
B
y now you have probably heard
more than you really care to
about the “millennium crisis,”
also known as the Year 2000
problem or—license plate style

—Y2K. If you haven’t brushed off the
whole thing altogether, you’ve probably
included in your New Year’s resolution
plan for January 1, 2000, to wait a little
before rushing to the airport, stepping
into an elevator, or cashing in on your
mutual funds.

Yet for all the books, conferences, and
articles, the software community, with a
few exceptions, has neither heeded the
lesson nor seized the opportunity. But it
may not be too late.

For most companies, “doing some-
thing about Y2K” has usually involved
sending stern letters to suppliers asking
them to guarantee compliance of their
products, and appointing a team—inter-
nal or external—to convert existing soft-
ware. Conversion here usually means
going through old code, typically Cobol,
looking for explicit uses of two-digit
date fields, and extending them to four
digits. If this characterizes the extent of
your Year 2000 effort, your company is
missing an important opportunity.

ENGINEERING TRADE-OFFS
How did the crisis happen in the first

place? Conventional wisdom suggests
that programmers were byte hoarders,
who foolishly chose to save tiny amounts

of memory instead of properly planning.
An alternative explanation puts the
blame on the programmers’ managers,
which is consistent with the current
Dilbertist trend that suggests all man-
agers are morons.

Both these variants lack perspective. It
is easy today to laugh at a programmer
or a manager for saving two bytes of
memory per database field in 1965. But
we aren’t the ones who had to make the
tough technical decisions back then.
Software construction, like other engi-
neering efforts, is a constant search for
the right trade-offs between a number 
of competing factors, including space
efficiency, time efficiency, flexibility and
maintainability of the architecture, 
compatibility, ease of use, and ease of
implementation. One person’s brilliant
trade-off may become, in different cir-
cumstances—say if memory costs drop a
thousand-fold and a product meant to be

used for two years lasts well into the next
millennium—a paragon of silliness
mocked in Newsweek cartoons.

The two-digit date field may in many
cases have been a silly choice, but it is just
a choice among millions that program-
mers have to make all the time, not
because they or their managers are
cretins with no long-term vision, but
because that’s what their job takes. While
you are reading this, some programmer
somewhere is consciously and perhaps
competently deciding to limit the size of
a data field to some reasonable amount,
a decision that 20 years from now might
seem silly.

The millennium problem goes much
deeper than programmers setting two-
digit date fields. It is related to abstrac-
tion, information hiding, modularity, and
reuse. In other words, the problem con-
cerns the set of fundamental software
engineering issues that object technology
addresses.

THE TRUE SCANDAL
Prescribing a particular number of dig-

its is a trivial design decision, not a scan-
dal. The scandal is that a trivial decision
may have million-dollar or even billion-
dollar consequences. The reason the con-
sequences are so outrageous is that with
standard software technology the effects
of a single choice can spread throughout
an entire application. 

Be it dates or any other information,
the major problem with traditional ways
of building software is uncontrolled dis-
tribution of information. In an object-
oriented architecture, “date” is an
abstraction and is managed by a mod-
ule—a class—through which any other
part of the system must go whenever it
needs to access a date, modify a date, or
perform any other date operation. Then,
if something changes in the notion of
date, the date class would require updat-
ing. But if the change is to the concrete
representation rather than the abstract
notion, the other modules will not be
affected.Too often, software is not built
in this way.

Object technology is entirely aimed at
abstraction. Classes, inheritance, poly-
morphism, dynamic binding, and De-
sign by Contract all help us limit the
flow of information in our systems and

The Opportunity
of a Millennium

Christopher Creel, Hewlett-Packard
Bertrand Meyer, Eiffelsoft
Philippe Stephan, CALFP

November 1997 137

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-1006; 
ot-column@eiffel.com

This is the time to be
bold. The Year 2000 

crisis is an opportunity.

.



138 Computer

Object Technology

isolate concrete details from the bigger
picture, yielding architectures that lend
themselves more gracefully to change.
It is true that this process is not yet 
universally understood, as evidenced by
the possibility in Java of writing instruc-
tions such as my_object.date = 97,
which violates abstraction principles by
allowing users of a concept to access
and modify an object’s field directly,
bypassing the corresponding class inter-
face. But true object technology is piti-
less about information hiding, and will
not allow programmers to access an
object’s properties except through its
class interface; this is the only known
technique for avoiding catastrophes like
Y2K.

The Y2K problem has resulted in one
of the most expensive collective efforts
in our history. But technically it is only
one small example of a far larger prob-
lem. Regardless of how many sleepless
nights and billions of dollars it will take
to correct date fields in old Cobol pro-
grams, all that effort will not—unless we
plan for it—move us any closer to solv-
ing the larger problem. 

FROM CRISIS TO OPPORTUNITY
Because the conversion effort is so

huge and expensive, it is silly to make it
just a Year 2000 conversion effort. This
is where crisis can become opportunity.
Some companies, which unfortunately
appear to be only a minority so far, have
already understood the Y2K conversion
for what it is: a once-in-a-lifetime chance
to rip apart mission-critical enterprise
applications and prepare them for the
future and its inevitable surprises.

Since we are going to have to look into
the entrails of our applications anyway,
why not take advantage of this effort to
reengineer them? We can reorganize the
architecture, use the best technology
available today for such purposes—
object technology—and make sure that
when the next crisis comes it will not be
a crisis. We’d like to call this process the
millennium rip-apart. Elements of the
millennium rip-apart include

• Identifying abstractions. Extract
from the legacy code those con-
cepts—object types—which will

form the backbone of the new archi-
tecture. They will range from basic
concepts such as date to much
more ambitious abstractions such
as, say, SCHEDULING_POLICIES
or LENDING_GUIDELINE.

• Enforcing OO principles. Use tools
that are truly OO, not just labeled
OO. Make no concessions regard-
ing information hiding. Ensure that
each module accesses only the infor-
mation it needs.

• Leaving hooks. One of the benefits
of the millennium rip-apart is that
it can help you make the structure 
a little looser, enabling future
demands to be handled more easily.
Put “hooks” into your software,
places where new mechanisms can
be plugged in later on. Object tech-
nology is ideal here, enabling you
(through such mechanisms as
deferred features) to define frame-
works that specify a general behav-
ior but leave the details for later.

• Being dogmatic about reuse.
Repetition is one of the worst ene-
mies of software, because repetition
breeds variation. Whenever some
scheme appears twice in a system, it
is almost inevitable that the two ver-
sions will diverge and spawn vari-
ants of their own. Whenever you
spot duplication, kill it immediately.
This effort will pay for itself many
times.

• Expressing contracts. Attach to
every software element a specifica-
tion, as precise as possible, of what
it is supposed to do, independently
of how it accomplishes its goals, and
leaving aside any properties that are
not essential to the element’s client
modules. Doing this is the best way
to make sure that the element will
have a smooth evolution, possibly
extending its initial properties but
staying within the boundaries of the
original intent.

Design by Contract, often discussed in
previous columns, appears here as a key
tool for maintenance planning. It is
essential in particular to preserve the
work of the best designers. As Barry
Boehm, Fred Brooks, and others have

pointed out—and as any software man-
ager knows—a few individuals in our
field can do 10 or 20 times as much as
other developers. These individuals are
often crucial in establishing the base
architecture.

But what commonly happens—and
undoubtedly explains some of the worst
nightmares in Y2K conversion efforts—
is that their successors, little by little,
destroy the original ideas behind an
architecture, because the successors
don’t understand the architecture, and
because there is no contract enforcement
to preserve it. By being fanatic about
contracts (attaching invariants to classes,
and preconditions and postconditions to
routines), we can ensure that the best
designers’ legacy—imagine using this
word in a positive sense—will survive. 

Regardless of how far you already
are in your conversion efforts, the
costs and stakes are so high that a

halfhearted effort makes little sense. This
is the time to be bold. The Year 2000 cri-
sis is an opportunity.

By applying a full-fledged version of
object technology, you can seize this
opportunity to overhaul your company’s
software investment, making it incom-
parably better in terms of robustness,
extendibility, reusability, and ease of use.
And if you do your job well, you might
enable your software to withstand
another millennium or two. ❖

Christopher Creel is an architect for
Hewlett-Packard’s color laserjet product
line. Contact him at ctcreel@hpbs1265.
boi.hp.com.

Bertrand Meyer is editor of Object Tech-
nology and president of Eiffelsoft. Con-
tact him at ot-column@eiffel.com.

Philippe Stephan directed the design and
implementation of CALFP Bank’s Rain-
bow future trading system. He has
recently established a new software com-
pany in the San Francisco Bay Area.
Contact him at philippe@bluecanvas.
com.

.


