
A Modular Scheme for Deadlock Prevention in
an Object-Oriented Programming Model

Scott West, Sebastian Nanz, and Bertrand Meyer

ETH Zurich
firstname.lastname@inf.ethz.ch

Abstract. Despite the advancements of concurrency theory in the past
decades, practical concurrent programming has remained a challenging
activity. Fundamental problems such as data races and deadlocks still
persist for programmers since available detection and prevention tools
are unsound or have otherwise not been well adopted. In an alternative
approach, programming models that exclude certain classes of errors by
design can address concurrency problems at a language level. In this
paper we review SCOOP, an existing race-free programming model for
concurrent object-oriented programming, and extend it with a scheme
for deadlock prevention based on locking orders. The scheme facilitates
modular reasoning about deadlocks by associating annotations with the
interfaces of routines. We prove deadlock-freedom of well-formed pro-
grams using a rigorous formalization of the locking semantics of the pro-
gramming model. The scheme has been implemented and we demonstrate
its usefulness by applying it to the example of a simple web server.

1 Introduction

Concurrent programming has remained a difficult task even for expert program-
mers, in spite of steady progress in the theory of concurrency. One possible reason
is that concurrency is typically added to a language as a secondary concern, via
thread libraries. These offer little support for a structured use of synchronization
primitives, making it difficult for programmers to reason about their programs.
Concurrency research has provided a set of tools, e.g. [13, 18, 6, 3], for addressing
the data races and deadlocks that arise from incorrect use of synchronization,
but these do not tackle the source of the problem.

Another line of research therefore attempts to create languages that raise the
level of abstraction for expressing concurrency and synchronization and hence
to make programmers produce better code. Resulting programming models can
also exclude certain classes of errors by construction, for example data races [8,
1], usually accepting a penalty in performance or programming flexibility for the
sake of program correctness.

One such programming model is SCOOP (Simple Concurrent Object-Oriented
Programming) [15, 16]. The model allows objects to be declared of a special type
indicated by the keyword separate. Calls to routines (methods) on such sepa-
rate objects are executed asynchronously, i.e. they will be spawned off to a thread



class DEADLOCK
create set
feature
x, y : separate S

f
do g (x) end

g (a : separate S)
do h (y) end

h (b : separate S)
do end

set (a_x, a_y : separate S)
do
x := a_x
y := a_y

end
end

class MAIN
feature
x, y : separate S

run (d1, d2 : separate DEADLOCK)
do d1.f; d2.f end

make
local
d1, d2 : separate DEADLOCK

do
create x
create y
create d1.set (x, y)
create d2.set (y, x)

run (d1, d2)
end

end

Program 1: SCOOP deadlock example

separate from the current one. SCOOP then preserves freedom from object-level
data races by requiring that separate objects be controlled before features can
be invoked on them. Control is obtained by having such an object passed as an
argument to a routine: within the scope of the routine, all separate objects that
are its actual arguments are automatically locked. In Program 1, x is locked by
the call to g in the body of f.

This locking behavior simplifies reasoning about concurrent programs for the
programmer, as groups of concurrent objects are protected within the body of
a routine and thus “sequential thinking” can be applied in this context. On the
other hand, SCOOP offers no protection against deadlocks, a flaw shared with
practically all concurrent programming languages.

In this paper, we extend SCOOP with a scheme for deadlock prevention, ad-
dressing a critical open problem of this programming model (indeed, Program 1
may deadlock). The scheme is based on establishing an order in which resources
can be locked, hence preventing the formation of cyclical locking patterns. As
the structure of locking in SCOOP is reflected in the call stack, annotations indi-
cating the locking order are associated with the interfaces of routines, providing
modularity at the routine level. We formalize the locking behavior of SCOOP
using a structural operational semantics, providing the basis for the deadlock-
freedom proof. We provide a technique for statically checking that programs are
well-formed according to a well-formedness predicate, and prove that well-formed
programs never deadlock. The technique has been implemented and applied to
a simple web server programmed in SCOOP.

Other work in this area such as deadlock freedom for active objects in
Java [11] provides less versatile structures (trees vs. orders). Techniques of sim-
ilar power [3], however, are not grounded in an underlying language that is de-
signed to make concurrent programming easier. Lastly, other partial operational
semantics [17] only consider liveness properties in the light of model checking.

2



The remainder of this paper is structured as follows. In Section 2 we give
an overview of SCOOP and reason on how deadlock can be detected both dy-
namically and statically. Section 3 provides a formalization of SCOOP’s locking
semantics. In Section 4 we describe our deadlock prevention scheme and prove
that well-formed programs cannot deadlock. We describe related work in Sec-
tion 5 and conclude in Section 6.

2 SCOOP programs and their locking semantics

SCOOP [15, 16] is a programming model for concurrency, which can be imple-
mented on top of any object-oriented language. Implementations are currently
available for Eiffel [16, 9] (the syntax we use in this paper) and Java [19]. In
this section we first provide a short overview of the model, give a description
of how deadlock may be identified, and finally show an annotation language for
establishing a locking order among resources.

2.1 Overview of the model

Asynchronous calls. The central idea of SCOOP is that every object is asso-
ciated for its lifetime with a processor, an abstract notion denoting a site for
computation: just as threads may be assigned to cores on a multi-core system,
processors may be assigned to cores, or even to more remote processing units.
The (unique) processor associated with a certain object is called its handler.
Processors may handle multiple objects. A processor can be identified using its
processor tag.

Processors are an abstraction, allowing the model to be mapped to multi-
threaded systems, distributed systems, or other concurrent architectures alike.
For example in multithreaded systems every processor simply corresponds to one
thread on the system, and the processor tag is the thread identifier. Whenever
a new processor is created, a new thread is spawned.

Calls on an object are only executed by its handler. For example, if a pro-
cessor p encounters a call x.f, and the object attached to x is handled by a
processor q then p asks q to evaluate x.f on its behalf. If x.f does not return
a result, processor p can continue executing concurrently with the computation
taking place at q. If x.f returns a result, the runtime system makes sure that p
waits for q to return the result before proceeding.

Type annotations. To make it clear for programmers which calls are executed
asynchronously (invoked on objects residing on separate processors) and which
calls are synchronous (invoked on objects residing on the current processor),
the type system of SCOOP provides a special type indicated by the keyword
separate: if a variable x is declared of separate type

x : separate X

then at creation of x with the statement

3



create x

a new processor p is created in addition to an object o of type X, and the
handler of o is set to p. The type system also allows that the processor tags can
be explicitly specified as in

x : separate <p> X
y : separate <p> Y

which at creation time would place objects x and y on the same processor p.
These processor annotations have the scope of a class if applied to attributes of
the class, and of the routine’s body if applied to local variables of a routine.

Locking behavior. In order to prevent object-level data races in SCOOP, pro-
cessors that are needed for the execution of a routine are automatically locked
by the runtime system before entering the body of the routine; the locks are
released upon the completion of the execution of the body. Thus all handlers of
separate objects that occur in the body need be locked. The model prescribes
that these separate objects need to be controlled (passed as arguments to the
routine). At routine invocation the runtime system tries to lock the separate
arguments’ handlers: if the locking succeeds, the execution proceeds into the
body of the routine; if it fails because one or more of the handlers are locked
by other processors, the runtime system schedules the call to be retried later. In
Program 1 the body of the feature f contains the command g(x), the locking
behaviour described above would be seen here, as this call is invoked, requesting
and locking the object x.

2.2 Deadlock in SCOOP

Knowing how locks and requests appear in the SCOOP model, we can now
describe how a deadlock state may be detected. A deadlock state, based on
waiting for resource availability as in [5], can be identified

– dynamically: construct a “waits-for” relation; if an element is related to
itself in the transitive closure of such a relation, then the system is in a
deadlock state. In the setting of SCOOP, the “waits-for” relation contains
an association between between processors p and q iff some other processor
has a lock on p and is requesting q.

– statically (conservative): arrange the processor tags into a partial order.
When the text of the program indicates a lock is taken, verify that it is
less than all the other locks that could have been taken at this point. The
program text may require some annotations establishing which locks have
already been taken.

These two schemes can be applied to Program 1. Reasoning using the dy-
namic scheme, we see that an instance of class DEADLOCK will lock its attributes
x and y in some order when its routine f is called. In class MAIN, two instances
d1 and d2 of DEADLOCK are initialized with two separate objects x and y,

4



however their order is reversed between the two instances. By executing run,
the routine calls d1.f and d2.f are executed asynchronously, according to the
semantics of calls on separate objects d1 and d2 outlined above.

As a result of executing d1.f, the call g(x) is invoked. As x is an argument
to the routine g, the runtime locks x for the duration of the call, as prescribed
by the semantics for controlled objects outlined above. In particular, x will still
be locked when the call h(y) is invoked, requesting a lock on y. The concurrent
execution of d2.f has an analogous locking behavior, but since d1 and d2 have
opposite views of x and y, the locking order is reversed. Hence the calls may
ultimately form a cyclical locking pattern, resulting in a deadlock.

To reason statically about the same sequence of calls, one notices that the
order of calls can be conservatively approximated by examining the program
text, and observing which routines subsequently call other routines. In the case of
Program 1, we always know that calling the feature f will (for a general routine,
may) require that the processor of x is locked, followed by y. This information
can be used statically at the call sites of d1.f and d2.f to determine that their
concurrent execution could lead to a deadlock state.

We have chosen to develop a static technique, as we believe that static tech-
niques encourage the active construction of correct programs, whereas dynamic
techniques cater more to a reactive development style.

3 A formal model of SCOOP locking

Our approach uses a static detection scheme, requiring that the interfaces of a
program be annotated. This includes routines and types of variables, where the
annotations for variables follow the SCOOP-style very closely.

3.1 Annotation language

At the class level, annotations of the following form are allowed:

class header ::= class ident
∣∣ class ident <p(, p)∗>

A class can thus be parameterized with the processor tags it is using. Consider
Program 2 for example, an entity d based on class DEADLOCK uses processors
with tags p and q for the roles of xp and yp. An instance is declared as follows:

d : DEADLOCK <p, q>

The preconditions of routines represent the required orderings of processors,
expressed using the following syntax (note that we replace the non-strict ordering
symbol by a strict ordering symbol in the program text to make it easier to type,
however the interpretation should remain non-strict in all cases)

req ::= ε
∣∣ require p < p(, p < p)∗

5



class DEADLOCK <xp,yp>

feature
x : separate <xp> S

5 y : separate <yp> S

f
require yp < xp
lock xp

10 do
g (x)

end

15 g (a : separate <xp> S)
require yp < xp
do h (y) end

h (b : separate <yp> S)
20 do end

set (a_x : separate <xp> S;
a_y : separate <yp> S)

do
25 x := a_x

y := a_y
end

end

Program 2: Annotated DEADLOCK class

For example, in line 16 the routine g is annotated to express that the processor
yp, which will be locked as a result of the execution of the body of g, is below
processor xp, which is locked by calling g.

In the interface of a routine we state the set of locks that may be taken
temporarily during the execution of the routine body.

ens ::= ε
∣∣ lock p(, p)∗

For example; in line 9 we state that a lock on x’s processor xp may be taken by
executing the body of f, as the call g(x) will lock this processor. Note that small
changes to the program (re-nesting function calls, for instance) may require the
ordering specifications to be modified accordingly.

In Program 2 we require that yp < xp in feature g. Due to the construction
of the two deadlock variables d1 and d2 in Program 1, we know that the two
classes are instantiated with conflicting requirements: one requires that yp < xp
and the other will then necessitate xp < yp. Since these cannot be mutually
satisfied, it is impossible to annotate MAIN from Program 1 such that it can
satisfy the well-formedness predicate.

3.2 SCOOP program model

Complementing the program annotations, we provide a formalization of SCOOP
programs based on the computational model described in Section 2.1. We focus
on routines as the basic units of programs, as it is at routine invocation that
locks are taken, and at routine return where lock reservations are given up.
We disregard classes and class-level processor annotations as they introduce
unnecessary complexity in the representation; the formalization could however
be extended to include them.

Assume to have a set of (routine) names Name. We consider a program P to
be a mapping of names to routines

P ∈ Program = Name → Routine

6



where an (unnamed) routine rtn is of the form

rtn ∈ Routine = ℘(Tag × Tag)× Tag∗ ×℘(Tag)× Tag × Expr

and we refer to its components using the following notation:

rtn = (rtn≤, rtnargs, rtn locks, rtnres, rtnbody)

The component rtn≤, corresponding to programmer provided require annota-
tions as in Section 3.1, is a relation on processor tags, describing the partial order
on processors required by the routine. The component rtnargs is the sequence of
formal arguments of the routine. The set of locks that may be taken as the re-
sult of executing the body of the routine is given by rtn locks, corresponding to
lock; this is the other programmer-provided annotation. The component rtnres

specifies whether the routine returns a result or not, and rtnbody is the body of
the routine (an expression).

An expression e is constructed from the following syntax

e ::= [p]
∣∣ skip

∣∣ create(p)
∣∣ e · f(ẽ)

∣∣ e; e
∣∣ waitfor(p)

∣∣ unlock

where p ∈ Tag is a processor tag and f ∈ Name is a name. We write ẽ to
abbreviate a sequence of expressions e1, . . . , en, and similarly p̃ for a sequence of
processors. We sometimes treat these sequences as sets, i.e. ẽ =

⋃
i=1,...,n{ei}.

We assume that processor tags can be inferred from an expression e using a
mapping tagP : Expr → Tag ; we use tagsP on sequences of expressions.

The syntax elements have the following intuitive meaning. A value on a
processor p is represented as [p], abstracting away the actual value. Since the
actual value is discarded, assignments in a program text are transformed into
only the right-hand side, as it may contain some call (and thus locking). If in
a sequence ẽ = e1, . . . , en all expressions are fully evaluated (i.e. ei = [pi] for
i = 1, . . . , n), we use the notation [ẽ]. The expression skip has no effect. A new
processor with tag p is created using create(p). Calling a routine f on a target
t, with a list of arguments ã is represented by t · f(ã). Sequencing of expressions
is written as e1; e2. The remaining two syntax elements waitfor(p) and unlock
do not represent program syntax, but are required for the purpose of modeling
the waiting and locking behavior of the runtime system. Waiting on a processor
with tag p is expressed as waitfor(p). The expression unlock represents unlocking
of the set of processors that has been taken as a result of the matching routine
call.

3.3 Locking semantics

Given the formalization of SCOOP programs, we can proceed to formally defin-
ing the part of the program semantics that is critical for reasoning about dead-
lock. Rather than enabling us to reason about full program correctness, the
following rewrite rules embody the behavior of requesting, taking and releasing
locks in a SCOOP program.

7



At runtime, a program P gives rise to a process P which is described by the
following syntax:

P ::= p :: e
∣∣ P | P

A process is therefore either an expression e located at a processor with tag p,
or a parallel composition of processes. The idea is that a program starts with
the initial call f0 on an initial processor p0 as p0 :: f0, and will give rise to more
parallel threads (as the result of create) as execution proceeds. A structural
equivalence ≡ over processes specifies the commutativity and associativity of
the | operator; the formal definition of ≡ is standard and omitted from this
presentation. We assume that processor tags are unique within processes, i.e.
there cannot be a process P ≡ p :: e | q :: e′ | Q such that p = q. This property
is preserved by process creation.

Processes are operating on a state representing locks and requests only. For-
mally, we define a lock state L as a pair of mappings (Ll, Lr) of the following
type:

L ∈ LockState = (Tag → (℘(Tag))∗)× (Tag → ℘(Tag))

Here, Ll is a mapping from a processor (tag) to a stack of sets of processors,
representing the processors it currently locks. Although a set of locks would
suffice here, having a stack of sets allows for a greater correspondence with the
intuition that lock-taking in SCOOP closely follows the call-stack. We define
the domain of L as the union of the domains of its components, dom(L) =
dom(Ll) ∪ dom(Lr). We use the notation Ll[p 7→ T ] for updates, such that
the resulting mapping returns T at point p of its domain and is unchanged
otherwise. We write T : lcks for a stack obtained by pushing a set of processor
tags T on a stack lcks. We write

⋃
lcks for flattening the stack into one set, i.e.

if lcks = T1, . . . , Tn then
⋃
lcks =

⋃
i=1,...,n Ti. Lr is a mapping from a processor

to the set of processors it requests locks for. The requested processors are tracked
to align our model with the Coffman treatment of when deadlock occurs.

The locking semantics specifies rewrite rules over processes and lock states
in the style of a structural operational semantics with transitions of the form:

P ` (P,L)→ (P ′, L′)

This means that, given a program P which provides meaning to names of routines
occurring in processes, the process P evolves in one step to P ′ and transforms
locking state L to L′.

With this information, we can now look to the rules contained in Table 1 for
the definition of the locking semantics. The creation of a new processor q by a
processor p gives rise to a new parallel process located at q. If the processor al-
ready exists, then this has no effect. These behaviours can be see in the create1
and create2 rules.

The rule seq allows one step to be performed on the left side of a sequential
composition, and skip carries its intuitive meaning. For routine target and ar-
gument evaluation: eval-trg and eval-arg enforce that targets are fully eval-
uated before arguments are evaluated. In eval-arg, the arrow � represents

8



create1
p 6= q Q 6≡ q :: e | Q′

P ` (p :: create(q) | Q,L)→
(p :: skip | q :: skip | Q,L)

create2
p = q ∨ Q ≡ q :: e | Q′
P ` (p :: create(q) | Q,L)→

(p :: skip | Q,L)

eval-trg
P ` (p :: t | Q,L)→

(p :: t′ | Q′, L′)
P ` (p :: t · f(ã) | Q,L)→

(p :: t′ · f(ã) | Q′, L′)

eval-arg
P ` (p :: ã | Q,L) �

(p :: ã′ | Q′, L′)
P ` (p :: [q] · f(ã) | Q,L)→

(p :: [q] · f(ã′) | Q′, L′)

skip

P ` (p :: skip; e | Q,L)→
(p :: e | Q,L)

seq
P ` (p :: e1 | Q,L)→

(p :: e′1 | Q
′, L′)

P ` (p :: e1; e2 | Q,L)→
(p :: e′1; e2 | Q

′, L′)

equiv
P ≡ Q Q′ ≡ P ′

P ` (Q,L)→ (Q′, L′)
P ` (P,L)→

(P ′, L′)

call-nores
P(f)result = None

Q ≡ q :: e | Q′ q ∈
⋃

Ll(p)
P ` (p :: [q] · f([ã]) | Q,L)→

(p :: skip | q :: e; [q] · f([ã]) | Q′, L)

call-res
P(f)result = Some(v)

Q ≡ q :: e | Q′ q ∈
⋃

Ll(p)
P ` (p :: [q] · f([ã]) | Q,L)→

(p :: waitfor(q) | q :: e; [q] · f([ã]) | Q′, L)

req-lck
need = ã− (

⋃
Ll(p) ∪ {p})

L′r = Lr[p 7→ need] L′l = Ll

P ` (p :: [p] · f([ã]) | Q,L)→
(p :: [p] · f([ã]) | Q,L′)

lock
L′r = Lr[p 7→ ∅] ã′ = P(f)arg(⋃

x∈dom(L)

⋃
Ll(x)

)
∩ Lr(p) = ∅

L′l = Ll[p 7→ Lr(p) : Ll(p)]
P ` (p :: [p] · f([ã]) | Q,L)→

(p :: P(f)body [ã/ã
′]; unlock | Q′, L′)

ret
Q 6≡ q :: waitfor(p) | Q′ L′r = Lr

Ll(p) = T : lcks L′l = Ll[p 7→ lcks]
P ` (p :: [v]; unlock | Q,L)→

(p :: [v] | Q,L′)

ret-wait
Q ≡ q :: waitfor(p) | Q′ L′r = Lr

Ll(p) = T : lcks L′l = Ll[p 7→ lcks]
P ` (p :: [v]; unlock | Q,L)→

(p :: skip | q :: [v] | Q′, L′)

unlock
Ll(p) = T : lcks L′r = Lr

L′l = Ll[p 7→ lcks]
P ` (p :: unlock | Q,L)→

(p :: skip | Q,L′)

Table 1: SCOOP Rewrite Rules

performing a single rewrite step on a sequence of expressions. To reorder the
constituent processes of a program during rewriting, the equiv rule is available.

Once the target and arguments of a call are both fully evaluated, the call
can be invoked. In the case where the call has no result, call-nores moves
the call to the target processor, to be executed after the current tasks of the
target processor; the caller proceeds without waiting. Recall that we use the
notation [ã] to describe a fully evaluated sequence of expressions, and

⋃
Ll(p)

for flattening the stack of locks Ll(p). To make a call on a separate target, we
require the processor p to hold a lock on the target processor q with the condition
q ∈

⋃
Ll(p). When the call has a result, the dispatching processor must wait on

the result from the target processor, as in call-res.

Upon a call arriving on its target processor, the required locks must be re-
quested, specified in req-lck. We only request the locks we do not already hold,
which are collected in the set need; the local processor is never needed. Once
the requests have been made, they are transferred to the lock set (lock) of the
processor when no other processor has any of the locks. Then the body of the
routine is scheduled for evaluation, followed by a request to unlock all initially

9



requested locks after the execution of the body has been completed. Here we use
the notation P(f)body[ã/ã′] to substitute the sequence of actual arguments ã for
the formal arguments ã′ = P(f)arg within the body P(f)body of routine f . In
the previous two rules, the sequence of values [ã] = [p1], . . . , [pn] is reinterpreted
in set computations as a set of processors, i.e. ã =

⋃
i=1,...,n{pi}.

The waitfor primitive allows a value that has been computed on a target
processor q to be transferred to the processor p that is waiting for it (compare
rule call-res). As the returning of the value also completes a call, the locks that
have been taken as a result of the call are also released (L′l is obtained from Ll

by popping one element off the stack). Two rules are required to return values to
callers (ret and ret-wait), one which would be the result of a non-separate call
(no waitfor), and one which has an accompanying waitfor on another processor:

For the case where a call has been completed but no result is returned (com-
pare rule call-nores) there may be no value [v] sitting before the unlock, so
an analogous rule for unlocking is needed with unlock.

Example 1. To illustrate the use of the rewrite rules, we apply them to Pro-
gram 1. System execution starts with a call make on an initial processor p. We
show an execution step of the body of make, demonstrating an application of
rule create1 on the instruction create x:

(p :: create(q); e | Q,L)→ (p :: e | q :: skip | Q,L)

Here we assume that the processor tag of the local variable x is q and can be
obtained with a mapping tag : Name → Tag .

The other create-statements will give rise to more concurrent processes. Fi-
nally, the routine run is called, and we assume that tag(d1) = r1 and tag(d2) =
r2 to get the following derivation.

(p :: [p] · run([r1], [r2]); e′ | r2 :: skip | r1 :: skip | Q′, L)→
(p :: [p] · run([r1], [r2]); e′ | Q′′, (Ll, Lr[p 7→ {r1, r2}]))→
(p :: [r1] · f; [r2] · f; unlock | Q′′, (Ll[p 7→ {r1, r2} : Ll(p)], L

′
r[p 7→ ∅]))→

(p :: [r2] · f; unlock | r2 :: skip | r1 :: skip; [r1] · f | Q′, L′′)

Here, the first step is due to rule req-lck and shows that the processors of d1
and d2 are added to the request set of p. The second step is then according
to rule take-lck, and shows that the requested locks (which are available) are
taken by pushing them on p’s stack of locks. The last step is an application
of rule call-nores and shows how an asynchronous call is transferred to its
handling processor. Applications of rules skip and seq are omitted for brevity.

4 Deadlock prevention scheme

In this section we present a scheme for deadlock prevention, based on annotations
in Section 3.1. We define well-formedness of annotated programs. We prove that
well-formed programs cannot deadlock, based on our formalization of the locking
semantics in Section 3.3.

10



4.1 Well-formed programs

The scheme for ensuring that a program is well-formed ensures that there exists,
for each routine, a consistent processor ordering (through rtn≤). Additionally, it
ensures that locks are declared (rtn locks) properly, and within the scope of these
declared locks the callee’s locks (rtn ′locks instantiated by its arguments) do not
lose any of the knowledge that the declared locks are held. The well-formedness
property of a program can be formally stated as a predicate:

wfProgramP = ∀rtn ∈ range(P).wfRoutineP(rtn)

A well-formed routine must ensure that it’s interface is well-formed (first clause)
and also that the routine body is consistent with the interface (second clause):

wfRoutineP(rtn) = isOrder(rtn≤) ∧ wfExprP(rtn≤, rtn locks, rtnbody)

The definition of a well formed expression allows neither waitfor nor unlock in
the program text, these are only inserted at runtime by the rewrite process. The
well-formedness of expressions is thus given by the following definition:

wfExprP(≤, lks, [p]) = True
wfExprP(≤, lks, skip) = True
wfExprP(≤, lks, create(p)) = True
wfExprP(≤, lks, e1; e2) = wfExprP(≤, lks, e1) ∧ wfExprP(≤, lks, e2)
wfExprP(≤, lks, t · f(ã)) = inst≤ ⊆ ≤ ∧wfLevelsP(≤, inst, lks, ã) ∧

∀a ∈ ã. tagP(a) ≤ tagP(t) ∧ wfExprP(≤, lks, a)
where inst = P(f)[ã/P(f)args]

We treat the cases of values, skip, create, and sequencing with less detail here:
they are either immediately well-formed or are well-formed based on a trivial
recursion. The first clause of the call-case of wfExpr states that the instantiated
routine interface must have its order consistent with the context-order (≤). The
second clause states that the lock-level is respected. The third clause states that
each argument is a well-formed expression, and its processor is less than the
target of the call.

wfLevelsP(≤, inst, lks, ã) = ((instlocks ×lks) ⊆≤) ∧ (tagsP(ã) ⊆ instlocks)

The first clause of wfLevels has all associations between the declared locks of the
call and the context locks being also in the order relation. In other words, this
states that each declared lock of a call must be less than all of the context-locks,
so that we only lock “down” the partial order. Since a routine may have no
arguments and still lock some processors in its body we compare context-locks
against the lock clause, and not the arguments. The second clause states that
if a routine does have arguments, then these arguments must be a subset of the
lock clause, for consistency.

Example 2. For the Program 2, we show the evaluation the predicate wfExpr
on the call of the routine g in the body of routine f. To make the example

11



more varied, assume that the argument [xp] and the corresponding lock of g are
replaced by [zp].

We let ord = {(yp, xp), (xp, t), (xp, xp), (yp, yp), (t, t)}. As (xp, t) ∈ ord and
inst≤ = ord, the predicate is satisfied:

wfExpr(ord, {xp}, [t] · g([xp])) = (∀a ∈ [xp]. (tagP(a), t) ∈ ord∧
wfExprP(ord, {xp}, [xp]))

∧ inst≤ ⊆ ord
∧ wfLevels({(yp, xp), (xp, t)}, inst, {xp}, {xp})

Here we use that

P(g) = ({(yp, zp), (zp, t), (zp, zp), (yp, yp), (t, t)}, [zp], {zp}, None)
inst = P(g)[[xp]/[zp]] = (ord, [xp], {xp}, None)

and that the predicate wfLevels is satisfied because values are well-formed, and
(xp, xp) is in the order (reflexivity).

wfLevels(ord, inst, {xp}, [xp]) = ({xp} × {xp}) ⊆ ord ∧ tagsP([xp]) ⊆ {xp}

4.2 Deadlock freedom

Intuitively, our scheme ensures that there exists a global ordering for every well-
formed program, and also that during execution of this program each processor
obeys an order in which to take locks. Deadlock-freedom follows from the fact
that the acyclicity of the locking state is preserved under any execution step.

To formalize these ideas, we build on notion of a locking graph from [5]. We
do not directly show that the rewriting of the operational semantics can not get
“stuck” due to lock requests, although this property follows from the locking
graph formalization. Translated to our setting, a locking graph has processors
(resources) as nodes. There is an edge (p, q) in the graph if some process has
locked processor p while requesting processor q. A locking-state L induces a
locking-graph relation graph(L) as follows, where Iddom(L) is the identity relation
on processors in the domain of L:

graph(L) = Iddom(L) ∪
(⋃

p∈dom(L) Ll(p)× Lr(p)
)

The information provided by the lock state L, and associated locking-graph,
is not rich enough to prove the properties that will be needed. We therefore
introduce two new concepts: a lock-barrier Lb : Tag → (℘(Tag))∗ and a runtime
ordering L≤ ∈ ℘(Tag×Tag). The lock barrier represents the set of upper bounds
on the locks we are allowed to request. The runtime ordering is the ordering which
is built up during execution. For the sake of the proof, the locking semantics has
to be instrumented with these concepts. The minimal additions to the semantics
are shown in Table 2. For our approach, all locks taken have to stay below the
current locking barrier at any time, and the runtime ordering is the order that
is built at runtime as a result of the order annotations.

12



lock
L′b(p) = (flocks [ã/ã

′]) : Lb(p) L′≤ = (L≤ ∪ (f≤[ã/ã
′]))∗ . . .

. . .

ret
Lb(p) = b : L′b(p) . . .

. . .

ret-wait
Lb(p) = b : L′b(p) . . .

. . .

unlock
Lb(p) = b : L′b(p) . . .

. . .

Table 2: Instrumented rules

We prove that the following predicate, sound, is invariant under execution.
The predicate states that the runtime ordering L≤ is indeed a partial order, that
the locking barrier is respected, and that the locking graph is acyclic.

sound(L) = isOrder(L≤) (1)
∧ ∀p ∈ dom(L). top(Lb(p))×

⋃
Ll(p) ⊆ L≤ (2)

∧ graph(L) ⊆ L−1≤ (3)

Here, L−1≤ denotes the converse of the relation L≤, and top denotes the first
element of a sequence.

Theorem 1. Given a well-formed program P and an instrumented rewrite rule
P ` (P,L)→ (P ′, L′), sound(L) implies sound(L′).

Briefly, the third clause is of primary concern; if the locking-graph (graph(L)) is
a subset of an order, then it must be acyclic. Since L≤ is an order, thus acyclic,
so is its inverse.

The initial two clauses support this goal, with the first establishing that
as the program executes the relation that is specified piece-wise in the routine
annotations is indeed an order. This fact follows from the definition of wfRoutine
and the instantiation of the routines in the first clause of the call-case of wfExpr.

The second clause of sound states that the new upper-bound on locks is
below all other locks that have already been acquired by the processor p. The
proof of this property is garnered from the Cartesian product in the wfLevels
predicate, which imposes that when locks are taken, they are statically less than
every lock taken by the surrounding procedure. When function calls are nested,
these transitively combine to ensure that locks requested by a processor p are
less than all other locks currently held by that processor. Since we know that
the locking scheme preserves the order relation, it must also preserve the inverse
order relation, which is the essential property desired to prove the third clause.

4.3 Usage and Tool Support

We have implemented the static checking of our scheme in a prototype tool,
written in Haskell [9]. Using this tool we successfully verified that a simple web
server is deadlock-free, a portion of which can be seen in Program 3.

To reduce the annotation burden, we have also implemented a simple an-
notation inference algorithm. The annotations shown in Program 2 can be au-
tomatically inferred using the tool. The simple inference scheme automatically

13



db : separate <d> DATABASE

req (sock : separate <s> NET_SOCK)
require d < s

5 local
last : STRING
http_req : HTTP_REQUEST

do
create http_req.make ()

10

from read_line (sock)
until last.is_equal (cr)
loop
http_req.add_field (last)

15 read_line (sock)
end
update_database (db, http_req)
process_request (http_req)

end

Program 3: HTTP request processing

identifies separate class attributes with processor tags and lifts the tags to the
class header. It also propagates lock and require clauses appropriately, based
on calls within the body of a routine. For example, at a call-site, the require
clause of the call would be automatically appended to the containing routine’s
require clause; a similar approach is taken for the lock clause. This typically
makes the manual annotation burden light.

5 Related work

The problem of describing, detecting, and preventing deadlocks in concurrent
systems has spawned research based on a variety of approaches. Necessary con-
ditions for a deadlock to occur have been described in a seminal work by Coffman
et al. [5]. Dynamic techniques can be used to detect deadlocks, e.g. using tech-
niques such as those presented by Bensalem et al. [2]. The fundamental approach
in this work is to instrument the program and use this runtime locking infor-
mation to detect locking cycles. The benefit is that this technique can be less
conservative than our approach, but it is based on actual program traces, and
the results are, therefore, not sound.

Static techniques rely on programmer annotations to indicate a partial order
among the program’s locks, and statically check whether this order is abided
by; this general idea is also the basis of our approach. Korty [13] proposed a
Lint-like tool for detecting deadlocks in programs with semaphores, however
without soundness guarantees. Extended static checking for Modula-3 [6] and
Java [7] uses program specifications in the style of Eiffel [15], from which verifi-
cation conditions are generated and checked with an automatic theorem prover.
Warnings are provided for various program errors, including deadlock. Being
based on Eiffel-style specifications, annotations in this approach are similar to
our scheme. However, no soundness guarantees are given whereas we guaran-
tee deadlock-freedom for well-formed programs. Jacobs et al. [10] also generate
verification conditions for annotated programs, and guarantee deadlock-freedom
for programs verified with a static checker. In contrast to our work, they use a
programming model for Java-like languages which is very different from SCOOP,
and do not provide a rigorous formal locking semantics.

A number of static approaches to deadlock prevention are based on type sys-
tems, in particular using ownership types [4]. Boyapati et al. [3] have introduced

14



the ability, as in our approach, to create a directed acyclic graph, well-order, or
tree to represent the underlying partial order. In contrast to this approach, our
scheme makes it possible to declare locking orders in a routine-local manner,
which allows for a finer-grained modularity.

Our work is distinguished from the above approaches in that it has a higher-
level concurrency model, not based on traditional threads, and thus has a coarser-
grained locking model.

Using a model similar to SCOOP, Kerfoot et al. [11] use types to ensure
deadlock freedom for active objects [14]. Ownership types impose a hierarchy
on active objects, but the variety of ownership-structures that are permitted
are limited. Only trees are allowed, where our approach can support a general
directed acyclic graph. Ostroff et al. [17] develop a partial operational semantics
for SCOOP, and consider liveness properties of programs in the context of model
checking. While the approach can detect deadlocks, it is not modular, thus does
not scale to large programs. Kobayashi [12] gives π-calculus a type system that is
able to infer and verify deadlock properties about a program. It gives a versatile
approach that is even able to reason about recursive processes. However, our
work targets a new model of computation that is more immediately amenable
to traditional imperative programming.

6 Conclusion

In this paper we have presented a static technique for deadlock prevention in
SCOOP, an object-oriented programming model for concurrency. We found that
the model supports well reasoning about deadlock, as lock acquisition and release
are related to routine invocation and return. This allows the annotations to be
attached to the interface of routines, facilitating modular (per-routine) proofs
of correctness. This aspect is essential in practice as it is easier to reason about
deadlock when it is assured that local changes will not affect the overall result.
An implementation of the scheme is available, and has been successfully applied
to the example of a web server written in SCOOP.

Adding a deadlock prevention technique for SCOOP removes a critical defi-
ciency of this particular model, but the results also provide important general
lessons learned. While sound and scalable programming models for concurrency
are overdue, the divide between formally driven language developments (such
as process calculi) and concurrent programming language design still seems to
be large. This work showcases how one may bridge this gap by using formal
reasoning to derive techniques that can be applied to practical programming
languages.

In future work we will investigate the possibility of statically avoiding dead-
lock by creating some objects on the same processor when not rejected by other
constraints, expanding on the annotation inference techniques. Work on the se-
mantic foundations of the programming model provides also many avenues for
future research. The distributed nature apparent in the semantics can give im-
portant insights into extending the programming model for distribution. Also,

15



variants of the semantics can be studied, for example to provide insights about
possible performance improvements.

Acknowledgments. This work is part of the SCOOP project at ETH Zurich,
which has benefitted from grants from the Hasler Foundation, the Swiss National
Foundation, Microsoft (Multicore award) and ETH (ETHIIRA).

References

1. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data
races. In Proc. OOPSLA’00, pages 382–400. ACM, 2000.

2. S. Bensalem, J. Fernandez, K. Havelund, and L. Mounier. Confirmation of deadlock
potentials detected by runtime analysis. In PADTAD ’06, pages 41–50. ACM, 2006.

3. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In Proc. OOPSLA’02, pages 211–230. ACM,
2002.

4. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. ACM SIGPLAN Notices, 33(10):48–64, 1998.

5. E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing
Surveys, 3(2):67–78, 1971.

6. D. L. Detlefs, R. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Technical Report 159, Compaq SRC, 1998.

7. C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Ex-
tended static checking for Java. In Proc. PLDI’02, pages 234–245. ACM, 2002.

8. C. A. R. Hoare. Monitors: an operating system structuring concept. Communica-
tions of the ACM, 17(10):549–557, 1974.

9. SCOOP homepage. http://scoop.origo.ethz.ch/, 2010.
10. B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A statically verifiable program-

ming model for concurrent object-oriented programs. In Proc. ICFEM’06, volume
4260 of LNCS, pages 420–439. Springer, 2006.

11. E. Kerfoot, S. McKeever, and F. Torshizi. Deadlock freedom through object own-
ership. In Proc. IWACO’09, pages 1–8. ACM, 2009.

12. Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR
’06, pages 233–247. Springer-Verlag, 2006.

13. J. A. Korty. Sema: A lint-like tool for analyzing semaphore usage in a multithreaded
UNIX kernel. In USENIX Winter Technical Conference, 1989.

14. R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern for
concurrent programming. In Pattern languages of program design, pages 483–499.
Addison-Wesley, 1996.

15. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
16. P. Nienaltowski. Practical framework for contract-based concurrent object-oriented

programming. PhD thesis, ETH Zurich, 2007.
17. J. S. Ostroff, F. Torshizi, H. F. Huang, and B. Schoeller. Beyond contracts for

concurrency. Formal Aspects of Computing, 21(4):319–346, 2009.
18. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a

dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

19. F. Torshizi, J. S. Ostroff, R. F. Paige, and M. Chechik. The SCOOP concurrency
model in Java-like languages. In Proc. CPA’09. IOS Press, 2009.

16


