
November 1999 131

S
o far, we’ve had it easy. The
public has been remarkably tol-
erant of our collective inability
to produce high-quality soft-
ware.

True, by and large, software works
much of the time, more or less. If society
hadn’t come to rely so fundamentally on
our profession, Y2K, for one, wouldn’t
be such a big deal. But the overall service
that we render is not good enough by any
measure. A year ago, Ted Lewis pro-
duced some pretty scary statistics about
the huge waste of resources that poor
quality causes (“Joe Sixpack, Larry
Lemming, and Ralph Nader,” Com-
puter, July 1998, pp. 107-109).

The public’s tolerance will not last for-
ever because people are increasingly
resenting the bugginess of much of the
software we produce. Consider this
extract from Walter F. Mossberg’s recent
column in the Wall Street Journal
(“Personal Technology,” 30 Sept. 1999,
MarketPlace, p. 1):

Please don’t bother to write to me with
suggestions to fix the [numerous
Windows-related problems discussed
in the article]. The whole point is that

owners of computers shouldn’t have to
get involved in making them work as
promised. They should just work, all
of the time.

Not so long ago, technology dazzled
editors of mass circulation magazines;
now those editors are beginning to
demand quality. Even the professional
press is starting to worry; consider this
extract from a recent Nicholas Petreley
column in InfoWorld (“Silence Is
Deadly…,” 16 Aug. 1999, p. 114):

Software publishers aren’t interested
in writing solid, bug-free code because
they are convinced that features sell,
not quality... . Computer journalists
should focus less on features and more

on reliability when reviewing software.
More importantly, we should go out of
our way to rip out the fingernails and
rearrange the face of any vendor that
delivers programs with security holes
and bugs.

That would be big news indeed; imagine
software reviews that tell us how good
the software really is without just count-
ing the bells and the whistles.

One of the most critical components
of software quality is reliability. Efforts
to improve reliability are not new. In fact,
there are many different approaches.

REMAINING BROAD-MINDED
The group of approaches I’ve outlined

here is a little unconventional because of
its breadth. One of the characteristics of
the software engineering community is
that it’s sometimes split into separate
communities, each of which suggests that
you “just do this” and everything will
work fine. Of course each community
defines “this” differently.

For example, you have

• the management school, which
holds that all that really matters are
better management approaches;

• the formal specification school,
which suggests we won’t achieve
anything unless we specify every-
thing mathematically—and then we
won’t need testing at all;

• the testing school, which views for-
mal specifications as an academic
pastime and believes that the only
meaningful solution is to devise sys-
tematic testing strategies;

• the metrics school, which focuses on
assessing everything quantitatively;

• the open source crowd, which
believes that only by extensive pub-
lic scrutiny can we successfully
develop reliable software.

Each of these schools holds a piece of the
truth, but none of them holds the whole
truth.

Any “just do this” approach is wrong;
the problem is far too complicated for
easy solutions. Although I have con-
tributed a few suggestions myself in the
form of methodological principles, lan-

Every Little Bit
Counts: Toward

More Reliable
Software

Bertrand Meyer, ISE

Editor: Bertrand Meyer, Interactive Software
Engineering, ISE Bldg., 2nd Fl., 270 Storke
Rd., Goleta, CA 93117; voice (805) 685-
6869; ot-column@eiffel.com

Imagine software
reviews that tell us how

good the software
really is without just

counting the bells and
the whistles.

Co
m

po
ne

nt
 a

nd

Ob
je

ct
 T

ec
hn

ol
og

y

132 Computer

Component and Object Technology

guage support, and software tools, I do
not think that any single solution can
carry the day. The best position is believ-
ing that every little bit helps; we must
keep an open mind and avoid ruling out
good ideas.

What follows is a list of good ideas. I
will certainly have forgotten some, but I
welcome reader comments that point to
such omissions.

PREVENTION AND CURE
Separate from their classification as

management and technology, reliability
techniques fall into two categories:

• a priori techniques, which strive to
build software right;

• a posteriori techniques, which at-
tempt to right the wrongs.

Formal specification is an example of a
priori; testing, of a posteriori.

Much of the practice today is in a pos-
teriori techniques. We build software
that’s not very good and, through brute
force, debug it into correctness. I cer-
tainly won’t suggest that, given current
techniques, we should test our software
less. But by shifting some of the balance
to a priori efforts, we may go a long way
toward correcting some of the most seri-
ous problems. We need both cure and
prevention, but an ounce of prevention
saves a lot of cure.

MANAGEMENT APPROACHES
The management school reminds us

that good engineering practice means,
among other things, well-defined man-
agement policies.

Process-based
The Capability Maturity Model and, to

a lesser extent, the ISO-9000-based
approaches have had positive effects in
some segments of the industry, mostly
among large companies. Forcing organi-
zations to understand, document, and
control their software process—and make
it reproducible—is a definite benefit.

Such approaches have been criticized
as being focused too much on form and
not enough on substance: It is good to
count bugs and to track delays, but it
would be better to eliminate them. This

doesn’t mean the ideas are bad, but it
does mean that these approaches have to
be combined with more technology-
oriented solutions. The Jet Propulsion
Laboratory’s ISO-9000 certification (“we
have a document for everything”) wasn’t
enough to avoid the loss of the Mars
Climate Orbiter, caused by a piece of
software that used an English-unit value
while the rest used metric.

Closed and open
A large part of the industry attempts

to follow Microsoft—“the market
leader”—but doing so doesn’t guarantee
quality. In fact, some would say it guar-
antees the reverse, which is an exaggera-
tion. Microsoft’s software model does
ensure that successful products benefit
from a critical mass.

At the other end of the spectrum you
have the open-source and free-software
enthusiasts who believe in the power of
public scrutiny. While open source and
free software are attractive ideas, to my
knowledge no one has as yet provided
formal evidence of the superiority of soft-
ware produced that way, although infor-
mal examples are not hard to find. Ken
Thompson’s recent disparaging com-
ments about the quality of Linux code
(“Unix and Beyond: An Interview with
Ken Thompson,” Computer, May 1999,
pp. 58-64) are a little sobering.

Quantitative
Metrics are also frequently cited. It is

clear that we need more quantitative
approaches to assessing and predicting
what we do. Project metrics (time, people,
and money) are just as necessary as prod-
uct metrics (bugs, size, and complexity).

Education
Education is critical. Software engi-

neers too often do not know some of the

basic techniques of modern computer sci-
ence. I always find it striking that only a
minority of professionals know, for
example, the Hoare approach to seman-
tics, which is perhaps the closest ap-
proach we have to some of the basic
scientific laws of other fields (such as
Ohm’s laws). We need better initial train-
ing and, perhaps even more importantly,
retraining and continued education for
working professionals.

The Dilbert approach
Some management-style approaches

are unconventional. Kent Beck’s extreme
programming, for example, is in part a
Dilbertian revolt against management-
imposed organizational fiats à la CMM.
Extreme programming is perhaps shock-
ing to some—and not everything in it is
valuable—but there are certainly lessons
to be learned by everyone.

TECHNICAL APPROACHES
Management isn’t everything; we need

better technology. Since the possibilities
for technological improvements are
diverse, the technical approaches are
promising.

Formal methods
It’s impossible to ignore formal meth-

ods. True, they have a bad reputation in
some circles as being too heavy and dif-
ficult. That reputation, however, is not
entirely justified. Formal methods have
achieved a number of successes. They are
the only game in town when it comes to
guaranteeing a regulatory authority that
you have produced a correct engineering
design.

Just as importantly, learning to apply
formal methods makes you a much bet-
ter developer even for projects in which
you don’t work in a completely formal
way. Those who think of formal meth-
ods as an academic curiosity with no
future may be in for a few surprises. As I
noted in an earlier column (“The Next
Software Breakthrough,” July 1997, pp.
113-114), formal methods hold a partic-
ular promise in connection with reuse:
Reusable components need strong war-
ranties, and formal-methods costs can be
justified economically by the economies
of scale permitted by reuse.

We build software that’s
not very good and,

through brute force,
debug it into
correctness.

November 1999 133

tially serious errors before they have had
the time to strike. Automatic memory
management avoids vicious bugs.
Avoidance of dangerous features such as
pointer arithmetic frees us from many
potential disasters.

Object technology has brought us
tremendous improvements. What’s per-
haps critical here is the dramatic simplifi-
cation that well-applied OO software
construction brings to software architec-
tures. Simplicity is key to quality and espe-
cially to reliability: You can’t get it right if
it’s complex. These benefits of object tech-
nology, however, assume that it’s applied
systematically, almost dogmatically. In-
complete or half-hearted approaches,
especially if they don’t fully apply princi-
ples of data abstraction and information
hiding, are not much better than pre-OO
techniques.

Component-based development
Component-based development (CBD)

holds of course a great promise, which

Design by contract
A more moderate version of formal

methods, closely combined with the prin-
ciples of object technology, is design by
contract, which several installments of
this column have described and advo-
cated. I believe it’s one of the most potent
ideas for improving the state of software
technology.

Testing
Approaches to testing are becoming

more systematic. We all know that test-
ing cannot come even remotely close to
exhaustiveness. But this doesn’t mean we
can’t be systematic and effective in our
testing strategies. Recent work on testing
shows how to breathe new life into clas-
sical techniques—such as mutation test-
ing—in connection with the newer ideas
of object technology and contracts.

Modern languages and techniques
Modern languages definitely help.

True static typing catches many poten-

I’ve described in previous columns. Here
too, the techniques must be applied prop-
erly. In particular, we badly need more
expressive Interface Definition Languages
for both CORBA and COM to support
the expression of semantic constraints.

Serious component-based develop-
ment has the potential of reengineering
the industry. Whether we will be able to
realize that promise depends on how seri-
ously we take the software engineering
principles—without which there can’t be
any serious CBD.

N one of the ideas outlined here will
suffice to provide the breakthrough
that our field requires today. But if

we take all of them seriously and succeed
in combining them, we may be able to
realize major advances.

It will take a lot of prevention and a
lot of cure. ❖

The search is on for teams of undergraduate students from
around the world to compete in the first annual IEEE
Computer Society International Design Competition.
■ Use state-of-the art components to solve real-world problems!

■ Compete for cash prizes
of up to $15,000!

■ Apply what you’ve
learned!

■ Bring fame and glory
to your school!

Be a part of the HOTTEST new contest
for computer engineering students!

PRIZESFirst place
$15,000

Second place $10,000
Third place

$6,000
Fourth place

$3,000
Fifth place

$2,000
Honorable mention $1,000
First, second, and third place
teams also each receive a financial
aid fund for their schools.

For more information or to apply online, see computer.org/csidc/

Important Dates
Applications due
1 December 1999

Projects due
4 May 2000

Top 10 projects selected
2 June 2000

CSIDC World Finals in Washington, DC
25-27 June 2000

