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Abstract

Alias analysis, which determines whether two expressions in a program may
reference to the same object, has many potential applications in program
construction and verification. We have developed a theory for alias analy-
sis, the “alias calculus”, implemented its application to an object-oriented
language, and integrated the result into a modern IDE. The calculus has
a higher level of precision than many existing alias analysis techniques.

One of the principal applications is to allow automatic change analysis,
which leads to inferring “modifies clauses”, providing a significant advance
towards addressing the Frame Problem. Experiments were able to infer the
“modifies” clauses of an existing formally specified library. Other applica-
tions, in particular to concurrent programming, also appear possible.

The article presents the calculus, the application to frame inference in-
cluding experimental results, and other projected applications. The ongoing
work includes building more efficient model capturing aliasing properties and
soundness proof for its essential elements.
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1. Overview

A largely open problem in program analysis is to obtain a practical mech-
anism to detect whether the runtime values of two expressions can become
aliased: point to the same object. “Practical” means that the analysis should
be:

• Sound: if two expressions can become aliased in some execution, it will
report it.

• Precise enough: since aliasing is undecidable, we cannot expect com-
pleteness; we may expect false positives, telling us that expressions
may be aliased even though that will not happen in practice; but there
should be as few as possible.

• Realistic: the mechanism should cover a full modern language.

• Efficient: reasonable in its time and space costs.

• Integrated: usable as part of an integrated development environment
(IDE), with an API (abstract program interface) making it accessible
to any tool (compiler, prover. . . ) that can take advantage of alias
analysis.

The present discussion considers “may-alias” analysis, which reports a result
whenever expressions may become aliased in some executions. The “must-
alias” variant follows a dual set of laws, not considered further in the present
paper.

The papers [13, 14] introduced the alias calculus, a theory for reasoning
about aliasing through the notion of “alias relation” and rules determin-
ing the effect of every kind of instruction on the current alias relation. We
have refined, corrected and extended the theory and produced a new im-
plementation fully integrated in the EVE (Eiffel Verification Environment)
open-source IDE [1] and available for download at the given URL. In the clas-
sification of [6, 8, 21], the analysis is untyped, flow-sensitive, path-insensitive,
field-sensitive, interprocedural, and context-sensitive.

The present paper describes the current state of alias analysis as imple-
mented. It includes major advances over [14]:

• The calculus and implementation cover most of a modern OO language.
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• The implementation is integrated with the IDE and available to other
tools.

• The performance has been considerably improved.

• A part of the calculus has been proved sound, mechanically, using Coq.

• An error affecting assignment handling in an OO context that has been
corrected (see Section 3).

• New applications have been developed, in particular to frame inference.

Frame inference relies on a complement to the alias calculus: the change
calculus, also implemented, which makes it possible to infer the “modifies
clause” of a routine (the list of expressions it may modify) automatically.
Applied to an existing formally specified library including “modifies” clauses,
the automatic analysis yielded all the clauses specified, and uncovered a num-
ber of clauses that had been missed, even though the library, intended to
validate new specification techniques (theory-based specification), had been
very carefully specified.

Section 2 presents the general assumptions and section 3 the calculus.
Section 4 introduces the change calculus and automatic inference of frame
conditions. Section 5 describes the implementation and the results it yielded
in inferring frame conditions for a formally specified library. Section 6 dis-
cusses related work. Section 7 presents the ongoing work concerning other
applications, such as deadlock detection, and a new theoretical basis. Section
8 is a conclusion and review of open problems.

2. The mathematical basis: alias relations

E denotes the set of possible expressions. An expression is a path of the
form x.y.z. . . . where x is a local variable or attribute of one of the classes of
the program, or Current, and y, z, . . ., if present, are attributes. Variables
and attributes are also called “tags”. Current represents the current object
in OO computation (also known as “this” or “self”).

An alias relation is a binary relation on E (that is, a member of P(E × E))
that is symmetric and irreflexive. If r is an alias relation and e an expres-
sion, r/e denotes the set consisting of all elements aliased to e, plus e itself:
{e}

⋃
{x ∈ E | [x, e] ∈ r}. An alias relation may be infinite; for example the

instruction a.set u(a), where a.set u assigns the u field, causes a to become
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aliased to a.u.u. . . ., with any number of occurrences of the tag u; in this case
the set r/x is also infinite.

Alias relations are in general not transitive, since expressions can receive
different aliases on different branches of a program: if c then x := y else
x := z end yields an alias relation that contains the pairs [x, y] and [x, z] but
not necessarily [y, z].

To define the meaning of alias relations, we note that the calculus cannot
be complete, since aliasing is undecidable for a realistic language. It must of
course be sound; so the semantics (section 7.2) is that if an alias relation r
holds in a computation state, then any pair of expressions [e, f ] not in r is
not aliased (i.e. e 6= f) in that state. Incompleteness means that some pairs
of expressions might appear in r even though they cannot actually become
aliased.

A convenient way to write an alias relation is the canonical form
A,B,C, . . . where each element is a set of expressions e, f, . . ., none of them
a subset of another; such a set is written e, f, . . .. For example the above
conditional instruction, starting from an empty alias relation, yields x, y, x, z.
More generally A, for a list or set of expressions A, denotes A×A− IdA, i.e.
the “de-reflexived” (by removing any pair [x, x]) set of all pairs of elements
in A.

3. The alias calculus

The alias calculus is a set of rules defining the effect of executing an
instruction on the aliasings that may exist between expressions. Each of
these rules gives, for an instruction p of a given kind and an alias relation
r that holds in the initial state, the value of r � p, the alias relation that
holds after the execution of p.

By itself the alias calculus is automatic: it does not require programmer
annotations. Since it only addresses a specific aspect of program correctness,
it may have to be used together with another technique of program veri-
fication, in particular Hoare-style semantics, which uses annotations. The
relation goes both ways:

• If a routine’s postcondition expresses a non-aliasing property x 6= y, the
calculus can prove it (using lighter techniques than the usual axiomatic
proof mechanisms).
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• Conversely, the alias calculus may need to rely on properties estab-
lished separately. In particular, it ignores conditional expressions; so
in computing r � (if x 6= y then z := x end) where r contains [x, y],
it will yield a relation containing [x, z] even though x and z cannot
actually become aliased. In many cases the resulting imprecision is
harmless, but its removing requires help from other techniques. The
solution takes the form of an instruction cut, such that r � (cut x, y)
is obtained from r by removing the pair [x, y] and the pairs [x.e, y.e]
for any expression e.

To support this complementarity with other verification techniques, the alias
calculus uses the following conventions:

• It ignores the conditions in conditionals, writing them just then p else
q end, and loops, written loop p end.

• It includes an instruction cut x, y, expressing that x 6= y. The cut
instruction is not intended for use by programmers; rather, it is an
annotation that can be inserted by another verification tool, such as
a Hoare prover, whenever more precision is required and a condition
is easy to establish. The most obvious example is a conditional in-
struction if x 6= y then p end, which would normally be understood
as just then p end for the alias calculus; to make the analysis more
precise, a verifier (even a very simple-minded one) can turn it into
then cut x, y; p end for the benefit of the alias analyzer. Note that
the cut instruction is a safety valve designed for future use; in practice
we have not encountered the need for it so far.

Here now is the calculus. The rules for control structures are:

r � (p; q) = (r � p)� q

r � (then p else q end) = (r � p)
⋃

(r � q)

r � (loop p end) = tN , for the first N such that tN = tN+1, where
t0 = r and tn+1 = tn

⋃
(tn � p) (see below about finiteness)

For a creation instruction (x := new (. . .) in Java style) and a “forget”
(x := null):

r � (create x) = r − x
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r � (forget x) = r − x

where “–” is set difference generalized to elements (x stands for {x}), relations
and paths: r−x is obtained from r by removing all pairs of which one element
is x.e (or e0.x.e where e0 is aliased to Current in r). For “cut” we have:

r � (cut x, y) = r − x, y

The rule for unqualified routine call, with l as the list of actual arguments,
is:

r � (call f(l)) = r[f • : l]� |f |

where f • is the formal argument list of f , r[u : v] the relation r with every
element of the list v substituted for its counterpart in u, and |f | the body of
f .

The rule for qualified calls relies on a notion of “negative variable” [14, 15]
to transpose the context of the call to the context of the caller:

r � (x.call f(l)) = x.((x′.r)� call f(x′.l))

where x′ is the “negation” of x, with x′.x = Current and “.” is generalized
distributively to lists (x.〈a, b, . . .〉 = 〈x.a, x.b, . . .〉), sets and relations.

The main instruction that creates aliasings, removing previous ones, is
reference assignment: t := s. The assignment rule given in [14] was unsound
(in the cases when any expression of r/s starts from expression of the form
e.t where e is aliased to Current in r). The new rule has been proved sound
in the semantics discussed in section 7.2. It can be expressed in several ways,
of which the easiest to understand uses a fresh variable ot (for “old t”):

r � (t := s) = given r1 = r[ot = r/t] then (r1− t)[t = r1/s− t]− ot end

with r[x = u] denoting the relation r augmented with pairs [x, y] where y is
an element of u, and made dot-complete [14], that is to say extended with
the following pairs: [u.a, v] for any t, u, v and a where [t, u] and [t.a, v] are
alias pairs; and [t.a, u.a] for any t, u, a where [t, u] is an alias pair and a is
in the domain of t.

In words, the assignment rule works as follows. Consider an instruction
t := s being applied to an alias relation r. First, assign variable ot to t and
compute the resulting alias relation r1. It is obtained from r by augmenting
it with pairs [ot, y] for all y ∈ r/t (remember that r/t contains all aliases of
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t in r, including t) and making it dot-complete. Then remove from r1 all
“redundant” aliases of expressions starting from t and similar. After that,
assign t to s, that is to say add to the resulting alias relation all pairs [t, y]
where y is a “non-redundant” alias of s in r1. Make the resulting alias relation
dot-complete, and, finally, remove “redundant” aliases of ot.

As an example, we compute r � (t := t.u.v) for r = {[a.e, t.u.e] | e ∈ E}.
First, r/t = {t}, so r1 = {[ot.e, t.e], [a.e, t.u.e], [a.e, ot.u.e], [t.u.e, ot.u.e] |
e∈E}, and r1 − t = {[a.e, ot.u.e] |e∈E}. Next, r1/t.u.v = {t.u.v, ot.u.v,
a.v}, r1/t.u.v− t = {ot.u.v, a.v}, and (r1− t)[t = r1/t.u.v− t] = {[a.e, ot.u.e],
[a.v.e, t.e], [a.v.e, ot.u.v.e], [t.e, ot.u.v.e] |e∈E}. Therefore, r � (t := t.u.v) =
{[a.v.e, t.e] | e ∈ E}.

Another example demonstrates how the alias calculus works for programs
with compound constructions. Consider a program in Eiffel: if x /= y then
x.set a(b) else y := Void end. This program has one-argument routine set a(b)
performing a := b with respect to local object. Applying transformations
described above to this program starting from the alias relation R = x, y
yields the following alias relations at every step:

R = x, y
then R = x, y

cut x, y R = ∅
x.call set a(b) R = {[x.a.e, b.e] | e ∈ E}

else R = x, y
forget y R = ∅

end R = {[x.a.e, b.e] | e ∈ E}

The most intriguing line in this example is the instruction x.call set a(b). The
alias calculus rule for this instruction starting from R = ∅ works as follows:
since x′.R = ∅, we compute x.(∅� call set a(x′.b)) = x.(∅� a := x′.b) =
x.{[a.e, x′.b.e] | e ∈ E} = {[x.a.e, x.x′.b.e] | e ∈ E} = {[x.a.e, b.e] | e ∈ E}.

Since alias analysis cannot be complete, the calculus introduces possible
imprecisions (over-approximations); it is important to understand where they
actually lie. In fact, the above rules are precise. Over-approximations come
from ignoring conditions in conditionals and loops, such as c in if c then a else
b end. It is possible to remove some imprecision of this kind by introducing cut
instructions (normally, as noted, not manually but as annotations generated
by a verifier).

The implementation of the calculus introduces another source of possible
imprecision. In an OO language with unbounded runtime object structures,
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the alias relation may be infinite. To stick to finite structures the imple-
mentation must cut off the graph. The first idea [14] is to limit ourselves to
M , the maximum length of a path appearing in an expression of the pro-
gram (including contracts, especially postconditions). This is, however, not
sufficient; in a case such as:

a := first; a := a.right; a := a.right; . . . — n times

b := first; b := b.right; b := b.right; . . . — n times

where n > M > 1, the expressions a and b, both of length < M , become
aliased to each other through being both aliased to an expression of length
greater than M that does not appear in the program: first.right.right.. . . (n
“right” tags). A similar problem arises for code containing loops:

a := first; loop a := a.right end;

b := first; loop b := b.right end;

The implementation and the formal model use a maximum path length
L ≥M and treat any expressions longer than L as aliased to all expressions.
This technique introduces imprecision but retains soundness. In the future
it may be improved using type information (in a statically typed language e
and f can only be aliased if their types are compatible; also in polymorphic
version of the qualified call rule we replace the resulting alias relation by
the union of similar alias relations for all features corresponding to inherited
classes). Unlike some of the approximations found in the alias analysis lit-
erature, where the equivalent of L is very small, our L can run into large
values.

4. The change calculus and frame condition inference

One of the key problems of software verification, still largely open for
OO programs, is frame analysis: determining what an operation does not
change. Current solutions, following in part from tools such as ESC/Java [2]
and its successors, assume that the programmer writes a “modifies clause”
listing the expressions whose value may change. (As a matter of syntactic
taste we prefer the keyword “only” to “modifies”, since the goal is not to list
expressions that will change, but to specify that any expression not listed will
not change.) Writing such clauses is, however, tedious. It is hard enough to
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convince programmers to state what their program does; forcing them in
addition to specify all that it does not do may be a tough sell. We find it
desirable, as much as possible to infer the “modifies” clauses.

The alias calculus opens the way to such an approach by enabling a change
calculus (as an abbreviation for may-change calculus) which, for any instruc-
tion p, yields p, the set of expressions whose value may change as a re-
sult of executing p. Like the alias calculus, the change calculus is an over-
approximation: for soundness p must include anything that changes, but
conversely an expression might appear in p and not change in some exe-
cutions of p, or even (as a sign of our incompetence, inevitable because of
undecidability) in none of them. The basic rules of the calculus are (r is the
alias relation in the initial state, r/x is the set of aliases of x plus x itself,
and “.” distributes over sets):

t := s = (r/Current).t
p; q = p

⋃
q

then p else q end = p
⋃
q — same as for “;”

loop p end = p
⋃
p2

⋃
p3

⋃
. . . — limited to L elements as discussed

call f(l) = |f |[l : f •]

The most important rule, requiring alias analysis, is for qualified calls:

call x.f(l) = (r/x) . call f(x′.l)

where, as before, “.” distributes over sets and y.x′ = Current if x and y are
aliased in r. The rule states that for any u that f may change, call x.f(l)
may change not only x.u but also y.u for y aliased to x.

The change calculus, implemented on top of the alias calculus thanks to
this rule, enables us to infer frame conditions. This inference is a possi-
ble over-approximation. It makes it possible to verify programmer-supplied
“modifies” clause in the following way. Let pc be the set of expressions that
can change as a result of the execution of an instruction p, typically a routine
call. Let pm be the list of expressions in the “modifies” clause. The clause is
sound if and only if

pc ⊆ pm (1)

For theoretical reasons (undecidability) and practical ones (tool limitations),
the verification cannot compute pc exactly; instead it computes p. Assuming
soundness of the change calculus (and hence of the alias calculus), we have
the guarantee that

pc ⊆ p (2)
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In other words, p is a possible over-approximation of the actual change set.
Then if a tool such as our implementation is able to compute p, a compiler
can examine the program and its annotations to ascertain the property

p ⊆ pm (3)

which guarantees (1) and hence the correctness of the “modifies” clause.
In our work towards an integrated development and verification environ-

ment as discussed in next section, we intend, for the reasons mentioned above,
not to include syntactic support for a “modifies” (or only) clause. Instead we
simply consider that any expression not listed in the postcondition (ensure)
of a routine must remain unchanged. An informal survey of specifications in
JML libraries validated this approach by indicating that in the practice of
specification every expression e listed in a “modifies” clause also appears in
the postcondition. For any exceptions to this observation it is always possible
to include a special predicate involved (e).

This convention has not yet been applied on a large scale. Until it is,
we are validating the calculus on code with explicit “modifies” clause, as
discussed in section 5.

5. Implementation, and results of frame inference

The alias and change calculi described in previous sections have been
fully implemented. Earlier papers [13, 14] described a prototype stand-alone
implementation. The present implementation is integrated in EVE [1], the
research version of EiffelStudio, a modern integrated IDE covering the full
Eiffel language. On a standard laptop computer, the time to analyze a class
from a kernel library ranges from less than a second for simple classes to 7
minutes for a two-way linked tree class (about 4.5 seconds per feature) with
a näıve implementation that recomputes the alias relation from scratch for
every analyzed feature without any optimization to avoid repetitive analysis.
We are working to improve the performance so as to allow immediate user
feedback even for large classes.

To assess the approach we performed change analysis on a formally spec-
ified library, EiffelBase+ [19]. The library has the attraction of providing
“full contracts” that specify all properties; for example the postcondition of
a “push” operation for stacks states not only that the number of elements
has been incremented by one and that the new top is the routine’s argument,
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but also that the previous elements remain. EiffelBase+ also has the charac-
teristic of having been written very carefully, since it is intended to support
full verification.

EiffelBase+ currently includes “modifies” clauses. Since the specification
style relies on mathematical “model queries” (theory-based specification, also
known as specification variables [7]), these clauses list such queries, not di-
rectly the program attributes (fields). An example model query, for class
STACK, is sequence, which gives the associated sequence of elements. Run-
ning the analysis required mapping attributes to model queries. In most cases
the correspondence is straightforward: many model queries map directly to
attributes. In a few cases, the model query has no direct attribute counter-
parts; for example, the model query sequence of LINKED LIST is computed
by traversing all elements of the list.

We ran the frame inference on 36 classes with 278 “modifies” clauses,
detecting a number of missing or different “modifies” specifications; for ex-
ample, the analysis reports that routines disjoint and is subset of a class
ARRAYED SET can modify the attribute index, not listed in the “modi-
fies” clause. The full results with detailed analysis of found differences are
available at http://sel.ifmo.ru/results/alias/EiffelBase+/.

For 614 analyzed features, 592 (96%) “modifies” clauses could be mapped
from model to source code. For that code the analysis yielded 100% of
the needed “modifies” clauses. The rest (4%) relied on an Eiffel-specific
mechanism, which the analysis does not yet support: redeclaring a function
as an attribute in a descendant. The summary of the analysis is given in
Table 1.

The analysis reported more changed values than specified in the “mod-
ifies” clauses. We manually checked that 7 of the inferred clauses indeed
reveal unique errors showing a discrepancy between specification and imple-
mentation. This result is all the more significant that EiffelBase+, as noted,
is carefully written and designed for formal verification; the library has been
extensively tested as reported in [19]. (A testing effort using the AutoTest
tool for Eiffel [11], posterior to the release and independent from the present
work, found 5 of the errors, but missed the other two.)

The analysis also detected 7 unnecessary “modifies” specifications: values
listed in the specification but not actually changed by the implementation.
Four of these were simply superfluous and could be removed. The remaining
3 were inherited “modifies” specifications; further investigation revealed that
they reflected inconsistencies caused by underspecified ancestor contracts.
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Table 1: Frame inference experimental results

614 Total number of features
22 Not mapped due to implementation constraints
592 Mapped

514 Code and “modifies” clauses matches
7 Missing “modifies” clauses (code/contract discrepancy)
7 Unnecessary “modifies” clauses

4 Redundant (“modifies” clauses can be removed)
3 Redundant in descendants

64 False positives
46 Variable backup-restore (dangerous with exceptions)
15 Simplistic array representation
3 Unreachable code

There were 64 (11%) false positives (clauses inferred but not needed). Of
these, 3 were found to reflect actual changes but in unreachable code due to
defensive programming in the library. The majority, 46, correspond to the
case of a value that the code actually changes, after backing it up, but then
restores from the backup. Here the change calculus correctly returns that
the value has been changed, twice or more in fact, and other mechanisms are
required to find out that the changes cancel each other out. However manual
inspection shows that such temporary changes are dangerous in presence of
exceptions [17]. If a value is not reverted back at the time of an exception,
the object may remain in an unexpected state.

The remaining 15 (2.5% of the total) are the genuine false positives; they
are due to the implementation’s model of arrays, which does not distinguish
between changes to array items and to array size, and which we hope to
improve.

The experiments yield the following lessons.

1. Ignoring the temporary problem of functions redeclared into attributes,
the change calculus reports 100% of expected “modifies” (frame) prop-
erties.

2. It succeeded in pointing out missing “modifies” specifications.

3. It also detected unnecessary “modifies” specifications.

4. The number of false positives is limited, and most of them correspond
to values actually changed then restored. Better array handling should
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entirely limit false positives to this category, plus changes in dead code
(which merit attention anyway).

5. If “modifies” specifications rely on model queries (an approach that
is not currently dominant, but which we find the most appropriate),
the problem remains of mapping attributes to model queries. For the
current experiments we performed the mapping manually, but an au-
tomatic approach appears possible.

We find these results promising, opening the possibility that automatic alias
and change analysis will become a standard component of program verifica-
tion.

6. Related work

There is a considerable literature on alias analysis, in particular for com-
piler optimization. We only consider work that is directly comparable to the
present approach.

6.1. Alias analysis rules

There are different approaches to compute alias information for programs.
All of them, including classic iteration-based variants converging to a fixed
point and equation-based techniques as in [16], define a set of rules that help
compute alias information. The rules are associated with program elements,
expressions and instructions (statements), and specify how they affect the
model elements used to compute alias information. In C-like languages this
usually includes [5, 9, 16]:

Address-of /Alloc (y = &x)

Load (y = *x)

Copy (x = y)

Store (*x = y)

Here we only mention the differences for the assignment instructions, but
depending on the level of the language there could be some more instructions
and associated rules. For example, [21] uses an intermediate language, RTL,
to perform the analysis.
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Many of the earlier approaches address C or languages of that level; the
present work has been applied to a full-fledged object-oriented language.
In an OO context some of the instructions may become unnecessary. In
particular, there is no notion of plain pointers. They are replaced by class
fields [27]:

New (x := new O)

Load (y := x.f)

Assign (x := y)

Store (x.f := y)

The rules can be simplified even further when an OO language, such as Eiffel,
in line with the information hiding principle, disallows remote modification
of an object field (x.u := a must be written x.set u (a) using a setter set u);
then there is no need for Store. The formalism and implementation of the
present work rely on that assumption but can be generalized to languages
accepting direct setting.

Many earlier approaches are flow-insensitive: in a := b; a := c they will
find that a can be aliased to both b and c. Such imprecision is unacceptable
for the applications examined in the present work, such as change analysis
and frame inference. An example of flow-sensitive analysis is [5], but it
too introduces imprecision, in particular in its handling of assignment. As
compared to such work the high precision of our approach is obtained at the
expense of performance, although we hope to improve it.

The analyses of which we are aware compute the alias information using
only instructions that may change the object state or a variable value. It
is also useful to introduce constructs that do not change any state, but do
change the alias information; they include, as described in section 3, instruc-
tions asserting equality such as cut asserting x 6= y. (Our work also uses
bind, which asserts x = y.) We do not know of other alias work using such
instructions. They make it possible to take advantage of Hoare-style asser-
tions for alias analysis, rather than simply ignoring them, and may provide
a way to combine may-alias and must-alias analysis as suggested in [3].

As in some other inter-procedural analyses [3, 4], the information com-
puted for every routine is recorded for later use to avoid unnecessary recom-
putation.
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6.2. Soundness proof

This paper mentions a partial proof of soundness in section 7.2. A sound-
ness proof for alias analysis appears in [21], using Coq as in the present work.
The proof in [21], however, applies to C, through an intermediate language.
The proof mentioned here, and the underlying theory (alias calculus), ap-
ply directly to the programming language. In addition, that programming
language is not C but an OO language.

6.3. Frame condition inference

Automated support for code verification is a well-known problem that has
been tackled in the past two decades with increasing success. The approaches
range from static analysis [24] to dynamic contract inference [18]. Instead of
the contracts in general here we focus on frame conditions. This is similar
to the work described in [20], but it is done in the context of a safe object-
oriented language. The analysis is performed on a whole program. It might
be possible to use frame conditions specified in the source code, e.g. dynamic
frames [7] to achieve modularity, but we left it for future research.

According to [19], the completeness of the contracts is an important con-
dition for realistic program verification. The contracts should include not
only pre- and postconditions but also “modifies” clauses that list all the data
affected by the particular method of a class. It turns out [20] that 90% of
such information can be obtained automatically. Our experiments confirm
this estimation. However in our setting the most part of inaccuracy was
caused by backup-restore operations. This is somewhat close to the caching
issues mentioned in [23] where authors traded soundness for usability. Our
implementation preserves soundness for the cost of several false positives.

The frame conditions could also be proved with must-alias analysis, or
even by applying may-alias and must-alias analyses together as described in
[3]. For every attribute x of a class the following property could be checked at
routine exit: x = old x, where old x stands for the value of x on routine entry.
Indeed, must-alias analysis would tell whether this expression is always true.
But then the problem is to apply must-alias analysis to all the (possibly
nested) attributes of reachable objects and that does not seem practical.

In [17] it is demonstrated that in the presence of exceptions postcondi-
tions should be specified in two parts: one for a normal case and one for
an exceptional. Our change analysis computes the union for both cases and
highlights that backup-restore operations may not be ideal when combined
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with exceptions. Additional research is required to find most convenient way
to express the two cases in specifications.

7. Future work

Alias analysis can have many applications beyond frame inference. Sec-
tion 7.1 sketches one of them, deadlock detection. Section 7.2 presents a the-
oretical improvement leading to better performance and precision of alias
analysis. Both of these reflect work in progress.

7.1. Deadlock analysis

The SCOOP concurrency model makes no firm difference between compu-
tational mechanisms and resources, all captured by the notion of “processor”.
For example, in the SCOOP solution of “Dining philosophers”, both philoso-
phers and forks are objects residing on their own processors. A processor
can access objects handled by another processor by explicitly reserving that
object’s processor.

The SCOOP reservation mechanism reduces the risk of deadlock by re-
serving any number of objects atomically, through the syntactical device of
argument passing: r(a, b, . . .) reserves all the processors of the objects as-
sociated with a, b, . . .. For example a philosopher will execute eat (left fork,
right fork). It remains possible, however, to create “Coffman deadlocks”
whereby a set of processors reserve each other circularly. The difficulty of
detecting them is that processors are known from object references, which
may be aliased. Alias analysis may help find possible cycles by considering,
in every class, any variable which is declared as separate (meaning that the
object may have a different processor) as aliased to its processor, and look-
ing for cycles in the reservation graph. We are currently implementing this
technique.

7.2. Towards a better mathematical basis: alias diagrams

The mathematical basis for the present article is the notion of alias rela-
tion. A new model under development, alias diagrams, is intended to improve
the rigor of mathematical description and find more effective representation
of pointer aliasing properties. Depending on the context, the alias relation
or alias diagram may be the more convenient view.
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The formalization only includes elements relevant to aliasing; in particu-
lar, an object contains only reference fields, since value fields such as integers
(“expanded” in Eiffel) can be ignored.

A state in the alias diagram model is a directed rooted graph. Vertices
represent objects of the program, and edges represent class fields. Every
edge is labeled by a tag corresponding to the name of some class attribute
(field). Every vertex has, for any tag, only one outgoing edge labeled by it.
The presence of a root reflects the OO context of this work (see also [15]):
we treat any expressions and aliases as always relative to a “current” object.
The current object is always part of the state.

An alias diagram is a multigraph (labeled directed graph, but with the
possibility of more than one edge labeled by same tags going from a given
vertex to another) where: each vertex represents an object (abstracted from
execution objects); there is a distinguished vertex called the “root” , repre-
senting the current object; and every edge is labeled by a tag x indicating
(in the style of shape analysis [25, 22]) that from any of the objects repre-
sented by the source node, the reference x can point to one of the objects
represented by the target node.

Every rooted path in an alias diagram corresponds to some expression,
and we can put the terminal vertex of this path to correspondence with this
expression as well.

An alias diagram represents an alias relation, with the convention that
e and f are aliased if and only if one of the following holds: for some node
V , there are paths labeled e and f both leading to V ; or e is e1.t and f is
f1.t, where t is a tag and e1 and e2 are expressions (recursively) aliased. As
a special case of the first variant, Current is aliased to a path e if and only
if e leads to the root.

Of most interest are alias diagrams in “canonical form” (closely connected
to the canonical form of alias relations seen above), where all vertices are
reachable and necessary. A vertex is reachable if there is a path from the
root to it (the path may be empty — Current — so that the root is always
reachable); it is necessary if it is the root or has at least two incoming edges
or at least one outgoing edge. For the associated alias relation, unreachable
and unnecessary vertices are irrelevant; conversely, if a vertex V is reachable
and necessary, either V or one of its successors, direct or indirect, has two
or more paths leading to it, and hence is relevant for the alias relation. The
canonical form of a diagram is its maximal canonical sub-diagram.

For any state S, if we choose its root object as “current”, there is an
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associated alias diagram DS: the canonical form of S treated as alias
diagram.

To define the semantics of alias diagrams, we say that a diagram D holds
in a state S for an object — written holds(S,D) — if there is an injective
morphism from DS to D preserving the root and the transitions.

The definition of soundness for the alias calculus reflects the conservative
(over-approximation) nature of the calculus: it states that if different expres-
sions e and e′, defined relative to a state S, have the same value (point to the
same object), then the pair [e, e′] must be in the alias relation for the state for
which the object is “current”. There is no reverse implication, which would
correspond to a “must-alias” analysis.

The alias relations associated with an alias diagram and its canonical
form are the same. Also, holds(S,DS) is always satisfied.

We can treat instructions as functions mapping states to states. The alias
calculus is a set of rules that for any instruction I and alias diagram D yield
another alias diagram D � I. In this framework, soundness is defined as
follows:

∀S,D : holds(S,D) =⇒ holds(I(S), D � I)

The soundness proof for the alias calculus must establish this property for
each kind of instruction I and the corresponding rule in alias calculus.

The rules of the alias calculus in the alias diagram model are just graph
transformations. We will give just one example, affecting the core operation:
assignment; it should be compared with the alias relation version of the rule
in section 3.

Given an instruction t := e where e = t1.t2 . . . tn, the rule can be expressed
in terms of alias diagrams as follows. For a diagram D add a new path
corresponding to expression e, and for every vertex corresponding to any
prefix t1.t2 . . . tm of e add an edge from it to the vertex of this new path
corresponding to the next prefix t1.t2 . . . tm+1 of e. Then remove all the
edges labeled t from the root and add edges labeled t from the root to all
vertices corresponding to expression e in D and to the last vertex of the new
path.

The soundness of this rule follows from the monotonicity of opera-
tion “� I” with respect to alias diagrams (for detailed discussion of alias
monotonicity see [14]). We checked this proof of it (assuming monotonic-
ity) mechanically using the Coq proof assistant. The proof is available at
http://sel.ifmo.ru/results/alias/semantics/.
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8. Conclusion

The alias calculus and change calculus, as described here, are imple-
mented as part of the EVE development environment; the reader can try
them out by downloading EVE at [1]. A number of challenges remain open:

• Building alias calculus rules for composite constructions in the model
of alias diagrams. The rules must be sound and allow efficient imple-
mentation.

• Close integration with other verification tools, in particular (in EVE)
the Boogie-based AutoProof proof system (taking advantage of the
interplay, discussed in section 3, between the automatic alias calculus
and annotation-based Hoare-style proofs), and the AutoTest automatic
testing mechanism.

• New applications, including deadlock detection, as sketched in section
7.1.

• Better integration of modularity concerns; although the calculus sup-
ports modularity, the current implementation has not focused on this
aspect.

• Performance improvement; 7 minutes for a large class is acceptable
for an initial version, especially if the tools run in the background, but
turning change and alias calculus into routine tools of the environment,
with immediate feedback, requires a significant performance improve-
ment.

• Human engineering, in particular the development of suitable mecha-
nisms to display the results of alias and change analysis in a form di-
rectly meaningful for programmers, and as a tool for suggesting missing
contracts.

Among the main benefits of the approach as developed so far, we find
the following: it is entirely automatic (with the provision of cut and bind
annotations produced by other tools); it is of much higher precision than
many of the existing approaches (the only sources of imprecision being the
neglect of conditionals and the approximation of infinite diagrams by finite
but large ones); it is based on a simple and (we hope) convincing calculus; its
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soundness has been partly established; it applies to a full-fledged, practical,
modern OO language; and it is implemented as part of a modern IDE. We
believe the approach provides a significant practical advance towards the
automatic computation of frame properties and other fundamental program
properties resulting from the unpleasant but inevitable presence of aliasing
in modern programming frameworks.
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