
Steps towards a theory and calculus of aliasing
Bertrand Meyer

ETH Zurich & Eiffel Software
se.ethz.ch

Abstract
A theory, graphical notation, mathematical calculus and implementation for finding whether two given
expressions can, at execution time, denote references attached to the same object. Intended as the seed for a
comprehensive solution to the “frame problem” and as an alternative (for the specific issue of determining
aliases) to separation logic, shape analysis, ownership types and dynamic frames1.

1 Dynamic aliasing

You have, most certainly, read Homer. I have not (too much blood), but then I listen to
Offenbach a lot, so we share some knowledge: we both understand that “the beautiful
daughter of Leda and the swan”, “poor Menelaus’s spouse” and “Pâris’s lover” all denote
the same person, also known as Helen of Troy. The many modes of calling Helen are a case
of aliasing, the human ability to denote a single object by more than one name.

Aliasing is at its highest risk of causing confusion when it is dynamic, that is to say when
an object can at any moment acquire a new name, especially if that name previously denoted
another object. The statement “I found Pâris’s lover poorly dressed ” does not necessarily cast
aspersion on Helen’s sartorial tastes, as Pâris might by now have found himself a new lover;
but if we do not carefully follow the lives of the rich and famous we might believe it does.

Stories of dire consequences of dynamic aliasing abound in life, literature and drama.
There is even an opera, Smetana’s The Bride Sold 2, whose plot entirely rests on a single
aliasing event. To the villagers’ dismay, Jeník promises the marriage broker, in return for
good money, not to dissuade his sweetheart Mařenka from marrying the son of the farmer
Mícha. Indeed Mícha wants Mařenka for his dimwit son, Vašek, but it is suddenly revealed
that Jeník, believed until then to be a stranger to the village, is Mícha’s son from a first
marriage: he has tricked everyone.

To a programmer, this tale sounds familiar: the equiv-
alent in program execution is to perform an operation on
certain operands, and inadvertently to modify a property of
a target that is not named in the operation — hence the risk
of confusion — but aliased to one of the operands. For
example an operation may, officially, modify the value of
x.a; but if x denotes a reference and y another reference
which happens at the time of execution to be aliased to x
(meaning that they both point to the same object), the oper-
ation will have an effect on y.a even though its text does not cite y. If b is aliased to a, we
might even have an operation that modifies y.b even though its description in the program-
ming language mentions neither y nor b.

1. This paper is a revision of “Towards a Theory and Calculus of Aliasing”, Journal of Object Technology, Vol. 9, no. 2,

March 2010, pages 37-74, www.jot.fm/issues/issue_2010_03/column5.pdf. Along with numerous corrections, it brings
a proper treatment of routine arguments and an improved theoretical basis.

2. A title incorrectly rendered, in the standard English translation, as The Bartered Bride.

a

yx

b

To appear in International Journal of
Software and Informatics, 2011.

http://se.ethz.ch

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §12
It is not hard to justify the continued search for effective verification techniques cov-
ering aliasing. In the current state of proof technology, the aliasing problem (together with
the closely related frame problem, to which it provides the key) is the principal obstacle
preventing full proofs of correctness for sequential programs. It also plays a role in the spe-
cific difficulties of proving concurrent programs correct. (For references on the issues and
approaches cited in this section, see appendix F.)

A symptom of this situation is that industrial program proving tools often preclude
the use of pointers altogether. An example is the Spark environment, which has made a
remarkable contribution towards showing that production programs can be routinely sub-
jected to proof requirements. Spark relies on a programming language, presented as a sub-
set of Ada but in reality a subset of a Pascal-like language (plus modules), without support
for pointers or references. In considering how to make such pioneering advances relevant
to a larger part of the industry, it is hard to imagine masses of programmers renouncing
pointers and other programming languages advances of the past three decades.

The absence of a generally accepted solution is not due to lack of trying. The aliasing
problem has been extensively researched, and interesting solutions proposed, in particular
shape analysis, separation logic, ownership types and dynamic frames. Few widely used
proof environments have integrated these techniques. That may still happen, but the obsta-
cles are significant; in particular, the first two approaches suffer (in our opinion) by
attempting to draw a picture of the run-time pointer structure that is more precise than
needed for alias analysis; and the last three assume a supplementary annotation effort (in
addition to standard Hoare assertions) at which programmers may balk.

The theory, calculus and prototype implementation described here strive to avoid these
limitations. A representative application is to prove the absence of aliasing between any ele-
ments of two linked lists created and modified through typical object-oriented techniques.
Assume a standard implementation of lists with an operation to add elements at the end:

In class LIST:
extend (a: ELEMENT)

-- Add cell at end, with a as item.
local

new, last: CELL
do

-- First create new cell:
create new ; new.set (a)

-- Then insert new cell at end:
if first = Void then

-- List was empty. It will now consist of a single cell, the new one:
first := new

else
-- List was not empty; go to its last cell and make last denote it:

from last := first until last.right = Void loop last := last.right end
-- Then link last cell to new cell:

last.set_right (new)
end

end

right

item item

right
right

item

a
new(ELEMENT)

(CELL)

lastfirst

§1 Dynamic aliasing 3
Consider references x and y denoting two such lists built
through any number of applications of extend and similar
operations. The theory, and its implementation, determine
that if x ≠ y (the references are not aliased to each other) then
no CELL or ELEMENT reachable from x is also reachable
from y. The proof is entirely automatic: it does not require
any annotation. In the implementation, it is instantaneous.

In its present state the theory suffers from some limitations (section 8), but it makes
the following claims:
• It provides a comprehensive treatment of aliasing issues and some progress towards

a solution of the “frame problem”.
• It includes a graphical notation, alias diagrams, which helps reason about aliasing.
• Alias analysis generally requires no assertions or other annotations. The only

exception is the occasional need to add a cut instruction (4.5) to inform the calculus
with results obtained from other sources. Outside of this case, alias analysis enjoys
the advantage often invoked in favor of model checking and abstract interpretation
against annotation-based approaches to program proving: full automation.

• The loss of precision (inevitable because of the undecidability of aliasing in its
general form) is usually acceptable, and, when not, can be addressed through cut.

• The theory is at a suitably high level of abstraction, avoiding explicit references to
such implementation-oriented concepts as “stack” and “heap”.

• The theory can model the full extent of a modern object-oriented language.
• The reader will, it is hoped, agree that it is simple (about a dozen rules) and provides

insights into the nature of programming, especially object-oriented programming. An
example is the final rule /40/, for qualified calls: (a » call x.r) = (x ((x’ a) » r)),
which concisely conveys the essence of the fundamental mechanism of O-O
computation, capturing the notion of current object and the principle of relativity, both
central to the O-O model.

The following ideas are believed to be new (although of course strongly influenced by pre-
vious work): the notion of alias calculus; alias diagrams (a simplification of “shape graphs”);
the canonical form of alias relations; limiting analysis to expressions occurring in the pro-
gram; using alias analysis as a preprocessing step for axiomatic-style proofs; cut; negative
references; the handling of arguments, loops and conditionals.

The ambition behind the present work is that it will complement the methods listed
earlier and, for the problem of determining aliases (which is only a part of their scope),
possibly provide an alternative.

Section 2 sets the context. Section 3 introduces alias relations. Section 4 presents the cal-
culus for a simple language without remote object access, which section 5 extends with pro-
cedures. Section 6 generalizes the language and the calculus to the target domain of interest:
object-oriented programming. Section 7 presents the prototype implementation. Section 8

With, in class CELL:
item: ELEMENT ; right: CELL
set (v: ELEMENT) do item := v end
set_right (c: CELL) do right := c end

x

y

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §24
summarizes how to apply the calculus to an actual object-oriented programming language and
lists the remaining problems. Appendix A gives a formal model, appendices B and C the proofs
of key properties, appendix D a sketch of a possible “must alias” calculus, and appendix E a
list of all the rules of the calculus. Appendices F and G add acknowledgments and references.

All the examples of this article can be tried out in the implementation, which the
reader can download (as a Windows executable) from se.ethz.ch/~meyer/down/alias.zip.

2 General observations

The goal of the calculus is to allow deciding whether two reference expressions appearing
in a program might, during some execution, have the same value, meaning that the asso-
ciated references are attached to the same object.

2.1 Adding the alias calculus to an axiomatic framework

To put the rest of the discussion in context, it is useful to describe where the approach may
fit in the overall process of software verification. The key to the simplicity of the calculus
is the expectation that aliasing is, in practice, the exception: most of the time, two expres-
sions are not aliased to each other. As a consequence, the envisioned verification process
is an incremental modification of standard axiomatic (Hoare-style) techniques:
A1 A first step uses the alias calculus to determine the possible aliases of expressions that

appear in assertions. As a result, these expressions are enriched: for any assertion of
the form some_property (a), this step adds some_property (b) for all b that can be
aliased to a.

A2 The second step applies standard axiomatic reasoning to the program equipped with
the resulting set of assertions — the original enriched with alias variants.

The techniques used in these two steps are independent. Step 2 uses ordinary axiomatic
semantics (including backward reasoning because of the assignment axiom); step 1 uses
the calculus (which happens to work in a forward style).

The following example illustrates the process. Assume
we are asked to prove

We are dealing with objects having a boolean attribute a, which the procedure set_a sets
to True. Assume that we have at our disposal a proof framework which applies the stan-
dard techniques of axiomatic semantics, enabling us to prove

The proof of /2/ will involve the assignment axiom, as set_a performs a := True, and a
procedure rule. (If we informally understand the call as x.a := True, the proof is a trivial
application of the assignment axiom.)

{not y.a} /1/
x.set_a
{not y.a}

{True} /2/
x.set_a
{x.a}

a

yx

?

a

http://se.ethz.ch/~meyer/down/alias.zip

§2 General observations 5
If we naïvely applied similar techniques to prove /1/, the proof would proceed
smoothly: since the instruction does not name y, the postcondition sails through that
instruction unchanged. Such reasoning, however, is not sound if y can be aliased to x. The
alias calculus will allow us, through its own techniques distinct from axiomatic semantics,
to determine possible aliasings. If it finds that some computations might alias y to x, it will
inform the axiomatic reasoning by automatically enriching the postcondition of /1/ to read
not y.a and not x.a. Then /1/ is no longer a correct Hoare triple since application of the
assignment axiom to not x.a yields the weakest precondition False.

2.2 Handling imprecision

For clarity of presentation it is useful to introduce the theory and calculus in terms of three
successive programming languages of increasing ambition, each a superset of the previous
one: E0 introduces variables and basic instructions; E1 introduces procedures; E2 intro-
duces object-oriented mechanisms and represents the common core of modern O-O lan-
guages. To apply the calculus in practice, it will be necessary to translate the actual
programming language of interest into E2. Elements of the following discussion, and the
summary in section 8, describe how to perform the translation and, as a consequence, how
to apply the calculus to practical programs written in such languages as Eiffel, Java or C#.

Until then, we will concentrate on the calculus itself. We must, however, note the
principal property of the translation: it must be sound, meaning that if two expressions in
the original language may become aliased in some execution the calculus must reflect that
property. In the reverse direction, there is no such exigency: the calculus might tell us that
two translated expressions can become aliased where the original expressions cannot. We
may call this phenomenon imprecision. The presentation of the calculus will note cases in
which the risk of imprecision arises.

This risk is inevitable in any practical approach to alias analysis, but might prevent
some program proofs because of the possible loss of information. The theory introduces a
special solution to this problem in the form of the cut instruction (section 4.5). A cut cor-
rects any undesired imprecision resulting from the simplifications of the alias calculus by
asserting at a particular point of the program that two expressions are not aliased. The alias
calculus itself is not, in such cases, able to prove this property; the proof falls back on its
partner in the proof duo — axiomatic semantics (step A2 above). As an example, consider

The alias theory correctly determines that at the start of the second conditional instruction
/4/ x may be aliased to y as a result of the first one /3/. It will also determine, as a conse-
quence, that the assignment /5/ may alias z, through x, to y. Such aliasing cannot occur in
practice because the boolean expression cond has the same value in both cases. The alias
calculus, however, has no way of establishing that no run-time execution path can include

if not cond then
x := y /3/

end
Other_instructions -- Not affecting any of cond, x and y.
if cond then /4/

z := x /5/
end

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §26
both /3/ and /5/; such a property is beyond its scope. If the imprecision is unacceptable —
in other words, if the spurious aliasing of z to y precludes proving the properties of interest
— we need to add a cut instruction to the second conditional, which becomes

For the alias calculus, the cut instruction is a guarantee from the environment (as provided
by require in Eiffel and assume in JML and Spec#) that x /= y. For the axiomatic proof
framework, it is a proof obligation (check in Eiffel, assert in JML and Spec#).

2.3 Scope of the theory

The purpose of the alias theory and calculus is to answer a specific question:

In line with the preceding observations, the calculus looks for a sound but possibly imprecise
answer: it may — as rarely as possible — answer “yes” even if e and f could never become
aliased in actual executions; but if they can, the calculus is required to answer “yes”.

The most important word of the above definition is the first one: “Given”. What makes
the calculus possible is that it takes the pragmatic view of an existing program, possibly
equipped with assertions. Then program proofs do not need to know all aliasing properties of
all possible expressions; they only need the properties of expressions actually appearing in the
program and its assertions. Expressions not named in the program are no more interesting to
the prover than (except to the philosopher) the tree that falls unheard and unseen in the forest.

This observation allows us, in addition, to consider finite sets only. Without it, the
analysis of a typical data structure traversal loop such as

would have to reflect that x can become aliased to first, first.right, first.right.right and so
on, an infinite set of expressions. It might even force us to extend the assertion language
with a regular-expression notation (first.right*) to cover all possible values. While the
alias calculus could accommodate such extensions, it does not need them for the funda-
mental applications discussed here.

The soundness requirement implies that not all the aliasings predicted by the calculus
will necessarily arise during a particular execution. It could be useful to determine the
aliasings that always happen (“must alias” rather than “may alias” relations). Such a study
is beyond the present article, but appendix D gives some basic directions.

if cond then
cut x, y
z := x

end

The aliasing question
Given two expressions of a program, e and f, of reference type, and a
program point p, can e and f ever be attached to the same object when
an execution of the program is at p?

from
x := first

until some_condition loop
x := x.right

end

§3 Alias relations 7
3 Alias relations

The theory relies on a notion of “alias relation”, describing the possible aliasings between
variables and expressions of a program.

3.1 Definition

E ↔ E, defined as P (E × E), is the set of binary relations on E. For our needs E will be a
set of variables and expressions in a program. The presence of a pair [x, y] in an alias rela-
tion associated with a program point expresses that x and y may be attached to the same
object at that program point during some execution.

Such a relation must be symmetric: if e may become aliased to f, then f may become
aliased to e. This possibility is only interesting in the case of different expressions, hence
the requirement of irreflexivity (e is not aliased to e).

If r1 and r2 are alias relations, so are r1 ∪ r2, r1 ∩ r2 and r1 – r2 (difference), but
not, for example, the complement of r1.

If r is a relation, but not necessarily an alias relation, r will denote the alias rela-
tion obtained from r by removing all reflexive pairs and symmetrizing all pairs; for
example {[x, x], [x, y], [y, z]} is the alias relation {[x, y], [y, x], [y, z], [z, y]}.

Formally, r is (r ∪ r-1) — Id [E] where “—” is set difference and Id [E] is the identity
relation on E. If r is an alias relation, then r = r.

It is useful to extend this notation to an arbitrary subset A of E, defining A as A × A.
(A × A is the “universal” relation involving all pairs in A.) So {x, y, z} is {[x, y], [y, x], [x, z],
[z, x], [y, z], [z, y]}.

For a set A described by extension, as in this example, we may omit the braces, writing
just x, y, z. We may express any alias relation in a union form T, U, V, …, meaning T ∪ U ∪ V
…, where every operand is a universal relation on a subset of E with reflexive pairs removed.
With this notation, we may write the first example, {[x, y], [y, x], [y, z], [z, y]}, as x, y, y, z.

An alias relation need not be transitive, as illustrated by the program extract

which, starting with no aliasing, yields (as the alias calculus will determine) the alias rela-
tion x, y, x, u, z but does not cause aliasing between y and z.

In dealing with alias relations, the following operator will be useful: r \– A, where r
is a relation in E ↔ E and A is a subset of E, is r deprived of any pair that involves a mem-
ber of A as first or second element. Formally: r \– A is r — A × E. If r is an alias relation,
so is r \–A. (The operator’s definition will be extended in 6.4 to cover dot expressions.)

Definition: alias relation
A relation in E ↔ E for some set E is an alias relation if it is symmetric and
irreflexive.

if cond then
x := y

else
x := z
u := x

end

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §38
We also define the quotient a / x of an alias relation a in E ↔ E by an element x of
E (similar to the equivalence class of x in an equivalence relation) as the set containing x
and all the elements aliased to x:

3.2 Canonical form and alias diagrams

An alias relation may have several union forms; for example the union forms x, y, x, u, z
and x, y, x, u, x, u, z denote the same relation. The first of these variants, like all the exam-
ples given previously, is a canonical form:

Canonical form theorem: For any alias relation a, the canonical form exists and is unique.
Proof : consider all subsets of E. Retain only those whose elements are all aliased to

each other in a. Then remove any that is a subset of another. The resulting subset of P (E)
gives a union form of a that is canonical: any other subset X of P (E) contains a subset of
E that either includes a non-aliased pair, so that X violates condition 1 of the definition, or
is a subset of an element of X, violating condition 2.

Although this is a constructive proof, an algorithm applying it directly to display the
canonical form of a relation would be exponential in the size of E; the implementation uses
a more efficient algorithm.

Corollary: each one of the sets T, U, V, … involved in a canonical form has at least
two elements (since an alias reflection is irreflexive).

The reverse theorem also holds: a canonical form defines an alias relation uniquely.
All alias relations for the examples that follow will be given in canonical form.

Alias diagrams are useful to visualize the theory and in particular the canonical form
theorem. An alias diagram is a labeled directed graph with one special source node repre-
senting a program point and any number of value nodes each representing a set of possible
values (not specified) in associated program states. At this stage of the theory, the graph is
acyclic, the start node of any edge is the source node, and the end node is a value node;
when we extend the theory to object-oriented programming in section 6, there will also be
edges connecting value nodes. An example alias diagram is:

a / x =
Δ {y: E | (y = x) ∨ [x, y] ∈ a} /6/

Canonical form of an alias relation
The canonical form of an alias relation a is a union form T, U, V, … where:
1 None of the sets T, U, V, … is a subset (proper or improper) of any of

the others.
2 Adding or removing any element to or from any of them would

invalidate the property T ∪ U ∪ V … = a.

x, y

x, u, z Value node

Source node

§3 Alias relations 9
The label of every edge is a non-empty set of expressions, for example e, f. The presence
of an expression e in the label of an edge leading to a value node n expresses that e may at
the given program point have one of the values associated with n. The alias relation asso-
ciated with such a graph is simply the set of pairs [e, f] such that e and f both appear in the
label for some edge. So the graph above represents the earlier example x, y, x, u, z.

A value node carries no information other than its existence and the label of the edge
(a single one at this stage of the theory) that leads to it. In the following discussion, as a
consequence, “removing an edge” also implies removing the target node.

A diagram is in canonical form if no label is a subset of another. The canonical form
theorem is easy to visualize on alias diagrams: a non-canonical diagram such as

represents the same alias relation as the previous one, so the edge labeled x, u is useless.
To turn an arbitrary diagram into canonical form, remove any edge whose label is a subset
of another edge’s label (and, per the general convention, remove the edge’s end node).

As a consequence of the corollary of the canonical form theorem, the label of every edge

includes at least two expressions. One-expression labels , expressing that x may
have a value at the current program point, may be interesting for other applications but are irrel-
evant for the theory of aliasing, at least until it gets extended for object-oriented programming.

3.3 The semantics of an alias relation

If a is an alias relation on the set E of reference variables and expressions appearing in a
program p, we may associate with a a Hoare-style assertion — a property of the program
state written as an expression involving the values of program variables — written a– and
defined as

where ∧ is “and” between assertions. In words: a– states that if two distinct variables may ever
have equal values, their pair appears in a; or equivalently, that pairs not appearing in a are guar-
anteed to have different values. This notion reflects the conservative nature of the alias calculus:
while the presence of a pair [x, y] in a states that x might become aliased to y but does not imply
that it will, its absence from a implies, for soundness, that x cannot become aliased to y.

If the set of variables is given, the correspondence defined by /7/ between alias rela-
tions such as a and assertions of the form appearing on the right for a– (a conjunction of
clauses stating that variable pairs have different values) is one-to-one.

The – operator satisfies the following monotonicity theorem:

where is “implies” between assertions. (Proof : if a– holds, any pair [x, y] that may have
equal values must appear in a, and hence in b.)

a– =
Δ ∧ x ≠ y /7/

[x, y] ∉ a (where x and y are different variables)

If a ⊆ b, then a– b– /8/

x, y

x, u, z

x, u

x

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §310
3.4 Characterizing the effect of programs on aliasing

Aliasing is not compositional, in the naïve sense of allowing the definition of a function
aliases such that aliases (p) would determine the alias relation induced by the program p
in terms of aliases (pi) for components pi of p. Consider

then aliases (p1) would be x, y, aliases (p2) would be x, u and aliases (p1; p2) would be
the relation y, z, x, u, which cannot be obtained by combination of the previous two since
neither of them mentions z.

Instead, the calculus works on formulae of the form

where a is an alias relation and p is a program component. /9/ denotes the alias relation that
holds at the end of an execution of p started in a state where a held. In practice, both a and
a » p may be conservative approximations of the actual alias relation. When considering
an entire program p, we will be interested in ∅ » p for the empty relation ∅; the compu-
tation of ∅ » p will also yield the value of the alias relation at key program locations such
as routine exit points.

A simplified interpretation of the meaning of a » p in terms of Hoare semantics is

stating that if we use a as a guarantee about non-aliased pairs on entry to p, the calculus
yields a guarantee about non-aliased pairs on exit.

/10/, sufficient for most practical purposes, is not a weakest precondition rule because
it ignores the property that any aliasing in a that affects a variable modified by p is irrele-
vant, as it will be overridden by p. Consider for example a program with three variables x,
y, z; take for p the assignment x := y, and for a the empty alias relation ∅. Then a– is the
assertion stating that variables are pairwise different: x ≠ y and x ≠ z and y ≠ z. It is intu-
itively clear, and given by the calculus (rules /17/ and /18/ below), that a » p is x, y. The
corresponding assertion (a » p)– is x ≠ z and y ≠ z. /10/ in this case correctly states that

but the precondition is stronger than needed: its first two conditions, x ≠ y and x ≠ z, are
irrelevant since the assignment overwrites x. The weakest precondition in this case is just
y ≠ z (as implied by the Hoare assignment rule). In the general case, the weakest precon-
dition rule is (rather than /10/) the following:

p1: x := y
p2: z := x ; x := u
p1 ; p2: x := y ; z := x ; x := u

a » p /9/

{a–} p {(a » p)–} /10/

{x ≠ y and x ≠ z and y ≠ z} x := y {x ≠ z and y ≠ z}

Alias calculus soundness rule
For any relation a and any construct p:

{(a ∪ (p← × E))–} p {(a » p)–} /11/
where p← is the set of variables that every terminating execution of p sets.

§4 The basic calculus 11
p← × E is the set of pairs involving any of the variables modified by p; in the example,
where p← is {x}, this set is x, y, y, z. The rule tells us that we may remove any of its pairs
from a in the precondition, since executing p makes them irrelevant to the resulting state (as
the rule for assignment, /17/ and /18/, will reflect).

Note that p← is the set of variables that every terminating execution of p will set. If
some executions of p, but not all, may set x, we cannot remove from a the pairs involving
x: for example if a » p does not contain x, z, meaning that the postcondition includes x ≠ z,
then this property must also appear in the precondition. Otherwise x and z could be initially
aliased to each other, and the executions that do not set x would leave them aliased on exit.

Obtaining determination of p← for all the constructs p of any realistic programming
language is undecidable; the proof of this result appears in appendix B. As a consequence,
the weakest precondition rule /11/ is of theoretical use only. The appendix shows how
obtain a reasonable under-approximation of p← through a simple syntactic rule, yielding
a version of the soundness rule that is significantly more precise (in the sense of using a
weaker precondition) than the simplified version, /10/. Using an under-approximation is
sound since replacing p← by a subset means also replacing a ∪ (p← × E)) by a subset
of this relation and hence, according to the monotonicity theorem /8/, replacing the asso-
ciated assertion (a ∪ (p← × E))– by a stronger one.

This discussion only affects the theoretical connection between the alias calculus and
axiomatic semantics, not the power of the calculus. But it has the practical consequence of
confirming that the “forward” nature of the calculus is necessary rather than accidental.
Standard Hoare-style and weakest-precondition semantics work “backward” because of
the classic assignment axiom {P [y/x]} x := y {P}, which derives the precondition from the
postcondition. In contrast, the rules of the alias calculus, as given below, derive a » p from
a, in forward style. To obtain a weakest precondition in /11/, we need p←, which cannot
be computed precisely in the general case. We may express this observation as a theorem:

Even if the rules of axiomatic semantics give us a weakest precondition, it may not corre-
spond to an alias relation. For example (if c then x := z end) wp (x, y)– is the assertion
not c and (x, y)–, which for arbitrary c is usually not of the form a– for an alias relation a.

The rules of the calculus will now follow, each defining a » p for a given kind of instruc-
tion p. To be acceptable, each must guarantee that if a is an alias relation so is a » p. In addi-
tion, every rule must satisfy the fundamental soundness rule /11/. The present discussion
does not include a complete proof but gives an example, for one of the rules, in section 4.12.

4 The basic calculus

The first level of the calculus relies on a simple programming language, E0. The following
subsections introduce the constructs of E0, their informal semantics, and the correspond-
ing alias calculus rules.

Forward alias rule theorem
For the alias properties of any realistic language involving reference
assignment, no weakest-precondition backward calculus is possible.

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §412
In E0, all variables denote references; the value of a reference is an object identifier.
The following presentation relies on an intuitive understanding of the instructions; a for-
mal definition of E0 appears in A.1 (part of appendix A).

4.1 Skip

It is convenient to include a null instruction skip with the rule

(will signal rules of the alias calculus.)

4.2 Compound

If p and q are E0 instructions, the notation p ; q denotes an instruction that executes p then
q. The alias calculus rule is:

If the other rules of the calculus guarantee that a » p is an alias relation whenever a is, this
one also recursively yields an alias relation on the right side.

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out p ; q, apply the transformations associated with p, then
apply to the resulting graph those associated with q.

4.3 Forget

If x is a variable, the notation forget x denotes an instruction that removes any association
of x with any object. Corresponding programming language notations are:

(The reason for the special E0 syntax forget x is that experience has shown that using
assignment syntax, such that x := Void, causes confusion with the regular form of assign-
ment seen in 4.6 below, subject to a more general rule in the calculus.)

The rule is:

with the operator \– as defined earlier (3.1).

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out forget x on a diagram, remove x from all edge labels that
included it; to maintain the canonical form, also remove any edge that as a result goes
down to a one-element label, as in this example:

a » skip = a /12/

a » (p ; q) = (a » p) » q /13/

x := Void -- Eiffel
x = null; -- C, Java etc.

a » (forget x) = a \– {x} /14/

Shaded lines

x, y

x, u, z
u, z

Initial state State after forget x

§4 The basic calculus 13
4.4 Creation

If x is a variable, the notation create x denotes an instruction that allocates a new object at
a previously unused address. Corresponding programming language notations are:

The effect on an alias diagram is the same as for forget x, and so is the rule:

Imprecision: this rule introduces no imprecision.

The forget and create instructions have different semantics — one removes all asso-
ciations of a given variable with any objects, the other associates it with a new object —
but in the alias calculus they are governed by identical rules.

4.5 Cut

If x and y are variables, the notation cut x, y denotes an instruction that removes any alias-
ing between x and y. It does not correspond to any common instruction of programming
languages but, as noted in 2.2, will serve as an essential escape mechanism to remove
undesired cases of imprecision in the calculus. The constructs

will be translated into cut x, y. (The semantics of check p end in Eiffel is that the program
is only valid with a proof that p will always hold at the given program point; it is also pos-
sible for compilers that cannot perform such proofs to generate a run-time check that will
stop the program if p does not hold. The rules for assert in Spec# and JML are similar.)

The alias calculus rule is (with — denoting, as usual, set difference):

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out cut x, y, remove any edge with label x, y; replace any edge
whose label includes x, y and a non-empty set A of other expressions by two edges, labeled
x, A and y, A, and leading to two separate nodes as shown in the next figure.

The need, in the second case, to replace an edge (and node) by two reflects the sug-
gested practical use of cut: the operator lets us take advantage of finer-grain information,
possibly coming from other sources, to improve the precision of the information provided by
alias analysis. In the second case of the figure, the initial state conflated all of x, u, z into a

create x -- Eiffel
x = new Type_of_x (); -- C, Java etc.

a » (create x) = a \– {x} /15/

check x /= y end -- Eiffel
assert x != y; -- JML, Spec#

a » (cut x, y) = a — x, y /16/

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §414
single alias class. Discovering that x and u are not related after all, we express this property
by adding an instruction cut x, u, which separates the variables into two groups x, z and u, z
listing z’s aliasing associations separately. The formal rule /16/ covers this semantics suc-
cinctly; it does not need to distinguish between the two cases illustrated by the diagram.

4.6 Assignment

The basic operation that creates alias pairs is assignment, written x := y. The rule is:

relying on the following operator involving an alias relation and two variables:

The intuition behind this operator is that the assignment causes:
• Removal of any previous aliasing of x.
• Then, aliasing of x to y and to any other expression previously aliased to y.
The rule expresses this property. The relation b is a deprived of any pair involving x. The
right side yields all the aliases not involving x, then adds the pairs [x, u] where u is in b / y,
that is to say (/6/) either is y or was aliased to y in b, and applies the overline operator to sym-
metrize the relation and remove reflexive pairs (ensuring that the rule correctly handles the
trivial case x := x).

Example 1: the value of a » (z := f), where a is

is (this example and all the following ones are as computed by the prototype implementa-
tion at se.ethz.ch/~meyer/down/alias.zip, on which the reader may try them):

where z has been removed from its previous association with y, then added to the associa-
tions of f.

a » (x := y) = a [x: y] /17/

a [x: y] = given b =
Δ a \– {x} then /18/

b ∪ ({x} × (b / y))
end

b, c, x, f, g, x, y, z /19/

b, c, x, f, g, x, z

x, y

x, u, z

Initial state

x, y

u, z

x, z

State after cut x, y

x, u, z

State after cut x, u

http://se.ethz.ch/~meyer/down/alias.zip

§4 The basic calculus 15
Alias diagram: to carry out an assignment x := y on an alias diagram, remove x from
all edge labels (removing the edge if the label goes down to zero or one element); if y does
not appear in any edge label, add a value node and an edge to it, labeled y; then add x to
any edge label containing y. The following figure shows some examples:

To deal with procedure calls, it is useful to generalize the a [x: y] notation to the case in
which x and y are not single variables but lists of variables:

In other words, the list variant of the “:” operator applies the basic operator to the succes-
sive element pairs from both lists, assumed to be of the same size.

4.7 Conditional

E0 has a conditional instruction of the form

where p and q are instructions. The informal semantics of this instruction is that it executes
either p or q.

The rule is:

The ∪ operator is here applied to two relations viewed as sets of pairs. As noted, r1 ∪ r2
is an alias relation if both r1 and r2 are.

Imprecision: the conditional rule does not by itself introduce any imprecision, if we
take the semantics of then p else q end to be that an execution can carry out either p or q.
In the translation of an ordinary programming language to E0, the source instruction would
be if cond then p else q end for some condition cond. The condition is lost in translation;
this may cause imprecision as in the earlier example (/3/).

Example 2: the program

a [x: y] =
Δ (…((a [x1: y1]) [x2: y2]) …) [xn: yn] /20/

then p else q end

a » then p else q end = (a » p) ∪ (a » q) /21/

then x := b else x := f ; z := y end /22/

x, y

x, u, z

Initial state

State after t := x
x, t, y

x, t, u, z

State after x := u

x, u, z

State after x := t

u, z

x, t

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §416
yields, when applied to b, c, f, g, the alias relation a = b, c, x, f, g, x, y, z used as starting
relation for the assignment example /19/.

Note on the example: the reader may wonder whether the assignment z := y makes any
sense without a prior assignment of a meaningful value to y. Such cases already arose in pre-
vious examples. For the alias calculus, however, this question need not alarm us, as it is a
matter of convention for the underlying programming language. Some languages, such as the
current void-safe version of Eiffel, guarantee that in any valid program y will automatically
be initialized on first use to a legal address, denoting an object. Alternatively, we may take
the convention that every example program in this article implicitly starts with a sequence of
create x instructions, one for every variable x appearing in the program. Or we could pass
on the requirement to the programmer by including a static rule that disallows access before
creation, in which case /22/ is invalid.

Alias diagram: to carry out then p else q end, produce two diagrams by separately
applying p and q to the original diagram. Then combine the diagrams by retaining all their
value nodes and all their edges. The result correctly represents the effect of the conditional
but may not be in canonical form; make it canonical following the procedure seen in 3.2.

4.8 Repetition

E0 has an instruction

where n is a natural integer. The semantics is that of Skip if n = 0 and otherwise, recur-
sively, of pn-1 ; p. Informally, this means n executions of p.

The instruction is not important by itself (as only a few programming languages offer
it directly) but as a stepping stone to the next construct, the loop instruction.

The rule is:

and is a direct consequence of the compound rule /13/.

Imprecision: the rule does not introduce any imprecision.

Example 3 to 8: take x := y ; y := z ; z := x for p and c, y, d, z for a. Then:

The sequence oscillates indefinitely, for odd and even n, between the values of a » p0

(which is a) and a » p1. This is as intuitively expected since p swaps the values of y and z.

pn

a » p0 = a /23/
a » pn = (a » pn-1) » p -- For n > 0 /24/

a » p0 = c, y, d, z = a
a » p1 = c, x, z, d, y
a » p2 = c, y, d, x, z = a
a » p3 = c, x, z, d, y = a » p1

a » p4 = c, y, d, x, z = a
etc.

§4 The basic calculus 17
4.9 Loop

The E0 instruction

has the informal semantics of executing p repeatedly any number of times, including zero.
Formally, if an instruction is defined as a relation between input and input states (see A.1),

then loop p end is simply .

A first form of the loop rule follows from this definition:

Imprecision: the rule by itself does not introduce any imprecision. Imprecision may follow,
however, from translating loop constructs as found in actual programming languages into the
E0 form, since the translation will lose any information that the programmer or prover may
have about the actual number of iterations, deduced for example from the loop exit condition
in the usual while or until form of loop.

Theorem: the alias relation induced by a loop per /25/ is finite.

Proof : trivial since alias relations are members of P (E × E) for a finite set E (of variables
and expressions appearing in a program); even an infinite union of such relations is finite.

This theorem, and the loop rule in its first form /25/, are not directly useful since they
do not yield a practical way of computing a » loop p end. A more interesting version of
the theorem, the loop aliasing theorem, will follow from the discussion of monotonicity
appearing next, and will yield the practical version of the loop rule, /29/ below.

4.10 Monotonicity and the loop aliasing theorem

To deal effectively with loops, and procedures as introduced next, we need structural prop-
erties. For any instruction p, we define monotonicity of the » operator, with respect to the
partial order relation ⊆ (here over relations, that is to say, subsets of E × E), as the follow-
ing property for any alias relations a and a’:

Alias monotonicity theorem: all rules given so far satisfy monotonicity.

Proof : the rules for the control structures — compound, conditional, repetition and loop
— clearly preserve monotonicity if the constituent instructions satisfy it; so we must estab-
lish monotonicity for basic instructions. Since a » p is deduced from a, and a’ » p similarly
from a’, by some additions and removals of pairs, the proof must show that any pair added
to a is also added to a’ and that any pair removed from a’ either was not in a or is also
removed from a. The only direct source of additions is the assignment rule /17/; added pairs

loop p end

a » loop p end = ∪ (a » pn)
 n: N

/25/

a ⊆ a’ (a » p) ⊆ (a’ » p) /26/

∪ pn
n: N

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §418
for the assignment x := y include [x, y], which will also be added to a’, and [x, z] where a pair
[y, z] was in a, and hence in a’, so that this pair will be added to a’. Removal of pairs occurs
through the rules for forget, create, cut and assignment. In the first three cases the set of
removed pairs depends entirely on the instruction and not on a or a’: removing any of the
pairs from a’ will remove it from a if it was there. In the assignment case, the rule removes
all pairs [u, v] where either u or v is x; if any such pair in a’ is also in a, it will be removed
from a. The rule also removes all reflexive pairs, but none of those comes from the original
a or a’ as they are alias relations.

The following properties are also of interest:

In each case the left side is a subset of the right side as a consequence of the alias mono-
tonicity theorem. The proof of the reverse inclusions follows, as for that theorem, from
considering additions and removals for each kind of instruction.

The next theorem yields a practical way to compute the alias relation induced by a loop:

The proof of this theorem is longer than one might expect and appears in appendix C. As
a consequence of the theorem we will use the following version of the loop rule:

Example 9: a loop with the same body as in the repetition example

and started with the same initial alias relation a = c, y, d, z reaches its fixpoint at t2:

In this example, the sequence a » pn did not converge, as we saw in 4.8. But the loop alias-
ing theorem tells us that the sequence tn always reaches a fixpoint — here t2 — finitely.

((a » p) ∪ (a’ » p)) = (a ∪ a’) » p /27/
(a ∩ a’) » p = ((a » p) ∩ (a’ » p)) /28/

Loop aliasing theorem
For given p, let the sequence t be defined by t0 = a and tn+1 = tn ∪ (tn » p).
There exists an integer N such that
1 For any i < N, ti ≠ ti+1.
2 For any i > N, ti= tN.
3 tN = (a » loop p end).

a » loop p end = tN /29/
-- For the first N such that tN = tN+1,
-- with t0 = a and tn+1 = tn ∪ (tn » p).

loop x := y ; y := z ; z := x end

t0 = a = c, y, d, z
t1 = c, x, z, c, y, d, y, d, z
t2 = c, x, z, c, y, d, y, d, x, z
t3 = t2
-- etc. (all subsequent values equal to t2).

§5 Introducing procedures 19
4.11 A more intricate example

Example 10: as a more extensive application of the E0 calculus, involving instructions of
all the kinds encountered so far, consider the following program p (semicolons omitted at
end of lines):

The calculus yields, as the value of ∅ » p, the relation a, c, h, c, e, f, c, f, g, y, c, g, h.

4.12 Formalizing E0 and soundness

It is natural at this point to ask how the calculus can be justified in terms of a definition of
the programming language. Appendix A (section A.1) gives a proof of soundness, for the
main instructions of E0, with respect to a formal definition of the language.

5 Introducing procedures

Our next language, E1, adds to E0 the notion of procedure, with possible arguments. A
procedure r is defined by:

• A procedure name.

• A procedure body, written r.

• A list of formal arguments, written r..
E1 has a new instruction, call r (l), where r is a procedure and l a list of variables; the effect
is to execute r with l as actual arguments; for empty l, the parentheses are omitted. (In
actual programming languages the usual syntax for such a call is just rn (l) where rn is the
name of r.) A program is defined by a non-empty set of procedures and the specification
of one of them, with no arguments, as the main procedure.

The rule for a program pr with main procedure Main is

used in practice with ∅ for a, assuming every program starts with an empty alias relation.
The rule for the call instruction itself is:

then x := y else x := a end
then cut x, y ; z := x else end
g := h ; x := y ; z := a; b := x
loop e := f ; a := e end
loop

then c := b ; a := f ; g := x else c := a ; a := g end
f := x

end
b := z ; forget b ; a := e ; create z ; a := h ; cut a, g ; create x

a » pr = (a » call Main) /30/

a » call r (l) = a [r.: l] » r /31/

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §520
using the “:” operator (generalized to lists of variables /20/ from the original definition for
assignment /18/). This rule indicates that we understand the effect of a procedure call as
the execution of the procedure’s body, preceded by a sequence of assignments fi := ui for
every formal argument fi and the corresponding actual argument ui.

In the absence of mutually recursive procedures, computing the alias relation of a
program can simply proceed as in the previous examples: for every program element p,
starting with the entire program, apply the corresponding alias calculus rule, which
expresses a » p in terms of a’ » p’ for sub-elements p’ of p; the process terminates when
applied to atomic elements such as assignments. This scheme no longer directly works for
a program that includes mutually recursive procedures, since the computation of a » r
through the call rule /31/ may lead to a new evaluation of a » call r (l’). To obtain a directly
applicable process, we note that if a program consists of a number of procedures r1, r2, …
rn, and use the notation bi (a) for a » ri ,we may write the application of the call rule to any
one of them, expanding a » ri, as

where all the functions involved, ALi and fj, i, deduced from applying the rules of the cal-
culus to the text of bi, are monotone. If r1 is the main procedure, defining the alias relation
induced by the whole program, computing b1 (∅) will give us, in the resulting b vector,
the alias relation at the exit point of every procedure (which is where we need it to apply
axiomatic semantics, for example in weakest-precondition style). Since all functions
involved are monotone and the set of relations is finite, standard reasoning shows that
starting with empty relations for all the bi and iterating will reach a fixpoint finitely, yield-
ing the desired result. The prototype implementation directly applies these ideas, as illus-
trated by the next example.

Imprecision: by itself this rule introduces no imprecision. Translations from pro-
gramming languages will cause imprecision because E1 treats every formal argument as a
global variable; local variables and function results will also be treated as global. The
translation will lump together, for the computation of aliases of a local variable, result or
formal argument, values that belong to different recursive incarnations of a given recursive
routine (or to concurrent executions of that routine in different threads)

Example 11 (in this example and the following ones the starting alias relation is
empty): we consider the recursive procedure

bi (a) = ALi (b1 (f1, i (a)), b2 (f2, i (a)), … bn (fn, i (a)))

procedure Main
then

x := y
else

x := a ; call Main
end

end

§6 The object-oriented calculus 21
The resulting relation is just x, y: the conditional’s second branch can never contribute anything.

Example 12: If we reverse the order of the instructions in the else clause of the
previous example (giving call Main ; x := a), we get a, x, x, y.

Example 13: the following are mutually recursive procedures (without arguments and
still simple, to allow intuitive manual verification of the result):

The result, with Main as the main procedure, is a, c, b, x, x, y. In particular, x can get
aliased to a and a to c, but not x to c.

Example 14: another case of mutually recursive procedures:

The result is a, h, m, c, e, f, g, y, m, n. This example is not drawn from any actual program
but illustrates the application of the calculus to procedures with a complex recursion and
control structure.

6 The object-oriented calculus

The next and last language level, E2, introduces object-oriented mechanisms. E2 is suffi-
ciently powerful to support applying the calculus to a modern object-oriented language
such as Eiffel, Java or C#. The relevant part of object technology here is the dynamic

procedure Main
then x := y else x := a ; call q end

end
procedure q

x := b ; then call Main else a := c end
end

procedure Main
then x := y else x := a end
then cut x, y ; z := x else end
then call q else g := h end
x := y ; z := a ; b := x
loop

e := f
then a := e else end

end
then c := b ; a := f ; g := x else

loop c := a ; a := g end
call Main

end
f := x ; b := z; forget b ; a := e ; create z; a := h
cut a, g ; create x

end
procedure q

then m := n else m := h ; call Main end
end

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §622
object model: dynamic object creation, pointers or references (we will consider the two
terms synonymous), and the possibility for objects to contain pointers to other objects.
This last facility is the only novelty of E2’s dynamic model, since E0 and E1 already
offered the first two.

Other object-oriented mechanisms such as inheritance and genericity have only mar-
ginal influence on aliasing. Polymorphism and dynamic binding introduce some interest-
ing issues which another article will address.

6.1 New language concepts

Making E2 support object-oriented programming means adding three language concepts:

• Qualified expressions with two or more components, such as x.y.z, which can be
used as sources of assignments, as in u := x.y.z.

• Qualified calls, such as x.f (u, v).

• The notion of current object (Current in Eiffel, this in C++ and Java, self in
Smalltalk). This is the central concept of object technology, giving rise to the
“general relativity” principle of O-O programming: every operation is relative to a
current object; starting a qualified call x.f (v) makes a new object (the object attached
to x) current; ending such a call restores the previous current object as current.

We will not directly consider qualified assignments of the form x.a := v permitted by pro-
gramming languages such as Java, C# and C++. It may be possible to include qualified
assignments directly into the theory, a task that the present article does not undertake (as a
matter of principle, since qualified assignments fly in the face of all principles of software
engineering, and even the designers of languages that include this mechanism advise
against using it); it happily leaves it for other authors to solve. The omission of this mech-
anism in the theory and calculus as described here has no practical consequence on the
application to the relevant programming languages, since it suffices to assume a pre-pro-
cessing step that translates all qualified assignments x.a := v into qualified calls to setting
procedures, such as x.set_a (v).

6.2 Object-oriented alias diagrams

The new expressions forms appearing in the figure, Current and “negative references” such
as x’, will be defined shortly. E2 alias diagrams still have a source node, which now repre-
sents the current object, but that node no longer has any special property; edges can exist

x, y

x, z

Object node

Source node

a, b

m, a’

Current, t
e

f, g, h

x’
z

§6 The object-oriented calculus 23
between value nodes (from now on called object nodes), as illustrated by the figure. As this
example suggests, cycles are now possible, albeit between objects nodes only. Cycles
involving negative references will play a fundamental role in representing object-oriented
concepts; we will see that they arise as a result of passing arguments to qualified calls.

One-expression edge labels , which we discarded in E0 and E1, are
meaningful for O-O alias diagrams. Also, we no longer systematically remove the end
node when we remove an edge, but only do so if no other edge leads to that node. (This
property reflects the need for garbage collection in an object-oriented model.)

An object node represents a set of possible objects, all of the same type (class); the
interpretation of an edge with labels x, y… between two object nodes, representing sets of
objects OS1 and OS2, is that every object in OS1 may have reference fields to an object in
OS2; since in typed object-oriented programming every field of an object corresponds to
an attribute (also called “member variable” or “data member” in various O-O languages)
in the relevant class, the fields involved are those corresponding to attribute names.

In the figure, x, y and z are names of attributes of the current class; e, f, g and h are
attributes of the class describing the object in the middle-bottom node. The calculus does
not need information about the classes; we assume that it is applied to a typed O-O lan-
guage after type checking, so that every attribute name refers unambiguously to a class.
This convention is particularly important in Eiffel where style rules suggest the systematic
use, for consistency, of a small set of feature names such as first and item. In the applica-
tion of the calculus to a specific programming language, a good convention might be to
identify the class as part of the attribute name, as in itemLIST, itemCELL etc. We will need
no such convention here. The nodes in the last figure might correspond to objects of the
same type or different types.

In previous language levels the set E of expressions only contained single variables.
E2 offers three new forms of expression:
• The special expression Current represents the current object (relative to any node).

Informally, Current denotes a link from a node to itself, as in the bottom-right node
of the last figure.

• For any variable x, the negation (or “inverse”) of x is written x’. Informally, consider
a call x.r, executed on behalf of a certain client object, which applies r to a supplier
object referenced by x; then x’ represents a reference back from the supplier to the
client. It will appear in edges between the corresponding nodes, as in the preceding
figures. Like Current, the negation operator introduces cycles into E2 graphs.

• Finally, E2 supports dot expressions of the form x.y.z…
The presence of dot expressions gives alias diagrams a richer meaning: aliases arise not only
from edges but also from paths in the diagram. The rule is that if two paths have the same
starting node and the same ending node, the corresponding dot expressions are aliased. Con-
sider for example, in the last diagram, the edge labeled z from the source node to the top-right
node; it implies that z is aliased to x.a, x.b, y.a and y.b (paths through top nodes) as well as
x.e and z.e (bottom paths).

Section A.2 (part of an appendix) shows how to extend the formal model defined for
previous language levels to the object-oriented mechanisms just introduced.

x

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §624
6.3 Dot completeness

For simplicity it is convenient to add the dot to the calculus as an operator on variables and
expressions representing paths: if v is a variable and e an expression x.y.z…, we write v.e
to denote the path v.x.y.z… and extend this notation to two expressions, writing e.f for the
concatenation of e and f.

The following fundamental property, reflecting the preceding observation on alias
diagrams, characterizes the semantics of aliasing with dot expressions:

This requirement is added to the basic definition of alias relations as symmetric and irreflex-
ive (3.1). All the calculus rules to be introduced now will preserve dot completeness. This
is also trivially the case with the previous rules, which did not introduce dot expressions.

In the dot calculus, Current plays the role of zero element and variable negation the
role of the negation operation. For any expression e (a variable or a path) and any variable x:

and as a consequence, for non-empty e:

/33/ and /34/ express that Current always represent a link to the current node. Note that the
interpretation of Current, like everything else in the general relativity of object-oriented
programming, pertains to an object and the corresponding class; /34/ describes a situation
such as

where the various nodes involved might correspond to different classes. In the application
to a typed object-oriented language, Current is really CurrentC for some class C. Clearly,
e.CurrentC only makes sense if C is the class of the objects reached by e (the rightmost
node in the figure); the alias calculus need not concern itself with this question, since we
assume it is applied to type-checked programs.

In this framework, the alias calculus needs only two more rules to account for object-
oriented programming: an adaptation of the assignment rule to account for multidot
sources; and a rule for qualified calls call x.r.

Dot completeness
An alias relation a involving dot expressions must satisfy, for any
expression e1, e2, f1 and f2:

[e1, e2] ∈ a ∧ [f1, f2] ∈ a [e1.f1, e2.f2] ∈ a /32/

Current.e = e /33/
e.Current = e /34/
x.x’ = Current /35/
x’.x = Current /36/

x.x’.e = e /37/
x’.x.e = e /38/

Current
e

§6 The object-oriented calculus 25
6.4 Dot expressions as sources of assignments

In an assignment x := y, the source expression y may now be a multidot expression, such
as u.v.w. An illustration with an example alias diagram (with no initial aliasing) is:

The original assignment rule /17/ only requires a small adaptation. In fact the rule itself,
which reads a » (x := y) = a [x: y] does not change; nor does the definition of a [x: y]:

We need, however, to adapt the definition of the \– operator to account for possible dots in y.
The original definition (3.1) was that r \– A is r deprived of any pair that involves a member
of A. From now on r \– A is also deprived of any pair involving a multidot expression whose
first component (in the sense of u in u.v.w) is a member of A.

As a consequence, the set b / y (involved in the set of pairs {x} × (b / y), added to the
relation on the second line above) may be empty, in which case {x} × (b / y) is itself empty.
This reflects an important practical property: while in the non-O-O calculus an assignment
x := y always adds the pair [x, y] to the alias relation, this is not necessarily the case with
dot expressions. In the assignment

we should not alias x to x.a! The instruction removes all aliases of x, and creates no new
aliasing unless x was previously aliased to some other expressions; then for every such
expression y, it aliases x to y.a.

These observations do not rule out the possibility for x to
become aliased to x.a; although such a case cannot be the result
of the assignment above, it will happen if a is aliased to Current.

The rule captures all these cases.
Imprecision: the rule introduces no imprecision.
Example 15: the following program uses dot expressions as assignment sources:

The result is a, b, x, y.a, z, x, y.b, z.

a [x: y] = given b =
Δ a \– {x} then -- Same as /18/

b ∪ ({x} × (b / y))
end

x := x.a

x := y ; a := b
z := x.a ; x := x.a

u v w

 x

ax

y

x a,
Current

ax

y

x, z

b

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §626
6.5 Qualified call

The last remaining construct is the qualified procedure call call x.r (l) where l is a list of
actual arguments. To handle it in the alias calculus, we need the following notation: if a is
a relation (in our examples, an alias relation), x a denotes the relation containing all pairs
[x.e, x.f] such that a contains [e, f].

In a naïve approach to handling x.r, we would note that if a call to r (unqualified)
aliases e to f then a call to x.r aliases x.e to x.f. Then a » x.r would be x (a » r). This does
not, however, capture the possible changes to aliasing on the side of the client (the object
on whose behalf the call x.r is made). Consider for example, in an object-oriented pro-
gramming language, the instructions

with, in the supplier class (the type of x):

where c is an attribute of that class. The execution of the call starts with the equivalent of
an assignment f := l of the actual argument to the formal argument. The naïve rule would
give us the (symmetrized) pairs [l, m], [c, f] and [x.c, x.f], which are correct, as well as
[f, l] and as a result [f, m] which are meaningless since they involve variables applicable
to different objects (and possibly different classes). It misses, on the other hand, the alias-
ing of x.c to l and m. It is unsound.

Obtaining a sound rule requires the negation operator on references. The correct
way to represent actual-formal argument association for call x.r (l) is not f := l but

which associates the formal argument f to the actual argument l considered in the context
of the supplier object. The role of the negative reference x’ is to provide, in a qualified call,
a link back to the client. This enables the supplier, if needed, to update references that
belong to the client side — a principal facility, although one fraught with obvious risks
(aliasing risks in particular), of the object-oriented style of programming.

The reason for the negation rules /35/ and /36/ should now be clear: x.x’ is Current
(for the client) and x’.x is Current (for the supplier).

The rule given below follows from this discussion, with some further adaptations:

• In the general case the actual argument l is not a single expression but a list. It will
be associated with the list of formal arguments, written r.(section 5).

• The actual-formal association should cease after the call. In the last example, the alias
pair [l, x.f] is applicable throughout the execution of the call, but should disappear
on completion of this call. This indicates that after applying the techniques described
the rule must remove all pairs involving an element of x r..

The alias calculus rule for qualified calls is:

l := m
x.r (l)

r (f : T) do c := f end /39/

f := x’.l

x

l, m c, f

(See below the
completion of this figure)

§6 The object-oriented calculus 27
The final term \– x r.represents the removal of pairs involving x.f for a formal argument
f, as just discussed. The expression (x’ a) [r.: x’ l] represents the result, starting from
the original relation a, of prefixing both elements of every pair by x’ and a dot, then adding
pairs [f, x’.c] for every formal argument f and the corresponding actual c.

For a routine without arguments, these two elements disappear, giving:

We can use this simplified form to see how the general rule
works. To compute the aliasings induced by call x.r starting
from the aliasing environment a, we need to compute the alias-
ings induced by an execution of the procedure body r; not
exactly from a, however, since a is relative to the client object,
but from a as seen by the supplier object (known through x, the
target of the call). This supplier view is x’ a, with both elements
of every pair in a prefixed by the negative reference x’, a back pointer giving access to the
client. In the above example /39/, r executes c := f using a formal argument f aliased to the
actual argument l, known in the routine as x’.l (through the actual-formal argument
reflected by the expression a [r.: x’ l] in /40/). Then c will get aliased to x’.l. The result-
ing supplier-side relation has among others the pairs [f, x’.l] and [c, x’.l].

This relation, which we may call a’, is (x’ a) » r . It is only meaningful in the envi-
ronment of the supplier. After the execution of r returns, we need to interpret the resulting
aliases in the environment of the client. Since the client knows the supplier as x , the rela-
tion we need is x a’, that is to say a’ but with both elements of every pair prefixed by x.
If such an element is of the form x’.e, this prefixing will yield just e, since the dual rule /
35/ tells us that x.x’ = Current and /33/ tells us that Current.e = e. In the example, the
pair [c, x’.l] in a’ will give [x.c, l]; this is the proper result as illustrated. Note that the
same process applied to the pair [f, x’.l] will give [x. f, l]; such an association with a for-
mal argument of r is no longer meaningful after the routine’s execution, and is removed by
the last part of the full rule /40/.

Thus we are permitted to prove that the unqualified call creates certain aliasings, on
the assumption that it starts in its own alias environment but has access to the caller’s envi-
ronment through the negated variable, and then to assert categorically that the qualified
call has the same aliasings transposed back to the original environment. This change of
environment to prove the unqualified property, followed by a change back to the original
environment to prove the qualified property, explains well the aura of magic which attends
a programmer's first introduction to object-oriented programming3.

a » call x.r (l) = x ((x’ a) [r.: x’ l]) » r) \– x r . /40/

a » call x.r = x ((x’ a) » r) /41/

3. Since no reader of the original version of this article seemed to notice the reference, it may be appropriate to reveal
that this paragraph is a re-rendering of Tony Hoare’s comments on the axiomatic model of recursion in his 1971 Pro-
cedures and Parameters: An Axiomatic Approach.

x

x’
l, m

(Completion of
preceding figure)

c, f

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §628
In the example, as illustrated by the figure, the resulting alias relation (for the original
object, represented by the top-left node in the last figure) is l, m, x.c. It mentions neither
the negated variable x’ nor the formal argument f, which are meaningful only for the target
object (top-right in the last figure).

To update the previous proofs that a fixpoint exists and is reached finitely, we note
that applying call x.r to an alias relation a may increase the dot count of at least one of
element of some pairs in a. In the case of recursive or mutually recursive procedures, this
property potentially invalidates the earlier finiteness arguments since the count may grow
unbounded. It causes no practical problem, however, since the basic assumption of the the-
ory of aliasing (2.3) is that it only considers expressions that actually appear in a program.
So it suffices to limit application of rule /40/ to alias relations a whose dot count is no
greater than the maximum dot count for expressions in the program, defining the dot count
of a pair of expressions as the maximum of the dot counts of its elements, and the dot count
of a relation as the minimum dot count of its pairs. (The precise argument is more subtle,
since in principle two expressions of the program could become aliased as a result of rule
/40/ aliasing each of them to an expression not appearing in the program and having a dot
count higher than any that will be computed using the limited rule. It is easy to see, how-
ever, that this case is impossible.)

Example 16: the following program includes a qualified call with arguments,
x.q Current, f).

Applying the argument-passing scheme, as represented in /40/ by the term a [r.: x’ l] , is
equivalent to pretending that the body of the routine q starts with assignments of actual to
formal arguments:

(Example 17 is a variant of example 16 that handles argument passing explicitly, in this manner.)

The resulting alias relation is Current, x.b, x.d, f, x.a, x.c, x.b.f, x.c. As appropriate,
it only includes aliases reachable from the node representing the current object (the
node at the top-left in the figure). An alias pair such as [a, c], which applies to another node
(the rightmost node in the figure, representing the target of the call x.q) appears as
x.a, x.c in the alias relation relative to the current object node.

-- In root class:
procedure Main

f := x.a -- f is an attribute of the root class.
call x.q (Current, f)

end

-- In another class CC:
procedure q (b, c)

d := b -- d is an attribute of CC. (So is a.)
end

b := x’.Current
c := x’.f

x

b, d, x’

f a, c

Current

§6 The object-oriented calculus 29
6.6 Aliasing among list structures

Example 18: for the final example (this variant and the next), consider the list manipulation
program mentioned in the introduction. Here is the text again, including type declarations
(for clarity only, since they do not affect the calculus) and the procedures from class CELL:

Assume two separate lists x and y, to which we may add elements to our heart’s content:

Then we repeatedly access arbitrary elements of either list:

The alias relation (as obtained from running this example in the implementation) is:

-- In class LIST:
extend (a: ELEMENT)

-- Add cell at end, with a as item.
local

new, last: CELL
do

-- First create new cell:
create new ; new.set (a)

-- Then insert new cell at end:
if first = Void then

-- List was empty. It will now consist of a single cell, the new one:
first := new

else
-- List was not empty; go to its last cell and make last denote it:

from last := first until last.right = Void loop last := last.right end
-- Then link last cell to new cell:

last.set_right (new)
end

end
-- In class CELL:

set (v: ELEMENT) do item := v end
set_right (right: CELL) do right := c end

procedure build
local

el: ELEMENT
do -- The two instructions below could also be in separate branches of a then … else.

extend_client := x ; loop create el ; call x.extend (el) end
extend_client := y ; loop create el ; call y.extend (el) end

end

procedure Main
call build
f := x.first ; g := y.first
loop then f := f.right else g := g.right end end

end

right

item item

right
right

item

a
new(ELEMENT)

(CELL)

lastfirst

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §730
The full relation, as noted, would be infinite; it includes for example all pairs of the form
[x.first.right.…, x.last] with an arbitrary number of “.right” after x.first. As discussed in
6.5, the application of the theory to a particular annotated program breaks off at the highest
dot length of expressions found in the program. To run the examples, the current imple-
mentation sets this maximum to thee dots, as illustrated in the above result.

The most important property of that result is that the relation does not include the pair
[f, g], showing that no pointer in either list can ever become attached to a cell of the other:

Example 19: The last example keeps example 18 unchanged with one exception: the
assignment x := y added at the beginning of Main. The resulting alias relation now includes
f, g, x.first, y.first, f, g, x.first.right etc. (run the implementation to see the full list). The
important property is that now, as a result of this single change, f can be aliased to g.

7 Prototype implementation

The prototype implementation is stand-alone, rather than integrated into the compiler of a
programming language. It is written in Eiffel; the language’s mechanisms of inheritance
(particularly multiple inheritance), genericity and contracts have proved essential to the
prompt completion of this implementation.

While a functional language might seem appropriate for such a prototype, the use of
an imperative language was in fact essential. In particular, many delicate decisions
involved when to duplicate a data structure, such as the representation of an alias relation,
and when simply to update it. To complement standard object-oriented mechanisms,
Eiffel’s agent mechanism, which provides the power of closures in functional languages,
also played a fundamental role.

The implementation makes it possible to write an E2 program and produce its alias
relation in canonical form, as illustrated by the examples of this article. All the examples
are part of the implementation and can be tried in the downloadable version.

At execution time response for these examples is immediate, but no complexity anal-
ysis has been performed to explore scalability.

f, x.first, x.last, f, x.first.right, x.last, f, x.first.right.right, x.last, f, x.last.right,
f, x.last.right.right, g, y.first, y.last, g, y.first.right, y.last,
g, y.first.right.right, y.last, g, y.last.right, g, y.last.right.right, x.a, x.new.item,
x.last.right, x.new, x.a, x.new.item, y.a, y.new.item, y.last.right, y.new

x

y

f (may point to any of these cells)

g (may point to any of these cells)

No aliasing between
f and g, or between
any pointers in the
two structures

§8 Application to a programming language and open problems 31
8 Application to a programming language and open problems

The translation from an actual programming language involves the steps discussed earlier:
ignoring conditions of conditionals and loops; replacing functions by procedures; replac-
ing arguments, local variables and function results by attributes; associating negative ref-
erences with targets of qualified calls.

A number of problems remain to be addressed:

• Although the existing implementation provides a convincing proof of concept, it
should be integrated in the compiler for an actual programming language.

• Aliasing properties of arrays and other core data structures may require specific rules.
• The modular application of the calculus calls for special attention.
• Provision should be made for polymorphism and dynamic binding.
• On the theoretical side, the formal model and soundness proofs sketched in appendix

A should be completed.
• A “must alias” variant of the calculus (appendix D) may be worth investigating.
• The application to the frame problem must be clarified (in a companion article).
• Application to large programs requires both experimentation and theoretical analysis

of the algorithms’ complexity.

Appendix A: Formal model and soundness

This appendix shows how the calculus can be proved in reference to a formal definition of
the programming language. It starts with the basic language (A.1) then sketches how to
add object-oriented constructs (A.2). It also defines (B) p← (the set of variables that an
arbitrary instruction p may set), as needed by the definition of soundness /11/.

A.1 Semantics and soundness of E0

An E0 program may be defined as a relation in State ↔ State. A deterministic language
would use functions, possibly partial, rather than relations; non-determinism keeps the lan-
guage definition simple, in particular for the loop construct.

A state s is characterized by:

• A set of variables that have a value in that state: s.def (a member of P (Variable)).

• A set of addresses allocated in that state: s.addr (a member of P (Address), assuming
a suitable set Address).

• The values of the variables in the state, as represented by a function s.value, a
member of Variable Address (using for the set of possibly partial functions),
where domain (s.value) = {v: Variable | v ∈ s.def}.

To define a state s, it suffices to give s.def, s.addr and s.value.

To define E0 formally we specify each instruction as a relation in State ↔ State, by con-
sidering in each case an arbitrary state σ and stating the properties of states σ’ that may result
from applying p. For example, in the case of skip (the identity relation on State), σ’ = σ.

For the instruction forget x, the definition is: σ’.def = σ.def – {x}; σ’.addr = σ.addr;
σ’.value (y) = σ.value for y ≠ x.

→| →|

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §A.232
For create x, for some na in Addresses such that na ∉ s.addr: σ’.def = σ.def ∪ {x};
σ’.addr = σ.addr ∪ {na}; σ’.value (y) = na; σ’.value (y) = σ.value (y) for y ≠ x.

For x := y: if y ∉ s.addr, as for forget x; otherwise: σ’.def = σ.def ∪ {x}; σ’.addr =
σ.addr; σ’.value (x) = σ.value (y) ; σ’.value (z) = σ.value (z) for z ≠ x.

For the compound p ; q: what this notation means as a mathematical convention,
taken to denote composition of relations in the order given (the same as q o p).

All the elementary constructs defined so far are functions (deterministic). Non-func-
tion relations (representing possible non-determinism) may arise with:

• Conditional: then p else q end is defined simply as another notation for p ∪ q.

• Loop: loop p end is defined as . The term pn (corresponding to the E0

repetition construct) retains its definition from mathematics: p0 = skip, pn+1 = (pn ; p).

In this framework, every state induces an alias relation defined as

An earlier formula /11/ defined soundness in an axiomatic semantics style. For a language
such as E0, where instructions and programs are defined directly as relations, we may use
the following version of the soundness rule, for any instruction p:

As an example of soundness proof, consider forget x. For a given σ, the above definition of
the forget instruction tells us that there is only one σ’ and that a pair [y, z] is in aliases (σ’)
if and only if y ≠ x, z ≠ x and σ.value (y) = σ.value (z). The pair is also in aliases (σ) » forget x
since the forget rule /14/ defines aliases (σ) » forget x as aliases (σ) \– {x}}.

In this example the ⊆ relationship of the soundness requirement /42/ is actually an
equality. This is also the case with other constructs seen so far since, as noted, they do
not introduce imprecision.

Soundness proofs should similarly be provided for every instruction, although they
do not appear in the present article.

A.2 Object-oriented constructs

Adapting the previous formal model for the object-oriented version of the language, E2,
involves changing the representation of states and the signature of instructions. The state
now involves a set of objects, where each object may contain references to other objects.
An instruction, previously a relation in State ↔ State, now has the signature Object →
State ↔ State; the use of an Object as the first argument reflects the notion of current
object and the principle of general relativity.

The full refinement of the formal model, and the corresponding proofs of soundness
for the O-O rules of section 6 belong in another article.

aliases (σ) =
Δ {[x, y] | x ∈ σ.def ∧ y ∈ σ.def ∧ σ.value (x) = σ.value (y)}

[σ, σ’] ∈ p aliases (σ’) ⊆ (aliases (σ) » p) /42/

∪ pn

n: N

§A.2 Object-oriented constructs 33
Appendix B: Computing the set of modified variables

The definition of the semantics of the alias calculus (3.3) uses p←, the set of variables that
every terminating execution of p (a language construct) will set.

The computation of p← is undecidable. To prove this property (a case of Rice’s the-
orem), we show that if we could compute p← we could also solve the halting problem.
Consider the program

where b is a terminating sequence of instructions (which may set the variable over). For
any Turing-complete language, termination of /43/ for arbitrary b is undecidable, even in
the absence of any goto or other loop-exit instruction. Using a fresh variable over1 we can
rewrite the program, without changing its semantics, as

Calling the loop body (b followed by the conditional) p, the loop terminates if and only if
over1 ∈ p←. So if we could compute p we could decide the termination of /43/.

The impossibility of computing p← exactly in the general case is not a major problem
in practice: as noted in 3.3, the Hoare-stye rule defining the semantics of the alias calculus
remains valid, if no longer a weakest-precondition rule, if we replace p← by an under-
approximation. The following rules define a sound under-approximation of p←:

Under-approximation appears in the following cases: conditional (for then p else q end we
only retain variables that appear in both p← and q← even if q, for example, is never exe-
cuted); loop (where the result is ∅ to account for the case of zero executions, which might
not occur); and qualified call (if x is aliased to y we could also include y r←).

from over := False until over loop b end /43/

from
over := False ; over1 := False

until over1 loop

end

skip← = ∅
(create x)← = {x}
(forget x)← = {x}
(cut x, y)← = {x, y}
(x := y)← = {x}
(p ; q)← = p← ∪ q←
(then p else q end)← = p← ∩ q←
(pn)← = p←
(loop p end)← = ∅←
(call r)← = r←
(call x.r)← = x r←

b
if over then over1 := True end Loop body p

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §A.234
Appendix C: Proof of the loop aliasing theorem

The loop aliasing theorem (4.10) states that for a given instruction p, if the sequence t is
defined by t0 = a and tn+1 = tn ∪ (tn » p), there exists an integer N such that

1 For any i < N, ti ≠ ti+1.

2 For any i > N, ti= tN.

3 tN = (a » loop p end).

The first two properties are immediate:

• The sequence tn is non-decreasing over a finite set, and hence has a fixpoint.

• A non-decreasing sequence might encounter two or more equal consecutive elements
(a plateau) before it reaches its fixpoint. This, however, cannot happen for a sequence
defined in the form tn+1 = f (tn) (here tn+1 = tn ∪ (tn » p)): if tN = tN+1, then tN+2 = f (tN+1),
also equal to f (tN) and hence to tN+1 and tN; all subsequent elements are equal as well.
So the fixpoint is reached at the first N such that tN = tN+1; this is the N of the theorem.

Property 3 is informally clear if we consider loop p end as equivalent to skip ; (loop p end ; p),
the fixpoint of the sequence tn. For a more rigorous proof, let us show that tn is the same
sequence as the sequence sn defined as

This will give us the desired result since a » loop p end, defined in /25/ as , is

also as a consequence ; since sn ⊆ sn+1 for all n, the fixpoint of the sequence (the

first sN such that sN = sN+1) will, if the sequences sn and tn are the same, yield a » loop p end.

The proof that the sequences are the same uses induction. First, s0 = t0 = a and s1 = t1 =
(a ∪ (a » p)). (The induction step needs both base steps.) For the induction step, we prove sep-
arately that sn+1 ⊆ tn+1 and that tn+1 ⊆ sn+1. For the first property we expand the definition:

Since sn = tn by the induction hypothesis and tn ⊆ tn+1 by the definition of t, it suffices to

prove that a » pn+1 ⊆ tn+1. By the definition of repetition, a » pn+1 = (a » pn) » p. We note

that (a » pn) ⊆ sn by the definition of sn /44/, so (a » pn+1) ⊆ tn by the induction hypothesis.

This implies by monotonicity that ((a » pn) » p) ⊆ (tn » p) and hence (by the definition of

the sequence tn) that ((a » pn) » p) ⊆ tn+1. This completes the proof that sn+1 ⊆ tn+1.

For the induction step in the reverse direction, we expand the other definition :

sn
Δ
= ∪ (a » pn)

i : 0 .. n
/44/

sn+1 = sn ∪ a » pn+1

tn+1 = tn ∪ (tn » p) -- By the definition of tn
= sn ∪ (sn » p) -- By the induction hypothesis

∪ a » pn

n: N
∪ snn: N

§A.2 Object-oriented constructs 35
Since sn ⊆ sn+1 it suffices to prove that (sn » p) ⊆ sn+1. Since we have two base steps (n = 0
and n = 1), we may assume n > 1 and expand sn as sn–1 ∪ (a » pn), so that by /27/ sn » p
is (sn–1» p) ∪ (a » pn+1); since the first operand is tn–1 » p by the induction hypothesis and
hence a subset of tn (which is also sn), both terms are subsets of sn+1.

Appendix D: Towards a “must alias” calculus

The relation studied in this article describes when two variables may become aliased; it is
usually an over-approximation of aliasings that do arise in program execution, first
because not all executions will cause all possible aliasings, but also because the theory, as
noted, may incur loss of precision. Some applications may need a “must-alias” theory,
which can only err on the side of over-approximation.

While such a theory is beyond the scope of the present work, we may note that many
of the rules of the may-alias calculus (collected in the next appendix) remain the same. The
main difference will be that the rules for conditional /21/, repetition and loops /29/ will use
intersection rather than union.

Appendix E: The full calculus

Below for reference is the list of rules introduced for the calculus, preceded by the principal
notations definitions on which they rely. The rule for the fixed repetition construct pn is
omitted as this instruction is mostly useful as a stepping stone towards the loop construct.

– Set difference
a \– E = a — A × E

-- i.e. a deprived of all pairs
-- involving an element of E

a / x = {y: E | (y = x) ∨ [x, y] ∈ a}
-- i.e. all elements aliased to x in a, plus
-- x itself

a » skip = a /12/
a » (p ; q) = (a » p) » q /13/
a » (forget x) = a \– {x} /14/
a » (create x) = a \– {x} /15/
a » (cut x, y) = a — x, y /16/
a » (x := y) = a [x: y] /17/

a [x: y] = given b =
Δ a \– {x} then /18/

b ∪ ({x} × (b / y))
end

a [x: y] = (…((a [x1: y1]) [x2: y2]) …) [xn: yn] /20/
-- For lists x and y

 STEPS TOWARDS A THEORY AND CALCULUS OF ALIASING §A.236
Appendix F: Acknowledgments

As noted in section 1, this work was made possible by the literature on software verification,
particularly axiomatic semantics, separation logic, shape analysis, ownership types, dynamic
frames and static analysis. The following references are available on these approaches:

• Axiomatic semantics: many references starting with C.A.R. Hoare, An Axiomatic
Basis for Computer Programming, in Communications of the ACM, vol. 12, no. 10,
Oct. 1969, pages 576–580. See the retrospective on this article in a recent issue of
Comm. ACM at cacm.acm.org/magazines/2009/10/42360-retrospective-an-
axiomatic-basis-for-computer-programming/fulltext.

• Spark: John Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

• Shape analysis: Mooly Sagiv, Thomas Reps and Reinhard Wilhelm, Parametric
shape analysis via 3-valued logic, in ACM Transactions on Programming Languages
and Systems, vol. 24, no. 3, May 2002, pages 217–298.

• Separation logic: many references starting with John C. Reynolds, Separation Logic:
A Logic for Shared Mutable Data Structures, in Logic in Computer Science, 17th
Annual IEEE Symposium, 2002, pages 55-74.

a » then p else q end = (a » p) ∪ (a » q) /21/
a » loop p end = tN /29/

-- For the first N such that tN = tN+1,
-- with t0 = a and tn+1 = tn ∪ (tn » p).

a » pr = (a » Main) /30/
-- For a program pr of main program Main

a » call r (l) = a [r.: l] » r /31/
-- Where is the list of formal arguments of r

Current.e = e /33/

e.Current = e /34/x.x’=Current/35/

x’.x = Current /36/

x.x’.e = e /37/

x’.x.e = e /38/

a » call x.r (l) = x ((x’ a) [r.: x’ l]) » r) \– x r . /40/

a » call x.r = x ((x’ a) » r) /41/

http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext

§A.2 Object-oriented constructs 37
• Ownership types: David Clarke, John Potter and James Noble, Ownership Types for
Flexible Alias Protection, in OOPSLA 1998, ACM SIGPLAN Notices, vol. 33, no.
10, Oct. 1998, pages 48-64.

• Dynamic frames: Ioannis Kassios, Dynamic Frames: Support for Framing,
Dependencies and Sharing Without Restrictions, in Formal Methods 2006, eds. J.
Misra, T. Nipkow and E. Sekerinski, Lecture Notes in Computer Science 4085,
Springer Verlag, 2006, pages 268-283.

• Static analysis: see in particular Flemming Nielson, Hanne R. Nielson and Chris
Hankin, Principles of Program Analysis, Springer Verlag, revised 2004.

• Spec# project at Microsoft Research: references available at research.microsoft.com/
en-us/projects/specsharp/.

• JML (Java Modeling Language): references available at www.eecs.ucf.edu/~leavens/JML/.

• The frame problem: numerous references starting with Marvin Minsky, A
Framework for Representing Knowledge, MIT-AI Memo 306, June 1974, also in The
Psychology of Computer Vision, ed. P. Winston, McGraw-Hill, 1975. For
applications to specification see Alex Borgida, John Mylopoulos and Raymond
Reiter, On the Frame Problem in Procedure Specifications, IEEE Transactions on
Software Engineering, vol. 21, no. 10, October 1995, pages 795-798.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux and Richard Holt published in 1991
their “Geneva Convention on the Treatment of Object Aliasing”, a general introduction
(gee.cs.oswego.edu/dl/aliasing/aliasing.html) to aliasing issues in object-oriented languages.

This article has benefited from discussions with Scott West, Stephan van Staden, Carlo
Furia, Cristiano Calcagno, Yi Wei, Alexander Kogtenkov and Sebastian Nanz. I am grateful
to Peter O’Hearn, Reinhard Wilhelm and Tony Hoare for comments on the draft, and for
comments on a related talk to Daniel Kröning (who gave me some advice towards ensuring
modularity), Greg Nelson and Rick Hehner (who challenged me to show that no forward
rule was possible, and found a problem with the initial definition of the ← operator).

I am particularly grateful to an anonymous referee appointed by the editor of this vol-
ume for finding a serious inconsistency in the original version of the semantics; his com-
ments led to a significant improvement (section 3.3 and appendix B).

The continuing influence of Manfred Broy’s work over many years, and the benefit
of countless technical discussions with him, are gratefully acknowledged.

Appendix G: References

[1] Bedřich Smetana: Prodaná Nevěsta (The Bartered Bride), starring Gabriela Beňačková
and Peter Dvorský, Supraphon, 1981, released as a DVD in 2006.

[2] Jacques Offenbach (libretto by Meilhac and Halévy): La Belle Hélène, starring Felicity
Lott, Michel Sénéchal, Laurent Naouri and Yann Beuron, conducted by Marc Minkowsky,
2000 (Théâtre du Châtelet), released as a DVD by Kultur Video in 2004.

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/
http://www.eecs.ucf.edu/~leavens/JML/
http://gee.cs.oswego.edu/dl/aliasing/aliasing.html

	Steps towards a theory and calculus of aliasing
	1 Dynamic aliasing
	2 General observations
	3 Alias relations
	4 The basic calculus
	5 Introducing procedures
	6 The object-oriented calculus
	7 Prototype implementation
	8 Application to a programming language and open problems
	Appendix A: Formal model and soundness
	Appendix B: Computing the set of modified variables
	Appendix C: Proof of the loop aliasing theorem
	Appendix D: Towards a “must alias” calculus
	Appendix E: The full calculus
	Appendix F: Acknowledgments
	Appendix G: References

