
140 Computer

Ob
je

ct
 T

ec
hn

no
lo

gy

I
n the future, object technology will
not be confined to a niche. Objects
will be pervasive; very little serious
software will not be object-oriented
at least in some way in 1998 and

beyond.
Object technology isn’t a matter of

fashion. It’s simply that no one really
knows how to tackle the kind of sophis-
ticated systems that our users now want,
without using object technology.

It’s also that no one has found any-
thing better. Since object technology
came into prominence a decade ago,
pundits have at various times predicted
its demise, with the inevitable periodic
announcements of the so-called “Object
Winter,” an allusion to the “AI Winter”
that froze the spread of artificial intelli-
gence in the late seventies.

But winter has not come. And all the
signs indicate that spring will continue.

ALL THINGS OO
In every area of software technology,

OO ideas are at the fore; this is true in
programming languages, analysis and
design methodology, and in databases,
graphics, formal approaches, network-
ing, concurrency, distributed computa-
tion, and even Web development.

Areas that had traditionally resisted
the influx of OO ideas are no longer

immune. Indeed, 1997 may be known in
history as the year during which object
technology finally reached the world of
embedded and real-time systems. Even
the scientific computing field is becom-
ing increasingly OO, both with the
spread of OO languages and libraries
and with the increased influence of object
ideas on new versions of traditional lan-
guages, most notably Fortran.

Ian Graham recently noted in the
Journal of Object-Oriented Program-
ming that some authors have been cit-
ing “componentware” as what will
come after objects. But of course object
technology has been component-savvy
all along. When a headline announces
that a technology goes “beyond
objects,” it’s usually to highlight tech-
niques, such as patterns and frame-
works, that fit nicely with the rest of the

object-oriented approach.
So the main concern of any object

enthusiast should not be whether object
technology will be around in the future,
but whether the OO concepts can avoid
the kind of dilution that have plagued
structured techniques. If everything is
advertised as object-oriented, the burden
is on the buyer to ascertain what is OO
and what is not.

OO DATABASES
The future of object-oriented data-

bases is an interesting topic for specula-
tion. It is remarkable to see how
relational database vendors—Oracle in
particular—managed since 1986 to stifle
the growth of OO databases through
preemptive announcements, repeatedly
convincing customers that their product
“is going to be OO next year anyway, on
top of offering all the relational facili-
ties.”

Ten years later the products did begin
to match the announcements, although
OODB experts will still tell you that the
offerings from the main relational ven-
dors, in spite of their advertised object
facilities, are still far from the real thing.
In the meantime, however, none of the
half-dozen companies that in 1986
hoped to become “Object Oracle” did.

Some applications do require true
OODB facilities in fields such as finance,
CAD/CAM, simulation, and graphical
information systems. As they become
more and more ambitious, the market for
OO databases will continue to grow, but
it will remain a fraction of the traditional
database market.

JAVA AND UML
At the moment, much of the buzz is

about Sun Microsystems’ Java and
Rational’s Unified Modeling Language
(UML); I don’t think either will matter
very much in a few years.

The limitations of Java as a language
are becoming evident to many people,
and its most significant contributions
(multithreading, dynamic loading, and
Web interfaces) are being transferred to
other languages. It is also doubtful
whether Java’s byte code will, as Sun
hopes, become a universal portability
vehicle. The technical obstacles (did we
hear “performance”?) and the political

The Future
of Object

Technology
Bertrand Meyer, Eiffelsoft

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; 
ot-column@eiffel.com

Areas that had
traditionally resisted
the influx of OO ideas
are no longer immune.

.



ones (did we hear “Microsoft”?) are for-
midable.

Meanwhile, UML’s current success is
due to the same factors that have
attracted people to such proposals as
the Capability Maturity Model and ISO
9000. For decision makers, especially
those who are not themselves software
professionals and are dismayed by 
the difficulty of managing software
projects and predicting costs and devel-
opment times, the prospect of industri-
alizing software development through
standards is soothing. Unfortunately,
UML is too complex to be of much help
in practice. An analysis-design method
must be simple and easy to learn, so as
to facilitate the development process
without interposing a formidable wall
of new notations and concepts. 

This complexity is all the more
remarkable when we realize that UML
is only a tool for analysis and design. In
the end, you still have to write the pro-
gram.

In many respects, the UML idea goes
against the seamless nature of object

technology, which is designed to reduce
the conceptual distance between the var-
ious phases of the process, not introduce
notations removed from the program-
ming language. So, although UML will
be successful at first, because it has the
right endorsements, it will be of little use
to the actual process of developing soft-
ware.

It is indeed remarkable to see how few
of the officially sanctioned, manage-
ment-oriented approaches to software
engineering have succeeded on a wide
scale. At the recent Tools Pacific
Conference in Melbourne, two of the
invited speakers, Jim Coplien and Doug
Schmidt, questioned the value of ISO
9000 and the Capability Maturity
Model; this probably would not have
happened a few years ago.

O ne area in which it is risky to make
a prediction is that of communi-
cation mechanisms. At the mo-

ment it seems that both Corba and
DCOM are carving themselves re-

spectable niches. Whether this trend
continues, or DCOM obliterates
Corba, depends in part on whether
Unix will find new life or whether
Windows will reduce it to boutique sta-
tus. The signs of a Unix resuscitation
are not yet here, but it is too early to
call in the undertakers.

Perhaps most importantly, reusability
will become more and more the way of
life in our industry. As many Object
Technology columns of 1997 explained,
it is not enough to rush to reuse. The
components must be certifiably good,
requiring application of the Design by
Contract idea and a serious qualification
process, based both on tools (for vali-
dation and verification) and on people
(for deep scrutiny).

If reuse becomes a way of life—and
the chances are good that it will—the
next few years will see as many
advances as those of the past decade,
profoundly affecting the software field
and providing object-oriented enthusi-
asts with many new sources of excite-
ment. ❖

.


