
1

than
OOP

g as
hose
from

ency
r is a
y be
ngle-

lar to
tive,
vely
of

h the
,
ke
Processors and their col lect ion

Bertrand Meyer1,2,3, Alexander Kogtenkov2, 3, Anton Akhi 3

1ETH Zurich, Switzerland
3Eiffel Software, Santa Barbara, California

2ITMO National Research University, Saint Petersburg, Russia

se.ethz.ch, eiffel.com, sel.ifmo.ru

Abstract. In a flexible approach to concurrent computation, “processors” ' (com-
putational resources such as threads) are allocated dynamically, just as objects are;
but then, just as objects, they can become unused, leading to performance degra-
dation or worse. We generalized the notion of garbage collection (GC), tradition-
ally applied to objects, so that it also handles collecting unused processors.

The paper describes the processor collection problem, formalizes it as a set of fix-
point equations, introduces the resulting objects-and-processor GC algorithm im-
plemented as part of concurrency support (the SCOOP model) in the latest version
of EiffelStudio, and presents benchmarks results showing that the new technique
introduces no overhead as compared to traditional objects-only GC, and in fact
improves its execution time slightly in some cases.

1 Overview

Few issues are more pressing today, in the entire field of information technology,
providing a safe and convenient way to program concurrent architectures. The SC
approach to concurrent computation[5] [6] [7] [8] [9] , devised in its basic form as a
small extension to Eiffel, is a comprehensive effort to make concurrent programmin
understandable and reliable as traditional sequential programming. The model, w
basic ideas go back to the nineties, has been continuously refined and now benefits
a solid implementation integrated in the EiffelStudio environment.

One of the starting ideas of SCOOP, which it shares with some other concurr
models, is the notion of a “processor” as the basic unit of concurrency. A processo
mechanism that can execute a sequence of instructions; it can concretel
implemented in many ways, either in hardware as a CPU, or in software as a si
threaded process or a thread.

When processors are implemented in software, they get created in a way simi
objects in object-oriented programming and, like objects, they may become inac
raising a problem of garbage collection (GC). While object GC has been extensi
studied (see[4] for a recent survey), we are not aware of previous discussions
processor GC, save for a discussion of a partly related problem for actors in[3]. What
makes the problem delicate is that processor GC must be intricately connected wit
classicalobjectGC: to decide that a processorP is no longer useful and can be collected
it is not enough to ascertain thatP has no instructions left to execute; we must also ma

To appear in: MSEPT 2012, Prague,
May 2012, eds. V. Pankratius &
M. Philippsen, Springer LNCS, 2012.

http://se.ethz.ch
http://sel.ifmo.ru
http://eiffel.com

2

led by

in the
und
an be

ism.

y

case,

OOP
and

l and
le of
veral
these

n is
or the
ment
the

ture

ented
n the

the
lt, and
ized”
res by

also
at any
sure that no live object from another processor has a reference to an object hand
P and hence retains the possibility or solicitingP.

The present article discusses processor garbage collection as implemented
latest release of EiffelStudio. It is not an introduction to SCOOP (which may be fo
in the references listed above) and indeed presents the concepts in a form that c
applied to many other concurrency models.

Section2 explains the notion of processor as a general concurrency mechan
Section3 introduces the problem of collecting processors. Section4 describes the
constraints on any solution. Section5 formalizes the problem as a set of two mutuall
recursive equations and introduces the resulting fixpoint algorithm. Section6 presents
the results of a number of benchmarks, showing no degradation and, in some
performance improvements. Section7 describes possibilities for future work.

The mechanism presented here has been fully implemented as part of the SC
implementation included in EiffelStudio version 7.1, available in both open-source
commercial licenses and downloadable from the Eiffel site[2].

2 Processors

The concept of processor captures the basic difference between sequentia
concurrent computation: in sequential mode, there is only one mechanism capab
executing instructions one after the other; in concurrent mode, we may combine se
such mechanisms. The problems of concurrency arise out of the need to coordinate
individual sequential computations.

2.1 Handlers and regions

This definition of processors would be close to a platitude — concurrent computatio
concurrent because it can pursue several sequential tasks at once — were it not f
connection with object-oriented programming as established in SCOOP: the assign
of everyobjectto a single processor. Object-oriented computation is dominated by
basic operation

a feature call(also called “method call” and “message passing”), which applies a fea
(operation)f to an objectx, the target of the call, with some optional argumentsargs.
Concurrent mechanisms that have not been specifically designed for the object-ori
paradigm, such as Java Threads, enforce no particular connection betwee
concurrency structure (the division into processors) and the object structure;
standard risks of concurrent programming, in particular data races, arise as a resu
can only be avoided through programmer discipline such as the use of “synchron
calls. SCOOP makes the connection between the processor and object structu
assigning, for every objectO, a single processor — the object’shandler — to execute
all calls havingO as their target. Since processors are sequential, this decision
means that at most one operation may be proceeding on any given target object

x.f (args)

3

long

-to-

ular

t

ns),

e
eed.

does
ence

e.

et as

s
n. At
given time (although compiler optimization may produce exceptions to this rule as
as they preserve the semantics).

The practical consequence of this policy is a partition of the object space in one
one correspondence with the set of processors:

Each element of the partition, containing all the objects handled by a partic
processor, is called aregion.

In the figure, a call may be executed on behalf of the objectOA, and hence as part
of a computation performed by its handler, the processorA; since the call has the targe
x denoting the objectOB, handled by another processorB, it will be executed byB.

A call handled by a different processor, as here since the call starts fromA but is executed
by B on its behalf, calls for appropriate semantics; specifically in SCOOP, the call is:

• Asynchronousif the feature is a command (a procedure, executing some actio
since there is no need in this case forA to wait; if it did, there would be no benefit
from concurrency.

• Synchronousif it is a query (a function computing a result, or a lookup of a valu
in a field) since in this case the result is needed for the computation to proc
This is the mechanism of wait by necessity[1] [5] .

To make this specific behavior clear, programmers must declareseparate (the only new
Eiffel keyword for SCOOP) a variable such asx to specify that it may denote objects
handled by a processor other than the current object’s handler. Such a declaration
not specify the processor; it simply states that this processor may be different, and h
lead to a different semantics for calls. The SCOOP type system[8] guarantees semantic
consistency; in particular it is not permitted to assign from separate to non-separat

2.2 Call vs application

One of the consequences of treating command calls with a separate targ
asynchronous is to introduce a refinement of the classical notion of feature callx.f (args).
In a concurrent context we must distinguish between the feature’scall and itsapplication:

• The calling processor (A in the earlier figure) executes a call. If the call i
asynchronous, the processor does not wait and proceeds to its next instructio

Objects

OA OB

B

A Region

CD

A

x
Region boundary

Client
(“calls” relation)

Fig. 1: Processors cause a partition of objects into regions

4

ests).

y as

ay to
ogged
hen

em).

ects.

ssor

d,

to a

s not
at a

In the
urrent
ough
text.

nt to

rce,
the

bjects
ject
if not
the implementation level, the only needed operation is tolog the call with the
supplier processor, which typically uses a queue to record such logged requ

• At some later time, the supplier processor (B in the figure) will be ready to execute
the call’s instruction. This is the actualapplication of the feature.

This separation between call and application is the defining property of asynchron
permitted by concurrent computation.

2.3 Call logging
Every processor may log several separate calls to different processors. One w
implement processors is to set up each of them as a loop that looks at the queue of l
calls, retrieves one call, and applies it. It is not possible to determine automatically w
to terminate this loop (any more than to solve any other general termination probl
We may note, however, that a processor is no longer useful when:

• No calls are logged on it (at the implementation level, its queue is empty).

• No object from another (live) processor contains a reference to one of its own obj

Note that the second condition does not imply the first: even though the client proce
A that executedx.f (args) had a reference — namely,x — to an objectOB of the
supplier processorB at the time of the call,A may not be keeping any direct interest in
the result of the call; the operation that executedx.f (args) may itself have terminated
and the objectOA that contained it may have been reclaimed. It is still obligate
however, to execute the logged operation.

3 Collecting processors

We will now review the issues raised by extending traditional garbage collection
concurrent environment.

3.1 The need for processor garbage collection
For general discussions of concurrency, and for writing concurrent programs, it doe
matter how the processors are physically implemented; the general definition th
processor is a mechanism capable of executing instructions sequentially suffices.
context of the present discussion a processor is a software mechanism; in the c
EiffelStudio implementation, processors are indeed implemented as threads, alth
future versions may provide other representations, particularly in a distributed con

Concretely, a processor gets created every time a creation instruction (equivale
a “new” in C++/Java syntax) is executed with a separate target:

(Here too compilers optimizations may avoid the creation of a new physical resou
for example the implementation may reuse an existing thread, but conceptually
instruction creates a new processor.)

Since processors are allocated dynamically, the same problem arises as with o
in ordinary object-oriented programming languages supporting dynamic ob
allocation (such as Java, Eiffel or C#): some processors may become unused;

create x.make (...) -- With x : separate T for some type T.
-- make is the creation procedure (constructor).

5

and
data,
ects,

hich

urce,
d
h as

rsing
ively
ents
ll as

ue is
ore

ssor
ion if
tly

r of

age

ors. If
d to

ct GC
this
in the
ized
s to
jects
reclaimed, they will waste resources, and possibly lead to resource exhaustion
program freezing. For example an inactive thread takes up space to hold its local
and takes up CPU time if the thread scheduler continues to examine it. As with obj
it may be desirable to reclaim — garbage-collect — unused processors.

3.2 Challenges of processor GC

Object garbage collection is a classic research topic with an abundant literature, w
we will not attempt to review, referring the reader instead to[4]. To what extent can the
concepts apply to processor GC?

Any garbage collection mechanism, whether for objects or for some other reso
conceptually includes two aspects:detection, which identifies unused resources, an
reclamation, which frees them or recycles them for new needs. Typical schemes suc
“mark-and-sweep” refine this idea: the mark phase implements detection by trave
the object structure, starting from a set of root objects known to be alive and recurs
following all references to flag all the objects it reaches; the sweep phase implem
reclamation by traversing all memory and reclaiming all unmarked objects (as we
unmarking all objects in preparation for the next GC cycle).

In trying to transpose these concepts to processor collection, the principal iss
that it is not sufficient, for detection, to determine that a processor has no m
instructions of its own to execute: another condition, already noted in2.3, is thatnone
of its objects has an incoming reference from an object handled by another proce.
Were such a reference to exist, it could later on cause a new request for computat
the other processor is itself (recursively) still active. This specification is sufficien
delicate to require a formal specification, to be given in section5.3.

4 Practical requirements on an objects+processors GC

An effective solution to processor collection must take into account a numbe
practical issues.

4.1 Triggering conditions

In classical object GC, the trigger for a collection cycle is typically that memory us
has gone beyond a certain threshold.

The concurrent GC scheme adds another threshold, on the number of process
processors have been allocated beyond that threshold, the GC will be triggere
reclaim any unused processors.

4.2 Root objects

The need to take object references into account shows that the mechanisms of obje
and processor GC are not independent, but mutually recursive. In line with
observation, the algorithm that we have implemented integrates processor GC with
preexisting object GC algorithm, maintaining a queue of active processors initial
with the processors known to be active (the processors that still have instruction
execute) and enriching it, during object traversals, with the processors handling ob
that are found to be reachable.

6

: root

a
rises
ns”

logy
uent
no
just

all
even

icular
ler.
two

or as
o the
e to

every

the

that
on

ous
es the

ors is

t GC
s.

with

cts,
atens
The concurrent setup introduces one more issue not present in sequential GC
objects. All GC algorithms need to start from a set (theroot set) of objects known for
sure to be alive (theroot objects). The first complication is that we must deal not with
single root set but with a multiplicity of root sets, one per processor. Another issue a
in the case of global objects; in the Eiffel context these are the result of “once functio
(functions that, as the name implies, are executed — “applied” in the earlier termino
— only once, upon their first call, with the result saved and returned in any subseq
call). In another language, static variables would raise a similar difficulty. If there are
references from other processors to the result of a once function, the basic algorithm
outlined would collect it; this behavior is clearly unsound, but the solution of treating
such objects as roots is also unsatisfactory as they would then never be collected
though some of them may not be live.

4.3 Memory overhead

Taking processors into account requires supplementary memory structures. In part
it is necessary to record a “processor ID” for any object, identifying the object’s hand
Fortunately, we were able in EiffelStudio’s internal representation of objectsto reuse
heretofore available bytes. As a consequence, the memory overhead is zero.

4.4 Time overhead

A straightforward extension to conventional object GC would handle every process
if it were an object. Such a special processor object would contain references t
objects in its root set and, conversely, every object would have an implicit referenc
the processor object corresponding to its processor ID.

This solution introduces an overhead since it adds a conceptual reference to
object. The benchmarks (see section6.4) confirm that the overhead would be
significant. The algorithm described below avoids it by separating the objects and
processors. In addition:

• The overhead during object traversal consists of a single unconditional write
can be efficiently handled by the out-of-order instruction execution available
today’s CPUs.

• All the memory used to track live processors is allocated in a very small contigu
chunk that fits the CPU cache; this technique avoids cache misses and reduc
write time to the minimum.

• The most expensive traversal part associated with the root sets of the process
executed separately.

The result of these optimizations, confirmed by the benchmarks of section6, is that the
implementation avoids any significant slowdown as compared to the non-concurren
collecting objects only, and in fact slightly improves the performance in some case

4.5 Object revival

Many GC-enabled languages and environments offer the possibility of associating
objects of a certain type a “finalization” routine (in Eiffel,dispose from the library class
DISPOSABLE) which will be called whenever a GC cycle reaches one of these obje
sayA, considered dead. In the absence of any restriction, such a mechanism thre
the soundness and completeness of the garbage collector:

7

tine

r, so

n on
y not

hich
dio
nce
jects

on
m in
g the

lem
.

ent

bjects
reted
re, as
nce
calls.

f
d of
• AlthoughA has been marked as dead (ready for collection), the finalization rou
could add a reference toA from some other objectB that is live, revivingA and
preventing its collection.

• The routine could execute a callx.f (...) using a referencex in A, but the
corresponding objectC might be dead.

In a concurrent setting the referenced objects could have a different handle
finalization could cause the revival of a processor.

Because of these problems, the Eiffel environment enforces a strong restrictio
finalization routines, both in a sequential setting and in SCOOP: such a routine ma
include any qualified call (that is to say, any callx.f (...) with an explicit targetx).
Unqualified calls (f (...), applying to the current object) are permitted.

4.6 Partial GC

Modern “generational” object GC systems support partial garbage collection, w
reclaims some objects without traversing the entire heap. The EiffelStu
implementation performs frequent partial collection, which minimizes the performa
impact on the computation, and occasional full collection, to reclaim any dead ob
that the partial GC cycles did not detect.

As will be detailed below, object GC in a concurrent context mutually depends
processor GC. We have not yet found a way to integrate this double GC mechanis
the partial collection algorithm. As a consequence, processor GC only occurs durin
full collection cycles.

5 Devising an objects+processors GC problem

We now describe the GC design, starting with an informal description of the prob
and continuing with a mathematical description and a presentation of the algorithm

5.1 Root sets

As noted in4.2, the starting point of any GC process is the root set. In a concurr
setting the root set contains two parts:

• A set ofsystem-wide root objects, not related to any processor.

• For each live processor, a set ofprocessor-specific root objects.

The precise definition of liveness for processors appears next (5.2).

The second part, processor-specific root objects, includes for each processor: o
on its call stack; objects on its evaluation stack (when the implementation uses interp
code); objects on other run-time stacks (in the presence of calls to external softwa
supported for example by Eiffel’s C/C++ interface); results of processor-level o
functions; activation records containing the targets and arguments of separate feature

As specified, we need only consider the processor-specific root object sets olive
processors. This property causes a modification of the object GC algorithm: instea
starting from all potential root objects it can restrict itself to live processors.

8

s in

ch as

ue

ure.

tem.
t can

rough
ded,
nce

d by
ever,
As a
tually

two

as

, the
5.2 When is a processor ready for collection?

To determine when processors are “live” and “dead”, we note that the typical step
the life of a processor are the following:

• On processor creation, logging a call to a creation procedure (constructor, su
make in the instructioncreate x.make (...) wherex is separate, which creates a
new object on a new processor and initializes the object throughmake).

• As a result of a call from another processor, logging a separate feature call.

• If the log queue contains a call ready for application, removing it from the que
and applying the feature.

A processor is dead when it cannot perform any useful work, right now or in the fut
This is the case when both:

• It has no currently logged calls.

• No calls can ever be logged in the future.

The first condition is local to the processor; the second one involves the entire sys
This second condition, however, is undecidable. We need a stronger condition tha
be checked; that condition is that the processor’s objects are not reachable th
references from live objects (from any processors). It is clearly stronger than nee
since we do not know that such references will ever be followed, but it is sound. He
the definition of liveness that we retain for practical purposes:

The set of live objects, necessary for the second part of the definition, is obtaine
traversal of the object structure starting from the root set. We have just seen, how
that the root set includes the processor-specific root sets of live processors.
consequence, the definitions of liveness for objects and processors are mu
recursive; they will now be formalized.

5.3 Formal description

We may describe the processor collection object mathematically as follows. The
sets of interest areLO, the set of live objects, andLP, the set of live processors. They
will be defined by a set of two mutually recursive equations.

We assume a setBP (for “basic processors”) of processors known to be live —
their log queues are not empty — and a setBR (“basic roots”) of objects known to be live.

The functionh (for “handler”) maps objects to their processors. We will writeh (o)
not only wheno denotes a single object but also when it denotes a set of objects

Definition: dead, live processor
A processor isdead if both:
1 It has no calls logged and not yet applied.
2 None of its objects is referenced by a live object.
A processor islive if it is not dead.

9

e

the

ed

s. The
nite,
tely
result then being a set of processors. In other words we use the same nameh for the
handler function and the associated image function.

For a processorp, r (p) (r for “roots”) denotes the set of its root objects. As in th
previous case,r will also be applied to sets of processors;r (P), for a setP of processors,
denotes the union of the individual root sets of the processors inP.

The set of objects to which an objecto contains references (links) is writtens (o) (s
for “successors”), again generalized to sets of objects. As usual,* denotes reflexive
transitive closure, so that the set of objects reachable from the objects in a setO is s* (O).

The setsLO andLP of live objects and processors depend on each other and on
reference structure, as defined by the following equations:

5.4 Algorithm

/1/ and/2/ is a fixpoint equation of the formf = τ (f) on functionsf applying to[LO, LP]
pairs. We are looking for a minimum fixpoint (with respect to the partial order defin
by set inclusion, generalized to[objects, processors] subset pairs), since we should
only retain objects and processors that are strictly necessary, and reclaim any other
functionτ is monotonic; since the underlying sets of objects and processors are fi
fixpoint theory tells us that a minimal fixpoint exists and can be obtained as the fini
reached limit of the sequencesLOi andLPi defined as follows:

which readily yields the basic algorithm:

LO = s* (BR ∪ r (LP)) /1/

LP = BP ∪ h (LO) /2/

LO0 = BR /3/

LP0 = BP /4/

LOi+1 = s (LOi ∪ r (LPi)) /5/

LPi+1 = LPi ∪ h (LOi) /6/

from /7/

LO := BR ; LP := BP -- done initialized to False
until

done
loop

saved_LO := LO
LO := s (LO ∪ r (LP))
LP := LP ∪ h (saved_LO)
done := “No change to LO and LP since last iteration”

end

10

eding

ween
e.
can

illion
puter

e next

the

the

).

object
, with
same
y on

pths.
The algorithm is guaranteed to terminate as a consequence of the prec
observations. In practice we can do away withsaved_LO since the algorithm remains
sound if we replace the body of the loop by just

The algorithm can be further improved by computing at each step the difference bet
the new and old values ofLO andLP, rather than recomputing the whole sets each tim
/7/ with these two improvements (for the details of the implementation, the reader
refer to the open-source code available from[2]) is the basic algorithm for combined
object-processor collection, as has been implemented in EiffelStudio 7.1.

6 Performance evaluation

To evaluate the performance, we wrote three test programs that allocate up to 10 m
objects and use up to 100 processors. Calculations have been performed on a com
with a 3.2GHz AMD Phenom II processor and 4GB of RAM.

The first test involves independent data structures, each local to a processor; th
ones use structures that are distributed among processors.

6.1 Test setup

Each test proceeded through the following procedure, repeated fifty times with
results then averaged:

• Turn off garbage collection (through the corresponding mechanisms in
Eiffel libraries).

• Create object structures.

• Explicitly trigger a full garbage collection (again through a library mechanism

6.2 Test results

The first test is intended to assess the basic overhead of adding processor GC to
GC, in the case of independent data structures. It creates full binary tree structures
various heights, on different processors. All the nodes in each tree have the
handler, so that garbage collection could be performed almost independentl
different processors.

Figure 2 shows the time dependency on number of processors for two tree de
Numbers of objects in this figure and the following ones are in thousands.

LO := s (LO ∪ r (LP))
LP := LP ∪ h (LO)
done := “No change to LO and LP since last iteration”

11

d to
ssor
gure
ts ((c)
The second test consists of cyclic structures, with nodes randomly allocate
processors; it is intended to measure the GC algorithm’s ability to move from proce
to processor during the marking phase, and to collect structures with cyclic links. Fi
3 shows the time dependency on the number of processors ((a) and (b)) and objec
and (d).

Fig. 2: Processor-specific binary trees
New GC

Objects-only GC

10-2 seconds

Fig. 3: Randomly distributed cyclic structures
New GC

Objects-only GC

10-2 seconds

(c) (d)

10-2 seconds

12

to ten
, their
esting

time

this

sors.

some
sor’s

cts

ach of

the

imply
all
and

s-as-
ereas
The next test randomly creates objects on processors. From each object, up
random links to other objects were created. Because of the large number of objects
spread across processors, and the large number of links, this test yields many inter
cases for the algorithm. Figure 4 shows the outcome.

6.3 Assessment

The results shown above indicate that in general the new algorithm’s execution
remains essentially the same as that of the previous, objects-only GC.

In some cases the new algorithm is actually faster. Several factors may explain
improvement:

• The new algorithm does not need to perform marking of objects on dead proces

• Since it only traverses objects from live processors, there is a good chance that
of those objects were recently used by program and are available in the proces
cache. The previous algorithm could cause loads from memory in such cases.

• The new algorithm visits objects in a different order, which may have some effe
on the performance.

6.4 Assessing the processor-as-object approach

We added a test to compare the proposed algorithm and the straightforward appro
treating processors simply as objects, discussed in section4.4. The test emulates the
resulting overhead by adding a reference field to every object. Figure 5 shows
comparison with the algorithm without such reference fields.

For practical reasons, the reference field has been added in both versions; it is s
void (null) in the “new GC” version. Although this technique introduces a sm
difference with the real algorithm, we believe that any resulting bias is very small (
probably to the detriment of the new algorithm).

The results of the test clearly show an overhead of 6% to 12% for the processor
objects approach. This overhead linearly increases with the number of objects, wh
there is no noticeable increase with the retained algorithm.

Fig. 4: Random processor allocation and numerous links
New GC

Objects-only GC

milliseconds

13

s, is
lution
(and

he
t of
nd is

s.

k on
ach
t only
ional
uted

ault

ed
and
here

ources
7 Other applications and future work

As noted, the problem address in this article, garbage-collecting processor
essentially new. The work reported here has shown that an efficient and sound so
is possible. The key idea is to treat object GC and processor GC as intricately
recursively) connected, modeling and performing them together.

While implemented for Eiffel and SCOOP, the algorithm relies only on t
properties listed in this article, in particular the notion of processor; it is independen
many characteristics of a programming language, such as its type system, a
therefore of potential application to different models of concurrency.

Some of the highlights of the approach are that:

• Memory is not shared but distributed among execution resources.

• The algorithm makes it possible to provide information about active resource

• At presents it only works in the context of a full GC cycles.

• There is a reachability function for memory resources.

The last requirement does not assume fine-grained resolution: it is sufficient to wor
the level of memory regions belonging to the specific execution flow. The appro
discussed here does use object-level information to collect unused processors, bu
to demonstrate that this scheme can be naturally integrated with the existing tradit
GC. This leads us to assume that the algorithm can be applied in a completely distrib
setting, but we have not yet examined this extension (including support for f
tolerance) in detail.

An important topic for further research is automatic management of reclaim
execution resources. In this paper we intentionally left out the details about acquiring
releasing resources from the underlying operating environment. In some systems w
these operations are costly, it may make sense to preallocate pools of execution res
and apply load balancing, to allow efficient operation in highly dynamic conditions.

Fig. 5: Overhead of treating processors as objects

Processors

New GC
as objects

14

, in

.

2.

t-
TH
df

dio,
d Ian
, in
ged.

OOP
wiss

nd a
g

Bibliography

[1] Denis Caromel: Towards A Method of Object-Oriented Concurrent Programming
Communications of the ACM, vol. 36, no. 9, September 1993, pages 90-102.

[2] EiffelStudio environment, available for download ateiffel.com.

[3] Dennis Kafura, Doug Washabaugh and Jeff Nelson:Garbage collection of actors, in
OOPSLA/ECOOP '90, 1990, pages 126-134.

[4] Richard Jones, Antony Hosking and Eliot Moss:The Garbage Collection Handbook:
The Art of Automatic Memory Management, Chapman and All/CRC, 2nd edition, 2011

[5] Bertrand Meyer: Systematic Concurrent Object-Oriented Programming, in
Communications of the ACM, vol. 36, no. 9, September 1993, pp. 56-80.

[6] Bertrand Meyer:Object-Oriented Software Construction, 2nd edition, Prentice Hall,
1997 (chapter 32 presents SCOOP).

[7] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer:A Formal Reference for
SCOOP, in Empirical Software Engineering and Verification(LASER 2008-2010), eds. B.
Meyer and M. Nordio, Lecture Notes in Computer Science 7007, Springer-Verlag, 201

[8] Piotr Nienaltowski: Practical framework for contract-based concurrent objec
oriented programming, PhD dissertation 17061, Department of Computer Science, E
Zurich, February 2007, available atse.ethz.ch/old/people/nienaltowski/papers/thesis.p.

[9] Piotr Nienaltowski, Jonathan Ostroff and Bertrand Meyer:Contracts for
Concurrency, in Formal Aspects of Computing Journal, vol. 21, no. 4, August 2009,
pages 305-318.

[10] Paul R. Wilson:Uniprocessor Garbage Collection Techniques, in Proceedings of
the International Workshop on Memory Management(IWMM '92), eds. Y. Bekkers and
K. Cohen, Springer-Verlag, 1992, pages 1-42.

Acknowledgments

The implementation described here is part of the SCOOP mechanism of EiffelStu
developed at Eiffel Software, to which key other contributors are Emmanuel Stapf an
King. The benefit of discussions with members of the SCOOP team at ETH Zurich
particular Sebastian Nanz, Benjamin Morandi and Scott West, is gratefully acknowled

We are greatly indebted to the funding agencies that have made the work on SC
possible. The SCOOP project at ETH has been supported by grants from the S
National Science Foundation and the Hasler foundation, an ETH ETHIIRA grant, a
Multicore Award from Microsoft Research. The ITMO Software Engineerin
Laboratory is supported by a grant from Mail.ru group.

http://eiffel.com
http://se.ethz.ch/old/people/nienaltowski/papers/thesis.pdf

	Processors and their collection
	1 Overview
	2 Processors
	2.1 Handlers and regions
	2.2 Call vs application
	2.3 Call logging

	3 Collecting processors
	3.1 The need for processor garbage collection
	3.2 Challenges of processor GC

	4 Practical requirements on an objects+processors GC
	4.1 Triggering conditions
	4.2 Root objects
	4.3 Memory overhead
	4.4 Time overhead
	4.5 Object revival
	4.6 Partial GC

	5 Devising an objects+processors GC problem
	5.1 Root sets
	5.2 When is a processor ready for collection?
	Definition: dead, live processor
	5.3 Formal description
	5.4 Algorithm

	6 Performance evaluation
	6.1 Test setup
	6.2 Test results
	6.3 Assessment
	6.4 Assessing the processor-as-object approach

	7 Other applications and future work
	Bibliography
	Acknowledgments

