
Cepage * . Toward Computer-Aided Design of
Software

Bertrand Meyer
Interactive Software Engineering, Inc., Goleta, California

The Cepage system for structural document manipulation
combines the techniques of structural editing with modern
concepts about user interfaces. Cepage may be used to
produce and modify documents in any language. Adaptation
to a new language or to variants of a previously described
language are carried out using a simple notation, LDL
(Language Description Language). The system relies on an
elaborate display mechanism that automatically produces
structural representations, adjusted to the current window
size, with facilities for quick document traversal. The
interface allows both menu-driven and text-driven entry; the
built-in parser is able to complete partial input into syntacti­
cally correct forms.

1. WHY CEPAGE?

For many years, software engineers have been providing
the engineers of other fields with advanced design tools
that considerably facilitate their jobs, relieve them of
tedious tasks, put them in control of the design process,
and help them turn out quality products. But the tools
used by software designers themselves look quite primi­
tive in comparison: The standard design environment
includes a text editor, a compiler, perhaps a debugger,
but hardly anything that could in fairness be character­
ized as a design system.

This article presents a system whose aim is to provide
software designers with facilities similar to what is
known in other application areas under the general name
of computer-aided design.

Cepage (pronounced say-paJi) is intended to make
the full power of computer-aided design available to
software developers in practical environments. It frees
its users from many of the chores traditionally associated

Address correspondence to Bertrand Meyer, Interactive Soft­
ware Engineering, Inc., 270 Storke Road, Suite 7, Goleta, CA
93117.

*Cepage and Eiffel are trademarks of Interactive Software Engi­
neering, Inc. Unix is a trademark of AT&T. A preliminary version of
this paper was published in Computer Language, September 1986.

The Journal of Systems and Software 8, 419-429 (1988)
© 1988 Elsevier Science Publishing Co., Inc.

with the construction of programs and other software­
related documents; thus it allows them to concentrate on
the really important aspects of software design. Beyond
software design, Cepage may be applied to the construc­
tion of many kinds of documents with a rich enough
structure, such as specifications, designs, technical
reports, and configuration files.

1 . 1 . Structural Editing

Cepage relies on the technology of structural editing,
which was introduced as early as 1971 by W. J. Hansen
in the Emily system [1]. A structural editor is a software
tool that makes it possible to manipulate documents in
terms of their structure.

Structural editing is best characterized by comparing
it to traditional text editing. A standard text editor-say
Vi under Unix, or SPF under TSO-treats any document
as a sequence of characters or lines; it does not make any
distinction between, say, a Pascal program and a
technical report. In contrast, a structural editor is driven
by a language description and will support the produc­
tion of documents that conform to this language.

The potential advantages of using a structural editor
are numerous:

All documents produced are guaranteed to be syntacti­
cally correct.

As syntactic aspects are handled by the editor, users may
concentrate on more interesting issues. A program­
mer, for example, has better things to do than typing
keywords, worrying about proper indentation, check­
ing balancing of parentheses, carrying out comment­
ing standards, etc.

Many language-dependent operations, which are hard or
impossible to achieve with text editors, become
possible. For example, text editors are good at
performing operations of the form "replace all
occurrences of the letter a by the letter b" but
notoriously bad at operations such as "replace all

419

0164-1212/88/$3.50

420

occurrences of the variable a that are part of an
expression by the variable b." Because a structural
editor embodies knowledge about such notions as
variable and expression, it can carry out such
operations.

When the languages considered are software languages
such as programming or design languages, a struc­
tural editor simplifies the task of writing other
software tools. Most software tools acting on pro­
grams, designs, specifications, and the like must at
some point perform some parsing to get the input
documents into a suitable internal form. If a structural
editor is used, this task is no longer necessary; the
structural editor has its own internal form, usually
some kind of tree structure, that can be used by other
tools. Examples of tools that may benefit from this
approach include program analyzers, profilers, test
generators, specification checkers, and version and
configuration managers. Thus a good structural
editor is a promising candidate to serve as the basis
for an integrated programming environment.

As we shall see in the case of Cepage, a flexible
structural editor is a powerful tool for implementing
programming or documentation standards.

More generally, a structural editor brings all the benefits
of a "smart" tool that knows about the structure of
the document it manipUlates.

1.2. Cepage and Previous Work

There have been structural editors before. Some of the
best known developments include Mentor [2, 3], Gan­
dalf [4], and the Cornell Program Synthesizer [5]. A
more recent tool with graphical facilities is Pecan [6, 7].

Why do we think that Cepage goes beyond these
previous efforts? The combination of features that makes
Cepage original and (we think) more practical than its
predecessors includes:

The ease of adaptation to any new language thanks to the
LDL formalism (see Section 5.2)

The ability to support languages with elaborate or
irregular syntax, such as Fortran or languages de­
scribing the structure of technical reports

The double mode of entry (menu-driven or text-driven),
providing for a flexible user interface, and supported
by a general-purpose parser that does not enforce any
of the restrictions of common parser generators

An elaborate display mechanism, which ensures that
meaningful structural views are produced at every
stage of the document construction process

The open architecture of the system, which allows it to
be interfaced with other tools and makes it a

B. Meyer

promising candidate as a basis for a complete
software development environment

More generally, the ambition, which pervades the whole
system design, to take structural editing out of the
laboratory and make its exciting potential available to
practicing programmers in ordinary environments

The rest of this paper describes how these goals have
been pursued in the design of the system.

2. THE EXPANSION PROCESS

The basic mechanism for document construction is
known under Cepage as expansion. Expansion comes in
two styles: menu-driven and text-driven. The following
extracts from a sample session illustrate them.

2.1. Menu-Driven Expansion

Figure 1 shows a picture of a Cepage window at some
point during a session. In this example, Cepage is being
applied to a Pascal-like language. The document being
constructed is an incomplete program, containing some
unexpanded elements such as (Instruction), and
(Boolean_expression). These are placeholders repre­
senting substructures that are yet to be expanded.
Unexpanded elements appear in angle brackets if they
are required, or in square brackets if they are optional,
as the label declaration part of a Pascal program. A

Figure 1. A Cepage document window.

program JSS_example;
(* A demonstration of Cepage*)

[labels];
constant

pi = 3.141592; [more_constants];
[types);
[variables);
{3 subprograms};

begin
<instructioD>; ~
xx := <expression>;
repeat

if x = y then
(instruction)

else
x:= x+l

end
until <boolean> end;
(7 instructions)

end. (*JSS3xample*)

Cepage

document containing unexpanded elements is called a
partially expanded document.

Eventually a document should be totally expanded,
and Cepage can then generate a textual version of the
finished product, which, in the case of a program, may
be passed on, for instance, to a compiler; other kinds of
documents might be handed over to a text formatter such
as troff on Unix.

One way to develop an unexpanded element is to use
the menu-driven interface provided by Cepage. Assume,
for example, the user wants to expand the first (instruc­
tion) of the program; he may bring the cursor to this
element and enter the ~ X (eXpand) command (we use
the notation ~ a to denote the result of pressing letter a
while holding down the Control key). This brings a pop­
up menu of available choices for instructions in Pascal
(Figure 2). Once the proper choice has been made, the
form of the chosen expansion will override the (instruc­
tion) placeholder (Figure 3). This form of document
construction is particularly efficient for high-level con­
structs whose expansion may be long and involve many
keywords. Software developers have more interesting
things to do than typing. The problem is not so much
typing itself as the fact that it detracts the user's attention
from other, more important concerns.

2.2. Text-Driven Entry

Cepage is not dogmatic about menu-driven entry vs.
typing. As mentioned above, menu-driven entry is

Figure 2. Selecting an expansion in a menu.

program JSS_example;
(* A demonstration of Cepage*)

[labels];
constant

pi = 3.141592; [more_constants];
[types];
[variables];
{3 subprograms};

begin
<instruction>; ¢::::

xx := <expression>;
repeat

if x = y then
{instruction}

else
x := x+l

end
nntil <boolean> end;
(7 instructions}

end. (*JSS_example*)

EXPAND:
<InstructiOn>

If ...

while ...

repeat ...

for ...

call ...

.u e- u.

CANCEL

program JSS_example;
(* A demonstration of Cepage*)

[labels];
constant

pi = 3.141592; [more_constants];
[types];
[variables];
{3 subprograms};

begin
=> if <Boolean> then

<Instruction>
else

<Instruction>
end;
xx := <expression>;
repeat

if x = y then
{Instruction}

else
x:= x+l

end
nntil <Boolean> end;
{7 Instructions}

end. (*JSS_example*)

Figure 3. Result of expansion.

421

useful for high-level constructs; it is also precious for
novices or users who do not remember all the syntactical
details of a particular language. However, this style of
entry may become tedious for low-level constructs such
as simple expressions and more generally when the
expansion is short and the user knows exactly what it is.
When what you want is x -I- y, simply typing it is ()ften
just as convenient as first requesting a sum from the
"expression" menu and then entering the two operands
in sequence.

Cepage allows the user to do just that: move the
cursor to the element to be expanded and type the text.
For example, the (expression) placeholder that appears
in Figures 1-3 may be expanded by moving the cursor to
it and typing x + y. (The reason for using control codes
for commands, for example A X for eXpand, is precisely
to allow normal characters to stand for themselves.
Typing a normal character triggers the text entry mode.)
As soon as text has been typed, the built-in Cepage
parser will analyze it on the fly, so that the result is
exactly the same as if the phrase had been entered in the
menu-driven mode.

An important feature of the Cepage parser is that the
phrase typed need not be complete. For example, the
text typed for an (expression) may be just

x * (a+

422

which the Cepage parser will echo back as

x * (a + (factor»

that is to say, closing the parentheses and requesting the
user to expand (now or later) the missing (factor).
Similarly, the above expansion of (instruction) (Figures
1-3) might have been obtained by typing just

if

over the (instruction) placeholder. As this is the unam­
biguous beginning of a conditional instruction, the result
would have been exactly the same as that obtained in
Figure 3 by choosing the conditional instruction from the
instruction menu.

This ability to enter incomplete phrases is one of the
key advantages of Cepage over text editors or more
primitive structural editors.

If the beginning of the phrase is ambiguous, as when x
is entered for an instruction [this could be the beginning
of an assignment, x :::: (expression), or of a procedure
call, x «parameters)], the parser will mention it and
allow the user to cyclically examine all the legal
possibilities in order to select the appropriate one.

3. OTHER CAPABILITIES

The previous section has described the basic process:
expansion. In this section, we introduce some other
commands of Cepage, which should give a representa­
tive, if incomplete, idea of the interface with the system.

3.1. Document Traversal

The user interacts with Cepage in terms of structures
rather than characters. These structures are represented
by windows on the screen. The notion of "window"
used here is a general one; the window structure is
hierarchical. In the following extract, all windows
surrounding c are boxed.

ifx>Otben

Ib'~1
else

a:= 5;

call P(x)

end

One of the aims of Cepage was to make the

B. Meyer

technology of structural editing available to a wide
population of users, many of whom are not computer
scientists. Because of this requirement, it was essential
to make sure that the concepts could be explained in
simple terms. Whereas the interface to many structural
editors can be understood only in terms of abstract or
concrete syntax trees-and Cepage's implementation, as
described in Section 6.2, indeed relies on tree struc­
tures-, we have been very careful to avoid any such
terminology in the documentation. As a result, the word
"tree" does not appear anywhere in the user documenta­
tion; the interface is described in terms of the hierarchi­
cal structure of the document as reflected by the
hierarchical window structure.

At each point during a session, one window is the
active window; it appears in reverse video. (To make up
for the difficulty of showing reverse video in print, the
active window is marked by an arrow in Figures 1-3).
The cursor keys move between windows; the cursor is a
logical, "window" cursor, not a physical, character
cursor. The basic traversal commands are:

-+ or A N (Next): Go to next window.

+- or A P (Previous): Go to previous window.

~ or A D (Down): Go to first window on a subsequent
line.

t or A U (Up): Go to first window on a preceding line.

A I (In): Go to first enclosed window.

AO (Out): Go to closest enclosing window.

The first four operations wrap around the structure upon
reaching the edges. The last of these operations may
entail an abstraction on the display (see Section 4).

3.2. Selection

Most operations use the current window as argument.
Sometimes it is necessary to select another substructure
of the document, for example, a sublist (say three
consecutive instructions out of a block). This is done
using the selection commands.

Selection is entered by typing A S; the smallest
enclosing window becomes the selected substructure.
The following commands are then available:

A K (Keep): Accept the currently selected substructure
and exit selection mode.

A C (Cancel): Cancel selection and exit selection mode.

-+ or AN: Add next list element to selected substruc­
ture.

+- or A P: Add previous list element to selected
substructure.

t or A 0: Make enclosing substructure the selected one.

Cepage

Backspace: Cancel the effect of the last command (if one
of the last three above).

3.3. Replication

As is proper with a structural editor, replicating opera­
tions apply to substructures rather than arbitrary subsets
of the document. To allow for a flexible interface,
source and target may be selected in any order. The
command ~ W (Whence) designates the currently se­
lected window or sublist as source for the next replica­
tion or move; A T (Thence, or Target) designates the
current window as target. Command A R (Replicate)
copies the current source to the current target. The
source and target must be of compatible types (for
example, both of them could be instructions).

3.4. Deleting and Changing Expansions

Command A F (Forget) will take the current window
back to the unexpanded state or, if applied to an optional
unexpanded element (such as the list of label declara­
tions in a Pascal program), remove it. Command ~ V
(Vary), applied to an expanded window, will change the
expansion. For example, A V applied to a window

while x=y do x:= x+ 1 end

will present the user with the menu for (instruction)
again. If the user chooses, say, (conditional), the result
will be

if x = y then x : = x + I else (instruction) end

In other words, the system attempts to retain whatever
substructures it can from one choice to the next. This
way, the user does not need to reenter long substruc­
tures.

3.5. Insertion

Command A A adds a new list element after the current
one; A B adds one before. So if the current window is an
instruction in a block, either of these commands will add
a new (instruction) placeholder, after or before the
current instruction.

3.6. Marking

A M (Mark) will mark the current window for later
return; A G (Go) will return to the last marked window.

A G may be repeated to return to previously marked
windows.

3.7. Generating and Writing

The basic commands, as seen above, have codes of the
form A letter. Other commands are introduced by a tab;

423

note that this is an exception to the rule that typing a
normal character starts the text entry mode. Typing two
tabs in a row will start the text entry mode and initialize
the window with one tab.

Tab-G (Generate) produces an archive of the current
document in an external file. This archive may be used
later to restart Cepage. This command may be applied to
a partially expanded document; a suitable external form
is used for storing such documents and retrieving them.

Tab-O (Output) produces a text form of the docu­
ment. This command is applicable only if the document
has been completely expanded.

3.8. Other Commands

Other available commands include operations for
searching and replacing substructures and for alternating
between various documents. Apart from the main
document window, Cepage also maintains a "catalog"
of substructures. An entry of the catalog may become
the active document at any time; substructures may be
moved between catalog entries and the active document.

4. SHOWING THE STRUCTURE, OR, HOW TO DO
AWAY WITH THE SCROLUNG SYNDROME

A structural editor manipulates documents in terms of
their structure. Cepage takes the view that this idea
should also be applied to the interface: The user should
be presented with faithful representations of this struc­
ture.

It is surprising in this respect to note that many
structural editors rely either on a line-oriented interface
or on a screen-oriented interface that does not take the
document's structure into account. A facility for "ho­
lophrasting, " that is to say, collapsing the representation
of some substructures to show more details of others, is
often provided, but this leaves to the user the burden of
deciding what to show and what to hide. The principle
applied by Cepage is different. At each point in the
editing process, Cepage ensures that the view displayed
on the screen is structurally meaningful.

How can this be done? A standard text editor displays
some contiguous excerpt of the text being handled. If the
editor is "full-screen," like IBM's SPF, or Vi on Unix,
this excerpt is going to fill a screen or window-say, 24
lines of contiguous text. Figure 4 shows a typical screen
from a session with such an editor, where the text being
edited is an Ada program. Such selection of displayed
information has little to do with the underlying structure
of the document. Programmers who use text editors for
composing programs know this well: They spend much
of their time going back and forth from one end of the
file to the other, chasing for structurally related but

424

REMAINDER: REAL;
NB_USERS: IN1EGER := 0;
TERMINALS: constant := 5;
package STOCK is

LIMIT: constant := 1000;
TABLE: array (1..LIMI1) of IN1EGER;
T_COUNT: IN1EGER:= 0;
procedure RESTART;
procedure BACKUP (F: FILE);

end STOCK
package body STOCK is

procedure RESTART is
begin

INITIALIZE;
CHECK_INVENTORY;
for N in l..LIMIT loop

TABLE (N):= N;
T_COUNT := T_COUNT + N;

end loop
end;

procedure BACKUP (F: FILE) is
begin

TABLE (X) := TABLE (X) + SMALL;
while ACTIVE loop

if NB_USERS > 5 then

Figure 4. A contiguous program fragment.

physically remote elements. This is the infamous scroll­
ing syndrome. When designing Cepage, we came to the
conclusion that such an approach was unacceptable for a
structural editor. What we had to provide was a
structural view, at varying levels of abstraction.

The driving metaphor is computer-aided design
(CAD); with a good CAD system for, say, electronic
design, one may traverse the structure of the system,
choosing to see at each step a graphical representation at
the level of the whole system, a subsystem, a wafer, a
circuit, a gate, a transistor, etc. For programs the same
principles should apply. For example, a representation
of the Ada program of Figure 4 at the top level should be
something like the one shown in Figure 5.

Here the elements in curly brackets (such as {5
declarations}) represent program elements that are
present but may not be shown in detail due to lack of
space. We say that such elements have been abstracted.
By abstracting elements, it is possible to give a clear
view of the structure at a certain level in the document.
Here we see immediately what procedure PROCESSOR
is made of.

Abstracted elements, such as {instruction}, also
appear in Figures 1-3, distinguished by italics. They
should not be confused with as yet unexpanded ele­
ments, appearing in angle brackets and in roman type, as

procedure PROCESSOR is
{5 declarations);

B. Meyer

package STOCK is {specification) end STOCK
package body STOCK is

{2 declarations);
procedure RESTART is {body) end;
procedure BACKUP (F: FILE) is

{12 instructions)
end;

begin REST ART end STOCK;

procedure UPDATE (X: INTEGER) is
{4 declarations)

begin {7 instructions) end;

procedure REMOVE (F: FILE) is
begin {23 instructions) end;

begin -- PROCESSOR
RESTART;
while ACTIVE loop

if NB_USERS > 5 then
{6 ins true tions)

else
BACKUP

end
end PROCESSOR;

Figure 5. A structured program view.

in (instruction). An abstracted element is expanded but
cannot be shown in detail for lack of screen "real
estate. "

If one wants to see an abstracted element, say the
procedure_body of procedure RESTART in Figure 5,
some of the context will have to be sacrificed. This will
be achieved in Cepage simply by moving the cursor or
mouse to the corresponding place on the screen and
requesting a zoom with the ~ X command (which has the
effect of "expand" on an unexpanded structure and that
of "zoom" on an abstracted one). Since the screen is not
large enough to show everything, some details of the
enclosing context will disappear to make space for the
procedure body; this loss of context is indicated by lines
of dots at the top and bottom of the screen. In all cases
the view shown will be a structural one, corresponding
to a meaningful syntactic structure rather than an
arbitrary grouping of contiguous elements.

In Cepage, the abstraction mechanism is entirely
automatic. From the user requests, the system deter­
mines what should be shown and what should be
abstracted, taking into account both the document
structure and the available window space.

When starting the design of Cepage, we were sur­
prised to discover that few previous projects had

Cepage

addressed the question of structural document display.
One contribution was Mikelsons' [8}, which unfortu­
nately proved too specific for our purposes. The Cepage
display mechanism relies on a set of data structures and
algorithms that have been described elsewhere [9]. It is
fair to say that, together with the parser, the display
mechanism is the most elaborate part of Cepage.

5. LANGUAGE INDEPENDENCE
Independence vis-a-vis the language is one of the main
aims of the design of Cepage. Why this interest in
preserving adaptability to various languages?

5.1. Applications of Language Independence

The first reason simply comes from an assessment of the
situation. Clearly, many programming languages are
being used today, and there is little prospect for
unification in the near future. A tool tied to a single
language would have had a limited practical interest.

But switching to entirely different languages is not the
only application of language adaptability. Very often,
local environments (companies, laboratories, universi­
ties, etc.) have specific variants of programming lan­
guages (e.g., Turbo-Pascal, VMS Pascal, IBM Pascal.)
that differ in small but significant details. Adapting a
structural editor to such variations should be a simple
matter, and indeed it is with Cepage.

Third, methodology-conscious projects are increas­
ingly defining programming standards (such as comment
conventions and exclusion of certain constructs). It is
good to have such standards and even better to control
their application; but nothing can beat using a program
construction tool where the standards are built in, having
been integrated into the language description. A modest
example shown by the session extracts in Figures 1-3
was the automatic addition of a comment at the end of a
program unit, repeating the name of the unit; but much
more interesting conventions can be supported.

A fourth and equally promising application of lan­
guage independence is the ability to support many types
of document structures, which might not initially be
thought of as languages. For example, many companies
or departments have defined standardized structures for
technical reports; such structures may be described as
languages and then automatically supported by Cepage.
As another example, installing a Unix system requires
editing various configuration files (letc!termcap for
terminal descriptions, !etc!ttys for external lines, etc.),
each of which has its own peculiar and sometimes
confusing structure; each of language adaptability makes
Cepage a good candidate for supporting this process.
Examples include (such as a standard structure for

425

technical reports) may benefit from a versatile tool that
will automatically enforce the observation of the struc­
ture.

5.2. LDL

The language adaptability of Cepage is supported by the
use of the LDL formalism (Language Description
Language) [10]. Any Cepage session relies on a lan­
guage description, or grammar, written in LDL. Only
through this grammar is the session associated with the
language; the Cepage system itself is entirely language­
independent.

An LDL grammar is a sequence of "construct
paragraphs," each of which describes the form of
instances of a given construct (syntactic type). As an
example of a construct paragraph, the following de­
scribes Pascal While loops:

construct While_loop
--"While" loop in Pascal

short "while ... "
aggregate

test: Expression;
body: Instruction

format
"while" test "do" body

end

This description comprises the following elements:

A full name, While_loop, used to refer to the construct
in the grammar

A short name, "while ... ", used to represent the
construct when abstracted, unexpanded, or appearing
as one possible choice in a menu

A description of the abstract syntax of while loops as
being' 'aggregates" with two components: an expres­
sion, the test, and an instruction, the body

A description of the concrete syntax, which gives the
external format of a loop with these components,
indicating where the keywords should be placed

In such construct specifications, the abstract syntax
refers to the abstract structure of construct instances.
For example, a while loop is made of two components.
The concrete syntax refers to the way construct instances
are displayed or printed, based on the components of the
abstract structure. Note that an abstract component may
appear more than once in the concrete form; this is how
the convention for final comments in Pascal programs or
procedures, repeating the name of the unit (see Figures
1-3), may be automatically enforced.

Aggregates are but one type of constructs. Others

426

include "choice" and "list" constructs, as in the
following self-explanatory examples:

construct Instruction
--Instruction in Pascal

short "instruction"
choice

end

Assignment, While, Repeat, If, Call, Case,
Goto

construct Compound
--Compound instruction in Pascal

short "begin ... "
list Instruction
format

header "begin"
delimiter ";"
tail "end"

end

Note how the concrete syntax for a list construct is
specified by a header, a delimiter to be inserted between
elements, and a tail.

Other types of constructs include atomic constructs
(basic elements such as identifiers or constants, de­
scribed by regular expressions) and predefined con­
structs (integers, strings, etc.).

We felt very strongly that writing a language descrip­
tion should be easy. Using LDL, the description of a
language should take from a few hours (when working
on a variant of a previously defined language) to at most
a week for an entirely new language. We expect many
language descriptions to be obtained by imitation or
modification of existing ones.

Of course, LDL descriptions may be done using
Cepage, as LDL is one of the languages supported by the
system. A grammar for LDL is given in Ref. 10.

5.3. Using the Grammar for Document Layout

The LDL grammar is used by Cepage for two purposes:
It drives both the display mechanism described above
and the Cepage parser.

The display mechanism relies on the grammar to
decide when abstractions should be performed and to
format the document on the screen. The formatting
process is entirely automatic; in particular, it is usually
not necessary to add any special formatting indications
to the LDL grammars.

For languages with a regular enough structure, such
as most modern programming languages, the default
display policy will perform necessary line returns,

B. Meyer

indentations, and so on in an entirely satisfactory
manner, similar to the examples of Figures 1-3 and 5.
The basic principle of the display policy is to use the
abstract structure to construct the layout of the concrete
form. As a result, any operand (element of the concrete
text that corresponds to a component of the abstract
syntax, such as the body of a While loop) will be
displayed either on a single line together with preceding
and/or subsequent elements or, if this proves impos­
sible, just by itself, indented on one or more lines.
Details of the Cepage display policy may be found in
Refs. 9 and 10.

This fundamental property of the display mechanism
is a key factor in Cepage' s ease of language adaptability.
The grammar writer may concentrate on describing the
syntax proper and let Cepage take care of the appropriate
formatting.

If a specific nonstandard layout is desired, formating
codes are available; they are also useful to describe
languages with bizarre formats such as Fortran. Exam­
ples of formatting codes are the following:

$Ai: Move to absolute position i. For example, the "C"
of a Fortran comment must appear in position I and
should be preceded by $AI in the concrete syntax
clause.

$Ri: Move to relative position i. A relative position is
computed with respect to the left border of the
enclosing window, whereas an absolute position
refers to the left border of the topmost window in the
hierarchy.

): Start new indentation level.

(: End indentation level.

These and other formatting codes span a wide range of
possible formatting requirements.

5.4. Using the Grammar for Parsing

The same grammar that drives the display mechanism is
also used by the built-in Cepage parser. The parser relies
on the concrete syntax clauses of the grammar to analyze
input entered in text mode and build the corresponding
abstract structures.

LDL does not place any special requirements on the
class of acceptable languages. This is another key
property in achieving Cepage's language independence.
Other structural editors that embody a parser often rely
on parser generators like Unix's YACC, which enforce
strange restrictions such as LALR (k) or SLR (k) and
make language description a lengthy trial-and-error
process. In contrast, the Cepage parser is fully general;
the underlying algorithm [11] applies to any context-free

Cepage

grammar. This algorithm is also the key to parsing
incomplete phrases (Section 2.2).

Beyond on-the-fly parsing of user input, the parser
may also be used to input existing documents for
subsequent manipulation by Cepage.

6. THE IMPLEMENTATION

6.1 . State of the System

An initial version of Cepage was developed in Pascal at
Electricite de France [121. This version, running on mM
370 hardware and 3279 terminals, was a prototype
aimed only at validating some of the design ideas. The
current version was undertaken late in 1985 by Interac­
tive Software Engineering under Unix. It is now a
commercial product. The system has been developed
with portability in mind and runs on both System V and
BSD variants of Unix. Versions for other systems are
being investigated.

The current version is written entirely in Eiffel [13],
an object-oriented language featuring multiple inheri­
tance, generic classes, strict typing, assertions, and
information hiding. The availability of Eiffel has proved
to be a key factor in completing the construction of
Cepage. Of particular importance was the Eiffellibrary,
which provided ready-made, robust software compo­
nents built around basic data abstractions such as lists
and trees.

6.2. System Structure

The general structure of the system is given by Figure 6.
Since Cepage was designed and implemented according
to object-oriented techniques, the structure is best
described by explaining the main object classes (abstract
data type implementations) used.

The "abstract syntactic forest" is a hierarchical data
structure that provides an internal representation of the
document being manipulated. As mentioned above,
Cepage itself is entirely language-independent. Thus an
abstract syntactic forest is meaningful only with respect
to a certain language. This language is known internally
through another fundamental data structure, the "gram­
mar graph." A Cepage component called LDLT (LDL
translator) is charged with producing a grammar graph
from an LDL grammar. Note that the grammar graph is
functionally equivalent to a grammar; the user may think
of the grammar as being directly interpreted by Cepage,
although, for efficiency reasons, the interpretation in
fact uses the grammar graph.

The "external form" is a representation of the
document conceptually equivalent to the abstract syntac­
tic forest but suitable for storage on external devices.

427

Visual Form
Abstract Syntactic Forest

Grammar Graph

Text Form

Figure 6. Cepage system structure.

The "visual form" is produced by the Cepage display
system by mapping the internal document structure, as
represented by the abstract syntactic forest, onto the
available window sp~ce, choosing the elements that will
be abstracted for lack of screen space, and performing
the necessary formatting and indentation operations. As
mentioned above, this process is entirely automatic; the
user does not need to intervene but will get an
appropriate view at each stage of the computation. The
visual form is a list of windows processable by another
of our software tools, Winpack (a general multiwindo­
wing screen package), also written in Eiffel.

Finally, the "text form" may be generated for a
totally expanded document for possible processing by
other tools.

Note that one may envision applications involving
more than one grammar graph. For example, two
windows may be used concurrently to run two instances
of Cepage, one for a PDL (Program Design Language)
and the other for a programming language; if the
grammar graphs are connected, changes to the former

428

may be immediately reflected in the latter. Another
obvious application is to language translation.

7. APPUCATIONS OF CEPAGE

As is now stands, Cepage may be applied to the
following goals.

Program construction, relieving programmers of syntac­
tic details and ensuring syntactic correctness at each
stage.

Computer science education.

Production of standardized documents of just about any
type: specifications, designs, technical reports, budg­
ets, operating system configuration files, etc.

Implementation of programming and documentation
conventions, such as standardized comments appear­
ing at predefined places (for example, structured
header comments in subprograms), and other style
standards.

Language extension. If one wishes to add constructs to a
language, for example While loops to Fortran,
Cepage may advantageously replace a traditional
preprocessor. It suffices to add a "While" construct
to the LDL grammar with a concrete syntax that
specifies the appropriate expansion (If and Goto).
When the user chooses "While" from the instruction
menu, the expansion will be performed immediately
on the screen.

As a basis for other software tools that manipulate
documents in terms of their structure, such as
program or specification analyzers, profilers, com­
plexity analyzers, and transformation tools. To make
this goal a reality, many of the Cepage functions are
accessible independently of the user interface through
a library of primitives.

With respect to the last goal, we think that Cepage, with
its data structures (abstract syntactic forest, grammar
graph) and the library of routines that allows manipulat­
ing these structures, is a particularly worthy candidate to
provide the standard interface for all tools that handle
structured documents. For this reason we will publish
the detailed specifications of the library for use by any
such tools.

8. FURTHER DEVELOPMENTS

Current work on Cepage builds on the above results to
extend the system and its applicability. A first range of
extensions is to add semantic facilities to the syntactic
stem. Both static semantics (for example, type-checking
facilities) and dynamic semantics are being considered.

B. Meyer

The latter facility should make it possible to execute
programs even if they are not completely expanded; if
execution hits an unexpanded substructure, the system
will revert to the editing mode to allow the user to enter a
temporary stub allowing execution to proceed. Of
course, dynamic semantic specifications are only mean­
ingful for executable languages such as programming
languages. This facility should make Cepage an invalu­
able tool for program testing and rapid prototyping.

The challenge with respect to semantics is to allow
more advanced processing to be performed without
impairing one of the key qualities of Cepage, the ease of
language adaptation.

Another set of extensions concerns the possibility to
use more than one grammar in the same Cepage session.
This opens rich possibilities of using Cepage to support
design in a high-level language in one window with
immediate automatic code generation in another. An­
other promising application is as a tool for automatic
translation.

A more advanced application would be to use Cepage
to support program construction from general reusable
patterns. The idea here is to treat parameterized software
elements as abstract structures that could be modeled as
LDL constructs. A sorting routine, for example, has a
number of options (type of elements to sort, comparison
criterion, swapping routine, sorting algorithm used);
these could be viewed as components of an LDL
aggregate construct sort. Cepage could thus be used as a
tool for the construction of reusable software.

On a more short-term basis, we plan to use Cepage,
and especially its standardized data structures, as a basis
for adding a range of new software engineering tools,
and to promote it as a standard for all software tools that
manipulate structured documents.

ACKNOWLEDGMENTS

JeanoMarc NelSOn was the co-designer of C&page and its prime
implementor. A key contribution was made by Reynald Bolly, who wrote
file parser. The application to con1iguration files (Section 5.1) was
suggested by David Farber.

REFERENCES

1. W. J. Hansen, Creation of Hierarchic Text with a
Computer Display, ANL-7818, Argonne National Labo­
ratory, Argonne, Illinois, 1971. (Also as dissertation,
Computer Science Department, Stanford University, June
1971.)

2. V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang,
Environnement de Programmation Mentor: Present et
Avenir, in Actes des Troisiemes Journees Fran­
cophones sur I'Injormatique, Geneva, 1981.

3. V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang,

Cepage

Programming Environments Based on Structured Editors:
The MENTOR Experience, in Interactive Programming
Environments (D. R. Barstow, H. E. Shrobe, E. Sande­
wall, eds.), McGraw-Hill, New York, 1984, pp. 128-
140.

4. N. Habermann et al., The Second Compendium of
Ganda/f Documentation, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1982. See also the special issue
of J. Syst. Software (Vol. 5, no. 2, May 1985) on
Gandalf.

5. T. Teitelbaum and T. Reps, The Cornell Program
Synthesizer: A Syntax Directed Programming Environ­
ment, Commun. ACM24(9), 563-573 (1981).

6. S. P. Reiss, PECAN: Program Development Systems that
Support Multiple Views, Proc. 7th Int. Con! on
Software Eng., Orlando, Florida, March 26-29, 1984,
pp. 324-333.

7. S. P. Reiss, Graphical Program Development with PE­
CAN Program Development System, SIGPLAN Notices
(Proc. ACM SIGSOFTISIGPLAN Software Eng.
Symp. on Practical Software Development Environ-

429

ments, Pittsburgh, 1984, (P. Henderson, ed.), 19(5),
30-41 (1984). [This issue is also Software Eng. Notes,
9(3).]

8. M. Mikelsons, Prettyprinting in an Interactive Program­
ming Environment, SIGPLAN Notices, 16(6), 108-116
(1981).

9. B. Meyer, J.-M. Nerson, and S. H. Ko, Showing
Programs on a Screen, Sci. Comput. Program. 5(2),
111-142 (1985).

10. Interactive Software Engineering, Inc., LDL User's
Manual, Tech. Rep. TR-CE-8/LD, 1986.

11. J. Earley, An Efficient Context-Free Parsing Algorithm,
Commun. ACM 13(2), 94-102 (1970).

12. B. Meyer and J.-M. Nerson, CEPAGE, a Full-Screen
Structured Editor, in Software Engineering: Practice
and Experience (E. Girard, ed.), North Oxford Aca­
demic, Oxford, 1984, pp. 60-65.

13. B. Meyer, Eiffel: A Language and Environment for
Software Engineering, J. Syst. Software, 1987. To
appear.

