
made up of respected experts from major
European countries, which produced a
report in hardly more than a month. These
agencies are to be commended for the
speed and openness with which they han-
dled the disaster. The report is available
on the Web, in both French and English
(http://www.cnes.fr/actualites/news/rap-
port_501.html).

It is a remarkable document: short, clear,
and forceful. The explosion, the report
says, is the result of a software error, pos-
sibly the costliest in history (at least in dol-
lar terms, since earlier cases have cost lives).

Particularly vexing is the realization that
the error came from a piece of the software
that was not needed. The software
involved is part of the Inertial Reference
System, for which we will keep the
acronym SRI used in the report, if only to
avoid the unpleasant connotation that the
reverse acronym has for US readers. Before
liftoff, certain computations are performed
to align the SRI. Normally, these compu-
tations should cease at −9 seconds, but
because there is a chance that a countdown
could be put on hold, the engineers gave
themselves some leeway. They reasoned
that, because resetting the SRI could take

January 1997 129

S
everal contributions to this
department have emphasized the
importance of design by contract
in the construction of reliable
software. Design by contract, as

you will recall, is the principle that inter-
faces between modules of a software sys-
tem— especially a mission-critical one—
should be governed by precise specifi-
cations, similar to contracts between
humans or companies. The contracts will
cover mutual obligations (precondi-
tions), benefits (postconditions), and con-
sistency constraints (invariants). Together
these properties are known as assertions,
and are directly supported in some design
and programming languages.

A recent $500 million software error
provides a sobering reminder that this
principle is not just a pleasant academic
ideal. On June 4, 1996, the maiden flight of
the European Ariane 5 launcher crashed,
about 40 seconds after takeoff. Media
reports indicated that a half-billion dollars
was lost—the rocket was uninsured.

The French space agency, CNES (Centre
National d’Etudes Spatiales), and the
European Space Agency immediately
appointed an international inquiry board,

Design by
Contract:

The Lessons
of Ariane

Jean-Marc Jézéquel, IRISA/CNRS
Bertrand Meyer, EiffelSoft

O
b

je
c

t
Te

c
h

n
o

lo
g

y
Editor: Bertrand Meyer, EiffelSoft, 270 Storke Rd., Ste. 7, Goleta, CA 93117; voice (805) 685-6869; ot-column@eiffel.com

several hours (at least in earlier versions of
Ariane), it was better to let the computa-
tion proceed than to stop it and then have
to restart it if liftoff was delayed. So the SRI
computation continues for 50 seconds after
the start of flight mode—well into the flight
period. After takeoff, of course, this com-
putation is useless. In the Ariane 5 flight,
however, it caused an exception, which was
not caught and—boom.

The exception was due to a floating-
point error during a conversion from a 64-
bit floating-point value, representing the
flight’s “horizontal bias,” to a 16-bit
signed integer: In other words, the value
that was converted was greater than what
can be represented as a 16-bit signed inte-
ger. There was no explicit exception han-
dler to catch the exception, so it followed
the usual fate of uncaught exceptions and
crashed the entire software, hence the
onboard computers, hence the mission.

This is the kind of trivial error that we
are all familiar with (raise your hand if you
have never done anything of this sort),
although fortunately the consequences are
usually less expensive. How in the world

can it have remained undetected and pro-
duced such a horrendous outcome?

YOU CAN’T BLAME MANAGEMENT
Although something clearly went wrong

in the validation and verification process
(or we wouldn’t have a story to tell), and
although the Inquiry Board does make sev-
eral recommendations to improve the
process, it is also clear that systematic doc-
umentation, validation, and management
procedures were in place.

The software engineering literature has
often contended that most software prob-
lems are primarily management problems.
This is not the case here: the problem was
a technical one. (Of course you can always
argue that good management will spot
technical problems early enough.)

How in the world could
such a trivial error

have remained
undetected and cause
a $500 million rocket

to blow up?

.

130 Computer

YOU CAN’T BLAME THE LANGUAGE
Ada’s exception mechanism has been

criticized in the literature, but in this case
it could have been used to catch the excep-
tion. In fact, the report says:

Not all the conversions were protected
because a maximum workload target of
80% had been set for the SRI computer.
To determine the vulnerability of unpro-
tected code, an analysis was performed on
every operation which could give rise to
an ... operand error. This led to protection
being added to four of [seven] variables ...
in the Ada code. However, three of the
variables were left unprotected.

YOU CAN’T BLAME THE DESIGN
Why was the exception not monitored?

The analysis revealed that overflow (a hor-
izontal bias not fitting in a 16-bit integer)
could not occur. Was the analysis wrong?
No! It was right for the Ariane 4 trajec-
tory. For Ariane 5, with other trajectory
parameters, it did not hold.

YOU CAN’T BLAME THE
IMPLEMENTATION

Some may criticize removing the conver-
sion protection to achieve more perfor-
mance (the 80 percent workload target),
but this decision was justified by the theo-
retical analysis. To engineer is to make
compromises. If you have proved that a
condition cannot happen, you are entitled
not to check for it. If every program checked
for all possible and impossible events, no
useful instruction would ever get executed!

YOU CAN’T BLAME TESTING
The Inquiry Board recommends better

testing procedures, and it also recommends
testing the entire system rather than parts of
it (in the Ariane 5 case the SRI and the flight
software were tested separately). But even if
you can test more, you can never test all.
Testing, as we all know, can show the pres-
ence of errors, not their absence. The only
fully realistic test is a launch. And in fact, the
launch was a test launch, in that it carried no
commercial payload, although it was prob-
ably not intended to be a $500 million test.

YOU CAN TRY TO BLAME REUSE
The SRI horizontal bias module was

indeed reused from 10-year-old software,
the software from Ariane 4. But this is not
the real story.

BUT YOU REALLY HAVE TO BLAME
REUSE SPECIFICATION

What was truly unacceptable in this case
was the absence of any kind of precise
specification associated with this reusable
module. The requirement that the hori-
zontal bias should fit on 16 bits was in fact
stated in an obscure part of a mission doc-
ument. But it was nowhere to be found in
the code itself!

One of the principles of design by con-
tract, as earlier columns have said, is that
any software element that has such a fun-
damental constraint should state it explic-
itly, as part of a mechanism present in the
language. In an Eiffel version, for exam-
ple, it would be stated as

convert (horizontal_bias:
DOUBLE): INTEGER is
require

horizontal_bias
<= Maximum_bias

do
...

ensure
...

end

where the precondition (require...)
states clearly and precisely what the input
must satisfy to be acceptable.

Does this mean that the crash would
automatically have been avoided had the
mission used a language and method sup-
porting built-in assertions and design by
contract? Although it is always risky to
draw such after-the-fact conclusions, the
answer is probably yes:

• Assertions (preconditions and post-
conditions in particular) can be auto-
matically turned on during testing,
through a simple compiler option. The
error might have been caught then.

• Assertions can remain turned on dur-
ing execution, triggering an exception
if violated. Given the performance
constraints on such a mission, how-
ever, this would probably not have
been the case.

• Most important, assertions are a
prime component of the software
and its automatically produced doc-
umentation (“short form” in Eiffel
environments). In a project such as
Ariane, in which there is so much
emphasis on quality control and
thorough validation of everything,
assertions would have been the qual-
ity assurance team’s primary focus of
attention. Any test team worth its
salt would have checked systemati-
cally that every call satisfies every
precondition. That would have im-
mediately revealed that the Ariane 5
software did not meet the expecta-
tion of the Ariane 4 routines that it
called.

The Inquiry Board makes several rec-
ommendations with respect to soft-
ware process improvement. Many

are justified; some may be overkill; some
would be very expensive to put in place.
There is a more simple lesson to be
learned from this unfortunate event:
Reuse without a precise, rigorous speci-
fication mechanism is a risk of potentially
disastrous proportions.

It is regrettable that this lesson has not
been heeded by such recent designs as IDL
(the Interface Definition Language of
CORBA)—which is intended to foster
large-scale reuse across networks but fails
to provide any semantic specification
mechanism—Ada 95, or Java. None of
these languages has built-in support for
design by contract.

Effective reuse requires design by con-
tract. Without a precise specification
attached to each reusable component—
precondition, postcondition, invariant—
no one can trust a supposedly reusable
component. Without a specification, it is
probably safer to redo than to reuse. ❖

There is a simple lesson
here: Reuse without

a precise specification
mechanism is a
disastrous risk.

.

