
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Negative Variables and the Essence of Object-Oriented
Programming

Bertrand Meyer

ETH Zurich
& Eiffel Software (Santa Barbara)

& ITMO National Research University (Saint
Petersburg)

Bertrand.Meyer@inf.ethz.ch

Alexander Kogtenkov

ITMO National Research University (Saint
Petersburg)

& Eiffel Software (Moscow)

alexk@eiffel.com

Abstract. Reasoning about object-oriented programs requires an appropriate
technique to reflect a fundamental “general relativity” property of the approach:
every operation is relative to a current object, which changes with every quali-
fied call; such a call needs access to the context of the client object. The notion
of negative variable, discussed in this article, provides a framework for reason-
ing about OO programs in any semantic framework. We introduce a fundamen-
tal rule describing the semantics of object-oriented calls, its specific versions
for such frameworks as axiomatic (Hoare-style) logic and denotational seman-
tics, and its application to such problems as alias analysis and the consistency of
concurrent programs. The approach has been implemented as part of a verifica-
tion environment for a major object-oriented language and used to perform a
number of proofs and analyses.

Keywords: Program logic, operational semantics, object-oriented language.

1 Preamble: the need for coordinate transform

The concept of negative variable, discussed in this article, addresses a specific but
important aspect of reasoning about object-oriented programs: the need to obtain re-
verse access to the context of your caller. Current verification approaches miss it, and
hence cannot express certain important properties, let alone verify them. Even for
properties that can be expressed otherwise, the negative variable technique provides a
simpler and more elegant framework, making automatic verification easier.

A little non-technical example illustrates the issue (all person names are fictitious).
Eri likes to party, and has many followers who send her lots of invitations on Twitter,
but she is selective. A typical tweet says “Restaurant Komatsu Yasuke, today at
19:30, Shin also coming”. But she would like to know more: how many people are
invited? Is Junko coming? (If so Eri will stop at home on the way, to pick up a nice
bracelet that she has bought for her.) Now whoever is inviting Eri — today Kokichi,
say, and tomorrow Taku — could answer these questions; but Eri’s procedure for

Cite as follows: Bertrand Meyer and Alexander Kogtenkov, Negative Vari-
ables and the Essence of Object-Oriented Programming, in SAS 2014, Kan-
azawa (Japan), April 2014, eds S. Iida, J. Meseguer, and K. Ogata, Lecture
Notes in Computer Science 8373, Springer, 2014, pages 171–187.

accepting or skipping an invitation can only be based on the message she has re-
ceived; she would need access to information available only to the tweet’s author.

All she does know is the content of the tweet: place, time, and possibly the name of
another person who is also invited. Maybe that person has the other information; but
maybe not. The only way to answer the pending questions would be to reach the orig-
inal tweeter.

This setup, including lack of access to the tweeter’s own context, exactly mirrors
what happens in the execution of a routine (method) on a target object in an object-
oriented programming language. We are considering a “qualified call”

call Eri●invite (Komatsu_Yasuke, [Today, “19:30”], Shin) (1)
(using an explicit call keyword for clarity, although it usually does not appear in pro-
gramming languages). This call executes the procedure invite on the “target object”
denoted by Eri, with the arguments given. The procedure is declared with the corre-
sponding arguments:

invite (p: PLACE; d: DATE; other_invitee: PERSON)
require … do … ensure … end

To do its work, the procedure can only use the arguments it has; but then it lacks con-
text. For example it cannot answer Eri’s question, which we can rephrase in software
terms. The question applies to a given object such as the restaurant, accessible to the
procedure as the formal argument p:
• Is x (some person) also invited to p today? (2)
• How many people are invited to p today? (3)
In a particular call, such as (1), this information is accessible to the calling object, but
not to the object on which the call executes.

In the writing of object-oriented programs, this restriction is not a major obstacle
(otherwise people would have been complaining about it loudly). In fact one can ar-
gue that not knowing the caller helps write self-contained, reusable code.

For reasoning about OO programs, however, the restriction also exists, and it hurts.
For example Müller [13] states, in presenting a proof rule for OO routines:

Req-clauses [shared precondition components] and [the rest of the] preconditions
may refer to formal [arguments], the object store, and the current universe, where-
as the postcondition may only refer to the object store and result [denoting the re-
sult of a function].

This information does not identify the caller, and hence does not make it possible to
express properties such as the above.

The usual technique for modelling qualified calls is to treat the target as if it were a
supplementary argument, understanding (1), for example, as call inviteC (Eri, Ko-
matsu_Yasuke, [Today, “19:30”], Shin) where inviteC is the non-OO equivalent to
invite, extended with one argument, as it would be written for example in the C lan-
guage (or in the C output of an Eiffel compiler generating C code). Verification tech-
niques will then handle the target just as it handles other arguments, through proof
rules that transpose any property of the routine to a property of a call by substituting
actual arguments for the formal arguments. This standard approach, however, will fail
for properties such as (2) and (3) above, because it ignores the distinctive object-

oriented style of programming, detailed in the next section: the target of an OO call is
more than just another argument.

The gist of the present paper is a simple notation that addresses the issue: for any
call x●r (args), one may use x’, called the “negation” of x, to represent a back refer-
ence to the calling object, making it accessible to the target object (the object on
which r is executed). Negative variables enjoy simple mathematical properties, such
as x●x’= Current where Current denotes the “current object” of execution.

Through the negative variable, any analysis of the call has access to the caller con-
text, enabling it to answer questions such as those in our example: if the caller has (as
it must) a list invited of persons invited, the call can use the integer Eri’●invited●count
and the test Junko ∈ Eri’●invited. More generally, the basic rule for reasoning about
calls makes it possible to establish any property for the call x●r (args) by:
• Establishing the property for r (x’●args), that is to say, a call executed locally in

the context of the target object, but with access to the caller’s context through x’.
• Transposing the result back to the caller’s context by prefixing it with “x●”; oc-

currences of x’ will normally disappear through the rule just mentioned.
The negative variable technique is an application to formal program analysis of a
well-established mathematical technique: coordinate transform. Reasoning about the
effect of a call is easier if we transpose the coordinates to the context of the target;
then we interpret the results back in the caller context by performing the reverse coor-
dinate transformation.

2 Overview: general relativity

2.1 In the space capsule

The negative variable technique is a response to the special nature of object-oriented
programming, based on what has been called a principle of “General Relativity” [10].
This style sets OO programming apart from all other approaches even before one
considers inheritance and other advanced techniques (which require it).

What is relative is the meaning of every operation in the program text: it applies to
a “current object” (“this”, “Current”, “self”) known only at the time of each execu-
tion. In a non-OO language, x = 3 states a property of a variable of the program; in an
OO language, it states a property of “the x of the current object”. The name x by itself
is meaningless except with respect to that context.

We can think of the execution of an OO program (see fig. 1 on the next page) as
occurring, at any given time, in a space vehicle that operates in its own set of coordi-
nates (the current object). The cosmonauts responsible for executing these operations,
and the operations themselves, do not see the larger context in which the vehicle ex-
ists. In fact the vehicle was launched from another, itself launched from yet another
and so on up to the initial event that started the entire execution (“root procedure”).

Fig. 1. Objects as space vehicles

2.2 The execution of an object-oriented program

In an OO language the operations are of two kinds: basic operations (assignments and
such, sequenced by control structures such as conditionals and loops) and routine
calls.
Every basic operation is relative to a designated object, the “current object” at the
time of the operation’s execution.
Routine calls have two variants:

• An unqualified call, written call r (args), executes the body of r on the cur-
rent object, with the given arguments.

• A qualified call, written call t●r (args) causes another object, the target of
the call, to execute the body of the routine on itself. The target is the object
denoted by t at the time of execution. (The term “target” denotes both a static
notion, the variable or expression t in the program text, and a dynamic one,
the object attached to t in a particular call.)

For all operations of all kinds except one, the current object remains current: such
operations execute within the current spacecraft. This is true in particular for unquali-
fied calls. The one exception is qualified call. More precisely:

• At the start of a qualified call, the target object (the object attached to t in
call t●r (args)) becomes the new current object. All the operations of the
body of r will treat it as their current object.

• At the end of the execution of the qualified call, the formerly current object
becomes current again.

This process is recursive since the execution of the routine can execute qualified calls
on new targets.

The names of all variables occurring in an operation are understood in relation to
the current object; the name t means “the t of the current object”. This property ap-
plies to basic operations, such as the assignment t := u, but also to qualified calls: to
determine the target object (target in the dynamic sense) in the call t●r (args) requires
finding out the value of t (the target in the static sense) relative to the current object.

x r (a)

y s (b)

For generality we assume the Eiffel convention for executing entire programs: the
execution consists of creating an instance of a designated “root class” and executing a
designated “root procedure” on that target. (In languages with a more traditional
“main program” we can posit a fictitious root object and consider the main program
as the root procedure. Global variables do not fit well in the OO paradigm and do not
exist in Eiffel, but their presence in other languages does not fundamentally affect the
discussion.) Any operation is executed as part of a current call: the qualified call last
started and not yet terminated (or, if there is no such call, meaning that we are at the
top level of the execution flow, the root object). The target of that call serves as cur-
rent object during the execution of the call; we may call it the current target, or just
“the target”, of the current call. The object that was current at the time of the call is
the caller object, or just “the caller”. In the root call the target is the root object and
there is no caller (in all other cases there is a caller).

Object-oriented programming languages do not provide access to the caller object.
The cosmonauts are in their own vehicle, and may launch new vehicles, but have no
information or access to the vehicle that launched them.

For reasoning and verification purposes, we may need such access. If the current
call is of the form x●r (args), the negative variable, written x’ (x negated), denotes a
backward reference to the caller.

2.3 Negative variable basics

From an implementation perspective, negative variables are only a fiction, as no
backward reference exists in the execution-time structure. Their role is to support
reasoning and verification.

The notion was introduced in [11] and [12], in the context of developing the “alias
calculus” for automatic may-alias analysis of OO programs; the calculus needs nega-
tive variables in the rules for qualified calls. The present work generalizes the original
concept, showing that beyond alias analysis it can provide a framework for reasoning
about a wide variety of properties of object-oriented programs.

The traditional approach, as noted, treats the target as if it were just one more ar-
gument, then applying the usual technique for dealing with arguments to calls: substi-
tution of actuals for formals. This approach ignores the specific role of the target in
object-oriented programming. As we have seen, it precludes the very expression of
some important properties of the object store; aliasing properties are an example.

Negative variables define a basic semantic rule for handling qualified call, the fun-
damental operation of object-oriented programming. A simplified version of the rule
(the full version appears in Section 5) is, for any property Π of program elements:

 Π (x●r (args)) = x●Π (r (x’●args)) (4’)

meaning, informally, that to derive a property of the qualified call x●r (…) we start
from a property of the unqualified call r (…), where we interpret the arguments in
relation to the calling context, hence the prefixing by x’, then plunge the result back
into that calling context by prefixing it with x.

We may, as noted, view the technique as coordinate transform. The rule tells us
that to reason about a call, we first transport ourselves to the new spacecraft, evaluat-
ing Π for an unqualified call to r; in this evaluation, we may need back-access to the
caller spacecraft’s context, which we obtain by prefixing arguments with x’. Then we
perform the reverse coordinate transform, getting everything back to the original con-
text, by prefixing the results with x. As a result the property Π of the unqualified call,
be it a value, a set, a list, a relation or a function is reinterpreted in the caller’s con-
text. In normal usage the result will no longer contain any occurrence of negative
variables, thanks to rules stating that x and x’ cancel each other out.

Section 3 further illustrates, through examples, the need for negative variables.
Section 4 introduces the notations and conventions. Section 5 introduces the basic
rules. Section 6 presents a number of applications; Section 7 provides comparison to
previous work and Section 8 describes opportunities for further development.

3 Examples

The usual modes of reasoning about programs cannot be transposed to OO programs
without adaptation. Even simple examples bring out the need for different techniques.

Consider classes C (client) and S (supplier). S has a simple argument-less proce-
dure r with the postcondition m = n, where m and n are attributes (fields) of S. The
procedure may be written as

 r
 -- Among other possible effects, make sure that the fields m and n
 -- of the current object have equal values.
 do
 … Appropriate implementation, including the assignment m := n …
 ensure
 m = n
 end

In C, with x declared of type S, we may call x●r. We may deduce properties of such a
call from the properties of the routine simply by prefixing the latter with “x●”; in this
case the postcondition m = n tells us, after actual-formal argument substitution, that
the following will hold after the call:

 x●m = x●n

To cover such cases it would suffice to use a naïve adaptation to object-oriented pro-
gramming of the standard Hoare rule for procedures [6]:

{P (f)} call r (f) {Q (f)}
─────────────────────

{x●P (a)} call x●r (a) {x●Q (a)}

 -- Warning: naïve rule,
 -- corrected in (6) below.

(Conventions: f stands for the list of formal arguments, a for the list of actual ar-
guments; P and Q are explicitly parameterized by arguments, as an alternative to us-
ing substitution; we ignore recursion, which can be handled as described in [6]; we
also ignore the role of class invariants, essential in practice for OO programs but not
directly related to this discussion.)

The “●” operator is a “distributed dot” which distributes the period of OO pro-
gramming, used for calls and “path expressions” such as x●y●z (which in fact are a
special case of calls, resulting in this example from applying z to the result of apply-
ing y to x) over:

• An equality: x●(u = v) denotes the equality x●u = x●v
• A set: x●{a, b, c} denotes {x●a, x●b, x●c}.
• A pair: x●[y, z] denotes [x●y, x●z].
• More generally, a list: x●[u, v, w] denotes the list [x●u, x●v, x●w].
• A relation (a set of pairs): x●{[a, b], [c, d]} denotes {[x●a, x●b], [x●c, x●d]}.
• A function (a special case of relations): if f (u) = v then x●(f (u)) = x●v. Another

way of denoting this property is to state that x●(f (u)) = x●f (x●u). Note the double
application of the dot; the reason is that stating that f (u) = v means, if we look at
f as a relation, that [u, v] ∈ f. This rule (like the preceding ones) is recursive: u
could be, for example, a list.

As soon as we move on to less trivial properties, however, the simple device of pre-
fixing properties by “x●” no longer works. Assume that r now has an argument and
new postconditions:

 r (u: T)
 do
 …
 ensure
 m●count > 0
 u = m
 end

and we call x●r (a), for a of type T. Application of the naïve rule would give us mean-
ingless properties for the call: x●m●count > x●0, where it makes no sense to prefix the
constant 0 with “x●”; and x●a = x●m, where x●a also makes no sense since a is an ex-
pression defined in the calling context, C, and prefixing it with x is pointless. We can
get away in the first case through a general rule that identifies x●const, for any con-
stant const, with const; but such tricks would not work for more significant properties
such as the second postcondition. The problem is not syntactical but conceptual: every
expression needs to be interpreted in the right object context (the right space vehicle).
The actual argument a belongs to the client context (C) whereas m, an attribute of S,
makes sense in the context of the supplier object.

With negative variables, the correct consequent for the procedure rule, replacing
{x●P (a)} call x●r (a) {x●Q (a)} above, is

 {x●P (x’●a)} call x●r (a) {x●Q (x’●a)}

stating that the arguments must be interpreted relative to the caller’s context, accessi-
ble through the (fictitious) back-pointer x’. Applying this rule gives, as the second
postcondition of the call:

 x●x’●a = x●m

Then we apply two of the fundamental rules listed below: x●x’ = Current, and Cur-
rent●e = e for any expression e, giving

 a = x●m

which correctly describes the effect of the call.
The example remains sufficiently simple to suggest that other rules could do the

job, for example a set of ad hoc rules stating that x●v = v for various kinds of elements
v in the caller context. But such an approach fails to capture the “general relativity”
property of object-oriented programming discussed in section 2, which implies that
every program element or program property makes sense only with respect to a well-
defined context. For a call, in particular, a property belongs to the context of either the
caller (client) or the supplier. Consider the following new variant of our example
routine, now with a precondition:

 r (u: T)
 require
 u●p + q > 0
 do
 u●set_m (n + 1)
 -- The procedure set_m, in T, sets the value of the attribute m.
 ensure
 u●m = n + 1
 end

Consider the call x●r (a). By applying the rule we get as a postcondition of the call

 x●(x’●a) ●m = x●n + x●1

(distributing “●” over addition, as justified in Section 4). Simplifying, this yields

 a●m = x●n + 1

Similarly, the precondition making this call legal (assuming, as implied by the exam-
ple, that p and q are integer attributes of classes T and S respectively) is

 x●(x’●a)●p + x●q > x●0

or, after simplification:

 a●p + x●q > 0

Note how u●p refers to a property of the client context and q to a property of the sup-
plier context. The general rule makes it possible to switch back and forth effortlessly
between these contexts:

• As stated in the routine, the properties (here a precondition and a postcondition, but
the same rules will apply to any kind of a property) are expressed relative to the
supplier context. T has access to the client context through the formal arguments
which, however, describe an unknown caller.

• When the caller is known, here x, the formal arguments can be transposed back to
the client context through prefixing by x’, representing a fictitious back pointer.

• The resulting properties are also transposed back to the client context, but in this
case through prefixing by x.

This example illustrates only one of the applications of the general approach: the
Hoare-style rule. We will now explore the general framework and the general rules.

4 Notations and conventions

The discussion is applicable to any object-oriented language. We assume an impera-
tive language, with an assignment instruction written target := source, and routines
(methods) that can be functions (returning a result) or procedures (changing the state).
Examples of such languages include Java, Eiffel and C#. The imperative character of
the language has no influence on the discussion, so the results are also applicable to a
functional (applicative) object-oriented language.

We make the assumption that (as in Eiffel) no direct assignment is permitted to
fields of an object: rather than x●a := v, the programmer must write a procedure call
x●set_a (v), with the appropriate setter procedure set_a declared in the corresponding
class. (Some languages, such as Eiffel, allow the syntax x●a := v provided the class
author has marked the setter procedure as “assigner”; but this instruction is not an
assignment, only a different syntactical form of the explicit call x●set_a (v). C#’s
“properties” have a similar role.) This restriction, justified by information hiding prin-
ciples, does not limit the application of the approach to languages that permit direct
field assignments: one should simply replace such assignments, for the purpose of
program analysis or verification, by the application of a suitable setter.

Among routines we will only consider procedures, with the understanding that a
function call can be handled as a procedure call followed by assignment of the result.

Calls, qualified and unqualified, are as discussed in Section 2.2, which also intro-
duced the notions of target and caller objects.

Since the matter of defining the semantics of unqualified calls is independent from
the problem tackled in this article, we assume that such a semantic definition exists.
The simplest way to define it (depending on the rules of argument passing) is that the
semantics of call r (a) is the semantics of the body of the routine r, after substitution
of actual arguments a for formals.

The notation old e, for an expression e, denotes the value that e had at the start of
the current call. Current denotes the current object.

The dot operator is generalized as explained in Section 3, complemented by the
convention that if c is a constant then x●c is c. The combination of all the variants
allows us to generalize the distributive dot to a wide class of operators:

x● (u v) is (x●u) (x●v)
where is any operator that can be defined from functions, relations, sets, pairs, lists
and equality; for example, in a pure OO language, u + v on numerical arguments is
simply an abbreviation for the function call u●plus (v), so that by application of the
second case x● (u + v) is (x●u) + (x●v).

Thus generalized, the dot operator covers, in our experience so far, all the kinds of
properties that one may want to express about a program.

5 Negative variables: definitions and rules

For any variable x that may be used as target of a qualified call, the “negation” of x,
written x’, denotes a reference, defined during the execution of a qualified call of
target x, to the object that started this call. (The existence of such an object is tradi-
tionally checked at run time, through “null pointer” exceptions, but in some recent
languages it has become a static property enforced by the compiler, as in Eiffel’s
“void safety” mechanism [9]. The present discussion assumes that all calls are void-
safe, i.e. pointers are not null.)

The following rules are applicable to any variable x and its negation x’, and to any
expression e of the target programming language1:

N1 Current’ = Current
N2 e●Current = e
N3 Current●e = e
N4 x●x’ = Current2
N5 x’●(old x) = Current
N6 old x’ = x’

N1 enables us, by application of the call rules that follow, to treat a qualified call of
the form Current●r (a) as equivalent to the unqualified call r (a). In N5, note the use
of old, without which the rule would be unsound since it is in principle possible for a
routine r, during the execution of x●r (a), to modify (through callbacks) the value of
the very variable x that the client object used as target of the current call. Such a setup
is of course error-prone; we say that a routine is nonprodigal if it cannot modify the
target of its own call. For a nonprodigal routine, N5 yields a more practical variant
(symmetric with N4):

 x’●x = Current

1 Depending on the rules of the programming language, occurrences of e may have to be en-

closed in parentheses to avoid syntactic ambiguity.
2 Depending on the context x●x’ can also be replaced with an implicit current object that is

usually omitted, for example, x●x’●y simplifies to y.

N6 expresses that the back link to a routine’s caller cannot be changed: your space-
craft was launched by a given spacecraft, and there is nothing you can do about it.

In the application to aliasing, rules N4 and N5 may produce an over-approximation
for some cyclic structures. Adding integer indexes can improve the precision. This
issue has no influence on the rest of the discussion and is hence not considered further
in this article.

The fundamental rule was previewed in Section 3 and will now be given in full. It
considers an arbitrary property Π applicable to a program element such as an instruc-
tion, an expression, a class or an entire program.

In the initial version, Π had just one argument, the program element. In practice,
any realistic framework for reasoning about programs involves properties of two ar-
guments: a program element, and an environment representing what is already
known, or assumed, about the context of the program element’s current execution. In
static analysis, for example, we may compute the “defined” and “used” variables of a
block in relation to the values of these properties for the context in which it is execut-
ed. As another example, the alias calculus [11] is a set of rules giving the value of a »
p for the various constructs p of an OO programming language; a is an alias relation,
consisting of a set of pairs of expressions that may be aliased to each other (denote the
same object) at a given program point, and a » p is the new alias relation that results
from executing p when the original alias relation is a. In this case the alias relation is
the environment.

With this convention, the fundamental rule for reasoning about properties Π of ob-
ject-oriented programming languages is

 Π (call x●r (args), env) = x●Π (call r (x’●args), x’●env) (4)

The rule enables us to deduce, from a property of the unqualified call (that is to say, a
property that makes sense in the context of the supplier object), the corresponding
property of a qualified call (in the client context).

The prefixing by “x’●” must be applied to the environment as well as to the actual
arguments, since both are relative to the client context.

The rule is applicable to properties for which the prefixing by “x’●” is defined, as
discussed in section 4. It appears to cover all properties used in existing frameworks
for semantics and verification of programs, from static analysis to denotational and
axiomatic semantics.

In denotational (and operational) semantics, a common scheme is to define a pro-
gram construct such as an instruction as a function (usually partial) in Environment
State State, preceded by Arguments for a routine. The Fundamental Rule ap-
plied to this framework gives3:

 call x●r = λ args | λ env | x●(call r (x’●args) (x’●env)) (5)

3 It is common practice to define the semantics through a “meaning function” M, which for any

program element p yields a mathematical function M [p], the “denotation” of p. The alterna-
tive, used here for simplicity, is to define every construct directly as a mathematical func-
tion, skipping the meaning function. The “M” variant is easy to deduce from this form.

In axiomatic semantics, the environment does not need to be explicitly stated since it
is embedded in the precondition, postcondition and invariant4:

{P (f) and INV} call r (f) {Q (f) and INV}

{x●P (x’●a) and x●INV} call x●r (a) {x●Q (x’●a) and x●INV}
 (6)

6 Applications

We now show some potential uses of the rules given.
The alias calculus rule given in [11] is a direct application of the fundamental rule

(4). The purpose of the alias calculus is to answer, for any two reference (pointer)
expressions e and f and any program point pp at which they are both defined, the
question: “can e and f, at any time execution reaches pp, have as their values refer-
ences to the same object?”. To this end, the calculus is a set of rules to compute a » p
for every programming language construct p, where a is an alias relation, containing
all pairs of expressions that may be aliased to each other. If a is the alias relation be-
fore execution of p, a » p will be the alias relation after that execution. The rule for
qualified calls, where l denotes a list of actual arguments, is:

 a » call x●r (l) = x●((x’●a) » call r (x’●l)) (7)

This rule shows a typical use of the negative variable technique in its full extent. Both
the initial alias relation a and the list of arguments l are defined on the client’s side
(the caller’s context). To apply the unqualified call rule on the right side of (7), we
must be able to interpret a and l on the supplier side; this is achieved by prefixing
both of them with “x’●” to interpret them in the context of the callee. The expression
(x’●a) » call r (x’●l) then gives us the resulting alias relation, but still in the supplier
context. To transpose it back to the client context, which is where we need the final
result, we prefix that supplier-side relation with “x●”, yielding a client-side property.

Here now are examples of application of the axiomatic rule (6). Consider a routine
sign used to sign a message with a signature computed from a key, according to the
specification:

 {is_valid_key (k)} call sign (k, s) {signed (k, s)}

where k is a key and s a message to be signed. Applying the rule (6) to a qualified call

 call x●sign (y, z)

where y and z are local variables or attributes, we get

 {x●(is_valid_key (x’●y))} call x●sign (y, z) {x●(signed (x’●y, x’●z))}

which rules N4 and N3 from Section 5 allow us to simplify into

4 This rule implies some conditions on callbacks (to ensure that they satisfy the invariant), an

issue separate from the theme of this article.

 {x●is_valid_key (y)} call x●sign (y, z) {x●signed (y, z)}

reflecting the intuitive result.
Another application area is purity. A routine is pure if it does not modify the state.

In the case of weak purity [3] it may, however, create and modify new objects. Con-
sider a pure routine r and purity (strong or weak) for r relative to an expression e:

 {…} call f (t) {e == old e}

where == expresses deep equality (equality not only of the values themselves but of
all reachable objects). Rule (6) yields

 {…} call x●f (a) {x●(x’●e == old x’●e)}

The postcondition can be simplified through distributivity to

 x●x’●e == x●(old x’) ●e

which through N4, N3 and N6 gives

 e == old e

In other words, a qualified call to a pure routine (weak or strong) is itself pure.
The same approach generalizes to a full-fledged frame rule. A frame rule is a spec-

ification of which properties an operation may modify; it is typically stated by listing
the possibly affected expressions in a modifies or only clause. (Purity is a special
case, expressed as a frame clause with an empty list of attributes.) Consider a routine
with such a specification:

 f (p: X ; q: Y)
 …
 ensure
 a = p
 p●b = q
 g●v = old g●v + 1
 only
 a, p●b, g●v
 end

Ignoring the rest of the postcondition, we may write the frame property in Hoare style
as

 {…} call f (p, q) {only a, p●b, g●v}

The transposition to a qualified call through (6) is

 {…} x●call f (p, q) {x●(only a, x’●p●b, g●v)}

which after simplification yields

 {…} x●call f (p, q) {only x●a, p●b, x●g●v}

SCOOP, a concurrency model developed for simple and reliable concurrent pro-
gramming through the safe use of shared resources ([14]), provides another example
of application of negative variables. SCOOP binds the concurrency structure to the
object-oriented structure by partitioning the object space into a number of “regions”,
each associated with a given thread of control or “processor”, the “handler” of these
objects, so that a qualified call x● r (args) is always processed by the handler of the
target object (the object denoted by x). If a variable x may denote an object in another
region (so that calls x●r (args) will be handled by a different processor), it must be
declared separate. The SCOOP type system includes a set of rules to ensure con-
sistent semantics. The rules imply in particular that if x is separate the formal argu-
ments corresponding to args must also be declared separate. The reason for this rule is
that if the call is executed on behalf of processor A and the processor of x is B, args
denotes objects in A, which for B are separate and hence must be declared according-
ly. In other words, the notion of separateness is always relative.

Applying this observation to negative variables yields the rule that if the variable x
is separate, its negation x’ is also separate (if the supplier S is separate from the client
C, then C is separate from S).

Then in the application of any semantic rule, for example the axiomatic rule (6), to
a call

 call x●r (args)

the formal arguments will be prefixed with “x’●”, since the rules deduce properties of
the qualified call from the properties of its unqualified version call r (x’●args). This
observation indicates that, in the program text, the formal arguments should them-
selves be declared as separate for consistency. This is indeed one the rules of the
SCOOP type system. Here we see it arising as a consequence of the general properties
of negative variables, without any domain-specific reasoning.

7 Related work

Even before OO came to the scene, back pointers were used to simplify and optimize
the implementation of algorithms working on complex data structures. Such back-
pointers, however, are physically present in the corresponding data structures and
usually take up memory (although some algorithms, such as the Deutsch-Schorr-
Waite stack-free technique for tree or graph traversal, reuse other fields for the tempo-
rary representation of back pointers). Any reasoning about and manipulation of such
back pointers follows the same rules as for other references and makes no use of their
specific nature. Negative variables as discussed in this article are a conceptual mecha-
nism to reason about OO programs; it is not necessary (but of course not prohibited)
to turn them into physical components of the data structure representations.

Operating systems have used back pointers for a long time. They serve in particular
to keep references to the parent directory in a file system, making it possible to use

“..”to refer to the parent directory without knowing the current directory’s actual loca-
tion. OO languages usually do not support such a mechanism for their run-time data
structures, since this would require keeping track of the invocation structure. Negative
variables give us the concept without requiring its implementation.

Usually the axiomatic semantics of a method call is described using substitution
rules of actual arguments to formal arguments, target of a call as the current object,
and return value as a result after the call; see in particular the work of Müller, Leino
and their colleagues [13] [8] [4]. Negative variables are not explicitly used in these
approaches and are not available for formal reasoning on program properties. Meyer’s
“Calculus of Object Programs” [12] is an exception, integrating the alias calculus [11]
and negative variables. Schoeller’s path-based alias analysis [16] comes close to the
need to use negative variables, but still uses the standard substitution technique to
describe the semantics of a qualified method call. Other semantic descriptions of ob-
ject-oriented languages, such as algebraic specifications [5], also use substitution.

The specifications and subtleties of pure functions are described by Darvas, Müller
and Leino in [3] and [4]. We used a simplified version of the specification.

Nienaltowski provides in [14] an analysis of the type requirements for safe concur-
rent programming and the resulting design of a type system for SCOOP. The ap-
proach covers both the attachment (non-nullness) status and the separateness status of
the target and arguments of a call. The target’s attachment status ensures that a call
cannot lead to an exception at run-time. Meyer, Kogtenkov and Stapf address this
issue in [9]; in the examples we have taken the assumption of attachment for granted.
The other key property presented in [14] can be deduced, as we have seen, from the
general rules for negative variables.

Shield [17] makes the current object explicit through a variable self. He treats eve-
ry qualified call as an operation that saves the value of the current object to a stack,
and assigns the call’s target to self. After the call, the original value is restored. The
author notes that this technique works for recursive calls only when the stack stores a
reference to the current object, not the object itself, on the stack. The present work
makes a similar assumption for negative variables.

Research in automatic program verification, particularly around the ESC/Java and
JML languages and verification systems, uses the notion of model fields [1] or ghost
variables [2]: variables used only for verification, without influence on the generated
code, as in the classic Owicki-Gries approach [15] to the verification of concurrent
programs. The variables should be specified by the developer and should be kept in
sync with the rest of the program in the annotation sections. The verifier can use the
properties of these variables to perform the verification of the actual code. Negative
variables have a similar status: useful for reasoning and verification, but not used
directly in the program.

Kassios [7] proposes an extension to ghost fields by introducing implicit back-
pointers that are automatically added to the explicit ghost fields as soon as the corre-
sponding forward field is marked as tracked. The back-pointers are really object sets
and are used to turn unstable class invariants into stable ones by making sure that data
reflecting the references to the given object are always synchronized with the refer-
ences themselves (the example in [7] uses reference count for this purpose). This

approach makes it possible to apply separation logic rules to cases when actual object
disjointness is replaced by observable disjointness.

Wei Ke at al [18] use a special $-edge in object state graphs to denote a call stack.
Whenever a qualified call is made, a new $-edge that points to the current root is cre-
ated and points from the new root object node. On return the $-edge is removed and
the current object is popped from it. Our approach is quite similar but goes beyond
graph-based framework and state representation. Moreover, it allows using both –
normal and reverse edges indistinguishably in cases when caller’s and callee’s con-
texts are to be taken into account, as in alias calculus.

8 Implementation, discussion and future work

We have proposed a simple concept, negative variables, reflecting an essential
property of object-oriented computation: the relativity of all program constructs to a
“current object” known only at the very last moment during execution. The
corresponding fundamental rule, (4), provides a general framework for reasoning
about object-oriented programs regardless of the programming language and semantic
framework; directly applicable versions of the general rule have been shown for
specific frameworks such as denotational (5) and Hoare-style axiomatic (6) semantics,
as well as alias analysis. Other examples, such as the application to concurrency,
show the generality of the approach.

The mechanisms for dealing with negative variables, particularly in the axiomatic
and alias calculus applications, have been implemented in EVE, the research version
of the EiffelStudio IDE (integrated development environment) and have been used to
prove a number of properties of example programs.

The discussion has not considered some important OO mechanisms such as
inheritance, polymorphism, genericity, expanded (value) types, closures (C# dele-
gates, Eiffel agents) and the full extent of concurrency; specific rules may (or not) be
needed to handle them. More generally, the use of negative variables in the verifica-
tion of ever larger object-oriented programs may lead to generalizations of the tech-
niques described here.

Acknowledgments

This work was performed in the ITMO Software Engineering Laboratory, made pos-
sible by a grant from the mail.ru group. Support from the CME, “Concurrency Made
Easy” Advanced Investigator Grant of the European Research Council (grant number
291389 under FP7/2007-2013) is also gratefully acknowledged.

We are indebted to the anonymous referees for their very useful comments.
It is a pleasure to dedicate this article to Professor Kokichi Futatsugi in celebration

of thirty-five years of friendship with the first author (going back to lectures in the
same session of the IFIP 78 World Computer Congress in Tokyo under the aegis of
Harlan Mills) and of his seminal contribution to the science and practice of software
specification as reflected in particular in the CaféOBJ language and system.

References

1. Chalin, Patrice, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions: Ad-
vanced Specification and Verification with JML and ESC/Java2. – Formal Methods for
Components and Objects (FMCO) 2005, Revised Lectures, pages 342-363. Volume 4111
of Lecture Notes in Computer Science, Springer Verlag, 2006.

2. Cohen, Ernie, Michał Moskal, Wolfram Schulte, Stephan Tobies. Local Verification of
Global Invariants in Concurrent Programs. - Computer Aided Verification, LNCS,
Springer, 2010, pp.480-494. doi:10.1007/978-3-642-14295-6_42

3. Darvas, Ádám, K. Rustan M. Leino. Practical reasoning about invocations and implemen-
tations of pure methods. – Proceedings of the 10th international conference on Fundamen-
tal approaches to software engineering, pp. 336--351, Volume 442 of LNCS, Springer-
Verlag, 2007.

4. Darvas, Ádám, Peter Müller. Reasoning about Method Calls in Interface Specifications. –
Journal of Object Technology, vol. 05, no. 5, Special Issue: ECOOP 2005 Workshop
FTfJP, June 2006, pages 59–85, http://www.jot.fm/issues/issues 2006 06/article3

5. Fronk, Alexander. An Approach to Algebraic Semantics of Object-Oriented Languages. –
Software-Technology, University of Dortmund, Germany, 2003. DOI:2003/2682.

6. Hoare, C.A.R.: Procedures and Parameters, an Axiomatic Approach. Symposium on Se-
mantics of Algorithmic Languages (1971), pp. 102-116, doi:10.1007/BFb0059696

7. Kassios, Ioannis T. and Kritikos, Eleftherios. A Discipline for Program Verification based
on Backpointers and its Use in Observational Disjointness. ETH Zurich, Department of
Computer Science (2012). http://dx.doi.org/10.3929/ethz-a-007560318

8. Leino, K. Rustan M.. Ecstatic. An object-oriented programming language with an axio-
matic semantics. – Digital Equipment Corporation Systems Research Center, 1996.

9. Meyer, Bertrand, Alexander Kogtenkov and Emmanuel Stapf. Avoid a Void: The Eradica-
tion of Null Dereferencing, in Reflections on the Work of C.A.R. Hoare, eds. C. B. Jones,
A.W. Roscoe and K.R. Wood, Springer-Verlag, 2010, pages 189-211.

10. Meyer, Bertrand. Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
11. Meyer, Bertrand. Steps Towards a Theory and Calculus of Aliasing, in International Jour-

nal of Software and Informatics, 2011.
12. Meyer, Bertrand. Towards a Calculus of Object Programs, in Judith Bishop Festschrift,

eds. Karin Breitman and Nigel Horspool, Lecture Notes in Computer Science, Springer-
Verlag, 2012.

13. Müller, Peter. Modular Specification and Verification of Object-Oriented Programs. PhD
thesis, Lecture Notes in Computer Science, Springer-Verlag, 2001.

14. Nienaltowski, P. Practical framework for contract-based concurrent object-oriented pro-
gramming. – PhD dissertation 17061, Department of Computer Science, ETH Zurich, Feb-
ruary 2007. Other SCOOP references at http://se.inf.ethz.ch/research/cme/.

15. Owicki, Susan and David Gries. An axiomatic proof technique for parallel programs, Acta
Informatica, vol. 6, no. 4, 1976, pp. 319-340.

16. Schoeller, Bernd. Aliased-based Reasoning for Object-Oriented Programs. Tech. Report,
ETH Zurich, se.ethz.ch/people/schoeller/pdfs/10-Annual_Report_CSE_ETHZ_2005.pdf,
2005.

17. Shield, Jamie. Towards an Object-Oriented Refinement Calculus. - PhD Thesis, The Uni-
versity of Queensland, 2004.

18. Wei Ke, Zhiming Liu, Shuling Wang, Liang Zhao. A graph-based generic type system for
object-oriented programs. – Frontiers of Computer Science, vol.7, no 1, pp.109-134, doi:
10.1007/s11704-012-1307-8. SP Higher Education Press, 2013.

http://www.jot.fm/issues/issues%202006%2006/article3
http://dx.doi.org/10.1007/BFb0059696
http://dx.doi.org/10.3929/ethz-a-007560318
http://se.inf.ethz.ch/research/cme/

	1 Preamble: the need for coordinate transform
	2 Overview: general relativity
	2.1 In the space capsule
	2.2 The execution of an object-oriented program
	2.3 Negative variable basics

	3 Examples
	4 Notations and conventions
	5 Negative variables: definitions and rules
	6 Applications
	7 Related work
	8 Implementation, discussion and future work
	Acknowledgments
	References

