
102 Computer

O
b

je
c

t
Te

c
h

n
o

lo
g

y

Ich bin der Geist, der stets verneint,
und das mit Recht Mephistopheles
– Goethe’s Faust, part I (for the trans-
lation, read on)

H
aving recently completed a mul-
tiyear writing project, I now
have time to program again.
Not just directing development
or looking at specific elements or

helping fix bugs or even writing library
classes (these I never stopped doing), but
a sizable development. Such in-depth
involvement is not only pleasurable, it is
indispensable if your job involves con-
sulting, writing, lecturing, teaching, man-
aging, documenting, or selling (or all of
the above). In particular, if you sell devel-
opment tools you should use them, too—
and not just for doing demos, teaching
classes, or writing manuals.

What the product is does not matter for
this discussion. But I have started to docu-
ment my own development process because
I think it may be interesting for others.

I call this process the Quality First
model. This is not a slogan; it describes a
central property of the model. It follows
from comments made by consultant
Roger Osmond, which I will try to sum-
marize here.

OBJECTIONS
First let me try to refute in advance

some objections you might put forward
as you read about Quality First:

I’ve always worked that way. If that’s
really true, congratulations. But I’d like to
see it before I believe it, because some as-
pects of this process go directly against con-
ventional ideas of software development.

It’s just literate programming. Donald
Knuth’s literate programming is a great
idea. But it’s not Quality First. As I
understand it, literate programming is
top-down (it starts from a problem state-
ment), while Quality First is bottom-up
(it starts with perfecting a small system
then adds functionality). Quality First is
fundamentally tied to object technology
and design by contract.

It’s just Cleanroom development. Like
Quality First, Cleanroom emphasizes for-
mal reasoning. Unlike Quality First, it
shuns unit testing and, in general, the use
of computers early in the process. Quality
First constantly relies on computer tools
and encourages continuous testing.

It’s just rapid prototyping. Absolutely
not. In many respects it’s the opposite.
Rapid prototyping is about building
something to try a few ideas, then throw-
ing it away to start the real development.
With Quality First, you work on the real
thing, right from the start.

It’s incremental development. Yes, so
what? All development is incremental.
What matters is how you go from one
increment to the next.

It’s the spiral model. Barry Boehm’s
great contribution (“A Spiral Model of
Software Development and Enhance-
ment,” Computer, May 1988) was to
emphasize the need to handle risk in soft-
ware project management. But Quality
First does not use spiral’s idea of repeated
analysis-design-implementation cycles. It
builds the software, cluster by cluster,
using a seamless, reversible process,
as described by Kim Walden in this
column (“Reversibility in Software
Engineering,” Sept. 1996).

It’s just.... Probably not. Few basic
ideas are completely new in software; to
a certain extent, all had been said in 1974
by Edsger Dijkstra, Tony Hoare, Knuth,
Harlan Mills, Niklaus Wirth, and a few
others. What counts is how you put the
basic ideas together: what you do, and
also what you don’t do.

It’s a personal software process and will
not work for large developments. Large
developments are aggregates of personal
processes, as described by Watts

Humphrey. If you can’t get the personal
process right, you won’t get the large-
scale processes right. Besides (building
on an observation I first heard not very
long ago from Jean Ichbiah, the designer
of Ada, who recently built another great
product with a very small team), it’s
amazing what one person or a tiny
group can do these days with object
technology, modern tools, top-charged
“personal” computers, the Internet, and
the Web. There remains a need for the
massive, warfare types of projects so
prominent in the traditional software
engineering textbooks—projects which,
by the way, probably need the tech-
niques described here more than any-
thing else—but more and more
successful products are, at least initially,
the product of guerrilla programming.

Practice
To Perfect:
The Quality
First Model

Editor: Bertrand Meyer, EiffelSoft, 270 Storke Rd., Ste. 7, Goleta, CA 93117; voice (805) 685-6869; ot-column@eiffel.com

Quality First
builds software,

cluster by cluster, using
a seamless reversible

process.

Bertrand Meyer, EiffelSoft

.

May 1997 103

It’s the cluster model. Yes, but it’s more.
The cluster model (Object Success: A
Manager’s Guide to Object Technology,
Prentice Hall, 1995) describes the
process of object-oriented software
development, based on partitioning the
system into a number of subsystems and
libraries, the clusters, and applying con-
current engineering on the various clus-
ters. Quality First complements the
cluster model by telling us how we
should be developing the clusters.

A PRIORI AND A POSTERIORI
It never ceases to amaze me, when I

look at the literature and at discussions
in places like Computer and IEEE
Software, not to mention Usenet, how
much we as a community reason in
“either-or” terms when it comes to soft-
ware quality techniques.

For some, the key is in a priori tech-
niques: Just use formal methods, and
everything will be right. Boris Beizer does
a hatchet job on some extreme forms of
this idea—the absurd view that if you are
just careful enough you don’t need unit
testing (“Cleanroom Process Model: A
Critical Examination,” IEEE Software,
Mar. 1997, pp. 14-16).

At the other end of the spectrum you
find many developers who don’t believe
at all in formal or even semiformal tech-
niques, for whatever reason. In much of
current practice, the hope is simply that
with enough testing and V&V (valida-

tion and verification) you will find all
bugs, so why spend time on things like
design by contract? Some of the online
Usenet discussions following the column
here on the Ariane-5 crash (available at
http://www.eiffel. com) clearly evidenced
that attitude.

It does not have to be either-or! To say
that careful, formal design removes the
need for testing is just as absurd as to
think that with enough V&V you can
make up for imperfect software technol-
ogy. Especially in mission-critical systems
(and how many developments these days
aren’t?) you need both. You want the
best a priori efforts, managerial (simula-
tion, careful design) and technological
(the most sophisticated method, tools,
hardware, languages). And you need the
a posteriori checks: an independent QA
team, extensive testing, and V&V.

Your motto should be: Build it so you
can trust it. Then don’t trust it.

Reliability engineering involves redun-
dancy and distrustfulness. Our obvious
patron saint here is the sulfurous
Mephistopheles (here, finally, is the
translation):

I am the spirit that always says no,
and rightly so.

That’s us! (Do get the full quotation,
with Zerstörung—destruction, and all
such great stuff.) This is what I call a
healthy attitude for a QA person. With a

resume like that, I would hire the guy on
the spot; Mr. Nice Guy and Ms. Kind
Gal need not apply.

OSMOND PRINCIPLE
Here I will paraphrase the comments

Roger Osmond made at TOOLS USA
(the curves are mine but the ideas—which
I hope I am not distorting too much—are
definitely his). Software quality includes
two parts: functionality (how much the
software does) and everything else (cor-
rectness and robustness, efficiency, porta-
bility, extensibility, reusability).

Too often, the development scheme is
as depicted in Figure 1. You try to
progress toward the goal—enough func-
tionality, good quality—by working on
everything at once. In the meantime, the
product is not only less-than-functional
but also less-than-good. You hope, of
course, that given enough time you’ll fix
both the functionality and the quality.
This is what I will call the slopy model
(named for the slow upward slope).

As Osmond pointed out, the slopy
model is very wrong. In fact, it deserves

a second ‘p.’ Its flaw becomes very clear
in the face of one of the unspoken con-
straints on our industry: the “Can we
ship now?” phenomenon. As Philippe
Kahn says, “shipping is a feature.” With
the slopy model, this question translates
into “Does it do enough?” and “Is it
good enough?”

What Osmond advocates—and what
the industry needs—is what I will call
the Quality First model: Quality remains
constant. You always strive to get every-
thing right from the start and fix it
immediately if it is not. The only thing
that changes is functionality. Quality

Figure 1. The most common development scheme addresses functionality and quality simultane-
ously.

To say that careful,
formal design removes

the need for testing
is just as absurd
as to think that

with enough V&V you
can make up for imperfect

software technology.

Continued on page 105

O
th

er
 q

u
al

it
ie

s
(p

er
ce

n
ta

g
e)

100

0
Functionality

Late
debugging

.

First produces the flat line (or at least the
perhaps more realistic wavy line) in
Figure 2. In this model you never skimp
on quality. If the existing functionality
does not work perfectly yet, you don’t
move on to the next function; you make
things right.

Why is Quality First so much better?
First, it turns the “Can we ship now?”
question into “Does it do enough to
impress the marketplace?” Quality—
other than functionality—is not a party
to the decision. If you do decide to ship
an early version, you can sleep at night;
it won’t crash. This model also has a
tremendous effect on developer morale,
which feeds back into quality and pro-
ductivity. Knowing that you are not cut-
ting back on quality (only, if necessary,
on functionality) is a great boost to
everyone’s confidence and leads to
redoubled efforts. And Quality First will
not take more time from start to finish
(or to first commercial release). It may
seem to at first; but soon the efforts start
to pay off, and you can progress much
faster.

Quality engineering beats RAD, every
time.

Yes, all this is easier said than done. I
wish I could say the products I have been
responsible for always used Quality First
and stayed away from the slopy model. I
can’t. But Quality First is possible and I
will try to show how.

IMPLEMENTING QUALITY FIRST
Here is how I work, on the basis of

Osmond’s ideas, modern software engi-
neering principles, and my own work.
(One caveat: I analyze, design, and pro-
gram in Eiffel, using the ISE Eiffel envi-
ronment. This is the technology I have
been working with for the past 12 years.
Regardless of the environment you use,
you can find something in this descrip-
tion that can be applied to your own
method and tools. I hope you find my use
of the first person singular not a sign of
conceit but of realism: I am describing
what I do, and trusting that you will
know what to retain, what to reject, and
what to improve.)

I always get the cosmetics right before
anything else. The syntax should be right
at all times. More importantly, I con-
stantly apply the style rules. Every shop
should have such rules, which in Eiffel
are defined in painful detail: header com-
ments, indexing clauses, commenting
styles, name choices, even comment
punctuation. None of this will by itself
make great software, but if you can’t get
the details right what guarantee is there
that you will get the rest right? Like
everyone else I am occasionally tempted
to cut corners and postpone writing
header comments, indexing clauses, and
the like. But I censure myself because I
know it means slower progress in the
end. How much of development is
devoted to filling the blank page (or its
electronic equivalent) and how much to
combing existing text? Far more of the
latter, of course, so the crucial need is to
make this process as smooth and effi-
cient as possible.

I recompile all the time. In fact, I get
nervous if I haven’t recompiled for more
than 15 minutes. In this I differ from
many people. When I explained this con-
cept recently to a class, everyone nod-
ded. As soon as I left the room everyone
started to write and write and write (they
called it “design”) and soon none of the
programs would compile! We spent two
hours getting back on track.

Recompiling supplies type errors,
which in many cases reflect deeper over-

sights. Why would anyone use an
untyped or dynamically typed language?
The argument “we’ll develop faster that
way” makes no sense to me, either theo-
retically or practically.

To recompile all the time I need fast
recompilation and scalability. Today’s
compilers are relatively fast. What’s cru-
cial, however, is the knowledge that if
you change a few classes it will take a few

seconds to get the system compiled again,
whether your total system size is 100
classes, 1,000, or 10,000. I wouldn’t use
the flashiest visual tools in the world, the
best method, the best language, without
the knowledge that the time to process a
change is independent of the total size.

I intertwine analysis, design, imple-
mentation, and maintenance. It’s not that
up-front activities are unimportant; it’s
rather that I want to transform every-
thing into a software text right away and
compile it. Sometimes the “software”
text is just analysis—deferred classes in
Eiffel, with no implementation at all but
lots of assertions all over to capture the

May 1997 105

Figure 2. The Quality First development scheme does not add functionality until the quality is
perfect.

I recompile all the time.
In fact, I get nervous if
I haven’t recompiled for
more than 15 minutes.

Object Technology
Continued from page 103

O
th

er
 q

u
al

it
ie

s
(p

er
ce

n
ta

g
e)

100

0
Functionality

.

106 Computer

(or at least I believe so), I include a check
instruction to document this belief and
make it testable.

I execute with all assertion checking on.
The errors that have not been caught by
type checking are caught as assertion
violations. And I am always surprised
(even though by now I should know bet-
ter) when the violated assertion turns out
to be one that I had added just for good-
ness’ sake, so convinced was I that it
could never fail.

When I find an error, I ask myself three
questions. Tom Van Vleck’s delightful
short paper (http://www.lilli.com/
threeq.html) lists the “three questions
that you should ask about each bug you
find”:

1. Is this mistake somewhere else also?
2. What next bug is hidden behind this

one?
3. What should I do to prevent bugs

like this?

I take care of abnormal cases right
away. It’s very tempting to concentrate
on the interesting stuff first, and post-
pone worrying about “stupid” (read,
novice) users, faulty devices, damaged
or unreadable files, unlikely cases, and
so on. I have come to understand that
“Let’s make it work now, we’ll make it
robust later” is the wrong attitude. It is
when you are writing a certain part of
the processing that you are in the right
position to think of all the things that
could go wrong, and process them. And
because error processing is indeed
tedious, I know of no better way to force
myself to simplify everything because it
is always better to engineer out errors
(making sure that they cannot happen)
than to process them. But after you have
removed the unnecessary error cases,
you should take care of the necessary
ones without delay.

I prepare for internationalization right
away. We have a small internationaliza-
tion library—nothing very deep—that
provides hooks for non-English mes-
sages and interfaces. Using it takes only
a few more keystrokes for each string or

essential semantics—and I will just use
Eiffel’s Melting Ice compiling technol-
ogy the way other approaches would use
a CASE tool. Later in the process, I will
be able to execute the result. But the
process departs, for example, from the
Unified Modeling Language approach.
The idea of having beautiful “bubble
and arrow” diagrams at the analysis and
design stage, only to switch to a com-
pletely separate programming language
and the resulting impedance mis-

matches, seems to me incompatible with
a Quality First process and the seam-
lessness and reversibility of object tech-
nology promoted by Kim Walden and
Jean-Marc Nerson’s BON approach
(Seamless Object-Oriented Software
Architecture: Analysis and Design of
Reliable Systems, Prentice Hall, 1995).

I execute right away after compiling. At
least, I execute when I have reached an
executable state (not just deferred classes
for analysis and high-level design).

I include assertions all over the place. I
rack my brains to spell out all the logical
assumptions that underlie my designs. I
never write a routine without checking all
the applicability conditions first and
expressing them as Eiffel preconditions.
I write the postconditions, trying to cap-
ture as much as I can of the result’s prop-
erties. I am never satisfied with a class
until I have written a class invariant that
captures its essential semantics. When I
redefine a routine in a descendant (sub-
class), I check if the original precondition
must be weakened or the postcondition
strengthened; again, the compiler checks
help me get everything right here. When
I call a routine and do not test for the pre-
condition because the context ensures it

other country-sensitive value. I know a
company that has to perform 18 compi-
lations for each new release; this should
not happen.

I always have a working system. It is
essential to have a current demo at all
times, even if it includes only some clus-
ters or older versions of the less stable
clusters. A working demo is something
you can show to colleagues or customers
and get feedback. It keeps you honest,
cutting your grandiose plans down to
the level of feasibility. It also safeguards
the method’s emphasis on bottom-up
incremental development.

I have someone else try to defeat partial
results. Unfortunately, Mephisto is not
around (although he seems to have quite
a few disciples on Usenet these days). If
I had any enemies I would call on them
to help; short of that, I make sure to tell
the testers that their job is to displease
me. The purpose of testing is to find
bugs.

I don’t strive for perfection. This might
seem to contradict the above but it does
not. I know that I have to produce
results in my (and my customers’) life-
time. I do know about Web years. I am
not equally interested in all software
quality factors. There is a tendency, once
you have been won over to the benefits
of reusability, to overgeneralize. I think
about generalization and reuse all the
time, of course, but I refrain from trying
to write a full-fledged reusable compo-
nent when all I need is a good module
for my current development. If you try
to be too general, you don’t produce
anything. Before being reusable, soft-
ware must be useful, usable, and used.
What I try not to compromise, however,
includes correctness, robustness, exten-
sibility, and efficiency.

So the process is not perfect (big
news). But I think Quality First is
the right way to go, for projects

large and small. I wish everyone applied
it. And I hope you will benefit from it,
too. ❖

Before being reusable,
software must be useful,
usable, and used. What
I try not to compromise,

however, includes
correctness, robustness,

extendibility, and
efficiency.

.

