over is effected as an attribute,
- - under the name off_line.

stop is
- - Go off-line.

do off_line := true end;
feature {NONE}

step is
- - Execute individual actions
- - of an iteration step.
do

start_job; process_job; finish._job
end;

setup is do ... end;
start_job is do ... end;
process_job is do ... end;
finish_job is do ... end

end

The p rocedure live describes the
process associated with the printer .
Were a special notion of active object
to be added, this p rocedure would
become the body of class P R I N T E R .
But why should we settle for one
p rocedure when we can have as
many as we want? By sticking to the
scheme shown we retain the ability to
have more features than jus t avail-
able to clients, for example shutoff,
print__diagnostics, prepare_for_main-
tenance and many others. This is the
start ing point o f object orientat ion:
the realization that you can almost
always do more than one thing with
an object. This refusal to consider
any one feature as "the main opera-
tion" on a class is one of the main
tenets of the object-oriented method,
and yields some of its key advantages
in terms o f software extendibili ty and
reusability. By graft ing onto object-
or iented p rog ramming an indepen-
dent concept of process, in the form
of active objects, we would lose this
essential p roper ty and gain nothing
new.

The addi t ion o f processes as an
independen t concept would cause
other problems as well. Limiting an
active object's available scripts to jus t
one raises the question of how active
objects (processes) request services
from each other. The fundamenta l
object-oriented computat ion mecha-
nism, feature call, would not work
any more without some special syn-
chronization mechanism: in the exe-

6 ~ September 1993/Vol.36, No.9 C O M M U N I C A T I O N | OP T H i A C M

cution o f t.f. (...), if the object T_OBJ
attached to t is active, it will be busy
with its own computat ion and not
ready to handle the call unless special
measures are taken. To solve the
problem, we would have to add CSP-
or Ada-l ike mechanisms, resulting in
a full new language layer. The com-
plexity of the result would be unac-
ceptable.

Processors
I f processes are not the appropr ia te
new basic concept, we must find a
bet ter way of expressing the funda-
mental difference between sequen-
tial and concurrent object-oriented
programming. The following simple
observation may serve as a basis for
an answer. Computat ion, as de-
scribed by Figure 5, involves three
elements: certain processors apply
certain actions to certain objects.
Object-oriented p rogramming has
been quite effective at captur ing the
last two aspects, by attaching the de-
scription of actions (routines) to the
descript ion of objects (classes). In
ord inary sequential computat ion,
there is only one processor, which is
why it tends to remain implicit.

With concurrent computat ion,
however, we have two or more pro-
cessors, and so we need to make pro-
cessors explicit. This will be the
major result of adding concurrency
to the f ramework of sequential ob-
ject-or iented computation. For every
object T_OBJ, there must be a pro-
cessor responsible for executing all
calls having T_OBJ as target. This
processor will be said to handle
T_OBJ; the handler of every object is
de te rmined when the object is cre-
ated.

A processor is a separate thread of
control capable of suppor t ing the
sequential execution of operat ions
on one or more objects. It is impor-
tant to note that this notion of pro-
cessor is virtual, not physical. A pro-
cessor may represent a physical
computat ional device (CPU), for ex-
ample a computer on a network, but
this is not necessarily the case: a pro-
cessor may jus t as well be t ime-shared
with other processors on a computer .
For example, a Unix task or a light-
weight process may be used as pro-
cessors. The difference between vir-

C U

E N C

tual processors and physical CPUs
was clearly expressed by Lieberman
[10]:

The number of [processors] need not be
bounded in advance, and if there are too

many [processors] for the number of real
physical [CPUs] you have on your com-
puter system, they are automatically time-
shared. Thus the user can pre tend that
processor resources are practically infi-
nite.

(Lieberman's terminology and
concurrency model are different
from those of this article, hence the
bracketed words.) To avoid any con-
fusion, the present discussion will
employ the term "processor" only in
this sense of virtual thread of con-
trol; "CPU" is used to refer to an ac-
tual computat ional device.

Because processors are virtual, not
physical, the mechanism described
here may be used to suppor t distrib-
uted processing, in which the proces-
sors are physically distinct comput-
ers, as well as mul t iprogramming, in
which the processors are suppor ted
by opera t ing system processes. An
ext reme case is the availability of jus t
one CPU: then the mechanism may
be used for coroutine programming.
The virtual nature of processors has
another consequence: al though the
mechanism as described here does
not permit reassigning an object to a
new processor, nothing prevents an
implementat ion from offer ing a way
to reassign a processor to a new CPU,
which in practice achieves the de-
sired effect.

A process, in this scheme, becomes
a trivial n o t i o n - - a n instance of a
"process class." A process class has a
dist inguished procedure , the only
one of interest for clients. For the
common case in which the distin-
guished procedure is a loop describ-
ing a behavior to be repeated until
termination, we can write any pro-
cess class as an effective descendant
of the class PROCESS as in t roduced
previously. The re is no need for new
language constructs.

Contracts and Concurrency
Moving from sequential to concur-
rent object-oriented programming ,
then, will imply making the proces-
sors explicit in some way. To find the

appropr ia te method for doing this,
we must unders tand what having
more than one processor implies for
the basic scheme o f the .object-
or iented method: design by contract.

As pointed out, a fully def ined
contract implies a no hidden clause
proper ty : clients that "play by the
rules," observing the precondi t ion of
a call, are guaranteed to obtain the
result, as expressed by the postcondi-
tion. Unfortunately, this crucial
p roper ty will not hold in a concur-
rent context without a change in the
semantics.

Consider again the bounded
queue example, with the calls to put
in t roduced previously a s / 1 / a n d / 2 / .
In ei ther case, the condit ion no t

q.empty will hold pr ior to the call to
put. This results from the test in the
first case and from the postcondit ion
of remove in the second. Another way
to express this p roper ty is to state
that in sequential p rogramming as-
sertions express correctness condi-
tions. If, pr ior to the call to put, the
condit ion n o t q.fuU is violated, this
simply indicates a bug in the client
containing this call. The only reason-
able response is to correct the bug.
The presence o f a mechanism to
check assertions at run time, as exists
in the Eiffel environment , does not
change anything in this regard: run-
t ime assertion moni tor ing is a pre-
cious aid to quality assurance, in par-
ticular testing and debugging; but it
is not a technique for treat ing certain
special but expected conditions in a
part icular way.

Unfortunately, these propert ies
break down for concurrent situa-
tions. Assume the processor han-
dl ing the client is different f rom the
processor handl ing the object at-
tached to q. Then in /1 / , as any stu-
dent having taken an int roductory
course in concurrent computat ion
knows, one or more processors can
sneak in between the test and the call
to put and call features such as put on
q on behalf of o ther clients, making
the test totally useless. In the same
way, between the two instructions of
/2/, other processors can invalidate
the result (not q.full) achieved by the
call to remove.

In other words, merely ensuring
the precondi t ion before a call does

c : o M i w U m l l c l q r l o m s O p 'Nel l ~C:R September 1993/Vol.36, No.9 ~

not guaran~Lee correctness,; any more
if the client and the supplier are han-
dled by different proce~,;sors. This
means the sequential contract model
does not hold in its original form for
concurrent computation.

Separate Entities
A consequence of the previous dis-
cussion is that the sequential seman-
tics of assertions will have to be
adapted for cases in which the client
and the supplier are handled by dif-
ferent processors. Before we start
exploring what the new semantics
should be in such cases, and regard-
less of the eventual answer, we must
address an absolute requirement:
ensur ing that the effect of an opera-
tion is clear from the soft:ware text.

Any concurrent semantics we
choose will imply that t.]~ (...) may
have a different effect depending on
whether the object attached to t is
handled by the same processor as the
client or by a different one. It would
be unacceptable to hide this impor-
tant difference from the reader of
the software text.

As a result, we should have a spe-
cial notation to declare that a certain
entity (see "Entities, Types and Val-
ues" sidebar for definition of this
term) denotes objects that will be
handled by a different processor.
The syntactic extension is immediate.
Instead of the usual decla:ration

- - / 4 /
x: S O M E _ T Y P E

we will declare an entity as

- - / 5 /
y: separate S O M E _ T Y P E

to express that y may become at-
tached to objects handled by a differ-
ent processor.

With such a declaration, the crea-
tion instruction

!! y.make(.. .)

has an extra ,effect. In all cases (sepa-
ra t e declaration or not) the instruc-
tion creates a new object, initializes it
to language-defined default values,
and applies the creation procedure
make with the given arguments as a
way to overr~de default initialization
as needed. I f y is declared as sepa-
rate, the instruction will, in addition,

o
G C O R G

Figure S.

D e f e w f e d
C l a s s e s a n d
F e a t u r e s

class is deferred (or
abstract) if It has
one or more fea-

tures declared as deferred,
that is to saY, specified but
not implemented. A nonde-
ferred class or feature is said
to be effective. A descendant
of a deferred class (that is to
say, a class which irlherits
from it directly or indirectly)
is effective if it implements
(or effects) all deferred fea-
tures by providing effective
forms.

A deferred class describes a
general abstraction which
may have many different real-
izations. It may also serve to
capture a common set of
behaviors by using an effec-
tive (nondeferred) routine,
such as procedure live in class
PROCESS, which calls deferred
ones (setup, over, step). De-
scendant classes will retain
the common behavior and
provide the specifics through
effective versions of the origi-
nally deferred routines.

assign a new processor to handle the
newly created object.

The semantics of the language
should not specify how the new pro-
cessor is determined, although it is
possible to envision library mecha-
nisms that will give programmers
some control in this respect. Another
way to obtain a separate object is

through a call to some function of
the form

new_object: separate T is ...

Such a function may be declared as
ex terna l , allowing some control from
outside the language proper. This
makes it possible to assign objects to
different threads of control (for ex-
ample, to various computers on a
network or multimicroprocessor sys-
tem) through some external mecha-
nism, without recompilation of the
software. The details of such mecha-
nisms fall beyond the present discus-
sion, but it is important to make sure
they are possible.

A possible objection should be
examined here. One might be con-
cerned that by declaring t as separate
we are giving out too much imple-
mentat ion detail. Should we not just
be able to write t.f (...) without worry-
ing where the call is executed? But
this objection is not justified. What
should be hidden from the client in
all but special cases is the precise
knowledge of which processor han-
dles a call. The mechanism described
here achieves this objective. But
whether the processor in question is
the same one as the processor han-
dling the client, or another, is highly
relevant information, since the se-
mantics are different. In addition to
the change in the interpretat ion of
assertions, there is an even more fun-
damental difference: execution by
the same processor is b locking-- the
client cannot proceed until execution
of f has been completed--whereas
execution by a different processor
should not prohibit the client from
cont inuing its own execution until it
actually needs the results of the call,
if ever. (This property will give rise
to the policy of lazy wait, explained
later.) So it is indeed necessary to
state clearly whether the processor is
the same.

Certain classes are meant to be
used only as types of separate enti-
ties. As a notational convenience, it
will be permitted to declare such
classes as

separate class C L A S S _ N A M E ... the
rest as usual ...

meaning that an entity declared of
type C L A S S _ N A M E will always be

64 September 1993/Vol.36, No.9 I I ~ O M I J U N I C A T I O N S O F T N I A C M

separate. As with the two other exist-
ing mechanisms to characterize a
class, deferred and expanded, the sep-
arate or nonseparate status of a class
is not transmitted through inheri-
tance: a separate class may inherit
from a nonseparate one (the com-
mon case) and conversely. For exam-
ple, we may describe bounded buff-
ers through a class declaration
consisting simply of

separate class
BOUNDED__BUFFER [G]

inherit
BOUNDED_QUEUE [G]

end

The three specific properties of
classes are exclusive: the syntax en-
ables the keyword class to be pre-
ceded by at most one of deferred, ex-
panded and separate.

The separate declaration for enti-
ties and classes will turn out to be the
only syntactic extension needed by
the mechanism described here, al-
though we have yet to examine its
full semantic consequences.

It will be convenient to use the
term "separate" in various contexts.
A class declared as separate class is a
separate class. An entity declared as
separate SOME_TYPE, or as
SOME_SEPARATE_TYPE if SOME_
SEPARATE_TYPE is based on a sepa-
rate class, is a separate entity. A call
t.f (...) is separate if its target t is sepa-
rate. An expression y is separate if it
involves at least one separate entity.
If t is a separate entity, and at some
point dur ing the execution of the
system has a nonvoid value, the at-
tached object, which is handled by a
different processor, is said to be a
separate object.

For consistency, a validity rule will
require that in any assignment of the
form x := y, if the source y is sepa-
rate, the target x must also be sepa-
rate. Otherwise we would be able to
cheat by manipulat ing a separate ob-
ject through a nonseparate entity x,
obtaining the wrong semantics. It will
be permitted, however, to assign a
nonseparate value to a separate en-
tity; calls on the corresponding object
will then have the semantics of sepa-
rate calls, which is harmless.

The same rule applies to actual-
formal argument association, as in

O
U

G 0 E C N

the call t.f (y), where the correspond-
ing formal a rgument declared for
routine f is x. (The semantics of as-
signment is the same as that of argu-
ment passing; the term at tachment
covers both operations.)

Semantics of Assertions
With the notion of separate entity in
place to ensure that every call is
clearly identified as intended for the
same processor or for another, we
need to re turn to the important
question of what assertions mean for
separate calls. We have seen that pre-
conditions, or at least those clauses of
a precondition that involve separate
entities, cannot be taken as correct-
ness conditions. But the require-
ments expressed by a precondition
are still needed for the routine to do
its job properly. For example, we
cannot write a correct version of put
without some guarantee that the
queue is no-full on entry.

What then should the semantics of
a precondition such as not full be if
the client and supplier are handled
by different processors? Only two
answers seem to make sense:

• Failure to meet the precondition
may mean failure of the call. As
noted previously, the contract model
provides for such a case: a call may
fail if the routine is unable to fulfill
its contract; this causes an exception
in the client. The client may recover
from the exception through a Rescue
clause which takes any needed cor-
rective actions and, through a Retry
instruction, tries another (or the
same) strategy. If no Rescue clause is
present, the client itself fails and
passes the exception to its own client.
This behavior may be called the ex-
ception semantics.
• More commonly, failing to meet
the precondition may simply mean
the conditions are not ripe yet for the
routine body to execute, without
implying failure. The call in this case
should just block the client from pro-
gressing, releasing the supplier's
processor for handling requests from
other client processors, which may be
expected to produce effects that will
make the precondition true. When
the supplier's processor completes a
call, it will examine the requests from

blocked clients and select one for
which the blocking precondition is
now true. This behavior may be
called the waiting semantics.

Both strategies are compatible
with the contract model. Experience
with the practice of concurrent pro-
gramming suggests we should retain
the waiting semantics as the default.
This is particularly clear in the
bounded queue example: handled by
a separate processor, the bounded
queue becomes a bounded buffer,
which various clients use to deposit
and withdraw elements. Then if such
a client calls put with the buffer full,
or item with the buffer empty, it
should normally be made to wait
until another client has corrected the
situation (through a remove in the
first case and a put in the second).

Thus as a basic semantic rule, a
precondition clause involving a sepa-
rate call should cause the client to
wait until the clause becomes satis-
fied. There may remain a need for
the exception semantics when the cli-
ent expressly wants to treat precon-
dition violation as an exceptional
case. A type example is access to a
file, a case that occurs in sequential
object-oriented programming, since
the underlying concurrency is usu-
ally hidden. The following extract
(using class FILE from the basic Eif-
fel library) would seem safe:

f: FILE;

i f f~ = Void and then f.readable then
f .some_input_routine

--some_input_routine is any
- - r o u t i n e that reads data
- - f r o m the file;
- - i t s precondition is readable.

end

Here the test in the conditional
instruction is meant to guarantee
that f is attached to a readable file,
meeting the precondition of
some_input_routine. But although this
extract does not explicitly show the
concurrency, a file is a separate per-
sistent structure, so the client has no
way to avoid the case in which an in-
teractive user (or some other soft-
ware system) will access the file and
make it unreadable between the test of
f.readable and the execution of

C O M M U N I C A T I O N S O I e T H l l AC:M September 1993/VoL36, No.9 6 ~

some_input_routine. Here, however,
waiting for readable to become true
again is not the appropriate behav-
ior; instead:, the client should prob-
ably get an exception (from which it
will be able to recover if it has a Res-
cue clause).

Because such cases are un!ikely to
be the most common, the waiting
semantics will be the default.
Through calls to routines of the ker-
nel library it will be possible for a cli-
ent to request the exception seman-
tics.

Reserving ODjects
Considering separate precondition
clauses as wait conditions does not
yet provide us with enough control,
especially if a client needs to reserve
an object for the durat ion of several
operations. In the bounded queue
example, consider the client extract
(again for q declared as a queue and a
as a queue element):

--131
a := q.item;
... Other instructions (not calling
remove) . . .

q.remove

The call to item accesses a queue
element (after a wait if the queue is
empty at the time of the call). The
call to remove is intended to remove
that element. But there is no guaran-
tee that the two calls indeed manipu-
late the same queue element: with
the mechanisms introduced so far,
we have no way of preventing other
separate clients from int ruding be-
tween the two calls and performing
one or more remove.

The problem arises even if the
calls to item and remove are consecu-
tive in the client text. Of course, in
this case, we could solve the problem
by renouncing the command-query
distinction and adding a feature get
to class BOUNDED_QUEUE:

get: X is
- - R e m o v e an element,
- - a n d re turn it as re.,mlt.

require
not empty

do
Result := item; remove

end

but this would imply a drastic change

o+ 0 + G C U G

in the recommended design style and
in any case does not help us for the
general case with one or more
"Other instructions" between the two
calls.

These observations highlight the
need for a technique that will allow a
client to reserve a separate supplier
object for a certain period. Although
routine calls similar to P and V oper-
ations on semaphores could be envi-
sioned for that purpose, it is prefer-
able, in the interest of deadlock
prevention, to look for a linguistic
construct: whereas it is practically
impossible to ensure that every client
that executes a P will later execute a
V, a linguistic construct which re-
serves an object will have a fixed syn-
tactic scope; execution of the con-
struct will automatically release the
object at the end of that scope.

Such a construct could have the
following form:

- - N o t e : uses a form not retained.
- - F o r purposes of discussion only.

hold q then
... Here the client has exclusive
access to the object attached to q ...

end

Let Q_OBJ be the object attached
to q. The execution of such a con-
struct would imply that if Q_OBJ is
already reserved the client will wait
until Q_OBj is free again. Unfortu-
nately, a simple hold construct as we
have defined does not provide us
with a flexible enough synchroniza-
tion mechanism. Often a client will
need to wait not just until a certain
supplier becomes available, but also
until a certain condition becomes
t r ue - - f o r example not q.empty if the
client needs to perform a q.item or
q.remove. This suggests a variant of
the hold construct, which includes
waiting on one or more conditions.
For example:

- - N o t e : uses a form not retained.
- - F o r purposes of discussion only.

hold q when not q.empty then
a: = q.item;
... Other instructions ...
q.remove

end

Such a construct could be used as
the basis of a workable solution. One
advantage of such a solution would

be to give assertions their original
semantics: within a hold, a precondi-
tion is a correctness condition; the
proof rule (left for the reader to ex-
press) would indicate that, right after
the then, the condition given by the
when clause may be assumed.

On further examination, however,
this solution is not fully satisfactory.
A first problem that will have to be
settled by the language designer is
whether to allow any separate call
(such as q.item) outside of a hold on
the corresponding target (here q).
The goal of consistency, always so
important in language design, sug-
gests prohibiting this. But then client
code will be encumbered by many
hold instructions.

Even if we decide against this strict
policy, clients will have to include
numerous hold to access such sepa-
rate objects as bounded buffers. Any
such s i tua t ion-- in which a clearly
identified scheme occurs repeatedly
in a certain application a r e a - -
triggers the object-oriented design-
er's basic instinct: encapsulate.
Rather than individually wrapping
every nontrivial buffer access in its
own local ... end, the competent ob-
ject-oriented designer will write a
class which encapsulates the corre-
sponding behavior (see Figure 6).

In Figure 6, any class needing that
behavior will inherit from BUF-
FER_.ACCESS. Such classes are likely
to be needed for every separate data
structure. But then we may ask
whether the hold construct is useful
at all. If every significant use of a
buffer q occurs through a routine
with q as argument , could we not use
argument passing as the mechanism
for reserving objects? In other
words, we might simply decide that
whenever a routine call has a sepa-
rate argument , any routine call will
perform a "hold" operation on the
corresponding separate object.

There remains the problem of
waiting not just on object availability
but also on conditions. Here the idea
of preconditions as waiting condi-
tions makes a comeback: since the
routine cannot execute its body
properly until its precondition be-
comes true, the precondition again
presents itself as offering a natural
wait condition. We may note here

6 September 1993/Vol.36, No.9 ¢ O I i I | U N I C A T I O I I | O I I T H I A | l l

that the style that would likely have
become the most common for using
the hold construct, as il lustrated by
BUFFER__ACCESS in Figure 6, would
entail f requent duplications of pre-
condit ion texts as hold conditions;
this is the case in Figure 6 with the
use of put, remove and item.

The solution finally retained,
then, involves the following ele-
ments:

1. No special "holding" construct is
needed, separate declarations remain
the only syntactical extension.
2. No separate call, o f the form t.f
(...) where the target t is separate,
is permi t ted unless t is a formal
a rgument of the rout ine in which
the call appears.
3. I f any nonvoid a rgument to a rou-
tine call is separate, the call will block
until the corresponding object be-
comes available.
4. I f a precondi t ion clause of a rou-
tine f involves a separate call (whose
target, because of rule 2, must be a
formal a rgument o f f) , a call t o f will
block until the precondi t ion clause is
satisfied.
5. I f nei ther rule 3 nor rule 4 causes
a call to block, the call is said to be
satisfiable. I f there are one or more
satisfiable calls on available objects
handled by a given processor, one o f
them will proceed. (The semantics
does not specify which satisfiable call
will be selected if there are two or
more; but it does require that one of
them will proceed. In other words, a
processor may not go on strike.)
6. "Available," as used in rules 3 and
5, is def ined as follows: An object is
busy if some call using it as a target
has been started but not yet com-
pleted. The object is available if it is
not busy and its processor is ei ther
idle (not executing any call) or
blocked (as per rule 3 or 4) on a sepa-
rate call executed on behalf of an-
o ther object.

Rule 2 may seem unduly restric-
tive. I t does bring, however, a much
desirable extra safety, avoiding situa-
tions such as /3/ ment ioned previ-
ously where the author of the client
code mistakenly believes that two dis-
tinct calls using the same separate
entity as targets, such as the calls
q.item and q.remove, actually apply to

~q c 0

G v?
N C

Entitles, TYpes and values

,=rm 'entity', a generalization of the usual notion of vari-
covers any name used to denote run-time values. Enti-

include the following: attributes of classes (see "Basic
Terminology" sidebar); formal arguments of routines; local entities
of routines (accessible only within the routine's body, and allocated
anew for each execution of the routine, as with a local variable In
Pascal); and Result, a predeflned entity used in functions to denote
the result to be returned to the client.

Types describe the run-time values that entitles denote in the soft-
ware text. There are two kinds of values: Objects, and references to
objects. Correspondingly, there are two kinds of types: expanded
types, whose values are objects, and reference types, whose values
are references to objects.

Expanded types include basic, predeflned types such as INTEGER
and REAL. SO the value of an entity declared of type INTEGER is di-
rectly an integer value. A reference type may be obtained from a
class which is not declared as expanded. For example, with the class
BOUNDED_QUEUE introduced earlier, the declaration

q: BOUNDED_QUEUE IX]
introduces q as an entity of reference type. The possible values of
such an entity at run time are references: either void (not attached
to any object), or attached to an object, here an instance of BOUN.
DED_QUEUE. "Attached" is the technical term which describes the
association between a nonvoid reference and an object.

the same object. Without rule 2, such
errors would be likely to occur. They
would be difficult to detect and
debug, since the corresponding run-
time behavior, which depends on
how many other calls creep in be-
tween the two calls, is nondeterminis-
tic. Such errors typify the difficulty
of constructing and debugging par-
allel programs, and we should not
lightly forsake an oppor tuni ty to
avoid them through a statically en-
forceable rule.

True, rule 2 will require some
extra work on the par t of the concur-
rent p rogrammer : we can no longer
write q.remove freely, but must en-
close this call in a rout ine using q
(assumed to be of type separate
BOUNDED_QUEUE [X] for some X)
as argument . But this extra require-
ment seems just if ied in light of the
gain in reliability; in addition, we
may expect that many uses of such
structures will rely on a class encap-
sulating the appropr ia te behavior,
such as B UFFER--ACCESS in
Figure 6, where the problem is taken
care of once and for all. As before,
classes needing these facilities will
inherit f rom BUFFER__ACCESS. The

class BUFFER__ACCESS will now be
written more simply as shown in Fig-
ure 7.

The use of separate actual argu-
ments as ways to reserve objects re-
quires one fur ther comment. I f a
rout ine call names two or more such
arguments , the call will block until it
has got hold o f al l o f them, and satis-
fied the corresponding precondi-
tions. This may prove difficult to
implement , especially in a distr ibuted
system, which will require consensus
between the various processors. It is
possible to restrict the mechanism by
allowing a rout ine call to involve at
most one separate argument . Then it
will be the individual p rogrammer ' s
j ob to reserve all necessary resources
th rough nested calls, using one o f the
algori thms described in the l i terature
(e.g., see [4]). I t may be preferable,
however, to keep the model without
restrictions, following the a rgument
that tedious and e r ro r -p rone tasks
should be handled whenever possi-
ble, by the p rogramming environ-
ment ra ther than by individual pro-
grammers. This reasoning is central
in object-oriented programming,
where it justifies such impor tant fa-

C O M M U M | ¢ A T I O H i OP TH I I A C M September 1993/Vol.36, No.9 6 7

C C O G

R R E ~x

- - Note: uses a forrn not re ta ined. For p u r p o s e s of d i scuss ion only.
class BUFFER_A CCESS [G] feature

put(q: separate BOUNDED_QUEUE [G] ; x: G) is
- - Insert x into q, wa i t i ng if n e c e s s a r y until there is room.

do
ho ld q when no t ct.full then q.put (x) end

end;

remove (q: separate BOUNDED_QUEUE [G]) is
- - Remove an element from q, waiting if necessary
- - until there is such an element,

do
hold q when not q.empty then q.remove end

end;

item, (q: separate BOUNDED_QUEUE [G]): G is
... Lef t to the r e a d e r ...

end

Figure 6.

- - E n c a p s u l a t i o n of a c c e s s to b o u n d e d bu f fe r s
class BUFFER_ACCESS [X] is

put (q: separate BOUNDED_QUEUE [G] ; x: G) is
- - Inser t x into q, wa i t i ng if n e c e s s a r y
- - unti l t he re is room.

require
not q. full

do
q.pu~(x)

ensure
not q. empty

end;

remove (q: separate BOUNDED_QUEUE [G]) is
- - R e m o v e an e l e m e n t f r om q, wa i t i ng if n e c e s s a r y
- - u~ti l t he re is such an e lemen t .

... Lef t to the r e a d e r ...

ite, m (q: separate' B O U N D E D Q U E U E [G]): G is
- - O l d e s t e l e m e n t not ye t c o n s u m e d

require
not cI. empty

do
Result := q.item

e n s u r e

not o. full
end

end

Figure 7.

A A {INV^ pePre[f)p} body(f) ^ q~Post(f)

A A t.q'}
{ p~:_ Nonsep_pre(f) t.p'} t.f { q~ Nonsep_post(f)

Figure 8.

cilities as garbage collection and com-
piler-applied static binding.

A Proof Rule
In the scheme retained here, waiting
on a precondition clause occurs only
for a precondition of the form t.cond,
where t is a formal a rgument of the
enclosing routine and is separate.
This is why the preconditions on the
routines of BUFFER_ACCESS are
needed: violation of a precondition
of a BOUNDED_QUEUE would be
the routines of correctness violation,
not a wait condition, since these rou-
tines do not have any separate argu-
ment. The routines of BUF-
FER_.ACCESS, however, have a
separate a rgument q, so any precon-
dition clause of the form q.some_con-
dition in these routines is a waiting
condition.

In general, then, in a routine of
the form

f (.. . . a: T) i s
r e q u i r e

clause l ;
clause2;

d o ... e n d

any of the precondition clauses
which does not involve any separate
call on a separate formal a rgument is
a correctness condition: any client
must ensure that condition prior to
any call, otherwise the call is in error.
Any precondition clause involving a
call of the form a.some_condition,
where a is a separate formal argu-
ment, is a wait condition which will
cause calls to block if it is not satis-
fied. These observations may be ex-
pressed as a proof rule, shown in
Figure 8 which, for separate compu-
tation, replaces the sequential rule
given in Figure 3.

In Figure 8, nonsep_pre (f) is the set
of clauses in f ' s precondition which
do not involve any separate calls, and
similarly for Nonsep_post (f).

This rule captures in part the es-
sence of parallel computation. To
prove a routine correct, we must still
prove the same conditions (those
above the line) as in the sequential
rule. But the consequences on the
properties of a call (below the line)
are different: the client has fewer
properties to ensure before the call,

68 September 1c@3/Vol.36, No.9 ¢OMIVlUNI~mA'I?IONg O F VHIE A C M

since trying to ensure the separate
par t of the precondi t ion would be
futile anyway; but we also obtain
fewer guarantees on output . The
former difference may be considered
good news for the client, the latter is
bad news.

The separate clauses in precondi-
tions and postconditions thus join the
invariant as proper t ies that must be
included as par t of the internal p roof
of the rout ine body, but are not di-
rectly usable as propert ies of the call.
The rule also serves to restore the
symmetry between precondit ions
and postconditions, a job that will be
completed by considering the lazy
wait technique. The discussion so far
was essentially based on an analysis
of the proper t ies of precondit ions.

Comments on t he us e of
Precondit ions
The idea that assertions, and in par-
ticular precondit ions, may have two
different semant ics- -somet imes cor-
rectness conditions, sometimes wait
condi t ions- - i s somewhat disturbing.
Yet in the design of this mechanism,
the idea kept re turn ing each time it
was discarded.

One possible objection, however, is
unjustified. In Eiffel, run-t ime asser-
tion checking may be turned on or
off as a result of a compilation switch.
Is it not dangerous, then, to attach
that much semantic importance to
precondit ions in concurrent object-
or iented programming?

Such an objection misses, however,
the true nature of assertions. Asser-
tions are not primari ly a debugging
or run-t ime checking tool. Instead,
one should view assertions as full-
f ledged components of classes. In the
form for p u t , the precondi t ion and
postcondition belong to the routine
jus t as much as the do clause. They
are part of an impor tant proper ty of
the routine: its specification. Al-
though this may appear paradoxical,
the compilation option that switches
run-t ime assertion checking on or off
does no t affect the semantics of the
language. This is because the seman-
tics of any language is defined for
correct programs only. But a pro-
gram whose execution may violate an
assertion is incorrect! (The definit ion
of a correct class is precisely that the

O
U

0 ~

G ~ B N C

do clauses of its routines are compat-
ible with the assertions.)

To a practicing p rogrammer , the
a rgument may appear specious, since
checking assertions at runtimes may
be the best way to de termine that a
class is incorrect. But in principle it
should be possible to prove class cor-
rectness statically; run-t ime monitor-
ing is only an imperfect solution.
(This is particularly difficult to ex-
plain to C programmers , who when
they accept assertions at all, tend to
see them just as executable con-
structs, meant to check certain prop-
erties at run time for debugging pur-
poses.)

Assertions, then, are always par t of
the software, whether or not they are
moni tored at run time. The differ-
ence between their separate and
nonseparate clauses is simply that the
semantics does not require a nonsep-
arate clause to be evaluated at run
time if the software is correct, but
does require run-t ime checking of
separate clauses.

Lazy Wait
One more rule is needed for a full
definit ion of the semantics. This rule
will de termine how two processors
are resynchronized when one needs
a result f rom another. The rule,
which may be called lazy wait by anal-
ogy with the so-called lazy evaluation
of p rograms written in functional
languages such as Lisp, requires a cli-
ent to wait when it absolutely needs
information resulting from a call, but
no sooner.

Consider a rout ine containing a
separate call:

r(.... t: separate S O M E _ T Y P E ) i s

do
...; t.f(...); - - *
other_ ins t ruc t ions

end

Assume r is executed on an object
C_OBJ and, as part of its execution,
executes the call marked *, with tar-
get t. Let T_OBJ be the object at-
tached to t. These rules indicate that t
must be a formal a rgument of r; so
C_OBJ will have obtained hold of
T_OBJ pr ior to the call.

For the preceding syntax to be
l ega l , f must be a procedure. The call
t o f proceeds when it is satisfiable and

selected by the processor of T_OBJ,
which then starts executing it. But
C_OBJ is handled by another proces-
sor, and that processor does not need
to wait for the call to terminate: it
should immediately continue with its
fur ther business, other_ins truc t ions .

This will be the rule according to the
lazy wait policy: separate p rocedure
calls should not (except for one spe-
cial case discussed later) cause the cli-
ent to wait.

Assume the other_ ins t ruc t ions con-
tain more p rocedure calls on the
same separate target T_OBJ. These
calls, like the first one, will not make
the client wait. It is essential for con-
sistency, however, that the o rde r in
which they will eventually get ser-
viced be the o rde r in which the client,
here C_OBJ, has requested them.
The semantic rule must guarantee
this p roper ty of o rde r preservation.

When then, if ever, must C_OBJ
wait for the terminat ion of the call to
f ? The lazy answer is that an object
will wait when it needs the result of a
query (function or at tr ibute call) on a
separate object. Assume for example
that the other_ ins t ruc t ions are of the
form

o ther_ ins t ruc t ions_ l ; ...

o ther_ ins t ruc t ions_n ;

k: = t . some_va lue

where s o m e _ v a l u e is an integer attri-
bute or function applicable to t, and k
is an auxiliary entity, also of integer
type. To assign the value o f the last
call to k, we need access to T_OBJ;
thus the call t o f m u s t have been com-
pleted, as well as any intervening call
with T_OBJ as its target, and if
s o m e _ v a l u e is a function we must also
wait for the computat ion of that
function to complete. (Remember
that the entire f ragment appears in a
rout ine of which t is a formal argu-
ment, so there is no dahgei" o f an-
o ther client sneaking in and grabbing
T_OBJ between the call to f and the
call to some_va lue : C_OBJ has exclu-
sive separate access to T_OBJ
th roughout the execution of this
fragment.)

The lazy wait policy requires that a
client per forming a query on a sepa-
rate target shall not proceed until all
earl ier calls have been completed in
the o rde r logged, and the query itself

COMMUNICA'rIouS Oll'l'Hml m~m September 1993/Vol.36, No.9 6 9

has been executed to completion.
Together with the rule that a call
proceeds when it is satiisfiable, this
p roper ty iLS the principal semantic
difference between concurrent and
sequential object-oriented computa-
tion. (It would need to be included in
the semantics of calls def ined in
Chapter 21[of [14].) The lazy policy
may be seen as a form of waiting on
the postcondition, in the same sense
that the basic mechanism causes wait-
ing on the precondit ion.

A note is in o rde r on the rule that
clients do not wait for separate pro-
cedure calls to terminate. At first this
may be viewed as jus t an optimiza-
tion: forcing clients to wait for the
terminat ion o f such calls before pro-
ceeding would simply make less use
of the available parallelism. But such
a policy would be misgu:ided. I f the
other_instructions of the preceding
pat tern are empty, as in

r(.... t: s e p a r a t e S O M E _ T Y P E ) is
do ... t.f(...) end

the execution o f r will terminate
immediately after launching the call
to f , without waiting for that call to
terminate. 'This may cause the caller
of r to relinquish the reservation it
made on the client of T_OBJ, which
may be crucial if that object is needed
by o ther clients.

A common variant of this scheme,
which would not work without the
ability to continue execution after
start ing a separate p rocedure call, is
a loop which gets a number of previ-
ously created objects started with
their own lives. For example:

launch (a: A R R A Y [separate ~q) is
- - Get every element of a started.

require
- - No element of a is void

local
i: INTE G E R

do
from i : = 1 until i > a.count loop

launch_one (a @ i); i := i + 1
e n d

end
launch_one (p: separate X) is

- - Get p started.
require

p/= Void
do p.live end

(The notat ion a @ i denotes the ith
e lement of a. @ is an infix feature of

G c 6" ~ G

the Kernel Library class A R R A Y . The
array must have been previously ini-
tialized to hold nonvoid elements,
numbered from 1 to a.count.) If, as
may well be the case, p rocedure live
of class X describes an infinite pro-
cess, this scheme only works if each
loop iteration proceeds immediately
after start ing launch_one; otherwise
the loop would never get beyond its
first iteration.

Passing Nonseparate References
One technical point remains to be
clarified regard ing the passing of
arguments . In some cases we may
wish, in a class B, to include a sepa-
rate call of the form

t . f (a)

where the actual a rgument a is o f a
reference type, but not separate. The
cor responding routine, in the sup-
plier class C, could be of the form

f (x : S O M E _ T Y P E) is
do ... y: = x ... end

where y is some at tr ibute o f C.
All the entities involved- -a , x, y - -

denote references to objects. The
assignment enables C to retain a ref-
erence to an object A__OBJ handled
by the client processor, so that later,
af ter the terminat ion o f f , a rout ine
of C may execute a call of the form

y.some_routine (...)

The object to which this call ap-
plies is A__OBJ; but the call should be
separate since the processors han-
dl ing the instances o f B and C are
different! Unless x, and hence y too,
are declared as s e p a r a t e , the call will
have the wrong semantics. A lan-
guage rule will require that any such
formal a rgument should be declared
as separate. In the example,
S O M E _ T Y P E must be a separate
type. The rule on those assignments
then requires y also to be declared as
separate.

The case examined here has a con-
sequence on the semantics of calls:
because the body o f f may per fo rm a
call with target A__OBJ, we cannot let
the client proceed even i f f i s a proce-
dure. The call to f should block the
client until f terminates. This will be
the general semantic rule if we allow
separate calls having nonsepara te

references as actual arguments: any
such call will block the client with no
possibility of lazy wait. This rule in-
troduces a small but unpleasant com-
plication. We could avoid it by disal-
lowing nonsepara te reference
arguments a l together in separate
calls. An upcoming example will
show, however, that it is convenient
(although not strictly indispensable)
to keep this possibility open.

The preceding discussion only
applies to reference types. I f a is o f
an expanded type, its possible values
are objects, and a t tachment (in par-
ticular a rgument passing) implies
copying an object onto another
ra ther than assigning a reference, so
this problem does not arise. This
possibility immediately suggests,
however, a new validity constraint:
no expanded type may include sepa-
rate attributes.

Duels
The preceding discussion concludes
the presentat ion of the basic seman-
tic model. In practice, we need an
extra degree of flexibility to have a
fully usable mechanism. The major
remaining problem is how a client
can avoid waiting on a nonavailable
separate supplier, or one that does
not satisfy a separate precondi t ion
clause. As noted in the example of
reading a file that may suddenly have
become unreadable , the appropr ia te
policy in such a case may be to cause
an exception in the client, not to
make it wait.

How best should we provide such
flexibility? The situation is compara-
ble to the problem of exer t ing fine
control on exception handl ing in se-
quential object-oriented computa-
tion. The basic Eiffel exception
mechanism is extremely simple, pro-
viding a Rescue clause enabling a
rout ine to catch exceptions, and a
Retry instruction enabling the rou-
tine to try again after a t tempt ing to
correct the cause of the exception.
These facilities suffice in most cases.
To obtain fur ther facilities for more
sophisticated cases, without compli-
cating the language or changing the
basic semantics of exception han-
dling, p rogrammers may use the
class E X C E P T I O N S from the Kernel
Library, offer ing such features as the

Inn~o September]993/Vol.36, No.9 G § | I ~ U N I C I I L T I O N | OP T i l l A C N

integer code of the last exception (so
that a Rescue clause may discrimi-
nate between different causes of ex-
ception) and many others. Classes
needing these facilities simply inherit
from EXCEPTIONS.

Here we may use a comparable
approach by defining a simple li-
brary class CONCURRENCY, from
which classes may freely inherit. This
class will include a procedure im-
mediate..service. A call to this proce-
dure alters the normal response to a
nonsatisfiable call: instead of waiting,
if the object is not available or a sepa-
rate condition is not satisfied, it will
cause an exception in the client. Pro-
cedure normal_.service will serve to
restore standard behavior.

This can be used immediately in
the file-reading example, assuming
FILE now becomes a separate class:

analyze Or: FILE) is
do

immediate_service;
i f f.readable then

... Various read operations of form
f .input_routine ...

else
... Report impossibility in some way

end;
normal_.service

r e s c u e

... Take corrective action, or report
problem ...

end

In the contract method of software
construction, exceptions should be
reserved for truly exceptional cases
which would be difficult or impossi-
ble to handle otherwise without add-
ing great complication to the text of
the software. (This is in marked con-
trast with, for example, the Ada or
CLU mechanisms, which essentially
use exceptions as interprocedural
control structures.) The preceding
use satisfies this requirement, since it
applies to a case that is unlikely to
occur o f t en - - the case in which a file
was checked to be readable but be-
comes unreadable or inexistent be-
fore its actual use because of the ac-
tions of some independent agent.
Although infrequent, this case must
still be handled properly.

A similar mechanism may be used
to provide a safe form of express
messages. Assume we want to allow a

C U °O N

VIP client, the challenger, immediate
access to a separate object; if any
other client, the holder, currently
holds it, it will be interrupted. The
only acceptable solution in this case,
in light of the Design by Contract
principles, is to make the holder's call
fail, so the holder will be forced to
take corrective action (if it has a Res-
cue clause) or to fail. Because it has
such drastic consequences for the
holder, however, this behavior
should only occur if the holder has
accepted the possibility by calling
procedure yield of class CONCUR-
RENCY. In this case, a challenger
that has called immediate_.service and
finds the desired object nonavailable
will not get an exception itself, but
will actually get the object, and cause
an exception in the holder. (The
immediate recipient of the exception
is the common supplier, which after
executing its Rescue clause to restore
its invariant will normally pass on the
exception to the holder.) To restore
the normal (no-yield) behavior, the
holder will call procedure insist.

The result of the potential conflict
between a holder and a challenger,
which we may call a duel, is specified
in all cases by Table 2. The default
behavior for each duelist, as well as
the overall default in the absence of
any call to the procedures of class
C O N C U R R E N C Y (top-left table
entry), are underl ined.

Examples
To illustrate the mechanism, the fol-
lowing examples have been chosen
from diverse backgrounds. To con-
serve space, only the most salient
points of the examples are shown;
the full texts are included in [16].

The Dining Philosophers
We begin with the inevitable dining
philosophers. It seems hard to pro-
vide a simpler form for describing
the philosophers' behavior than the
following class, which relies on the
general control structure provided
by PROCESS:

separate class P H I L O S O P H E R
creation

make

.inherit
PROCESS

rename setup as getup end
feature {BUTLER}

step is
- - Think and eat

do
think; eat (left, right)

end
feature {NONE}

- - The two required forks:
left, right: separate FORK;
getup is do ... end;
think is do ... end;
eat (l, r: separate FORK) is

- - Eat, having grabbed
- - l and r.

do ,.. end
feature {NONE}- -Crea t ion

make (l, r: separate FORK) is
- - A s s i g n l and r
- - a s the required forks.

do
left := l; right := r

end
end

The entire synchronization require-
ment is embodied by the call to eat,
which uses arguments left and right
representing the two necessary forks,
thus reserving these objects.

Of course the simplicity of this so-
lution comes from the mechanism's
ability to reserve several resources
through a single call having two or
more separate arguments, here left
and right. If we restricted the sepa-
rate arguments to at most one per
call, the solution would use one of
the published algorithms (e.g., see
[4]) for getting hold of two forks one
after the other without causing dead-
lock.

Thanks to the use of multiple ob-
ject reservation through arguments,
the solution described here does not
produce deadlock, but it is not guar-
anteed to be fair; some of the philos-
ophers can conspire to starve the
others. Here too the literature pro-
vides various solutions, which may be
integrated into the preceding
scheme.

The notation feature {BUTLER}
indicates that the following features
are exported only to class BUTLER,
the controller class, and its descen-
dants if any. The notation feature
{NONE}, already encountered in ear-
lier examples, similarly makes fea-
tures available to N O N E only. NONE,

COMIPAUN|CAT iONS 01~ THUS n, CU September 1993/Vol.36, No.9 7 1

a Kernel Library class, ihas no de-
scendants, so this implies making the
features secret. Most of tlhe features
appear ing in the following examples
will be secret or selectively expor ted
in this way. Such a situation is much
less common in sequential object-
or iented programming , but the dif-
ference of style is no accident: in con-
current object-oriented program-
ming, many classes are the equivalent
of processes in ord inary concurrent
p rogramming , which need few or no
expor ted features. Class FORK has
no feature for this example. The de-
tails of class B U T L E R , used to set up
and start sessions, are left to the
reader (see [16]).

Making Full Use of Hardware
Parallelism
The example shown in Figure 10,
al though somewhat academic, illus-
trates how]lazy wait can be used to
draw the maximum benefit f rom any
available hardware pa ra l l e l i sm-- the
f igure depicts an extract (not involv-
ing concurrency) f rom ~L class de-
scribing binary trees. Function nodes
makes a s tandard use of recursion to
compute the number of :aodes in a
tree. The recursion is indirect,
th rough node_count.

In a concurrent envi ronment of-
fer ing many processors, it is tempt-
ing to study how we could offload all
the separate node computat ions to
di f ferent processors. Declaring the
class as separate, replacing nodes by
an attr ibute and introducing proce-
dures does the job, as shown in Fig-
ure 11. The recursive calls to com-
pute_nodes will now be started in
parallel. The addi t ion operat ions
wait for these two paralle] computa-
tions to complete.

I f an unbounded number of CPUs
(physical processors) are available,
this solution seems to make the opti-
mal possible use of the hardware
parallelism. I f there are fewer CPUs
than nodes in the tree, the speedup
over sequential computat ion will
depend on how well the implementa-
tion allocates CPUs to the (virtual)
processors.

The presence of two tests for vacu-
ity of b may appea r unpleasant. It
results, however, f rom the need to
separate the parallelizable p a r t - - t h e

C C O G

procedure calls, launched concur-
rently on left and r i g h t - - f r o m the
additions, which by nature must wait
for their operands to become ready.

Coroutines
One of the requirements stated at the
beginning of the article was that the
mechanism should suppor t corou-
tine programming. Figures 12a and
12b show two classes which achieve
this goal.

One or more coroutines will share
one coroutine control ler (set up by a
"once" function, the mechanism
which allows informat ion sharing
while avoiding the dangers of global
variables [11, 14]). Each coroutine
has an integer identifier. To resume
a coroutine of identif ier i, p rocedure
resume will, th rough actual_resume, set
the next attr ibute of the control ler to
i, and then block, waiting on the pre-
condit ion next = j , where j is the co-
routine 's own identifier. This en-
sures the desired behavior.

Al though this solution looks like
normal concurrent software, it is
organized in such a way that if all
coroutines have dif ferent identifiers
only one coroutine may proceed at
any one time; so it is useless to allo-
cate more than one physical CPU for
them.

The recourse to integer identifiers
is necessary, since giving resume an
a rgument of type COROUTINE, a
separate type, would cause deadlock.
Using Eiffel's "unique" declarat ion
(similar to Pascal's enumera ted
types), p rogrammers do not need to
worry about assigning such values
manually. This use of integers also
has an interest ing consequence: if we
allow two or more coroutines to have
the same identifier, then with a single
CPU we obtain a nondeterminis t ic
mechanism: a call to resume (i) will
cause the restart ing o f any coroutine
whose identif ier has value i. With
more than one CPU a call resume (i)
will allow all coroutines of identif ier i
to proceed in parallel. This scheme,
which for a single CPU provides a
coroutine mechanism, doubles up in
the case of several CPUs as a mecha-
nism for controll ing the maximum
number of processes o f a certain type
which may be simultaneously active.

Locking and Semaphores
Assume we want to allow a number
of clients (the "lockers") to obtain
exclusive access to certain resources
(the "lockables") without having to
enclose the exclusive access sections
in routines, using a semaphore- l ike
technique. A solution is shown in
Figure 13.

Any class describing resources will
inheri t f rom LOCKABLE. T h e
p rope r funct ioning of the mecha-
nism assumes that every locker per-
forms sequences of grab and release
operat ions, in this order . Other be-
havior will usually result in deadlock.
We can once again rely on the power
of object-oriented computat ion to
enforce the required protocol; ra ther
than trust ing every locker to behave,
we may require lockers to go th rough
a p rocedure use in descendants of a
class LOCKING, which describes the
required behavior. Class LOCKING is
left to the reader (see [16]); it will
inheri t f rom PROCESS.

Whether or not we go th rough
class LOCKING, a grab does not re-
serve the cor responding lockable for
all compet ing clients: it only excludes
other lockers observing the protocol.
To exclude any possible client f rom
accessing a resource, you must en-
close the operat ions accessing the
resource in a rout ine to which you
pass it as argument .

The reader may have noted that in
rout ine grab of class LOCKER, the
separate call to set_holder passes Cur-
rent as argument . Current, a reference
to the cur ren t object (the call's client)
is a nonsepara te reference. Accord-
ingly, the cor responding formal ar-
gument of set_holder is declared as
separate. Without the possibility of
passing nonsepara te references as
arguments to separate calls, we
would need to rely, as with the co-
rout ine examples, on a scheme asso-
ciating an integer with every instance
of class LOCKER.

An Elevator Control System
A case in which object-orientation
and the mechanism def ined in this
article can be used to achieve 'a de-
centralized event-driven architecture
is shown in Figures 14 th rough 17.
The example describes software for
an elevator control system, with sev-

72 September 1993/Vo].36, No.9 ¢O~l l i lUNlCATION|OlmTHIID'¢l l l

eral elevators serving many floors.
The design is somewhat fanatically
object-oriented in the sense that
every significant type of component
in the physical system--for example
the notion of individual button in an
elevator cabin, marked with a floor
n u m b e r - - h a s an associated separate
class, so each corresponding object
such as a button has its own virtual
thread of control (processor). The
benefit is that the system is entirely
event-driven; in particular, it does
not need to include any loop for ex-
amining repeatedly the status of ob-
jects, for example whether any but-
ton has been pressed. The class texts
are only sketched, but provide a
good idea of what a complete solu-
tion would be. The creation proce-
dures, which must perform the nec-
essary initializations, have been left
to the reader.

It is convenient to start with class
MOTOR. This class describes the
motor associated with one elevator
cabin, and the interface with the
mechanical hardware (see Figure
14).

The creation procedure of this
class must associate an elevator, cabin,
with every motor. Class ELEVATOR
(Figure 15) includes the reverse in-
formation through attribute puller,
indicating the motor pulling the cur-
rent elevator.

The reason for making an elevator
a n d its motor separate objects is to
reduce the grain of locking: once an
elevator has sent a move request to its
motor, it is free again, thanks to the
lazy wait policy, to accept requests
from buttons either inside or outside
the cabin. It will resynchronize with
its motor on receipt of a call to pro-
cedure record_stop, through sig-
nal_.stopped. The actual time dur ing
which an instance of ELEVATOR will
be reserved by a call from either a
MOTOR or BUTTON object is very
short.

There are two kinds of buttons:
floor buttons, which passengers press
to call the elevator to a certain floor,
a n d cabin buttons, which are inside a
cabin a n d are pressed by passengers
to request a move to a certain floor.
There is of course a difference be-
tween the corresponding kinds of
requests: a request from a cabin but-

e
U

0 ~ ,4.

G # ~- C N

Table 2. The semant ics of duels

Chal l enger --*

H o l d e r

no~a~e~ce immediate..service

insist Challenger waits Exception in challenger

yield Challenger waits Exception in both

\ /

Figure g.

ton is directed to the cabin to which
the button belongs, whereas a floor
button request may be handled by
a n y elevator. A request of the latter
kind will be sent to a dispatcher ob-
ject, which will poll the various eleva-
tors and select the one that can best
handle the request. (The precise se-
lection algorithm is left unimple-
mented, since it is irrelevant to this
discussion; the same applies to the
algorithm used by elevators to man-
age their pending queue of requests in
class ELEVATOR in Figure 15.)

Class FLOOR_BUTTON (Figure
16) assumes that there is only one
button on each floor. It is not diffi-
cult to update the design to support
two buttons, one for up requests and
the other for down requests. It is
convenient, although not essential, to
have a common parent BUTTON for
the classes representing the two
kinds of buttons. Remember that the
features exported by ELEVATOR to
BUTTON are, through the standard
rules of selective information hiding,
also exported to the two descendants
of this class.

The class DISPATCHER is shown
in Figure 17. To refine the algorithm
that selects an elevator in procedure
accept, it will need to access the attri-

butes position and moving of class EL-
EVATOR, which in the full system
should be complemented by a Bool-
ean attribute going_up. Such accesses
will not cause any problem as the
design ensures that ELEVATOR ob-
jects never get reserved for a long
time.

A WatChdOg Mechanism
Together with the previous one, the
last example helps show the applica-
bility of the mechanism to real-time
problems. It also illustrates the con-
cept of duel. We want to enable a
class to perform a call to a certain
procedure action, with the provision
that the call will be interrupted, and a
Boolean attribute failed set to true, if
the procedure has not completed its
execution after t seconds. The only
basic t iming mechanism available is a
procedure wait (t), which will execute
for t seconds.

Figure 18 depicts the solution,
using a duel. A class that needs the
mechanism should inherit from class
TIMED and provide an effective ver-
sion of the procedure action which, in
TIMED, is deferred. To let action
execute for at most t seconds, it suf-
fices to call timed_action (t). This pro-
cedure sets up a watchdog (an in-
s t a n c e of class WATCHDOG), which
executes wait (t) and then interrupts
its client. If, however, action has been
completed in the meantime, it is the
client that interrupts the watchdog.

In class WATCHDOG, the Boolean
attribute terminated_before_time a n d
the Rescue clause are not actually
needed; they have been added for
clarity. In a more robust version, the
Rescue clauses should test for the
type of exception, in order to use the
preceding scheme only for excep-
tions caused by a call from a client
having requested immediate.service.

¢ O M M U N I C A T I O N S O I C T H I E A t : M September 1993/Vo1.36, No.9 7 3

C C U /~ G

c lass RINARY_ TREE [G] feature
left, right: BINARY_TREE [G] ; . . . O t h e r f e a t u r e s ...

nodes: INTEGI-R is
- - N u m b e r o f n o d e s in t h i s t r e e

d e
Result := node_count (left) + node_count (right) + 1

e n d
feature { NONE}

node_count (b: BINARY_TREE [G]) : INTEGER is
- - N u m b e r o f n o d e s in b

d e
i f b I= Void then

Result := b.nodes
e n d

e n d
e n d

F i g u r e 10.

separate class BINARY_TREE [G] feature

left, right: BINARY._TREE [G] ;
... O the r f ea tu res ...

nodes: INTEGER;

update_nodes is
- - U p d a t e nodes to re f lec t the n u m b e r of n o d e s in th is t ree.

do
nodes = 1;
compute_nodes (left); compute_nodes (right);
adjust_nodes (left); adjust_nodes (right)

end
feature { NONE }

compute_nodes (b: BINARY_TREE [G]) is
- - U p d a t e in fo rmat ion a b o u t the n u m b e r of n o d e s in b.

do
i f b/= Void then b. update_nodes end

end;

ad/ust_nodes (b: BINARY_TREE [G]) is
- - A d j u s t n u m b e r of n o d e s f rom those in b.

do
i f b/= Void then

nodes := nodes + b.nodes
end

end
end

Figure 11.

The Mechanism
Following i,; the precise description
of the mechanism that results from
the preceding discussion. The de-
scription consists of three parts: syn-
tax; validity rules (static: semantic
constraints); semantics. It must be
understood as an extension to the
Eiffel language specification as given
in [14].

Syntax
The syntactic extension in;volves just
one new keyword, separate. (In
preparation for this extension, the

list of keywords in Appendix G of
[14] already included separate.) A
declaration of an entity or function,
which normally appears as x: T Y P E ,

may now also be of the form

- - / 6 /
x: separate T Y P E

In addition, a class declaration,
which normally begins with one of
class C, d e f e r r e d c lass C or expanded
class C, may now be of the form:

- - / 7 /
separate class C ...

In this case C is called a "separate
class." The syntactic convention im-
plies that separate status for a class is
incompatible both with expanded
status and with deferred status. As in
the case of expanded and deferred
classes, the property of being sepa-
rate is not inherited: a class is sepa-
rate or not according to its own dec-
laration only, regardless of the
separateness status of its parents. An
entity or function x will be said to be
separate if either it is declared unde r
form/6/, or its type is based on a sep-
arate class (declared unde r form/7/).
It is not an error for both of these to
apply: in form /6/, T Y P E may be
based on a separate class, although in
this case the use of s e p a r a t e in the
declaration of x is redundant .

C o n s t r a i n t s

A number of validity rules apply to
constructs involving separate entities.

The first rule applies to a declara-
tion of the preceding form/6/ :

In a type of the form separate T Y P E ,

the base class of T Y P E must be nei-
ther deferred nor expanded.

The next rule governs the combi-
nation of separate and nonseparate
elements in an attachment. The term
"attachment" covers both assignment
and a rgument passing, which have
the same semantics. An attachment
ofy to x is either an assignment of the
form x: = y, or an a rgument passing
in a call of the form f (.... y) o r t . f
(...,y), where the formal a rgument
of the routine f, at the position corre-
sponding to y, is x. Here is the attach-
'ment rule:

In an attachment of y to x, if the
source y is separate, the target x must
also be separate.

It is permitted to redefine an en-
tity from separate to nonseparate
and conversely (with the correspond-
ing constraints on polymorphic at-
tachment, not detailed here).

The following rules, explained
earlier, apply to separate calls (calls
whose targets are separate).

• For a separate call to be valid, the
call must appear in a routine and its
target must be a formal a rgument of
the enclosing routine.

4 S e p t e m b e r ; .993/Vol.36, No.9 ¢OIm lMUNICAT IONS OF TH I I ACM

• I f an actual a r g u m e n t of a separate
call is o f a re ference type, the corre-
s p o n d i n g formal a r g u m e n t mus t be
declared as separate.
• I f an actual a r g u m e n t of a separate
call is o f an e x p a n d e d type, the cor-
r e s p o n d i n g base class may not have
any a t t r ibute of re fe rence type.

T h e last cons t ra in t removes any
possibility that the very process of
evaluat ing a p recond i t ion clause (as
par t o f an access to a separate object),
or more general ly an assertion, could
lead to fu r the r blocking:

I f an actual a r g u m e n t a to a func-
t ion call is separate an d the call is
par t o f an assertion, then the call
mus t be par t o f a rou t ine an d a mus t
be a formal a r g u m e n t of that rou-
tine.

This rule (which implies that a
func t ion call appea r ing in a class in-
var iant may not use a separate enti ty
as actual a rgumen t) was no t intro-
duced in the earl ier discussion. With-
out it, we could have a rou t ine of the
form

f (x:SOME_TYPE) is
r equ i re

some_property (separate__attribute)
do ... e n d

where separate_attribute is a separate
a t t r ibute of the enclosing class. But
then the evaluat ion of f ' s precondi -
t ion, e i ther as par t o f assert ion moni-
tor ing for correctness, or as a syn-
chroniza t ion condi t ion if the actual
a r g u m e n t co r r e spond ing to x in a call
is itself separate, could cause block-
ing if the at tached object is no t avail-
able! Such behavior is clearly unac-
ceptable.

This concludes the list o f validity
constraints. T h e semantics will be
discussed in three parts: creat ion;
object states; calls.

Semantics of Creation
I f the target t o f a creat ion instruc-
t ion (which appears af ter the second
exclamat ion mark in, for example!!
t.make (...)) is nonsepara te , the newly
created object will be hand led by the
same processor as the creat ing object.
If, however, t is separate, the new
object will be allocated to a new pro-
cessor.

I4 C U °0 G R ~ N C

separate class COROUTINE creation
make

feature { COROUTINE }
resume (i: INTEGER) is

- - W a k e up c o r o u t i n e o f i den t i f i e r i a n d g o to s l eep .
do actual_resume (i, controller) end

feature { NONE}
controller: COROUTINE_CONTROLLER ;

identifier: INTEGER;

actual_resume (i: INTEGER; c: COROUTINE_CONTROLLER) is
- - W a k e up c o r o u t i n e of i den t i f i e r i a n d g o to s l eep .
- - (A c t u a l w o r k of resume).

do
c.set_next (i) ; request (c)

end;

request(c: COROUTINE_CONTROLLER) is
- - R e q u e s t e v e n t u a l r e - a w a k e n i n g by c.

require
c.is__next (identifier)

do end

feature {NONE} - - C r e a t i o n
make (i : INTEGER; c: COROUTINE_CONTROLLER) is

- - A s s i g n i as iden t i f i e r a n d c as con t ro l l e r .
do

identifier := i; controller := c
end

end

Figure 12a.

separate class COROUTINE_CONTROLLER feature {NONE}
next. INTEGER

feature { COROUTINE}
set__next (i: INTEGER) is

- - Select i as the identifier of the next coroutine to be awakened.
do next := i end;

is_next(i: INTEGER): BOOLEAN is
- - Is i the index of the next coroutine to be awakened?

do Result := (next = i) end
end

Figure 12b.

Object Sta tes

Once it has been created, an object
OBJ will be in e i ther o f three states:

• Busy: a rou t ine is be ing executed
on OBJ for the benef i t o f a client ob-
ject, and is no t blocked.

• Blocked: the last rou t ine to be
started on OBJ has requested access
to an object hand led by a d i f fe ren t
processor, bu t the processor was no t
available or a separate p recondi t ion
was no t satisficd.
• Idle: n o n e of the preceding. T h e r e
is no p e n d i n g client request on OBJ.

In the object-or iented style of pro-

g ram m ing , a call is always executed
on beha l f o f "someone" e l s e - - a cli-
ent. In sequential computa t ion , the
client is always ano the r object, except
in the case of the system's root object,
whose client is the h u m a n or o ther
system that started the execut ion.
With c o n c u r r e n t computa t ion , the
only new proper ty is that a system
may have more than one root object.

Figure 19 informal ly shows the
t ransi t ions be tween states, as dis-
cussed in the following two subsec-
tions. A processor is said to be avail-
able if and only if every one of the
objects that it handles is e i ther idle or
blocked.

¢ O M M U M I C A l r l O N | OF T H e ACM September 1993/Vo|.36, No.9 7 S

C C 0 ~ G

class LOCKER feature
grab (resource : separate LOCKABLE) is

- - R e q u e s t e x c l u s i v e a c c e s s to resource.
requi re

no t resource, locked
do resource.se tho lder (Current) end

release (rez;ource : separate LOCKABLE) is
requi re

resource.is_held (Current)
do resource.release end

end

class L OCKABLE ;feature { LOCKER }
set_holder (l : separate LOCKER) is

- - D e s i g n a t e 1 a s h o l d e r .

requi re
1/= Void

do
holder := 1

ensure
locked

end;

locked: BOOLEAN is
- - Is r e s o u r c e r e s e r v e d b y a l o c k e r ?

do Ftesult := (ho lder /= Void) end;

is_held (I: separate LOCKER): BOOLEAN is
- - Is r e s o u r c e r e s e r v e d b y 1 ?

do F'esult := (holder = I) end;

release is
- - R e l e a s e f r o m c u r r e n t h o l d e r .

do
holder := Void

ensLire
not looked

end

feature { NONE}
holder: separate LOCKER

end

F i g u r e 13.

separate class MOTOR feature { ELEVA TOR }
move (floor:INTEGER) is

- - Go to floor, o n c e there, repor t .
do

"D i rec t the phys i ca l d e v i c e to m o v e to flooP;
signal_stopped (cabin)

end;

signal_stopped (e: ELEVATOR) is
- - R e p c r t that e l e v a t o r s t o p p e d on level e.

do
e. record_stop (position)

end

feature { NONE }
cabin: ELEVATOR;

position: INTEGER i,J
- - Cu r ren t f l oo r level

do
Result := "The cu r ren t f l oo r level , read f rom phys i ca l senso rs "

end
end

Semantics of Calls
To study the semantics of calls, we
may use the general f o r m t . f (. . . . s)

and assume that f is a routine. (I f f is
an attribute, we may replace calls to f,
for the purpose o f this discussion, by
calls to a function whose sole purpose
is to re turn the value of the attribute;
this may affect per formance but does
not change the semantics.)

The introduct ion of concurrency
affects the semantics of a call only if
one or more of the elements in-
v o l v e d - t a r g e t and actual argu-
m e n t s - a r e separate. Let us assume
that one or more of the actual argu-
ments are separate, but the target t is
not. (The effect o f having the target
separate is examined in the next sub-
section.) The call is executed as par t
of the execution of a rout ine on a
certain object, say C_OBJ, which may
only be in a busy state at that stage.
The proper ty which determines
whether the call proceeds or blocks
may be def ined as follows:

D e f i n i t i o n (s a t i s f i a b l e ca l l)

A call to a rout ine f is satisfiable if
and only if every separate actual ar-
gument a having a nonvoid value,
and hence at tached to a separate ob-
ject A_OBJ, satisfies the following
three conditions: A_OBJ is idle; the
processor handl ing A__OBJ is avail-
able; every separate clause of the
precondi t ion off , when evaluated for
A_OBJ and the actual arguments
given, has value true. In this defini-
tion an assertion clause is separate if
and only if it includes a call whose
target is separate.

I f the call is satisfiable, it proceeds
immediately: C_OBJ remains in the
busy state and A..OBJ enters the busy
state, in which it executesf . When the
execution of f terminates. A..OBJ
re turns to the idle state.

I f the call is not satisfiable, C_OBJ
enters the blocked state. The call at-
tempt has no immediate effect on its
target and actual arguments . The
processor handl ing C_OBJ becomes
available; in particular, if any object
also handled by that processor had
previously blocked on a call that is
now satisfiable, the processor will se-
lect one such object, re turn it to the
busy state and execute the corre-
sponding call as described. I f there is

F i g u r e 14.

more than one selectable candidate,
the semantics does not specify which
one will be selected, but does require
the processor to select one. If a pro-
cessor is available and there is no
immediately satisfiable call, the pro-
cessor remains available until a state
is reached in which there is a satisfi-
able call for that processor.

A note is in order on exactly when
preconditions clauses will cause
blocking in the definition of satis-
fiability. A precondition clause is sep-
arate (and so may clause blocking)
only if it includes a call on a separate
target. Other precondition clauses
remain correctness conditions, not
blocking conditions. For example, a
precondition of the form i > 1,
where i is an integer entity (ex-
panded, and hence nonseparate) is a
normal correctness condition, which
must be ensured before the call by
the client. Failure to ensure this con-
dition at the time of the call indicates
a bug in the client, not a run-t ime
waiting condition. Similarly, for sep-
arate s l and s2, preconditions clauses
of the form s l /= Void or sl = s2 are
correctness conditions, since they do
not involve any calls. Both are tests
for reference equality, which may be
performed regardless of the status
(idle, busy, waiting) of the objects at-
tached to s l and s2, if any. In particu-
lar, separate actual arguments may
cause blocking only if they are non-
void.

An adaptation of the preceding
description is applicable to classes
inherit ing from class C O N C U R -
R E N C Y . The effect of calls to proce-
dures immediate._service, normal.ser-
vice, insist and yield is defined by
Table 2.

Separate Targets and Lazy Wait
The final semantic change is the ef-
fect of having a separate target t in a
call of the form t . f (.... s). This
appears in a routine r of which t must
be a formal argument. When the call
is executed, the object T_OBJ at-
tached to t is busy (it became busy
when the latest call to r was selected)
and "reserved" by r. The previous
discussion still applies; the only new
effect is the lazy wait policy, which
affects the client executing the call.

l,I C U

°1 t' ~ O
N C

separate class ELEVATOR feature {BUTTON }
accept (floor: INTEGER) is

- - Reco rd and p rocess a reques t to go to floor.
do

record (floor);
ff not moving then

process_request
end

end;

feature { MOTOR}
record_stop (floor: INTEGER) is

- - Reco rd in format ion that e leva to r has s t opped on floor.
do

moving := false; position := floor;
process_request

end;

feature { DISPATCHER }
position: INTEGER; moving: BOOLEAN

feature {NONE }
puller: MOTOR;

pending: QUEUE [INTEGER];
- - T h e queue of pend ing reques ts
- - (each ident i f ied by the numbe r of the dest ina t ion f loor)

record (floor: INTEGER) is
- - Reco rd reques t to go to floor.

do
"A lgor i thm to insert reques t for floor into pending"

end;

process__request is
- - Hand le next pend ing request , if any.

local
floor: INTEGER

do
ff not pending.empty then

floor := pending.item;
actual_process (puller, floor);
pending, remove

end
end,

actual_process (m: separate MOTOR; floor: INTEGER) is
- - D i rect m to go to floor.

do
moving := true; m.move (floor)

end
end

Figure lS.

Lazy wait pol icy on satisfiable calls
with separate targets: Once a satisfi-
able call has been selected for execu-
tion:

• If the call is to a procedure, the cli-
ent continues its execution unless
one of its actual arguments is a non-
separate reference.

• If the call is to a query (function or
attribute), or includes a nonseparate
reference among its actual argu-
ments, the client's execution waits
until the completion of the code.

Conclusion and Open Issues
This presentation has described an
approach to concurrent object-
oriented computation, and the ra-
tionale that led to it. I consider this
article only a first step toward a solu-
tion of the problem under study.
The following points are open to
criticism:

• The dual semantics of assertions
on separate and nonseparate targets
• The rule that the target of a sepa-
rate call must be a formal a rgument

¢ O U M U N | C a T I O N S O l u T H B , I t C H September 1993/Vol.36, No.9 7 7

C C U R G

separate class BUTTON feature
ta,rget: INTEGER;

end

separate class CABIN_gUTTON inherit BUTTON feature
... Left to the reader ...

end

separate class FLOOR_BUTTON inherit BUTTON feature
controller: D/SPA TCHER ;

request is

do

end

- - Send to dispatcher a request to stop on level target.

a ctual_request (controller)

actual_request (d : D/SPA TCHER) is
- - Send to d a request to stop on level target.

do
d.accept (target)

end
end

Figure 16.

separate class DISPATCHER feature {FLOOR_BUTTON}
accept (floor: INTEGER) is

- - Handle a request to send an elevator to floor.
local

index: INTEGER; chosen: ELEVA TOR;
do

"A gorithm to determine the elevator
wl-ich should handle the request for floo£;
index := "The index of the chosen elevator";
chosen := elevators @ index;
ser~d_request (chosen, floor)

end
feature {NONE}

send_request (e: ELEVATOR; floor: INTEGER) is
- - Send to e a request to go to floor.

do e.accept (floor) end,

ele.vators: ARRAY [ELEVATOR];
end

Figure 17.

~ C a l l not leading to
Feature call / ~ BLOCKED,
from client I] or instruction

C,,,-'~I D L E " ~ ' ~ ~ - ~ ' ~ = " ~ other than call.

Call t e r m ~ l

Feature call with busy / /
or blocked separate / / All separate arguments

argument, or separate / / idle, and all separate
precondition not / / preconditions satisifed

satisified l

Figure 19.

of the enclosing routine, which may
require adding apparently superflu-
ous actual_xxx routines

Additionally, much practical and
theoretical work remains to be done
in the following areas:

• Devising the practical facilities for
associating processors, as defined in
this article, with physical resources:
computers on a network, tasks in an
operating system, physical processors
in a multiprocessing system.
• Implementing the mechanism in
various environments- -shared
memory, distributed systems and
others.
• Exploring the proof rules further
and performing proofs of significant
systems.
• Studying whether it is possible, by
observing certain restrictions in the
use of the mechanisms described, to
guarantee deadlock avoidance.
• Finding out whether the mecha-
nism can be adapted to ensure fair-
ness, and if so, how (perhaps
through library facilities, as was done
to achieve the semantics of duels).

One may hope these questions can be
answered in a way that preserves the
advantages of the concurrency
mechanism described here, in partic-
ular its minimal departure from the
concepts of sequential object-
oriented computation and its com-
patibility with the assertion concepts
which are so essential to a proper
understanding of this field.

Acknowledgments
(Names are included here to ac-
knowledge comments, criticism and
help, not to imply endorsement in
any way.) Early work leading to this
article was presented in March 1990
at the TOOLS EUROPE conference
in Paris [12]. The mechanism de-
scribed here was the topic o f a pre-
sentation at the TOOLS PACIFIC
conference in Sydney in December
1992. I greatly benefited from the
work done by John Potter and
Ghinwa Jalloul from University of
Technology, Sydney (UTS), starting
from the original article, and from
several discussions with them. (The
held construct was their suggestion.)
I am also grateful to UTS for the

78 September 1993/Vol.36, No.9 ¢ O | I M U N I C A T I O N S Ole T H E A I I M

opportunity to work on the topic of
object-oriented concurrency dur ing
my stay there from August to Octo-
ber 1992. The design of the lazy wait
facility was influenced by the work of
Denis Caromel [6]. Impor tant in-
sights were gained at various stages
of this work from discussions with
Richard Bielak, John Bruno, Steve
Cook, Carlo Ghezzi, Peter L6hr,
Dino Mandrioli, Jean-Marc Nerson,
Robert Switzer and Kim Wald6n. []

References
1. Agha, G. Concurrent object-oriented

programming. Commun. ACM 33, 9
(Sept. 1990), 125-141.

2. America, P. Designing an object-
oriented programming language
with behavioural subtyping. In Foun-
dations of Object-Oriented Languages,
J.W. de Bakker, W.P. de Roever, and
G. Rozenberg, Eds. Springer-Verlag,
New York, 1991, pp. 60-90.

3. America, P. and van der Linden, F. A
parallel object-oriented language
with inheritance and subtyping. In
Proceedings of ECOOP-OOPSLA 90
(Ottawa, Canada, 1990).

4. Ben-Ari, M. Principles of Concurrent
and Distributed Programming. Prentice-
Hall International, Hemel Hemp-
stead, 1991.

5. Birtwistle, G., Dahl, O-J., Myrhaug,
B. and Nygaard, K. Simula Begin.
Studentliteratur and Auerbach,
1973.

6. Caromel, D. Concurrency: An object-
oriented approach. In TOOLS 2, Jean
B~zivin et al., Eds., SOL/Angkor,
Paris, 1990. 183-197.

7. Caromel, D., Toward a method of
object-oriented concurrent program-
ming. Commun.ACM 36,9(Sept. 1993).

8. Hailpern, B.T. Verifying concurrent
processes using temporal logic. Lec-
ture Notes in Computer Science 129,
Springer-Verlag, New York, 1982.

9. Hoare, C.A.R. Procedures and pa-
rameters: An axiomatic approach. In
Symposium on the Semantics of Program-
ming Languages, Erwin Engeler, Ed.
Springer-Verlag, New York, 1971,
pp. 103-116. Reprinted in Essays in
Computing Science, C.A.R. Hoare and
C.B. Jones, Eds. Prentice-Hall Inter-
national, 1989.

10. Lieberman, H. Concurrent object-
oriented programming in Act 1. In
Object-oriented Concurrent Program-
ming, Akinori Yonezawa and Mario
Tokoro, Eds. MIT Press, Cambridge
Mass., 1987, pp. 9-36.

t4 C U

G R ~ C 4,
N

deferred class TIMED inherit
CONCURRENCY

feature { NONE}
failed: BOOLEAN, alarm: WATCHDOG;

timed_action (t: REAL) is
- - E x e c u t e action, b u t i n t e r r u p t a f t e r t s e c o n d s if no t c o m p l e t e .
- - If i n t e r r u p t e d b e f o r e c o m p l e t i o n , se t failed to true.

do
set_alarm (t) ; action; unset_alarm (t) ; failed := false

r e s c u e
failed := true

end;

set_alarm (t: REAL) is
- - Se t a l a r m to i n t e r r u p t Current a f t e r t s e c o n d s .

de
- - C r e a t e a l a r m if n e c e s s a r y :

i f alarm = Void then !! alarm end;
yield; actual_set (alarm, t)

end;

unset_ alarm (t: REAL) is
- - R e m o v e t h e las t a l a r m set .

do
insist;
immediate_service; actual_ unset (alarm); normal_service

end;

action is
- - T h e a c t i o n to b e p e r f o r m e d u n d e r w a t c h d o g c o n t r o l

deferred
end

feature {NONE} - - A c t u a l a c c e s s to w a t c h d o g
... actual_set a n d actual__unset, le f t to t he r e a d e r ...

feature { WATCHDOG } - - T h e i n t e r r u p t i n g o p e r a t i o n
stop is

- - E m p t y a c t i o n to let w a t c h d o g i n t e r r u p t a ca l l to timed_action.
do end

end

separate class WATCHDOG feature {TIMED}
set (caller. separate TIMED; t: REAL) is

- - Se t a n a l a r m a f t e r t s e c o n d s f o r c l i e n t caller.
do

yield, wait (t);
immediate__service; caller.stop; normal_service

rescue
terminated_before_time := true

end;

unset is

do

e n

feature {NONE }

end

- - R e m o v e a l a r m .

terminated_before_time:= false

terminated_before_time: BOOLEAN;

F igure 18.

¢ O H H U N O C A T I O N | O P T N I A C H September 1993/Vol.36, No.9 7 ~

11. Meyer, B. Object-oriented software con-
struction. Prentice-Hall, Englewood
Cliffs, N.J., 1988.

12. Meyer, B. Sequential and concurrent
object-oriented programming. In
TOOLS 90 (Technology of Object-
Oriented Languages a:~d Systems),
Angkor/SOL, (Paris, June 1990), pp.
17-28.

13. Meyer, B. Introduction to the Theory of
Programming Languages. Prentice-
Hall, Englewood Cliffs, N.J., 1990.

14. Meyer, B. Eiffel: The Language. Pren-
tice-Hall, Englewood Cliffs, N.J.,
1991.

15. Meyer, B. Applying design by con-
tract. IEEE Comput. 40--51, 10 (Oct.
1992).

16. Meyer, B. Object-Orier,,ted Software
Construction, Second ed. Prentice-Hall,
Englewood Cliffs, N.J., 1993.

17. Papathomas, M. Langaage design
rationale: and semantic framework
for concurrent object-oriented pro-

G C O R G

gramming. Ph.D. dissertation. Uni-
versit~ de Gen~ve, 1992.

18. SIS, Standardiseringskommissionen i
Sverige (Swedish Standards Insti-
tute). Data Processing-Programming
Languages--SIMULA, Svensk Stan-
dard SS 63 61 14, May 20, 1987.

19. Yonezawa, A. and Tokoro, M.,Eds.
Object-oriented Concurrent Program-
ming. MIT Press, Cambridge, Mass.,
1987.

CR Categories and Subject Descrip-
tors: D.1.5 [Programming Techniques]:
D. 1.3 [Software]: Programming Tech-
niques--concurrent programming; Object-
Oriented Programming; D.2.2. [Software
Engineering]: Tools and techniques--
software libraries; H.2.4. [Database Man-
agement]: Systems--concurrency

General Terms: Design
Additional Key Words and Phrases:

Concurrency, Eiffel, object-oriented con-
current programming

About the Author:
BERTRAND MEYER is president of In-
teractive Software Engineering (Santa
Barbara) and SOL (Paris). He is the au-
thor of several books devoted to object-
oriented software construction, the Eiffel
approach, and the theoretical aspects of
programming languages. Author's Pres-
ent Address: Interactive Software Engi-
neering, 270 Storke Road, Suite 7, Goleta,
CA 93117; email: bertrand@eiffel.com

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/93/0900-056 $1.50

IT'S A TRAGEDY
BEYON

96,000 acres of i r replaceable rain
forest are be ing b u r n e d e v e r y day.
These onc e lush forests are be ing
cleared for grazing and farming. But
the t ragedy is w i thou t the forest
t h i s delicate land quicMy tu rns

barren.

~ In the smolder ing ashes
are the remains of what

~ ~i.~?), had taken thousands of
years to create. The life-

sus ta in ing nutr ients of
the plants and l iving mat te r

have b e e n des t royed and the

O The National
, A r b o r Day F o u n d a t i o n

ty loses its fertil-
:cap f u r t h e r dam-
s five years a land
¢ith life is t u r n e d

r Day Foundat ion,
t ree-plant ing
anization, has
:st Rescue. By
Ltion, yOU will
,urning. For the
t, for h u n g r y
:, s u p p o r t Rain
n o w .

r e s t R e s c u e .

55-5500

0 September 1993/Vol.36, No 9 ¢@ M M U N I ~ A T I O I m S O F THIE AGM . b

