
3.tedC
sit. In
ment,
nplex
record
tatlon
Nand
lmen·
lbllity
plus:'
ldent
'.Inc.
l.base:
.cal C
mlcal

visor
T§!
~easy
, and
Ican

Iport
DOS.
'a
;met.
"and

,Its
luen·
flies.
from
~s: A
:Wltt,

Cepage:
A Software

Design
Tool·

Formany years,
software engi-
neers have pro-
vided engineers

of other fields with advanced design tools
that considerably facilitate their jobs,
relieve them from tedious tasks, put them
in control of the design process, and help
them turn out quality products. But the
tools used by software designers them-
selves look quite primitive in comparison:
the standard design environment includes
a text editor, a compiler, perhaps a
debugger, but hardly anything that could
be characterized as a design system.

This article presents a system-
C6page-whose aim is to provide soft-
ware designers with facilities similar to
what is known in other application areas
as computer-aided design.

C6page (pronounced sea-page or say-
pajj) is intended to make the full power of
computer-aided design available to soft-
ware developers in practical environ-,
ments. It frees its users from many of the
tedious tasks traditionally associated with
the construction of programs and other
software-related documents and allows
them to concentrate on the really
important aspects of software design. The
aim is to use Cepage as the basis for a
complete software development environ-
ment supporting all activities of software
design.

Visual al'ld structured
C6page relies on a simple but powerful
idea: to allow visual manipulation of
structured documents.

What do we call a structured document?
The most obvious example is a program

By Bertrand Meyer
written in some high-level language like not only manipulated but actually seen.
Pascal, C, Ada, or FORTRAN, with their _ The ease of tailoring the system to any
hierarchical structure (program sub- new language, making Cepage a versatile
program, block, instruction, expression, tool adaptable to many different
and so on). Such programs are indeed one applications.
of the primary targets ofCepage but by no _ The open architecture of the system,
means the only one. In fact, any document which allows. it to be interfaced with other
with an interesting enough structure is an tools and makes it a promising candidate
equally good candidate for handling by . as a basis for a complete software devel-
Cepage. This description includes such opmentenvironment.
software documents as specifications, _ The ambition of the entire system
designs, or schedules. design to take structural editing out of the

But technical documents whose struc- laboratory and make its exciting potential
ture in a given environment is often stan- available to practicing programmers in
dardized can also be handled by Cepage. ordinary environments.
For example, a certain company or
project might require that technical
reports begin with a header page of a nor-
malized form (author's name, title,
abstract, date, approval, etc.). and con-
tinue along a formal structure (sections,
paragraphs, etc.). The usual way to deal
with structured documents on a computer
is to use a text editor-in other words, to
forget about the structure. All a text editor
sees is a flat sequence of characters or
lines;

In contrast, a structural editor such as
Cepage will use the structure as the basis
for all manipulations of the documents.
Many benefits may be expected from an
intelligent system that knows the specific
properties of the objects it handles, rather
than treating, say, an Ada program the
same way as a meeting report or a user's
manual.

Structural editors have existed before;
references to some of the most significant
projects are shown in the accompanying
sidebar. But I think Cepage is outstanding
among these tools primarily because of
the following features:
- The advanced visual interface through

Showing the structure
As already mentioned, a structural editor
manipulates documents in terms of their
structure. This is all good and well, but
with interactive systems it is not enough to
use adequate representations. One must
also present the user with faithful images
of these representations.

Many early structural editors were
rather inadequate in this respect. They
used a primitive, often line-by-line inter-
face. Cepage relies on an advanced inter-
face, modeled on the concepts of direct
manipulation pioneered by Smalltalk and
analyzed by Ben Shneiderman in "Direct
Manipulation: A Step Beyond Program-
ming Languages."

Shneiderman studied many successful
interactive systems in such diverse areas
as computer-aided instruction, computer-
aided design, games, and others. He
attributed their success in large part to
their ability to provide users with a clear

picture of the current progress of the ses-
sion and the internal state of the system at
each step of a session.

This type of system is in contrast to the
all-too-common silent movie systems,
which are so shy that they do not tell you
anything about what's going on. Of
course, one should not say too much
either; much of the challenge in designing
good interactive systems is in finding the
right compromise between undue terse-
ness and unwanted verbosity.

So you want to tell the user what's
going on. But what do you show? In a text
editor the answer is easy: you display
some contiguous excerpt of the text being
handled. If the editor is full screen, like
IBM's SPF or Vi on UNIX, this excerpt is
going to fill a screen or window-say 24
lines of contiguous text. Figure 1 shows a
typical screen from an editing session
with such an editor, where the text being
edited is an Ada program.

Unfortunately, the selection of dis-
played information at any point during the
session-a screenful of contiguous text-
has very little to do with the underlying
structure of the document. Programmers
who use text editors for composing pro-
grams know this well. They spend much
oftheir time going back and forth from
one end of the file to the other, chasing for
structurally related but physically remote
elements-the infamous scrolling
syndrome.

When designing Cepage, we came to
the conclusion that such an approach was
unacceptable for a structural editor. It
would be useless to have a tool relying
internally on the document's structure if
we were not able to display this structure.
What we had to provide was a structural
view at varying levels of abstraction.

Again, the driving metaphor is
computer-aided design. For example,
with a good CAD system for designing
electronic systems, you may traverse the
structure of your system, choosing to see
at each step a graphical representation at
the level of the whole system, a sub-
system, a wafer, a circuit, a gate, a tran-
sistor, etc. For programs the representa-
tions are more likely to be textual than
graphical (although work has been done
on graphical programming techniques),
but the same principles apply. For exam-
ple, a representation of the Ada program
in Figure I at the top level should be some-

thing like that shown in Figure 2.
Here the elements in italics (such as

<5 declarations» represent program ele-
ments that are present but may not be
shown in detail due to lack of space. We
say that such elements have been
abstracted. By abstracting elements, it is
possible to give a clear view of the struc-
ture at a certain level in the document.
Here we see immediately what procedure
PROCESSOR is made of.

If one wants to see an abstracted ele-
ment, say the procedure _body of pro-
cedure RES1ltRT, some of the context will
have to be sacrificed. This is achieved in
Cepage simply by moving the cursor or
mouse to the corresponding place on the
screen and requesting a zoom. Since the
screen is not large enough to show every-
thing, some details of the enclosing unit
will disappear to make space for the pro-
cedure body; they may be shown again
thanks to the unzooming operation. In any
case, the view shown will be a structural
one, corresponding to a meaningful syn-
tactic structure rather than an arbitrary
grouping of contiguous elements.

In Cepage, the abstraction mechanism
is entirely automatic. From user requests
the system determines what should be
shown and what should be abstracted. To
this effect it uses a sophisticated display
algorithm that takes into account both the
document structure and the available win-
dow space.

Excerpts from a session
There is more to say about the principles
of Cepage, but since I am cIaiming so
loudly that the system is a visual one, it is
better to interrupt my presentation at this
point for a small demonstration.

You are using Cepage on an unspecified
display. In this article, various font con-
ventions (italics, bold, etc.) are used to
distinguish the different types of ele-
ments. On an actual terminal, Cepage
relies on the facilities provided by the
hardware: fonts on a black and white bit-
mapped screen, different colors on a color
display, various levels of highlighting,
etc.

Figure 3 shows the picture you might
have at a given moment in a Cepage ses-
sion. Actually, Figures 3-6 do not show

the •••
deva
praci
dow!
lion:
usua
catal
ally (
that l

ifica'
It;

wor~
like,
origi
note
prog
label
face-
<Be
sent;
(The
cour:
term.
the e
and t
ticull

Te
cane.
use tl
"pro
unde
tured
tiany
entit~
evenl
expa;
textu
thee:
pass~
other
over
UNI:

Th
<1m
begir
appe:
color
wese
Thes.
ment
cannl
spac~
in the
lines

Ne
abstr
camr

as
am ele-
e
We

, itis
truc-
It.
~dure

:t will
:din
'or
Ithe
the
{ery-
mit
pro-
lin
:nany
ural
;yn-
ry

lism
lests
e
I. To
,lay
h the
,win-

pies
)

, it is
this

:ified
on-
to

bit-
color

the whole screen but the main window,
devoted to the main active document. In
practice, the screen contains other win-
dows for such things as session informa-
tion and help messages. Also, there is
usually not just one active document but a
catalog of documents. The others are usu-
ally copies of parts of the main document
that are kept for purposes of partial mod-
ification, copy, move, etc.

It appears from Figure 3 that you are
working on a program in some Pascal-
like, slightly Ada-ish language. The most
original feature of this program is that it is
not complete. It contains not only true
program elements in bold-for example,
label and until-but also things in regular
face- like < Instruction> and
<Boolean_expression> -which repre-
sent as yet unexpanded program parts.
(The reader who remembers comp.iler
courses will know these parts as non-
terminals.) They are distinguished from
the expanded parts by the angle brackets
and by the regular face font (or, on a par-
ticular terminal, by a different color).

Texts such as the one displayed here are
called partially expanded documents (we
use the word "document" rather than
"program" to emphasize again that the
underlying language could describe struc-
tured objects other than programs). Par-
tially expanded documents are the basic
entity that Cepage handles. Of course,
eventually a document should be totally
expanded, and Cepage can then generate a
textual version of the finished product. In
the case of a program, this text may be'
passed on to a compiler, for example; ,
other kinds of documents might be handed
over to a text formatter such as troffon
UNIX.

There is also an instance of
<Instruction> in the repeat loop at the
beginning of your program body that
appears in italics (again, it might be a
color) rather than regular face. Similarly,
we see < 7 Instructions> a little below.
These are examples of abstracted ele-
ments (abbreviations for elements that
cannot be shown in detail for lack of
space). The expansion of the instruction
in the repeat loop might contain as many
lines as needed.

Note that when a compound element is
abstracted it may be useful to display a
comment associated with the element,

/- . .:::-:;

~(:A~c~J1tfgJou~.pr,99ram'fragment .. '
'~«:>:-;::...,.:~<,~,';..~.,';' ." ./.('.':.. ,~.<'.; .•...... -:.~~.._,..:,::.' ~-' ":,,,,:.,.-.'
ff':REMAINOER: REAlj'<'. "",
'Nit USERS;'INTEGER:=':'0'"

:,~~~~tif~~~~;~~;~~i.Ylo66;,"..,.,'
::~<:.H·~.r:~aABl~;~':raV.(1;·;:: UMIT)ofINTEGER;.

ti,"'!':':''- ::d" .for N.•n1, . , LIMIT lo~p, . " .

~ii~~j.!f~:~:~~ji~$~~¥~~::f~~~Ttf':.
1''';proce<l"rellACKUR (F: me) Is ... :.. ',' ,', . c,. ; .. '11~}!~~i£~J~!~f:~t~~',
Figure 1.

rather than just an indication like
< Instruction> , which is not very infor-
mative. It is indeed possible with C~page
to attach a short comment to an element;
the comment will be displayed if the ele-
ment is abstracted. It may be entered
either after or before the element has been
expanded, allowing for both bottom-up
and top-down software construction.

Of course, at some point you may want
to see some of the abstracted part. Noth-
ing could be easier: just move the cursor
to some position in the < Instruction> in
italics and press a mouse button (or func-

tion key, depending on the terminal). Of
course, as you go in you wiIllose some
context, which you may see again by mov-
ing out again, using the corresponding
option in the menu.

For the moment, however, you are
interested instead in developing your pro-
gram a little more. You have decided to
expand the < Instruction> that appears
just after the repeat loop; thus you have
brought the cursor (represented by the
hand on Figure 1) to the window in which
the word "instruction" appears. You look
and choose the Expand option, again
using whatever selection medium is avail-
able: mouse to point in the menu, function
key, etc.

The basic interaction with C6page is
normally done by show and select. In
other words, you indicate a position on the
screen and select a function from a menu.
Sand S is a very productive way of deal-
ing with computers interactively; the
effectiveness of this approach is backed
by extensive psychological studies. Of
course, the S and S principle is at its best
when the display and the selection device
(mouse, joystick) are adequate.

Once you have said that you wanted to
expand a particular instruction, some-
thing new will appear on the screen. The
text of the document does not change, but
a new menu pops up I listing the set of pos-
sible instructions in the language at hand
(Figure 4).

The new menu allows you to select the
type of instruction you want. You do not
need to type any keywords (such as if);
you make a choice from the menu and the
system will take care of generating the
proper syntax for you.

Software developers have more inter-
esting things to do than type. The problem
is not so much typing itself as the fact that
it detracts your attention from other, more
important co'ncems. (However, you may
also type the beginning of the instruction
if you prefer to work in this fashion.)

Assume you decide you want a condi-
tional instruction and, with any available
selection facility, choose the correspond-
ing item in the menu. The system gener-
ates the resulting structure. Figure 5
shows what now appears on the window.
The part which previously read
<Instruction> has been replaced with
the syntax for a conditional instruction.

Note that up to now you haven't used an
alphabetic keyboard; the mouse has
served you well enough. You do not have
to use the mouse. You could type phrases,
or meaningful beginnings of phrases, if
you preferred, or you may work by Sand
S. Which solution makes more sense
depends on your personal taste and on the
power of the terminal hardware available.

At some point, for elements such' as
expressions, it may become tedious to
have to describe the structure-you just
want to type in the stuff. For the elements
of lowest levels, such as identifiers or
constants, this is the only possibility any-
way since they have no further structure.
To enter such elements you just type them

at th~
bepa

Fa
typin
sion I

instrl
It j

choic
tion I
an ad
that)
phral
pel al
just \01

is ex!
genel
loop.

Otl
those
delete
(put l

impo
Cepa
apply
thep:
exam

~
else

and"
delet(
conta
one 0
hand,
by,. 8
sponc

Lang
Lang!
aims.
webe
abilit·
sis ha

Thl
asscs~
progr
today
ficati(

is
I

In the
lenu.
eal-

:ed
)f
best
vice

fhe
, but
fpos-
and

the
not
);
I the
e

er-
blem
•that
more
aay
;ion

th
n.
:dan

ave
ISes,
if
and

I the
Ible.

)

1st
ents

.ny-
:re.
ilem

at the place where they appear. They will
be parsed immediately by the system.

For example, you may wish to resort to
typing when entering the Boolean expres-
sion of our newly built conditional
instruction, as shown in Figure 6.

It is important to note that the user has a
choice at all levels between menu selec-
tion and typing. When typing is chosen,
an added advantage of structural editors is
that you may type just the beginning of a
phrase, provided it is long enough to dis-
pel any ambiguity. For example, typing
just while at a place where an instruction
is expected is enough for the system to
generate the entire pattern for a while
loop.

Other features of Cepage resemble
those generally available in text editors:
delete, copy, move, search, replace, yank
(put aside for later use), etc. There is an
important difference, however, since with
Cepage all such manipulations may only
apply to syntactically meaningful parts of
the partially expanded document. For
example, if we have:

!b:=illE2J I
else

a:= 5;
call P(x)

end

and want to apply an operation such as
delete or copy to a part of the document
containing c, then this part may only be
one of the boxes shown. On the other
hand, there is no way to replace else call
by ; goto since neither pattern corre-
sponds to a syntactic entity.

Language independence
Language independence is one of the main
aims ofthe design of Cepage. Why should
we be so interested in preserving adapt-
ability to various languages? This empha-
sis has several reasons.

The first reason simply comes from an
assessment of the situation. Clearly many
programming languages are being used
today and there is little prospect for uni-
fication in the near future. A tool tied to a

single language would have a limited
practical interest.

On the other hand, entirely different
languages are not the only case when you
need language adaptability. Very often
local programming environments (compa-
nies, laboratories, universities, etc.) have
specific variants of programming lan-
guages (for example, 'Thrbo Pascal, VMS
Pascal, and IBM Pascal), which differ in
small but significant details. Adapting a
tool to such variations should be a simple
matter.

Third, methodology-conscious projects
are increasingly defining programming
standards (such as comment conventions,
exclusion of certain constructs, etc.). It
may be good to have such standards, and
better to control their application, but
nothing can beat using a program con-
struction tool where the standards are
built-in, having been integrated into the
language. A modest example shown by
the preceding session was the automatic
addition of a specific comment at the end
of a main program, but much more inter-
esting conventions can be supported .

Finally, many types of document struc-
tures, which may not always be thought of
as languages (such as a standard structure
for technical reports), may benefit from a
versatile tool that will automatically
enforce the observation of the structure.

With these remarks in mind, Cepage
was designed as a language-independent
system where the structure of the lan-
guage is a parameter. To define a new lan-
guage for Cepage, a formalism is used:
language description language. An LDL
document is the description of a certain
language, given as a sequence of con-
structs. Such a construct is shown as fol-
lows, and corresponds to the while loop of
Pascal.

construct While_loop
-- "While" loop in Pascal
short "while ... "
abstract

aggregate
test: Expression;
body: Instructionend

concrete
format

"while" test "do" body
end

end
This description comprises the follow-

ing elements:
• A full name, While-loop, used to refer-
ences the construct.
• A short name, while ... , used for dis-
play (for example, in choice menus).

• An abstract part, giving the structure of
while loops, which comprises two compo-
nents: an expression (the test) and an
instruction (the body).
• A concrete part, which gives the exter-
nal representation of a loop with these
components, indicating where the key-
words should be placed.

This is a simple but typical example of
construct description. Note that there is
no need in normal cases to give formatting
codes. Indentations, line feeds, etc., are
automatically taken into account by the
display algorithm of Cepage (but things
are not quite so simple in a language with
strange formatting requirements, such as
FORTRAN, for which the concrete part
of some LDL construct descriptions has to
be more elaborate) .

An added benefit of language adapt-
ability is that Cepage may be used to per-
form many ofthe functions of traditional
preprocessors that are used to artificially
enrich languages.

A typical case for using preprocessors
is to add instructions such as while loops
to FORTRAN, which does not include
such a construct. The preprocessor will
transform programs with while loops into
ordinary FORTRAN programs where the
loops are expressed by conditional and

goto instructions. With Cepage, it is easy
to extend the LDL description of FOR-
TRAN with a while construct whose con-
crete part is the actual FORTRAN struc-
ture, namely:

label IF «test» THEN
<body>
GOTOlabel

label END IF

In this interactive pattern, the user will
select the pseudo-FORTRAN while pat-
tern, and the system will generate correct
FORTRAN code.

The designers of Cepage felt very
strongly that writing a language descrip-
tion should be easy. Using LDL, the
description of a language should take
from a few hours (when working on a
variant of a previously defined language)
to at most a week (for an entirely new lan-
guage). We expect many language
descriptions to be obtained by imitation or
modification of existing ones.

Of course, LDL descriptions will be
done using Cepage. LD L is one of the
first languages to be supported by the
system.

System structure
To better understand the concepts and
applications of Cepage, it is useful to ex-

plain some of the techniques underlying
its implementation.

The general structure of the system is
shown in Figure 7. Cepage was designed
and implemented according to object-
oriented techniques, and accDrdingly the
structure is best described by explaining
the main object classes (abstract data
structures) used.

The abstract syntactic fDrest is a hier-
archical data structure that provides an
internal representation of the dDcument
being manipulated.

The external form is an equivalent rep-
resentation, suitable fDr stDrage Dnexter-
nal devices. Remember that C6page
works Dnpartially expanded documents.
If a session is interrupted before the
expansion is complete, it must be possible
to store the tempDrary state of the dDcu-
ment in an appropriate form for later
retrieval.

The display form is produced by the
Cepage display system by mapping the
internal document structure, as repre-
sented by the abstract syntactic forest,
onto the available window space, choos-
ing the elements that will be abstracted for
lack of screen real estate, and performing
the necessary formatting and indentation
operations. As already mentiDned, this
process is entirely automatic. The user
does not need tDintervene but will get an
appropriate view at each stage Dfthe
computation.

The display fDrm is a list Dfwindows
that can be processed by another of our
software tools, Winpack (a general multi-
windowing screen package).

The text form may be generated fDr a
totally expanded dDcument for possible
processing by other tools.

Finally, the grammar graph is the data
structure representing the language. This
is where Cepage's language adaptability
CDmesin. The system kernel itself knows
nothing abDut any particular language
whatsoever; all the information is CDn-
tained in the grammar graph, reflecting
the LDL language description.

Further applications Dfthis technique
may involve mDre than one grammar
graph. For example, two windows may be
used cDncurrently to run two instances Df
Cepage, one for a prDgram design lan-
guage, the Dther for a programming lan-
guage. If the grammar graphs are con-

necte,
imme

Cepe
To all
the wi
syster
will b
Cepal

Mo
tions]
dDcuf
bierar
conte:
conte:
previc

Ma
make
in the
to CDn

Thf
Mark,
the do
most!
yet rei
effect
thath:
fashio

EXI
make!
unexp
show!
the inJ
graph

Car
expan:
into th
chDice
the US!
as pas:
carrie(
whenl
instrue

I expres
tional
loop.

Con
CDmm;
(expan
changf
ments
empha

Seal
Replac
functic

mis
gned
t-
y the
aing
1

trep-
:xter-

ssible
cu-

t,
)OS-

ed for
ming
.lion
lis
er
:t an

ws
ur
mlti-

lata
This
lity
tOWS

e
1-

ng

aybe
:s of
l-

an-
i-

-I--

I

nected, changes to the former may be
immediately reflected in the latter.

Clipage functions
To allow the reader to get a better grasp of
the whole scope of Cepage, we now give a
systematic list of the functions that are or
will be supported by the current version of
Cepage.

Moving around. A basic set of func-
tions makes it possible to move around a
document in a manner consistent with its
hierarchical structure: out (to enclosing
context), in (to some subset of the current
context), to the next element, and to the
previous element.

Marking. The marking commands
make it possible to take note of positions
in the document while moving around and
to come back to them later.

The three marking commands are:
Mark, which marks the current position in
the document; Back, which returns to the
most recent position to which one has not
yet returned; and Forth, which cancels the
effect of the most recent Back command
that has not yet been canceled in this
fashion.

Expansion. The expansion function
makes it possible to expand a previously
unexpanded element of the document, as
shown earlier. It is executed according to
the information contained in the grammar
graph.

Cancel and Modify. Canceling an
expansion puts an expanded node back
into the unexpanded state. In the case of a
choice node, the Modify function allows
the user to make a new selection; as much
as possible of the initial expansion will be
carried over to the new one. For example,
when transforming an if ... then ... else
instruction into a while loop, the Boolean
expression and the then part of the condi-
tional instruction will be transferred to the
loop.

Comment and Explain. Thc Comment
command attaches a comment to a node
(expanded or not). The Explain command
changes the display mode so that com-
ments will be displayed with particular
emphasis.

Search and Replace. Search and
Replace correspond to traditional editor
functions. In Cepage, however, the search

pattern and (in the Replace case) the
replacement are structured elements simi-
lar to the document being edited: the edi-
tor is called recursively to enable the user
to define them (in special windows).

Selection. The selection facility allows
the user to make a choice among a set of
predefined possibilities and allows the
system to determine which item was
selected. The way in which the list of
choices is displayed and the user makes a
selection (pointing with a mouse in a
menu, pressing a function key, typing an
ordinary key, etc.) depends on the temu-
nal hardware.

Parsing. The parsing function makes it
possible to read a text typed in by the user
and to build the corresponding syntactic
strocture (subtree of the abstract syntax
tree). The text can be incomplete. The
parsing method used in Cepage allows the
system to fill in the missing parts ifthe
text typed is incomplete but unambiguous.

Undo and Redo. Undo makes it possi-
ble to back up to previous states of the edi-
ting session by canceling the effects of
previously issued commands. Redo can-
cels such a cancellation.

Record and replay. The record and
replay facility makes it possible to archive
the succession of commands issued duri ng

an editing session and to replicate them. It
thus allows recovering from a system
crash.

Catalog management and copy. Cata-
log management keeps several documents
during an editing session, one of which is
the active document, the others consti-
tuting the catalog. This function allows
the user to select an element of the catalog
as the new active document, to copy part
of the active document into a new entry of
the catalog, or to copy an element of the
catalog onto an unexpanded node of the
active document.

Delimit. The delimiting function
enables the user to define a part of a docu-
ment to be used as a parameter for a func-
tion such as cancel, copy, etc. Since the
moving around functions are particularly
simple to invoke, delimiting is mainly
useful for selecting sublists.

Save and restore. The save/restore
function copies documents (which may be
partially or totally expanded) from
memory to files and back, using an appro-
priate external representation.

Library management. Library man-
agement maintains data bases of (partially

CDYNAMO
NEW
UICROSOFTC $249.95
C FUNCTION LIBRARY

BEST YOU CAN GET
325 FUNCTIONS
FULLY TESTED

SUPERB DOCUMENTATION
. BETTER FUNCTIONS

Most complete screen handling pius
graphics; cursor/keyboard/data
entry, 72 string functions with word
wrap; status and control; utility/DOS
BIOS/time/date functions; printer
control & more. Special functions.
Functions you NEED but don't have!
Full source code. No royalties.
4 disks $129.95

POWER WINDOWS
MOST POWERFUL YET
POP-UP WINDOWS FOR

Menus/Overlays
Help Screens

Messages/Alarms
ZAP ON/OFF SCREEN

FILE·WINDOW MANAGEMENT
COMPLETE CONTROL OF:

Cursor
Attributes
Borders

AUTOMATIC
Horizontal & Vertical Scrolling

Word Wrap
Line Insertion

The most powerful, flexible and easy
to use windowing package available!
Many types of menus. Highlighting.
Move data between files, keyboard,
program and windows. Status lines.
Change size/location/overlapping.
Move/add/delete/cascade windows.
Full source code. No royalties.
3 disks $129.95

SUPERFONTS FOR C
SUPER SIZE CHARACTERS

Monochrome adapter
Color/graphics adapter
8 FONT LIBRARIES

Dramatic high impact screens/titles/
messages. Use with or \'lith out
windows. Great for projection TV
Create own font & image libraries or
use oLirs. Use with windows for
special effects or animation. Full
source code. No royalties.
Font and Function Library $49.95

iiiPOILYTIRO~
Hid, Qlt,l!in' S, ,tr\\'dr" Sin,,· 19~2

NEW!
VERSION CONTROL SYSTEM

FOR PROGRAM DEVELOPMENT
Storelretrieve multiple versions
Release & configuration control

Auto-logging & display of changes
Invaluable audit trail of changes

PVCS gives you complete control of
program development, including
history & recoverability of all
changes. Permits multiple parallel
lines of development, multiple
versions of your program. The longer
the program the more essential
PCVS is. Don't develop another
program without it. Saves critical
time, adds control and flexibility
Single user license $395.00

B-TREE LIBRARY
& ISAM DRIVER

POWERFUL DATA MANAGER
FixedNariable length records

FAST I EASY TO USEI
16.7 MILLION RECORDSIFILE

16.7 MILLION KEYS/FILE
Fast B-tree indices. Addlremove
keys Find firstllastlnext/any key. Find
keys by Boolean selection. Read/
write/delete or add records to file.
Full source. No royalties. $129.95
MAKEUtility (Snake) $59.95

C·TERP
INTERPRETER FOR C

NO COMPROMISE, FULL K&R
- BUILT IN SCREEN EDITOR

FAST, FASTCOMPILE/LINK
USE EXTERNAL L1BRARIESl

SYMBOLIC DEBUGGING
SINGLE STEPPING

RAVE REVIEWSI
2 disks and manual $299.95

C FUNCTION LIBRARIES
POWER WINDOWS
SUPERFONTS FOR C
B-TREE LIBRARY & ISAM
PCNX, UNIXTMWORK ALIKE

C· TERP INTERPRETER FOR C

POLYTRON VERSIONCONTROLSYSTEM '
'"AT&T

COMBINE AND SAVEl
C LIBRARY plus C WINDOWS
BOTH for only $179.95
+ SUPERFONTS FOR C $199.95

(A$310VALUE)

C BUSINESS LIBRARY
INCLUDES C FUNCTION LIBRARY. POWER WINDOWS.
SUPERFONTS FOR C. B-TREE LIBRARY, ISAM

ALL for $299.95
(A $440 VALUE)

C PRODUCTIVITY LIBRARY
INCLUDES C FUNCTION LIBRARY. POWER WINDOWS.
SUPER FONTS FOR C, and C-TERP INTERPRETER
ALL for $419.95

(A $610 VALUE)

C TOTAL LIBRARY
INCLUDES C FUNCTION LIBRARY. PC WER WINDOWS.
SUPERFONTS FOR C. B·TREE LIBRARY.ISAM and C:TERP
C Interpreter

ALL for $499.95
(A $740 VALUE)

SPECIAL OFFER*
(expires 9/30/86)

$L1ST $SALE $SAVE
MICROSOFT C COMPILER 450 250 200

Version Control System
Virtual Memory Manager
Polytron PowerComm
PolyFORTRAN Tools 1
Poly Cross Ref
(C & Assembly) 178 88 90

Poly DeskPlus &
Poly Archivist &
PolyCryplographer 185 95 90

Polylibrarian II 149 69 80
Polymake 99 59 40
PolyOverlay 99 59 40

OPERATING SYSTEMS
Mu/li-User Mu/li· Tasking Networking

PCNX" 99 19 80
PCVMS" 99 19 80
OIS TOOL BOX" (BUild your own

operating system) 99 19 80
"WENDIN SOFTWARE
'with purchase 01any Enteiekon combinetion library
listed above. Limit 1Special ONer item per customer.
Offer expires 9/30/86_

Entelekon

~I

or tot.
under
menti

Ge:
creatt
expan

lot
modil
descri
uses (

I LDL.
. relies

a desc
tionp
modii

j possil
marg
corre:
devel,

Set
check

! perfo:
, only ~

inclul
ing Sf

Ex
make
dOCUI
progr
guagl
semal
tially
cuted
unexi
activl
execll
towar
rapid

Di!
anah:
given
sental

Lit
primi
enabl
thee.
C~pal
Cepal
ware-
beusl
softw
variOl
analy.
transl

--:----1
I

79.95
99.95

,

or totally expanded} documents, stored
under the external representation already
mentioned.

Generation. The generation function
creates textual versions of totally
expanded documents.

Interactive language description and
modification. The interactive language
description and modificatio~ function
uses Cepage itself to enter and modify

I LDL descriptions (grammars). It thus
relies on a grammar graph obtained from
a description ofLDL in LDL. This func-
tion provides for incremental language
modification. In other words, it makes it
possible to construct and modify a gram-

i mar graph in a stepwise fashion, as the
! corresponding LDL description is being

developed and updated.
Semantic checking. The semantic

checking function makes it possible to
! perform verifications on documents. It is
, only applicable if the language description

includes the definition of the correspond-
ing semantic constraints.

Execution. The execution function
makes it possible to execute the active
document, considered as an executable
program. It is only applicable if the lan-
guage description includes dynamic
semantics for each operand type. A par-
tially expanded document may be exe-
cuted: when execution reaches an
unexpanded element, the user is inter-
actively asked to provide the results of the
execution. This facility is a first step
toward making Cepage into a tool for
rapid prototyping and program testing.

Display. The display function displays
an abstract syntax tree or subtree in a
given window area, finding the best repre-
sentation it can.

Library of primitives~ The library of
primitives is a set of procedures that
enables outside programs to access all of
the Cepage functions mentioned and the
Cepage data structures. By making these
Cepage internals accessible to other soft-
ware tools, it is planned that C6page will
be used as the kernel of a more complete
software environment, in which tools of
various kinds (such as static program
analysis, complexity analysis, program
transformation, testing compiling, rapid

prototyping, text processing, etc.) will be
able to take a~vantage of the powerful set
of basic data structures and functions pro-
vided by Ccpage.

Implementation
A prototype version ofCepage was devel-
oped at Electricite de France in 1982-83
by the author and Jean-Marc Nerson for
an mM mainframe environment running
MVS and TSO, with 3279 color termi-
nals. The current version is an entirely
new development, applicable at the
moment to any UNIX or XENIX environ-
ment. Versions for MS-DOS systems and
VAX-VMS are planned.

The development, undertaken by Inter-
active Software Engineering, Inc., uses a
Sumitomo Electric workstation (D-
station) running UNIX System V, with a
color bit-map display.

The design and implementation were
done with an object-oriented language,
.Eiffel, emphasizing reusability of soft-
ware through techniques of multiple and
repeated inheritance and security through
static type-checking. The underlying
Dynamem memory management system
uses virtual memory and parallel garbage
collection. Screen access is through Win-
pack, a multi-wind owing screen manage-
ment package.

We view Cepage, Eiffel, Winpack, and
Dynamem as bricks toward a powerful,
integrated software development environ-
ment emphasizing the efficient production
of high-quality software.

The next step
This article has emphasized three aspects
ofCepage:
• Editor-the system for creating and
modifying documents at the source lan-
guagelevel
• Program development system, with
facilities for program checking, testing,
and rapid prototyping
• Basis for a programming environment.

These goals are short-term. To con-
clude with a more futuristic view, we will
now present a more remote but very
promising application of this system in
solving the problem l)f software
reusability. We may call the Cepage solu-
tion pattern-based interactive program
generation.

", .•
···;:.'-o'j.",

..'Jj,

Most of the software written today is of
a repetitive nature. A number of basic
program patterns (counting, searching,
sorting, comparing, exchanging, assign-
ing, creating ...) exist on which pro-

. grammers compose endless variations.
Most of this work is done at the lowest
reasonable level, that of common
languages.

The use of shared, standard compo-
nents is not-despite a few exceptions
such as libraries of numerical software-
commonplace. This situation stems in
part from the fact that each new situation
may be slightly different from the ones
encountered previously. For example,
even though most search routines share a
general organization (go to the beginning
of the table, loop until either the required
element has been found or the subset of
the table in which it may appear has been
exhausted, report "found" or "absent"),
the representation details will consid-
erably vary from one case to the next.

It is not easy to construct software com-
ponents that provide a suitable answer to
the problem of reusability. Consider the
simple problem ofproviding users of a
computing center with a tool for sorting
arrays. Assume the algorithm chosen is
Quicksort, which is well explained in
computer science textbooks, so you don't
have to worry about this aspect of the
question. A particular problem instance is
characterized by how elements will be
compared and how they will be
exchanged. The solutions open to a soft-
ware toolsmith are the following:

A. Provide procedures for the most fre-
quently occurring cases, for example,
increasing and decreasing sort of integer,
real, etc., arrays.

B. Provide a single procedure (or oper-
ating system command) with many
parameters or options.

C. Provide a single procedure with two
procedure parameters corresponding to
the comparison criterion and the exchange
mechanism.

D. Have a sorting procedure skeleton
and manually create a tailor-made version
for each user who requests it, filling i.nhis
or her particular sorting criterion and
exchange mechanism, with the help of a
text editor.

Whitesllliths, Ltd. Has
For over seven Th C -I V "'Ir t The result is a
years Whitesmiths, e Otn.pt er .I.OU~Van product line built

~~d~f~~:t:os~~:~: On The MachineYouUse. f~~mt:;r~~r~:~
on developmg and .- umform enVIron-
supporting a family of quality systems software. ment for the professional applications developer.
Today, Whitesmiths is the only company offering Identical source code across all machine archi-
compatible C and Pascal native and cross tectures; support for ROM-based programs; a
compilers for the full spectrum of computers uniform run-time environment; and the ability
on the market-from the IBM PC to the to mix code in assembler and other high
IBM 370, from the DEC Micro-ll to level languages are just a few of the
the VAX 8600, and all of the most many features that comprise these
popular processors in between. superior compilers.

As a forerunner in the development of If you need a C or Pascal compiler for
C and Pascal compilers, Whitesmiths has your machine, give Whitesmiths a call
played a major role in at 1-800-225-1030.
defining and refining the Wht-tesffil.ths, Ltd. Chances are, we havestandards for ANSI C and what you want.
/usr/group libraries.

INTERNATIONAL DISTRIBUTORS: FRANCE. COSMIC SARL. 52 Quai des Carrieres. 94220 Charenton Le Pont. Paris. (14) 378·8357· GERMANY. GEl, Gesellscheft
fuer Elektronische.lnformationsverarbeitung MBH. Pascalstrasse 14. 0-5100 Aachen. 02408/13-0 • JAPAN. Advanced Data Controls Corp .. Nihon Seimei Otsuka
Bldg .• #13·4. Kita Otsuka 1-Chome. Toshima·ku. Tokyo 170. (03) 576-5351 • SWEDEN. Unisoft AB. Fiskhamnsgatan 10. S-14155 Goleborg. (31) 125810. UNITED
KINGDOM. Real Time Systems ltd .• P.O. Box 70. Douglas. Isle 01 Man. (624) 26021.

E.
gene:

Nc
reuse

So
theu.
point
in ph
as ke
cases
muti:

In
large
requi
usinll

·ande
So

ineff
aspa
the ir
Thee
oflO,

So
tailoI
prom

So:
venti,
proc!
with .
used,
same
macr
piler
diffe!
ses, C
Futh!
inter,
actua
mnlis
proc!
in the

Str
soluti
notio
as a ~
ting (
a sor1

On
thee(
activl
rion,
inap

t is a
built
ound
ide a
iron-
)per.
rchi-
ns; a
)ility
high
fthe
hese
llers.
r for
I call
030.
have
rant.

Ischaft
)tsuka
UTED

-- ~------------oI'
Solution A is too partial. In many cases,

the users will want to sort an array of
pointers, leaving the elements themselves
in place, or use only part of the elements
as keys, so it is unlikely that many actual
cases will be covered by the library
routines.

In solution B, the options may cover a
larger number of cases, but the tool will
require coding many options and thus
using a reference manual, a cumbersome

,and error-prone process.
Solution C will work but with great

inefficiency since the procedures passed
as parameters will be called repeatedly in
the inner loops of the sorting program.
The overhead, which is typically a factor

'oflO, will be unacceptable in many cases.
Solution D, using an editor to generate

tailor-made versions, is tedious and error-
prone.

Solution E implies learning the con-
ventions of the particular macro-
processor on hand, which may be at odds
with those of the programming language
used, even if they were designed by the
same group. For example, on UNIX, the
macro-processor embedded in the C com-
piler and the M4 macro-processor have
different conventions regarding parenthe-
ses, commas, reserved words, etc.
Futhermore, macro-processing is not
interactive-the user must first provide
actual arguments in the adequate for-
malism, then wait for the macro-
processor to generate a text for inclusion
in the program.

Structural editing may provide a better
solution. A simple idea is to apply the
notion of abstract syntax. In the same way
as a while loop was described as consis-
ting oftwo components, a test and a body,
a sorting program may be defined as:

One can thus envision an extension of
the editing process in which the user inter-
actively describes the comparison crite-
rion and exchange mechanism to be used
in a particular instance, and the system

from the description of the language, the
user providing only c, A, and B. The only
difference is that the amount of text gener-
ated by the system will be proportionally
larger in the case of program generation.

We believe that such interactive,
pattern-directed program generation is
possible in the C6page framework. The
basic mechanisms are already present. In
particular, since the language is a mod-
ifiable parameter, it is possible to extend
the basic constructs such as conditional
and loop with libraries of program pat-
terns such as search, sort, or even payroll.
Such patterns will be defined in the same
way as basic language constructS-by
their abstract and concrete syntax,

The idea of program patterns 'is close to
the concept of "plans" used in the Pro-
grammer's Apprentice project. We think,
however, that reusable, parameterizable
program modules can be implemented in
the Cepage framework without recourse
to the artificial intelligence techniques
used in the Programmer's Apprentice. II
References
Card, Stuart K., Thomas P. Moran, and Allen

Newell. The Psychology o!Hu1rUJn-
Computer Interaction. Hillsdale, N.J.; Law-
rence Erlbaum Associates, 1983.

Meyer, Bertrand. EijJel: A Language for Soft-
ware Engineering. Technical Report
TRCS85-19. Santa Barbara: Univ. of Cali-
fornia, Nov. 1985.

Shneiderman, Ben. "Direct Manipulation: A
Step Beyond Programming Languages."
Computer (IEEE) 16 (Aug. 1983): 57-69.

Waters, Richard C. "The Programmer's
Apprentice: Knowledge-based Program
Editing." In Interactive Programming Envi-
ronments. edited by David R. Barstow et
aI., pp, 464-468. New York: McGraw-Hill,
1984. Originally in IEEE Transactions on
Software Engineering SE-8 (Jan. 1982),

Bertrand Meyer is a visiting associate pro-
fessor at the University of California at
Santa Barbara and president of Santa
Barbara-based Interactive Software
Engineering Inc. He was previously
division head at Electricite de France.

Its good for your system.

FULLY Integrated,
Data Entry Windows!

• Complete input formatting
• UnlimitedValidation
• Full attribute control
• Multiplevirtual windows
• Fully automatic, collision proof overlay and

restore
• Print to & scroll background windows
• Animated window "zoom"

Move.grow. shrink. hide, or show any window
"Loopfunction" allowsprocessing while await·
ing input
AND MUCH MOREl

Includes 100%source. tutorial, reference manual.
examples, and sample programs,
Specify Microsoft. lattice v2 or v3. Computar
Innovations. Altec, 0 eSmet. orMarll Williams. A 511
about Unil(.

100% Money Back Guarantee

NOW ... VCScrBBn!
Ournew interactive screen "painter" actually lets
you draw your data entry windowsl Define fields.
text. boxas & borders. Move them around. Changa
attributes, Thenthe touch of a button generates C
source code calls to the Vitamin C routinesl

Requires VI~amin C lihrary above. for IBM &
compa/ibles.

For Orders Or Information,
(214) 245-6090

Creative Programming Consultants, Inc.
Box 112097 Carrollton. TX 75011-2097
InclUde$3 ground, 56 air, $15 overnight
shipping,525 if outsideUSA,Texansadd61>'lI
lax.Allfundsmustbe inU.S.dollarsdrawnona
U.S. bank.

