
 1

Contracts for concurrency

Piotr Nienaltowski, Bertrand Meyer

Chair of Software Engineering
 Swiss Federal Institute of Technology (ETH)

8092 Zurich, Switzerland
{Piotr.Nienaltowski, Bertrand.Meyer}@inf.ethz.ch

Abstract. The SCOOP model extends the Eiffel programming language to pro-
vide support for concurrent programming. The model is largely based on the
principles of Design by Contract. Nevertheless, the semantics of contracts used
in SCOOP is not suitable for concurrent programming because it only allows
for restricted reasoning about correctness properties; liveness properties are
completely intractable. Additionally, SCOOP does not provide a clear seman-
tics for postconditions. We propose a generalized semantics of preconditions,
postconditions, and invariants that is applicable in concurrent and sequential
contexts. We demonstrate how this semantics may be used for reasoning about
correctness of SCOOP programs. We also analyze the relation between asser-
tion violations and deadlocks. We illustrate the discussion with several exam-
ples.

1 Introduction

Design by Contract [1] allows programmers to equip class interfaces with contracts.
Through the use of assertions, contracts express the mutual obligations of clients and
suppliers. Routine preconditions specify the obligations on the routine client and the
guarantee given to the routine supplier. Conversely, routine postconditions express the
obligation on the routine supplier and the guarantee given to the routine client. Class
invariants express the correctness criteria of a given class — an instance of a class is
in a consistent state if and only if the corresponding invariant holds in every observ-
able state.

The modular design fostered by Design by Contract reduces the complexity of soft-
ware — correctness considerations can be confined to the boundaries of components
(classes) that can be proved and tested separately. Clients can rely on the interface of a
supplier without the need to know about its implementation details. We define the
correctness of a class as follows.

Definition 1. Local correctness (sequential). Routine r of class C is locally correct
iff after the execution of r‘s body, both the class invariant InvC and the postcondition
Postr of that routine hold, provided that both the invariant and the precondition Prer
were fulfilled at the time of the invocation.

 2

Following the principles of Design by Contract, it is possible to reason about the cor-
rectness of feature calls using a simple rule:

Rule 1.1 states that if feature r is locally correct then a call to that feature executed in a
state that satisfies its precondition will terminate in a state that satisfies its postcondi-
tion (with actual arguments substituted for formal arguments). This is very convenient
for proving correctness of sequential programs − clients have to ensure that the pre-
condition holds before the call and they may assume the postcondition after the call.

It is tempting to apply the same rule to reasoning about SCOOP programs [2]. Unfor-
tunately, the assertion mechanism based on the standard semantics for preconditions
and postconditions breaks down in concurrent setting. Consider feature store in fig-
ure 1. Its precondition states that a_buffer must not be full when the feature is called.
So, in order to prove that the call to store (buffer) appearing in feature produce is
correct, it is necessary to show that not buffer.is_full holds at the moment of the call.
But the client has no possibility to ensure that it holds — since buffer denotes a sepa-
rate object, other clients may modify its state and invalidate the precondition in the
meantime. This problem is known as concurrent precondition paradox — suppliers
cannot do their work without the guarantee that the precondition holds; but for sepa-
rate arguments the clients are unable to ensure these preconditions. To solve the prob-
lem, Meyer [3] proposes a new semantics for precondition clauses involving separate
calls — such preconditions become wait-conditions. They make the caller of the rou-
tine wait until all wait-conditions are satisfied. To be more precise, a call to store
(buffer) will block until (1) the processor that handles the object represented by
buffer is reserved for the exclusive use of the client and (2) wait-condition not
buffer.is_full holds. But the rule does not require the client to ensure these two condi-
tions. As a result, we cannot decide whether the call to store (buffer) will ever pro-
ceed! So, the problem is palliated but not solved. To solve the problem completely,
we need a rule that takes into account potential interference of several processors
present in a SCOOP system.

Note that, in SCOOP, wait-conditions appear as part of a routine’s precondition. Some
authors object to that approach — their argument is that wait-conditions are part of
synchronization specification and should be specified separately from preconditions
that are part of functional specification [4][5]. Very often, wait-conditions are simply
understood to be routine guards, as in other Eiffel-based concurrency models such as
CEiffel [6] and CEE [4] where they are specified using a special syntax. We do not
agree that wait-conditions should be treated as guards — they behave differently, in
particular w.r.t. to inheritance and redefinition. Guards may be strengthened in a rede-
fined feature; wait-conditions may only be weakened. That similarity of wait-

 3

conditions and preconditions under inheritance was one of the arguments for using the
wait-semantics as the generalized semantics for preconditions (see section 2.1).

The original SCOOP proposal [3] does not discuss the semantics of postconditions
that involve separate calls. In the subsequent research on SCOOP [2][7] they are ei-
ther assumed to have the same semantics as non-separate postconditions (i.e. they
should hold after the execution of routine’s body) or they are ignored. It is easy to
demonstrate that both approaches are impractical — the former introduces potential
for deadlocks and the latter simply excludes parts of postcondition from the reasoning
rule (see section 2.2). We decided to apply the wait-semantics to postconditions in a
way that unifies the treatment of separate and non-separate postcondition clauses and
allows to rely on full postconditions when reasoning about the correctness of SCOOP
programs.

In fact, we apply the wait-semantics to all assertions, including class invariants,
checks, and loop assertions. This allows us to better understand the role of different
assertions in a concurrent context and demonstrates that the traditional, sequential
semantics is simply derived from the wait-semantics thanks to additional assumptions
that can be made in a sequential context. Furthermore, it allows us to discover an
interesting relation between correctness (safety) and liveness properties. We demon-
strate that the notion of deadlock, traditionally related to liveness, can be formalized
as assertion violation, traditionally viewed as a correctness issue.

The rest of this article is organized as follows. Section 2 describes the generalized
semantics of contracts and refines the rule for reasoning about correctness of feature
calls. Section 3 illustrates the use of new contract semantics with a producer-consumer
example. Section 4 discusses the issues of deadlocks and run-time assertion checking.
Section 5 discusses related work. Finally, section 6 concludes and describes future
research directions.

2 Semantics of assertions

In this section, we propose a new semantics for contracts that is applicable in both
concurrent and sequential contexts. The main motivation for this work is the observa-
tion that sequential computation (involving one processor) is a special case of concur-
rent computation (that may involve more than one processor); similarly, any synchro-
nous call may be seen as a particular case of asynchronous call. Starting from that
observation we make a similar claim concerning assertions. We say that every asser-
tion has wait semantics; that semantics naturally reduces to the traditional (correct-
ness) semantics if no concurrency is involved.

In the rest of this section, we proceed as follows. For each type of assertion, we first
describe its traditional semantics, point out problems that arise in a concurrent con-
text, and propose a generalized semantics. Secondly, we refine feature call rule 1.1 to
take into account the new semantics. Finally, we demonstrate how the new semantics
reduces to the traditional one thanks to additional assumptions that we can make in a
sequential context. We discuss the semantics of preconditions and postconditions in

 4

detail; other assertions are only described shortly since their new semantics is straight-
forward.

2.1 Preconditions

In SCOOP, preconditions may have two different meanings. Depending on whether
they involve any separate calls, they are treated as correctness conditions or wait-
conditions. Consider routine store in figure 1.

store (a_buffer: separate BOUNDED_QUEUE [INTEGER]; i: INTEGER)
 -- Store `i' in `a_buffer’.

require
not_full: not a_buffer.is_full
i_positive: i > 0

do
 . . .
end

Figure 1. Feature with a separate precondition.

Clause not_full involves a call on separate target a_buffer, therefore it is a wait-
condition. When a client calls feature store, the call will be blocked until that condi-
tion is satisfied. Clause i_positive does not involve any separate calls, therefore it is a
correctness condition. When a client calls feature store and that clause is not satisfied,
an exception is raised and the client is blamed for the contract violation. We can see
three major problems with this solution.

First, the distinction between correctness and wait-conditions is based on the separate-
ness of the involved calls. If the call target is declared as separate then the correspond-
ing precondition clause has wait-semantics, even though, at run-time, the target might
denote a non-separate object. Such a situation arises if feature store is called with a
non-separate first actual argument. This is perfectly legal in SCOOP − the model dis-
allows attachments from separate to non-separate entities but not the other way round
[2]. We think that the correctness semantics should be applied in that case.

Second, it is sometimes necessary to transform a correctness condition into a wait-
condition. Such need arises in the presence of inheritance. When redefining a feature,
we are allowed to change the type of its formal arguments from non-separate to sepa-
rate − such redefinitions are legal because clients of the ancestor class may still call
the feature with non-separate actual arguments. It is alright to redefine the type of an
argument to separate but what happens to precondition clauses that involve calls on
that argument? They were correctness conditions in the original feature; they should
become wait-conditions in the redefined feature. The necessity for wait-conditions to
be considered as correctness conditions and vice-versa, as illustrated above, suggests
that, in fact, both kinds of preconditions are equal and one semantics should be ap-
plied to them.

 5

The third problem is that wait-conditions constitute no real contract between a client
and a supplier. The supplier may assume that wait-conditions hold on entry but there
is no obligation on the client to satisfy them. The client is only required to satisfy the
non-separate part of the precondition. This is reflected in call rule 1.2 proposed in [2].

This tentative rule does not account for any potential interference of several proces-
sors. As a result, it cannot be used for proving program correctness − in particular, the
client cannot be sure that the routine body will ever be executed.

We propose to adopt the following semantics. From the supplier’s point of view, all
preconditions preserve their correctness semantics, i.e. they are assumed to hold at the
entry to the routine’s body. For a client, all preconditions are wait-conditions, i.e. a
non-satisfied precondition will force the client to wait until the precondition is satis-
fied. Conceptually, all precondition clauses, even non-separate ones, may cause wait-
ing; in practice, the compiler and the run-time system may optimize the treatment of
preconditions that do not involve separate calls − an exception will be raised if such
assertions are violated.

According to the principles of Design by Contract, the obligation of satisfying the
precondition is put on the client. Obviously, it is useless to require the client to ensure
the precondition at the moment of the call since other clients may invalidate the pre-
condition before the routine is executed (see section 1). Nevertheless, if we want to
make sure that the precondition is satisfied when the routine starts executing, the client
has to ensure that the precondition eventually holds. This is reflected in the refined
call rule 1.3 (for the moment, ignore the part concerning the postcondition; we will
discuss it and provide a full rule in section 2.2). Acq (x) stands for “x is acquired by
current processor”; more precisely, it means that the processor which handles the
object represented by x is locked for exclusive use by the current processor.

In fact, the requirement put on the client is a bit stronger: eventually, all actual argu-
ments are acquired and the precondition holds. In the subsequent discussion, we use

temporal operators u (“until”), ◊ (“eventually”), and  (“always”), as defined in [8].
The use of the “eventually” operator in rule 1.3 is essential to capture the intended
semantics of a feature call − the client may wait but not infinitely. Let us see how this
semantics can be applied to our example routine store from figure 1. A client execut-
ing store (buffer, 10) has to ensure that

 6

◊ (Acq (buffer) ∧ ¬buffer.is_full ∧ 10 > 0)

holds before the call. The call will be postponed until Acq (buffer) and both precondi-
tion clauses are true.

Note that non-satisfiability of a precondition clause results in the client waiting for-
ever. For example, a client calling store (buffer, -5) cannot ensure the required prop-
erty because ¬(-5 > 0). This means that the client will be stuck forever. But it is obvi-
ous that, in that particular case, waiting for the precondition does not make any sense
because -5 will never become greater than 0. We can decide immediately that the
precondition will never be satisfied; the run-time system may react appropriately by
raising an exception. In fact, in a situation when the client waits, all properties of non-
separate objects are invariant. That is, for a non-separate x, if property P (x) is true,
then it will always remain true; conversely, if P (x) is false, then it will never become
true. Thanks to that invariance, we can conclude that

Applying rule 1.4 to property ¬(-5 > 0) we can prove

¬(-5 > 0), hence
¬ ◊(-5 > 0), hence
¬ ◊ (Acq(buffer) ∧ ¬buffer.is_full ∧ -5 > 0)

So, a call to store (buffer, -5) that conceptually should be blocked forever, will result
in an exception rather than an infinite wait. Let us consider a situation where all actual
arguments are non-separate:

non_separate_buffer: BOUNDED_QUEUE [INTEGER]
. . .
store (non_separate_buffer, 10)

Acq (non_separate_buffer), not non_separate_buffer.is_full, and 10 > 0 are all
properties of non-separate objects. By applying rule 1.4 and taking into account the
fact that Acq (x) holds trivially for any non-separate x (because x is handled by the
same processor as Current) we can simplify the client’s obligation to

¬buffer.is_full ∧ 10 > 0

which is precisely the traditional (sequential) precondition. As you can see, thanks to
additional assumptions that can be made about the properties of non-separate objects,
wait-condition semantics reduces nicely to the usual correctness semantics when no
concurrency is involved. Indeed, rule 1.3 applied to sequential code reduces to rule
1.1 (in section 2.2 we will show that the postcondition part can be reduced following
the same approach).

 7

2.2 Postconditions

The treatment of postconditions in SCOOP is unsatisfactory. The initial design of
SCOOP assumed that postconditions involving separate calls could be treated as cor-
rectness conditions and it did not develop the topic any further. Obviously, the evalua-
tion of a separate postcondition may introduce delays due to the asynchronous nature
of separate calls; such postconditions certainly cannot be treated in the same way as
non-separate ones. We considered three ways of dealing with the problem:

• prohibit separate postconditions,
• allow separate postconditions but ignore them in the proof rule (see rule 1.2)

and do not evaluate them at run-time,
• require that routine blocks until separate postconditions hold.

The first two proposals are not real solutions because they restrict the practical use of
postconditions to non-separate ones only. The third proposal is interesting because it
allows reasoning about concurrent code using rule 1.3. The client gets the guarantee
that the call will terminate in a state that satisfies the postcondition. Unfortunately,
blocking until all postconditions are satisfied is very inefficient and may lead to dead-
locks, in particular in the presence of callbacks. Consider feature
spawn_two_activities in figure 2.

spawn_two_activities (location_1, location_2: separate LOCATION)
 -- Launch jobs at `location_1' and `location_2’.

 do
 location_1.do_job
 location_2.do_job

 ensure
 location_1.is_ready
 location_2.is_ready

 end
Figure 2. Separate postconditions.

A client executing a call to spawn_two_activities (york, tokyo) does not want to
wait until the job is done at both locations − in particular if one of these locations
terminates much later than the other. In fact, the client does not want to wait at all.
Still, it wants to have some guarantee about the job being done. Such guarantees are
naturally expressible as postconditions but, as we can see here, waiting for all post-
conditions does not solve the problem. Additionally, a situation where one of the loca-
tions tries to call back the client (or call the other location) results in a deadlock. The
client cannot release the locks before the postconditions are evaluated; the supplier
needs to acquire one of the locks held by the client in order to establish the postcondi-
tion. So, the client waits for the supplier while the supplier waits for the client — they
end up in a deadlock.

 8

When does a client really need the postcondition to hold? In figure 3, the client
spawns two activities in York and Tokyo, does some local work, and asks for results
of remote activities.

york, tokyo: separate LOCATION
 . . .

spawn_two_activities (york, tokyo)
do_local_stuff
get_result (york)
do_local_stuff
get_result (tokyo)
. . .

Figure 3. Concurrent activities.

The client should not wait after the execution of spawn_two_activities (york, tokyo)
but continue with the execution of its local activity (do_local_stuff). Only at the mo-
ment when it executes get_result (york) should the postcondition clause
york.is_ready matter − we may expect that the precondition of get_result depends
on the postcondition of spawn_two_activities. In other words, the call to get_result
should not proceed unless the postcondition york.is_ready holds. Note that, at that
moment, it does not matter whether the other activity (in Tokyo) has terminated suc-
cessfully. The client is not (yet) interested in it. Assume that york.is_ready holds and
the client can execute get_result (york) followed by some local activity
(do_local_stuff). The execution of get_result (tokyo) depends on the postcondition
clause tokyo.is_ready − it is only now that the client becomes interested in that post-
condition. We can observe that the postcondition clause concerning york does not
matter anymore. In fact, the state of york might have changed as a result of call to
get_result (york). This simple example suggests that:

• it is not necessary for a separate postcondition to hold immediately after the
execution of the routine‘s body,

• wait-semantics applies to postconditions but waiting happens on the supplier
side − the separate target is not released until the postcondition clause is sat-
isfied,

• individual postcondition clauses should be considered independently.

Let us try to formalize this way of reasoning and refine the call rule by introducing
temporal operators that capture the intended semantics.

Rule 1.5 weakens the obligation on the routine’s implementor so that the body only
has to ensure that the invariant holds immediately and each postcondition clause
holds eventually. Rel (x) stands for “x is released”; more precisely, it means that the
processor which handles the object represented by x is unlocked, provided that it is

 9

not the current processor (if it is, then Rel (x) holds vacuously). We can express it as:
Rel (x) = ¬Acq (x) for all x denoting separate objects; Rel (x) = true for all x denot-
ing non-separate objects. Postir denotes i-th postcondition clause of r. For example,
Post1spawn_two_activities corresponds to location_1.is_ready. Similarly,
Post2spawn_two_activities corresponds to location_2.is_ready. The guarantees for the
client should be read as follows: for all postcondition clauses, arguments involved in
the given postcondition clause are eventually released but not until that postcondition
clause holds. ai denotes the set of arguments that are involved (serve as call target) in
postcondition clause Postir. The weakening of obligations put on the routine’s body is
reflected in the redefined notion of local correctness.

Definition 2. Local correctness. Routine r of class C is locally correct iff after the
execution of r‘s body, class invariant InvC holds and each postcondition clause will
hold eventually, provided that both the invariant and the precondition Prer were
fulfilled before the body started executing.

If we apply rule 1.5 to the call spawn_two_activities (york, tokyo) we obtain the
following obligation on the routine body:

◊ location_1.is_ready ∧ ◊ location_2.is_ready

which, supposedly, can be simply proved using the postcondition of feature do_job
used in the body of spawn_two_activities. The guarantee given to the client is:

 ◊ Rel (york) ∧ (¬ Rel (york) u york.is_ready)

∧ ◊ Rel (tokyo) ∧ (¬ Rel (tokyo) u tokyo.is_ready)

We can use that guarantee to satisfy the requirement of the subsequent calls to
get_result (york) and get_result (tokyo). In some sense, that new semantics of post-
conditions offers the same guarantees but “projected” into the future. The client is
interested in establishing each postcondition clause at the moment when the involved
objects are released. We think that such semantics captures the intended meaning of
postconditions in the presence of asynchrony. It gives more flexibility in programming
by removing the unnecessary waiting; at the same time, it makes sure that all postcon-
ditions constitute a contract between clients and suppliers, so that it is possible to
reason about feature calls using a simple rule.

According to our semantics, the non-satisfiability of a postcondition clause results in
the involved objects being held forever. These objects will never be released so they
can never be acquired again by any client. Therefore, a violated postcondition may
result in a deadlock. In practice, if the involved objects are non-separate, we can use
additional assumptions (rule 1.4) to solve the problem and react to such a situation by
raising an exception rather that waiting forever. Recall that all properties of non-
separate objects are preserved while the client is waiting. Similarly to Acq (x), also
Rel (x) is trivially true for all non-separate x. Therefore, if postcondition clause Postkr

 10

that does not involve any separate calls does not hold when routine r terminates, an
exception is raised and the supplier is blamed for the contract violation. Conceptually,
though, a violated postcondition clause results in infinite waiting.

Finally, as a “sanity check”, let us demonstrate that in a sequential context rule 1.5
reduces to the standard rule for sequential programs (1.1). We already demonstrated in
section 2.1 that the precondition part of rule 1.5 reduces to the corresponding part of
1.1. Here, we focus on postconditions. From rule 1.4 and INV ∧ ∀i ◊Postir we obtain
INV ∧ ∀i Postir that can be further simplified to INV ∧ Postr which is precisely the
obligation on the routine’s body in rule 1.1. On the client’s side, since Rel (ai) is true
for all i, the guarantee may be simplified to

 ∀i (true ∧ (false u Postir [a/x]))

and, using the property of the temporal operator until, to ∀i Postir [a/x] and finally to
Postr [a/x] which is precisely the guarantee given to the client by rule 1.1.

We mentioned earlier that the previous proposal − blocking until all postconditions
are satisfied (see rule 1.3) − may lead to deadlocks if separate calls in a routine body
involve cross-calls, i.e. when one separate supplier needs to access another one. How
does our approach deal with such situations? Consider again the situation depicted in
figure 2. Assume that the activity spawned at location york (routine do_job) needs to
access location tokyo and perform some operations on it. Certainly, tokyo will not be
released by the client (and thus become available to other clients) until the postcondi-
tion clause tokyo.is_ready is satisfied. So, york’s call will be blocked until then. On
the other hand, the client will not be blocked because it does not need the access to
tokyo or york to continue its local activity (do_local_stuff). When tokyo is released,
york’s call will lock it, perform the necessary calls, and release it again. Now, post-
condition clause york.is_ready is satisfied and york is released. Our client, which by
that time has probably finished its local activity and is waiting for york to become
available, can now execute get_result (york). As you can see, thanks to the new se-
mantics of postconditions, it is possible to use postconditions even in the presence of
cross-calls. Note that, in our example, a callback to the client would still result in a
deadlock (in [9] we propose a lock passing mechanism that allows to avoid such dead-
locks). No problem would arise if the client did not try to perform any calls to york
after the first call to spawn_two_activities. In such a situation, york’s callback
would simply block until the client becomes idle (i.e. it is released by its own client),
and then proceed.

Discussion

Rule 1.5 is not strong enough to allow for fully compositional proofs of correctness
and liveness. The following example, due to Jonathan Ostroff, illustrates the problem.
Let us reconsider the York–Tokyo scenario in figure 3. Suppose that, when calling
spawn_two_activities, we can show that we eventually acquire york and tokyo re-
sources as required by (1.5). The rule then informs us that eventually the postcondi-

 11

tions of spawn_two_activities will be satisfied; only after that will the resources be
ceded to other putative processors. However, in our example, all this might happen
before the call to get_result (york) as do_local_stuff may take a long time. In the
meantime other clients (handled by a different processor) may invoke routines that
could change the state of york. Thus, by the time we get to get_result (york), the
postcondition of spawn_two_activities may no longer hold; as a result, our call to
get_result (york) may not proceed.

The problem appears to be that the postcondition of spawn_two_activities is not
projected sufficiently far into the future (which would be required to get rid of the
need for global reasoning). In this case, we need to apply global reasoning (as illus-
trated in the producer-consumer example in section 3) to show that there are no other
clients that could change the postconditions. Hence, we would need a combination of
local and global reasoning to use the postcondition of spawn_two_activities for
get_result (york). Nevertheless, if the concerned resource (here york) is guaranteed
to be exclusively used by our client (i.e. it is locked on behalf on our client in the
context of the routine where both calls are executed), local reasoning is sufficient. The
fact that the postcondition of spawn_two_activities does not hold immediately is
irrelevant here — we may still use it to show that the precondition of get_result
(york) will hold when its body is executed (because no call on york present in the
body of get_result may start executing before all previous calls on york have termi-
nated). The results of our recent work [10] show that, in such cases, we can even get
rid of temporal operators and use a simpler rule than (1.5) for reasoning about asyn-
chronous feature calls. Global reasoning (using Ostroff et al.’s method [11]) is only
necessary for calls that acquire additional (fresh) resources. We hope that such a com-
bination of local and global reasoning will allow for local proofs of partial correctness
and it may be used to prove library classes without the need to know the context in
which they are utilised; on the other hand, proofs of total correctness (that is partial
correctness + termination + absence of deadlocks) will require global reasoning.

2.3 Invariants

Invariants play a very important role in the Design by Contract methodology. They are
the primary tool for ensuring the consistence of objects. To prove local correctness of
a routine, we may assume the invariant before the execution of the body and we have
to guarantee that it holds again when the body terminates. Note that our refined rule
for feature calls (1.5) follows that pattern; it does not introduce any temporal operators
that would suggest a different semantics of invariants. This might be a bit surprising
since we started this paper with the claim that wait-semantics is the natural semantics
for all assertions.

A closer look at SCOOP rules explains why we apply the traditional (correctness)
semantics to invariants. SCOOP’s separate call rule requires that the target of a sepa-
rate call must appear as formal argument of the enclosing routine. But calls appearing
in invariants have no enclosing routines! Therefore, it is prohibited to use separate
calls in invariants. Conceptually, we still consider that a violated invariant causes

 12

waiting but in practice, since all its clauses only contain non-separate calls, we may
use rule 1.4 to reduce the wait-semantics to the correctness semantics. As in the case
of preconditions and postconditions, the run-time system is able to react to a violated
invariant by raising an exception.

2.4 Other assertions

We apply the wait-semantics to other assertions: checks, loop variants, and loop in-
variants. Conceptually, a violated assertion causes infinite waiting but in practice
waiting only happens if the assertion involves a separate call — in that case the client
needs to wait for the result. When an assertion has been evaluated and it does not
hold, an exception is raised. We can consider that wait-semantics of such assertions
always reduces to correctness semantics because rule 1.4 also applies to separate ob-
jects locked in the current context.

Consider the loop in feature remove_one_by_one in figure 4. The assertions cap-
ture the essence of that loop − at every step, the number of elements in a_list is re-
duced, and the number of elements that remain plus the number of elements already
removed correspond to the initial number of element. Because a_list may denote a
separate object, the evaluation of a_list.count may cause waiting. So, both the loop
invariant and the loop variant may cause waiting. On the other hand, as soon as an
assertion has been evaluated and it does not hold, its violation results in an exception.

 remove_one_by_one (a_list: separate LIST [G])
 -- Remove all elements of `a_list’ one-by-one.

 local
 initial, removed: INTEGER
 do

 from
 initial := a_list.count
 a_list.start

until
 a_list.is_empty
invariant
 a_list.count + removed = initial
variant

a_list.count
loop

a_list.delete
removed := removed + 1

 end
 ensure
 a_list.is_empty
 end

Figure 4. Separate loop assertions.

 13

3 Producer – consumer example

In this section, we show how the new feature call rule 1.5, based on the proposed wait-
semantics of preconditions and postconditions, can be used for reasoning about the
correctness of SCOOP programs. We use a simple producer-consumer scenario de-
picted in figure 5. Implementation of producers and consumers is given in the Appen-
dix (figures 6 and 7, respectively). We assume that the size of the buffer is greater
than 0 and that the buffer is bounded. We chose to consider just one producer and one
consumer because this allows us to ignore assumptions about the scheduling policy of
SCOOP — we are able to prove the correctness of our example, including the absence
of deadlock and starvation, even without relying on the fairness guarantees of
SCOOP’s scheduler. To prove absence of starvation in a scenario with n producers
and m consumers we would need to assume the FIFO scheduling policy of SCOOP.

Producer and consumer objects exhibit very similar activity. Essentially, they execute
an infinite loop, accessing the shared buffer at each loop step. Producer accesses
buffer via a call to store (buffer, 10); consumer uses a call to retrieved (buffer) for
that purpose. Both features are equipped with precise (although not exhaustive) con-
tracts. store requires that buffer be not full and ensures that the number of elements in
buffer increase by 1. retrieved requires that buffer be not empty and ensures that the
number of elements in buffer decrease by 1. We assume that contracts of features put
and remove in class BOUNDED_QUEUE [G] correspond to the contracts of store
and retrieved, respectively. We want to use rule 1.5 for proving the correctness of
calls to store and retrieved. The first step is to show that these features are locally
correct according to Definition 2. For store, we need to prove

{¬a_buffer.is_full}
a_buffer.put (i)

{◊ a_buffer.count = old a_buffer.count + 1}

This is straightforward, given the precondition and the postcondition of put.

P1 P2 P3

 (PRODUCER) (CONSUMER) (BOUNDED_BUFFER)

 buffer

buffer

Figure 5. Producer-consumer scenario.

 14

Similarly, for retrieved, we need to prove

{¬a_buffer.is_empty}
 Result := a_buffer.item

a_buffer.remove
{◊ a_buffer.count = old a_buffer.count - 1}

Once again, the proof is straightforward because we can rely on the contracts of item
and remove. Note that the eventually operator (◊) is essential here − it would be im-
possible to prove that the postcondition holds immediately after the execution of the
body of retrieved.

We established local correctness of store and retrieved. Let us now apply rule 1.5 to
prove correctness of calls to these routines. For the producers’s call store (buffer, 10)
we need to show that

 ◊ (Acq (buffer) ∧ ¬buffer.is_full)

holds before the call. We prove it by case analysis on the state of buffer.

Case 1. buffer is idle and buffer.is_empty holds. Therefore, the consumer cannot get
hold of buffer; the producer can immediately establish

 Acq (buffer) ∧ ¬buffer.is_full
hence

 ◊ (Acq (buffer) ∧ ¬buffer.is_full)
and we are done.

Case 2. buffer is idle and buffer.is_full holds. The producer cannot get hold of buffer
but
 buffer.is_full ∧ buffer.size > 0 ⇒ ¬buffer.is_empty
Therefore, the consumer will eventually execute a call to retrieved, and thus establish
¬buffer.is_full. It results in case 1 if the size of buffer is 1; otherwise, in case 3.

Case 3. buffer is idle and ¬buffer.is_full and ¬buffer.is_empty hold.
Either (a) the producer acquires buffer, in which case

 Acq (buffer) ∧ ¬buffer.is_full
 holds, and so does

 ◊ (Acq (buffer) ∧ ¬buffer.is_full)
and we are done, or (b) the consumer acquires buffer, in which case the consumer
executes a call to retrieved. As a result, we are back to case 3 or case 1.

Case 4. buffer is not idle.
There may be only two reasons for that: either (a) buffer has not been released yet
after the previous call to store, or (b) buffer has not been released yet after the call to
retrieved. In both cases, buffer will be eventually released: we can assume that from

 15

rule 1.5, given that both features are locally correct as demonstrated above. As a re-
sult, we will eventually be back to case 1, case 2, or case 3. 

Note that we do not rely on any particular scheduling policy here. In case 3, we do not
know who will proceed first. Nevertheless, even if we assume a very unfair policy,
e.g. the consumer overtakes the producer, we eventually hit case 1 where only the
producer is allowed to proceed. We use similar analysis for the consumer’s call re-
trieved (buffer). We need to show that

◊ (Acq (buffer) ∧ ¬buffer.is_empty)

holds before the call.

Case 1. buffer is idle and buffer.is_empty holds. Since
 buffer.is_empty ∧ buffer.size > 0 ⇒ ¬buffer.is_full
the producer will execute a call to store, and thus establish ¬buffer.is_empty. It
results in case 2 if the size of buffer is 1; otherwise, in case 3.

Case 2. buffer is idle and buffer.is_full holds.
We can immediately establish

 Acq (buffer) ∧ ¬buffer.is_empty
and so

 ◊ (Acq (buffer) ∧ ¬buffer.is_empty)
and we are done.

Case 3. buffer is idle and ¬buffer.is_full and ¬buffer.is_empty hold.
Either (a) the consumer acquires buffer, in which case

 Acq (buffer) ∧ ¬buffer.is_empty
holds, and so does

 ◊ (Acq (buffer) ∧ ¬buffer.is_empty)
and we are done, or (b) the producer acquires buffer, in which case the producer exe-
cutes a call to store. As a result, we are back to case 3 or case 2.

Case 4. buffer is not idle.
Idem as for store. 

From rule 1.5 we can now conclude that after a call to store (respectively retrieved)
buffer is eventually released in a state that satisfies the postcondition. The use of rule
1.5 is certainly much more complex than reasoning about sequential programs − the
latter is based on a simpler rule 1.1 that does not involve any temporal operators.
Obviously, the rule for concurrent programs must take into account the potential inter-
ference of several processors, hence the complexity of reasoning. On the other hand,
we are able to prove the absence of deadlock using the same rule. So, the increased
complexity pays off − concurrent code that is proved correct is also deadlock-free.

 16

4 Discussion

Deadlocks

Absence of deadlocks is one of the most interesting properties of concurrent pro-
grams. In fact, the problem of deadlocks was one of the initial motivations of our
work. We set off to devise a methodology for deadlock prevention, detection, and
resolution in SCOOP programs. The first step towards developing such a methodology
is to understand the relation between deadlocks and contracts. Traditionally, contracts
are used for enforcing correctness (safety) properties; a separate proof is needed for
liveness properties such as absence of deadlock or starvation. When discussing the
new semantics of assertions, we mentioned that an assertion violation results in a
deadlock, at least conceptually. Let us push this argument a bit further and claim the
opposite relation, i.e. every deadlock corresponds to a violated assertion.

In which situation can a deadlock happen? Consider again the sequence of calls in
figure 2. The first possibility is that either of separate objects york or tokyo can never
be acquired by the client. But this means that either ◊Acq (york) or ◊Acq (tokyo)
does not hold, so the client’s obligation, as expressed in rule 1.5, is violated. One may
claim that Acq (york) is not really part of an assertion (in this case a precondition)
because locking of arguments in SCOOP is based on argument passing. Nevertheless,
we may assume that, for every separate formal argument x that appears in the signa-
ture of a feature there is an implicit precondition Acq (x) and that locking is based on
preconditions only. Note that the most common deadlock situation, i.e. a tries to lock
b, b tries to lock c, c tries to lock a, corresponds to that first possibility. The second
possibility is that both york or tokyo can be eventually acquired by the client but,
whenever they can be acquired, their state does not satisfy the precondition. This kind
of deadlock is also caused by the client’s inability to satisfy the precondition. The
third possibility is a postcondition violation. Assume that postcondition
york.is_ready of spawn_two_activities cannot be satisfied. According to our se-
mantics, york is not released until all postcondition clauses that involve it are satis-
fied. Therefore, york is never released. This does not cause a deadlock by itself but a
deadlock will happen as soon as some client tries to acquire york (as our client does
using a call to get_result).

As demonstrated in section 2, the violation of an assertion that does not involve any
separate calls also results in a deadlock albeit only conceptually − in practice, there is
no need to wait forever because the violation can be detected immediately and an
exception can be raised. This also applies to invariants, checks, and loop assertions.

Exception handling

In the previous sections we often mentioned run-time exceptions. The asynchronous
nature of some feature calls makes it impossible to rely on standard exception han-
dling. For example, it is not always possible to propagate an exception to a client
because the client might have already left the context of the enclosing routine. There-
fore, we need some support for asynchronous exceptions. Exception handling is be-
yond the scope of this paper; we assume that an appropriate mechanism for handling

 17

asynchronous exceptions is available. Such a mechanism has been recently proposed
by Arslan et al. [12].

Assertion checking at run-time

Meyer [2] mentioned the problem of run-time assertion checking in a concurrent con-
text. He concluded that “The assertions are an integral part of the software, whether or
not they are enabled at run time. Because in a correct sequential system the assertions
will always hold, we may turn off assertion checking for efficiency if we think we
have removed all the bugs; but conceptually the assertions are still there. With concur-
rency the only difference is that certain assertions − the separate precondition clauses
− may be violated at run time even for a correct system, and serve as wait conditions.
So the assertion monitoring options must not apply to these clauses.”

We claim that assertion checking may be turned off even for wait-conditions. To dem-
onstrate it, let us first see under what circumstances run-time checking of non-separate
assertions may be turned off. Following rule 1.1, if for all calls the client can ensure
that the precondition of the called routine is satisfied (Prer [a/x] holds immediately),
then precondition checking may be turned off. If we can demonstrate that the corre-
sponding assertion in rule 1.5, i.e. Acq (a) ∧ Prer [a/x] holds immediately (note the
absence of temporal operator ◊) then we may also turn off precondition checking in a
concurrent context. But this means that we can only do it if separate objects are im-
mediately available. We can actually weaken that assumption a bit and only require
that, at the moment of the call, they become eventually available and, whenever they
are available, the precondition holds:

 ◊Acq (a) ∧ (Acq (a) ⇒ Prer [a/x])

If we can demonstrate that this is satisfied for all calls to a particular feature then pre-
condition checking for that feature may be turned off but clients may still wait for
objects that they try to acquire.

Postcondition checking may be turned off in a sequential context if every routine is
locally correct. The same applies in a concurrent context, although we use a weaker
notion of local correctness (Definition 2). Invariant checking follows the same rules as
in a sequential context; so does checking of other assertions.

5 Related work

Bailly [13] proposes an operational semantics for a subset of SCOOP and a gives a set
of rules for the inference of safety properties of concurrent programs. The author
assumes a different semantics of separate preconditions − they are merely guards of
conditional critical regions represented by routine bodies. Guards are excluded from
contracts and treated separately from traditional (correctness) preconditions. The
approach does not support inheritance, therefore problems caused by guard strength-
ening vs. precondition weakening are not discussed. The treatment of postconditions

 18

is identical in the concurrent context, although the author comments on the infeasibil-
ity of formal reasoning with rule 1.2. Following the CCR semantics, unlocking of
separate objects locked by a given routine is performed atomically. As a result, it is
impossible to reason about features that involve separate callbacks; Additionally,
query calls may only appear at the end of a routine’s body. This is in stark contrast to
our approach of individual unlocking that does not impose any restrictions on routine
bodies. Bailly also proposes a non-compositional proof system along the lines of the
proof system for concurrent Java programs [14]. Unlike in Java, no interference-
freedom test is required in SCOOP because intra-object concurrency is prohibited; on
the other hand, the presence of asynchronous calls increases the complexity of the
proof system.

Sutton [15] describes a new strategy for condition-based process execution, based on
a delayed evaluation of preconditions and postconditions. Although preconditions
have guard semantics, they are evaluated in parallel with tasks; a task might be al-
lowed to execute even though some of its preconditions have not been evaluated yet.
They only have to hold at a particular point of the task’s execution; otherwise, the task
is put on hold or cancelled. Similarly, a task may terminate even though some of its
postconditions have not been established yet. Nevertheless, they have to be estab-
lished eventually; otherwise, the task must be cancelled (rolled back or compensated,
since tasks are transaction-like in that framework). The postcondition semantics is
very similar to ours, except that in our approach a violated postcondition results (at
least conceptually) in a deadlock. The precondition semantics proposed by Sutton is
different but it may be simulated in our model simply by splitting up a task (enclosing
routine) into smaller sub-tasks where all subtasks require their preconditions to hold
right on entry to their bodies.

Rodriguez et al. [16] propose a concurrent extension to JML where method guards are
treated in a similar way as Sutton’s preconditions. Guards are specified in feature
headers, after preconditions. If a feature is called in a state where the guard does not
hold, the feature does not always block − the guard does not need to hold at the begin-
ning of the body but only at a point marked with a special statement label commit. If
no commit point is specified, it is implicitly assumed at the end of the body. Guards
are simply predicates that have to be satisfied at the commit point but no implicit
waiting is involved − it is up to the programmer to implement it, e.g. in the form of a
busy-waiting loop. Therefore, we can view guards as a help in the static verification of
atomicity properties but they certainly do not facilitate the construction of concurrent
programs − programmers are forced to write explicit synchronization code. This inevi-
tably leads to inheritance anomalies. From that point of view, the generalized seman-
tics of pre-conditions that we propose provides a safer and more convenient support
for synchronization.

Several concurrent extensions of Eiffel, such as CEiffel [6], CEE [4], Distributed
Eiffel [17] use guard-based synchronization. Unlike in SCOOP, guards are specified
using a different syntax than preconditions. Syntactic separation of preconditions and
guards facilitates programming; unfortunately, in all three approaches, guards are not
part of routine contracts and they are not used for formal reasoning.

 19

The SCOOP-to-Eiffel-Generator (SECG) [18] relies on wait semantics for separate
preconditions. SECG translates SCOOP code into pure Eiffel code with embedded
calls to threading library EiffelThread. Separate preconditions are always treated as
guards because objects represented by separate entities are assumed to be indeed sepa-
rate w.r.t. the client. If attachments from non-separate to separate entities were al-
lowed, a precondition violation might lead to a deadlock. In our approach, such dead-
locks are only conceptual; in practice, the run-time is able to detect the assertion viola-
tion and react by raising an exception. SECG implements atomic lock release and
treats separate postconditions just like non-separate ones; again, this may lead to prob-
lems discussed in section 2.2.

Traditionally, proof methods for concurrent programs are non-compositional, i.e. it is
necessary to consider the whole program in order to prove correctness of its parts
[19]. This also applies to our approach: in general, we cannot prove a single class
without knowing the code of all its clients and suppliers. It would be interesting to
look for a compositional method for reasoning about SCOOP programs. In his PhD
dissertation [20], Jones describes a compositional approach to proving correctness
properties of concurrent shared-memory programs. He enriches contracts with two
additional assertions − rely and guarantee − that represent assumptions on (respec-
tively commitment to) the environment of a process. Compositional reasoning is made
possible through the use of these assertions together with standard preconditions and
postconditions. Unfortunately, rely-guarantee specifications may only be applied to
shared-memory models with no aliasing. Nevertheless, similar approaches (assump-
tion-commitment) for message-passing systems have also been proposed [21]. These
are more appropriate for SCOOP-like models that are based on asynchronous feature
calls. An interesting survey of research efforts related to compositional approaches for
concurrency is [22]. The results of our recent work on proofs for concurrent programs
[10] suggest that it is possible to achieve a high degree of modularity in proofs of
concurrent object-oriented programs; nevertheless, some proofs of still require global
reasoning. A fully modular proof system for SCOOP would require much more ex-
pressive contracts: new types of assertions would be necessary to capture the locking
behavior of routines (i.e. what additional resources a routine may request during the
execution of its body) and their frame properties. These might be viewed as a particu-
lar case of assumption-commitment specifications.

6 Conclusions and future work

We proposed a generalized semantics for contracts that is applicable in concurrent and
sequential contexts. Our methodology does not discriminate between (sequential)
preconditions and (separate) wait-conditions; we give a simple semantics to precondi-
tions that caters for the needs of concurrency and nicely reduces to the sequential
semantics when no concurrency is involved. This is an important improvement w.r.t.
the original SCOOP model where wait-conditions were essentially “hijacked” precon-
ditions, much closer to the concept of guards (this also raised the problem of wait-
condition weakening vs. guard strengthening). We have also defined a new semantics

 20

for postconditions that relies on independent evaluation of individual postcondition
clauses. Compared with the original SCOOP, our semantics allows for the use of sepa-
rate calls in postconditions without the danger of deadlocking. Also, it makes it possi-
ble to reason about features that involve separate callbacks.

We used the new semantics to define a rule for reasoning about the correctness of
feature calls. The rule (1.5) is a generalization of the sequential call rule (1.1). It relies
on routine contracts but also reflects the interference of several parallel activities in-
herent in every concurrent system. We think that this rule captures the intended se-
mantics of SCOOP and it lays a solid basis for a future development of a full-fledged
proof system for concurrent object-oriented programs.

A (surprising at first) by-product of this research was the formalization of deadlocks
as assertion violations. We demonstrated that deadlocks result from non-satisfiable
contracts. This conclusion also led to a deeper understanding of the rôle of assertions
in a program: we showed that they are an integral part of software and they cannot be
simply ignored at execution. We defined precise conditions under which assertion
checking may be turned off.

We are currently working on a full formalization of SCOOP, including an operational
semantics and proofs of type safety. This formal model is based on the new semantics
of contracts and takes into account further extensions of the model, such as an owner-
ship-like type system for reasoning about object locality [23][24] and a refined lock-
ing policy that allows for precise specification of locking requirements and introduces
a lock-passing scheme [9]. We are planning to implement a support for generalized
contracts in the next release of our SCOOPLI library and scoop2scoopli tool. So far,
the new semantics of preconditions, invariants, checks, and loop assertions has been
implemented; our next step will be the implementation of postconditions.

We are interested in devising a modular proof system for SCOOP programs. The
results of our recent work [10] show that, in many cases, we can get rid of temporal
operators and use standard Hoare rules for reasoning about asynchronous feature calls;
as a result, we can achieve a higher degree of modularity.

7 References

1. Meyer, B.: Applying “Design by Contract”, in IEEE Computer Volume 25, 1992, pp. 40–
51.

2. Meyer, B.: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
3. Meyer, B.: Systematic Concurrent Object-Oriented Programming, in Communications of

the ACM, Volume 36, Number 9, September 1993, pp. 56-80.
4. Jalloul, G.: Concurrent object-oriented systems: a disciplined approach, PhD thesis, Uni-

versity of Technology, Sydney, Australia, June 1994.
5. Caromel, D.: Towards a Method of Object-Oriented Concurrent Programming, in Com-

munications of the ACM, Volume 36, Number 9, September 1993, pp. 90-102.
6. Löhr, K.-P.: Concurrency annotations for reusable software, Communications of the

ACM, Volume 36. Number 9, 1993, pp. 81–89.

 21

7. Nienaltowski P., Arslan V., Meyer B.: Concurrent object-oriented programming on .NET,
IEE Proceedings Software, Special Issue on ROTOR, October 2003.

8. Manna, Z, Pnueli, A.: The temporal logic of reactive and concurrent systems, Springer-
Verlag, New York, 1992.

9. Nienaltowski, P.: Flexible locking in SCOOP, First International Symposium on Concur-
rency, Real-Time and Distribution in Eiffel-like Languages (CORDIE), 4-5 July 2006,
York, UK.

10. Nienaltowski, P., Meyer, B., Ostroff, J.S.: Reasoning about concurrent object-oriented
programs, (to be submitted).

11. Ostroff, J., Torshizi, F.A., Feng Huang, H.: Verifying Properties beyond Contracts of
SCOOP Programs, First International Symposium on Concurrency, Real-Time and Distri-
bution in Eiffel-like Languages (CORDIE), 4-5 July 2006, York, UK.

12. Arslan, V.: Asynchronous exceptions in concurrent object-oriented programming, First
International Symposium on Concurrency, Real-Time and Distribution in Eiffel-like Lan-
guages (CORDIE), 4-5 July 2006, York, UK.

13. Bailly, A.: Formal semantics and proof system for SCOOP, technical report, available at
http://se.ethz.ch/research/scoop.html.

14. Abraham, E., de Boer, F.S., de Roever, W.P., Steffen, M.: An assertional proof system for
multithreaded Java, in special issue of TCS, Volume 331, 2004, pp. 251-290.

15. Sutton, S. M.: Preconditions, postconditions, and provisional execution in software proc-
esses, Technical report 95-77, Computer Science Department, University of Massachusetts,
July 1995.

16. Rodriguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G. T., Robby: Extending
JML for modular specification and verification of multi-threaded programs, in European
Conference on Object-Oriented Programming (ECOOP), July 2005, pp. 551–576.

17. Gunaseelan, L., LeBlanc, R.J.: Distributed Eiffel: A language for programming multi-
granular objects, in Proceedings of the 4th International Conference on Computer Lan-
guages, IEEE, San Francisco, CA, 1992.

18. Fuks, O., Ostroff, J.S., Paige, R.: SECG: the SCOOP to Eiffel code generator, in Journal
of Object Technology, Volume 3, Number 10, 2004, pp. 143-160.

19. Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic approach,
in Communications of the ACM, Volume 19, Number 5, May 1976, pp. 279-285.

20. Jones, C. B.: Development Methods for Computer Programs including a Notion of Inter-
ference, PhD thesis, Oxford University, June 1981.

21. Misra, J., Chandy, K.M.: Proofs of networks of processes. in IEEE Transactions of Soft-
ware Engineering, Volume 7, Number 4, pp. 417-426, July 1981.

22. Jones, C.B.: Wanted: a compositional approach to concurrency, in Programming method-
ology, chapter 1, pp. 1-15, Springer-Verlag New York, 2003.

23. Nienaltowski P.: Efficient Data Race and Deadlock Prevention in Concurrent Object-
Oriented Programs, OOPSLA’04 Doctoral Symposium, October 2004, Vancouver, Can-
ada.

24. Arslan, V., Eugster, P., Nienaltowski, P., Vaucouleur, S.: SCOOP: concurrency made easy,
in Meyer, B., Schiper, A., Kohlas, J. (Eds.) Dependable Systems: Software, Computing,
Networks, 2006 (to appear).

 22

Appendix

 class PRODUCER

 create
 make

 feature {NONE} -- Creation
 make (a_buffer: separate BOUNDED_QUEUE [INTEGER])
 -- Creation procedure.
 do
 buffer := a_buffer
 ensure
 buffer = a_buffer
 end

 feature -- Basic operations
 store (a_buffer: separate BOUNDED_QUEUE [INTEGER]; i: INTEGER)
 -- Store `i' in ‘a_buffer’.
 require
 not a_buffer.is_full
 do
 a_buffer.put (i)
 ensure
 a_buffer.count = old a_buffer.count + 1
 end

 produce

 -- Produce elements and store them in `buffer’.
 do
 from
 until False
 loop
 store (buffer, 10)
 end
 end

 buffer: separate BOUNDED_QUEUE [INTEGER]
 -- Shared buffer.
end

Figure 6. Producer.

 23

 class CONSUMER

 create
 make

 feature {NONE} -- Creation
 make (a_buffer: separate BOUNDED_QUEUE [INTEGER])
 -- Creation procedure.
 do
 buffer := a_buffer
 ensure
 buffer = a_buffer
 end

 feature -- Basic operations
 retrieved (a_buffer: separate BOUNDED_QUEUE [INTEGER]): INTEGER
 -- Element retrieved from ‘a_buffer’.

require
 not a_buffer.is_empty
 do
 Result := a_buffer.item
 a_buffer.remove
 ensure
 a_buffer.count = old a_buffer.count - 1
 end

 consume

 -- Consume elements from `buffer’.
 local
 i: INTEGER
 do
 from
 until False
 loop
 i := retrieved (buffer)
 end
 end

 buffer: separate BOUNDED_QUEUE [INTEGER]
 -- Shared buffer.
 end

Figure 7. Consumer.

