
Efficient and Reasonable Object-Oriented Concurrency

Scott West
∗

Google Inc., Switzerland
scottgw@google.com

Sebastian Nanz Bertrand Meyer**
Department of Computer Science

ETH Zürich, Switzerland
firstname.lastname@inf.ethz.ch

ABSTRACT
Making threaded programs safe and easy to reason about
is one of the chief difficulties in modern programming. This
work provides an efficient execution model for SCOOP, a con-
currency approach that provides not only data-race freedom
but also pre/postcondition reasoning guarantees between
threads. The extensions we propose influence both the under-
lying semantics to increase the amount of concurrent execu-
tion that is possible, exclude certain classes of deadlocks, and
enable greater performance. These extensions are used as
the basis of an efficient runtime and optimization pass that
improve performance 15× over a baseline implementation.
This new implementation of SCOOP is, on average, also 2×
faster than other well-known safe concurrent languages. The
measurements are based on both coordination-intensive and
data-manipulation-intensive benchmarks designed to offer a
mixture of workloads.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures; D.3.4
[Programming Languages]: Processors—Code generation,
Optimization, Run-time environments

Keywords
Concurrency, object-oriented, performance, optimization

1. INTRODUCTION
Programming languages and libraries that help program-

mers write concurrent programs are the subject of intensive
research. Increasingly, special attention is paid to develop-
ing approaches that provide certain execution guarantees;
they support the programmer in avoiding delicate concur-
rency errors such as data races or deadlocks. For example,

∗All research was done while employed at ETH Zürich; opin-
ions in this paper do not necessarily reflect those of Google
Inc.

languages such as Erlang [1] and others based on the Ac-
tor model [11] avoid data races by a pure message-passing
approach; languages such as Haskell [19] are based on Soft-
ware Transactional Memory [22], avoiding some of the pitfalls
associated with traditional locks.

Providing these guarantees can, however, be at odds with at-
taining good performance. Pure message-passing approaches
face the difficulty of how to transfer data efficiently between
actors; and optimistic approaches to shared memory access,
such as transactional memory, have to deal with recording,
committing, and rolling back changes to memory. For this
reason, execution strategies have to be developed that pre-
serve the performance of the language while maintaining the
strong execution guarantees of the model.

This work focuses on SCOOP [18], an object-oriented ap-
proach to concurrency that aims to make concurrent pro-
gramming simpler by providing higher-level primitives that
are more amenable to standard programming techniques,
such as pre/postcondition reasoning. To achieve this goal,
SCOOP places restrictions on the way concurrent programs
execute, thereby gaining more reasoning capabilities but also
introducing performance bottlenecks. To improve the perfor-
mance of SCOOP programs while maintaining the core of the
execution guarantees, this paper introduces a new execution
model called SCOOP/Qs1. We first give a formulation of the
SCOOP semantics which admits more concurrent behaviour
than the existing formalizations [16], while still providing the
reasoning guarantees. On this basis, lower-level implementa-
tion techniques are developed to make the scheduling and
interactions between threads efficient. These techniques are
applied in an advanced prototype implementation [20].

The design and implementation choices are evaluated on
a benchmark suite that includes computation-intensive and
coordination-intensive workloads, showing the advantages of
the SCOOP/Qs execution strategies. The overall performance
is compared to a broad variety of other paradigms for parallel
and concurrent programming – C++/TBB, Go, Haskell, and
Erlang – demonstrating SCOOP’s competitiveness.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces SCOOP and formally specifies executions.
Section 3 describes the implementation techniques for this
model. Section 4 evaluates the effectiveness of the different op-
timizations. Section 5 compares SCOOP/Qs against a variety
of other paradigms. An analysis of related work is performed
in Section 6, and conclusions are drawn in Section 7.

1Qs is pronounced “queues”, as queues feature prominently
in our new approach; the runtime and compiler associated
with Qs is called Quicksilver, available from [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2786822

734

**Also Politecnico di Milano, Italy, and Innopolis University, Kazan, Russia

2. EXECUTION MODEL
The key motivation behind SCOOP [18] is providing a

concurrent programming model that allows the same kinds of
reasoning techniques that sequential models enjoy. In partic-
ular, SCOOP aims to provide areas of code where pre/post-
condition reasoning exists between independent threads. To
do this, SCOOP allows one to mark sections of code where,
although threads are operating concurrently, data races are
excluded entirely.

2.1 A Brief Overview
In Fig. 1 one can see two programs that are running in

parallel. Supposing that x is the same object in each thread,

separate x
do
x.foo()
a := long_comp()
x.bar()

end

Thread 1

separate x
do
x.bar()
b := short_comp()
c := x.baz()

end

Thread 2

Figure 1: A simple SCOOP program

there are only two possible interleavings:

• x.foo(), x.bar(), x.bar(), x.baz() or

• x.bar(), x.baz(), x.foo(), x.bar()

However, in contrast to synchronized blocks in Java, these
separate blocks not only protect access to shared memory,
but also initiate concurrent actions: for both threads, the
calls on x are performed asynchronously, thus for Thread 1,
x.foo() can execute in parallel with long_comp(). However,
it cannot be executed in parallel with x.bar() as they have
the same target, x. SCOOP has another basic operation, the
query, that provides synchronous calls. It is so called because
the sender expects an answer from the other thread; this is
the case with the c := x.baz() operation, where Thread 2
waits for x.baz() to complete before storing the result in c.

The SCOOP model associates every object with a thread
of execution, its handler. There can be many objects asso-
ciated to a single handler, but every object has exactly one
handler. In Fig. 1, x has a handler that takes requests from
Threads 1 and 2. The threads that wish to send requests to
x must register this desire, which is expressed in the code by
separate x. The threads are deregistered at the end of the
separate block.

This model is similar to other message passing models, such
as the Actor model [11]. What distinguishes SCOOP from
languages like Erlang [1] is that the threads have more control
over the order in which the receiver will process the messages.
When multiple processes each send multiple messages to a
single receiver in Erlang, the sending processes do not know
the order of processing of their messages (as they may be
interleaved with messages from other processes). In SCOOP,
since each thread registers with the receiver, the messages
from a single separate block to its handler will be processed
in order, without any interleaving.

This ordering gives the programmer the ability to reason
about concurrent programs in a sequential way within the
separate blocks. To be precise, pre/postcondition reasoning
can be applied to a separate object protected by a separate
block, even though the actions are being executed in parallel.
A separate object is marked as such by the type system,

h

c0

c1c2c3

Figure 2: Normal handler implementation

and methods may only be called on a separate object if it is
protected by a separate block. Maintaining reasoning among
multiple independent separate objects is also possible, but
requires all separate objects concerned be protected by the
same separate block.

The original SCOOP operational semantics [18] mandated
the use of a lock to ensure that pre/postcondition reasoning
could be applied by a client on its calls to a handler. One
can visualize this as the client c0 placing the calls in a queue
for the handler h to dequeue and process, as in Fig. 2. The
other clients (c1, c2, c3) that may want to access the handler’s
queue must wait until the current client is finished.

2.2 Reasoning Guarantees
There are a few key reasoning guarantees that an imple-

mentation of SCOOP must provide:

1. Regular (non-separate) calls and primitive instructions
(assignment, etc.) execute immediately and are syn-
chronous.

2. Calls to another handler, h, on which object x resides,
within the body of a separate x block will be executed
in the order they are logged, and there will be no inter-
vening calls logged from other clients.

The effect of rule 1 is that normal sequential reasoning is
applied to calls that are issued by the client, to the client.
Rule 2 implies that calls that are made from the client to
the handler are applied in order, thus the client can apply
pre-/postcondition reasoning from one call it has made to
the next.

2.3 The SCOOP/Qs Execution Model
The first SCOOP guarantee is easy to achieve, it is simply

how sequential programs operate. To understand how to
implement SCOOP efficiently, it is important to concentrate
on the the second guarantee. This guarantee states that the
requests from a particular client are processed by the handler
in the order they are sent, disallowing interleaving requests
from other clients. To prevent clients from interfering with
one another on a particular handler can be achieved by giving
each client their own private area (a queue) in which to place
their requests. Each client then just shares this private queue
with the handler to which it wants to send requests.

Syntax.
The following syntax of statements s is used to describe

the execution model.

s ::= separate x s | call(x, f) | query(x, f) |
wait h | release h | end | skip

Note that separate blocks and call and query requests
model instructions of SCOOP programs, whereas the state-
ments wait, release, end, and skip are only used to model the

735

separate
(h, qh, separate x s) || (x, qx, t) ⇒
(h, qh, s; call(x, end)) || (x, qx + [h 7→ []] , t)

call
(h, qh, call(x, f)) || (x, qx, t) ⇒
(h, qh, skip) || (x, qx [h 7→ qx[h] + [f]] , t)

query
(h, qh, query(x, f)) || (x, qx, t) ⇒
(h, qh,wait x) || (x, qx [h 7→ qx[h] + [f, release h]] , t)

sync
(h, qh,wait x) || (x, qx, release h) ⇒
(h, qh, skip) || (x, qx, skip)

run
(h, [x 7→ [s] + ss] + ys, skip) ⇒
(h, [x 7→ ss] + ys, s)

end
(h, [x 7→ []] + ys, end) ⇒
(h, ys, skip)

seq
(h, xs, s1) ⇒

(
h, xs, s′1

)
(h, xs, s1 ; s2) ⇒

(
h, xs, s′1 ; s2

)

seqSkip
(h, xs, skip; s2) ⇒ (h, xs, s2)

parStep
Q ⇒ Q′

P || Q ⇒ P || Q′

oneStep
P ⇒ Q

P ⇒∗ Q
manyStep

P ⇒∗ P ′ P ′ ⇒∗ Q
P ⇒∗ Q

Figure 3: Inference rules of SCOOP/Qs

runtime behaviour. In particular, statements wait and release
describe the synchronization to wait for the result after a
query, statement end models the end of a group of requests,
and skip models no behaviour.

Operational Semantics.
In Fig. 3, an operational semantics that conforms to the

SCOOP guarantees is given. It is described using inference
rules for transitions of the form P ⇒ Q, where P and Q are
parallel compositions of handlers. The || operator is commu-
tative and associative to facilitate appropriate reordering of
handlers.

The basic representation of a handler is a triple (h, qh, s)
of its identity h, request queue qh, and the current program
it is executing, s. A request queue is a list of handler-tagged
private queues, and is thus really a queue-of-queues. Private
queues of a client handler c can be looked-up qh[c], and can
be updated qh[c 7→ l], where l is the new list to associate
with the handler h. Both lookup and updating work on the
last occurrence of c, which is important as this is the one
that the client modifies. The queue can also be decomposed
structurally, with [x 7→ s] + ys meaning that the head of
the queue is from client x with private queue s, and ys is
the rest of the structure (possibly empty). So although the
private queues in the queue-of-queues can be accessed and
modified in any order, they are inserted and removed in
first-in-first-out order.

We describe the unique operations of Fig. 3: separate
blocks (the rule separate), the two different kinds of re-
quests (call, query, sync rules), and how these requests
are processed by the handlers (run and end rules). The
sequential and parallel composition rules are defined in the
standard way.

In the rule separate, clients insert their private queue at
the end of the handler’s request queue. This operation occurs
at the beginning of a separate block. This registers them
with the handler, who will eventually process the requests.
The fact that a handler only processes one private queue at a
time ensures that the reasoning guarantees are maintained. It
is also a completely asynchronous operation, as the supplier’s
handler-triple only consists of variables, i.e., there are no
restrictions on what state the supplier has to be in for this
rule to apply. Additionally, the client appends a call(x, end)
action before the end of the separate block to signal that

the supplier x can take requests from other clients.
The SCOOP/Qs semantics, in contrast to the original

lock-based SCOOP semantics, uses multiple queues that can
all be accessed and enqueued into simultaneously by clients.
This behaviour is visualized in Fig. 4, where the outer (gray)

c0

h

c1c2

Figure 4: Handler implementation based on queue of queues

boxes are nodes in the queue of queues, and the inner (green)
boxes are nodes in the private queues. This nested queueing
maintains the reasoning guarantees while still allowing all
clients to enqueue asynchronous calls without waiting.

In rule call, the call action is non-blocking: it asyn-
chronously appends the requested method f to the end of
the appropriate client’s private queue.

Rule query, requesting a query execution, however, does
require blocking as it must wait for the result of the function
application. This is modeled by sending the query request
and introducing a pair of actions which can only step forward
together: the wait/release pair. There is only one rule (sync)
that can rewrite these into skip, and it can only do so when
both processes are executing each of the pair.

Each handler processes its request queue in the following
way: in rule run, if the handler is idle (executing skip) then
it will examine the request queue. If the request queue’s first
entry (a private queue) is non-empty, then the first action is
taken out of that private queue and placed in the program
part of the handler to execute. If the request queue is empty,
or it contains an empty private queue as its first entry, then
the thread does nothing. In rule end, the thread finishes one
private queue and switches to the next when it encounters the
end statement, which was placed by the owner of the outgoing
private queue when it finished executing its separate block
(rule separate).

2.4 Multiple Handler Reservations
The separate block as shown so far only reserves a single

handler, and this block provides race-freedom guarantees

736

between a single client and a single handler. However, a client
may want to ensure consistency among multiple handlers or
objects. To provide guarantees about multiple handlers, a
multiple handler separate block must be used, as in Fig. 5.
In this example, this has the effect that, whenever a client

separate x y
do
x.set (Red)
y.set (Red)

end

(a) Thread 1

separate x y
do
x.set (Blue)
y.set (Blue)

end

(b) Thread 2

Figure 5: Multiple reservations

reserves both x and y, the colours of each object will be
the same, either both red or both blue. When written in
this way and executed under either SCOOP or SCOOP/Qs,
any client that comes after the execution of Thread 1 or
Thread 2 (or both), and reserves x and y together will always
see x.colour = y.colour. If using nested reservation, this
may not be the case due to a possible race enqueueing the
private queue into the queue-of-queues.

The modification to the separate rule to support this is
straight-forward. First one defines an update function that
updates a handler if it is in the set X.

resOne(X,h, (x, qx, t)) =

{
(x, qx + [h 7→ []] , t) if x ∈ X
(x, qx, t) if x /∈ X

Then this is applied over the parallel composition of all
handlers.

resMany(X,h, P || Q) = resMany(X,h, P) ||
resMany(X,h,Q)

resMany(X,h, (x, qx, t)) = resOne(X,h, (x, qx, t))

Lastly, a function describes that each handler in the set
(represented here by a list so it can be traversed) is sent an
end message.

endMany(x :: xs) = call(x, end); endMany(xs)
endMany([]) = skip

These functions combine to define a generalized separate
rule that can reserve multiple handlers atomically.

separate

P ′ = resMany(X,h, P)
ends = endMany(X)

(h, qh, separate X s) || P ⇒
(h, qh, s; ends) || P ′

2.5 Deadlock
Under the original handler implementation of SCOOP, the

program in Fig. 6 will deadlock under some schedules. This
is due to the inconsistent locking order of x and y. However,
in the SCOOP/Qs execution model this example cannot
deadlock because there are no longer any blocking operations:
both clients can simultaneously reserve the handlers x and y,
and log asynchronous calls on them. Deadlock is still possible
in SCOOP/Qs, however one must also use queries (which
block) to achieve the same effect. If x.query and y.query
are added to the innermost separate blocks of Client 1 and
Client 2, respectively, the program may deadlock.

separate x
do
separate y
do
x.foo()
y.bar()

end
end

Client 1

separate y
do
separate x
do
x.foo()
y.bar()

end
end

Client 2

Figure 6: Possible deadlock situation

3. IMPLEMENTATION
The semantics described in Section 2 are used to implement

a compiler and runtime for SCOOP programs. The opera-
tional semantics gives rise to notable runtime performance
and implementation properties. We pay particular attention
to how to move the implementation from a synchronization-
heavy model to one which reduces the amount of blocking.

The runtime for SCOOP/Qs is written in C, the compiler
is written in Haskell and targets the LLVM framework [14] to
take advantage of the lower level optimizations that are avail-
able. Using LLVM is a necessary choice for this work because
it is important to compare with other more mature languages
and the comparison should not focus on obvious shortcomings,
such as a lack of standard optimizations. LLVM is also built
to be extended; this work extends LLVM by adding a custom
optimization pass. The SCOOP/Qs compiler, runtime, and
benchmarks are available from GitHub [20].

The runtime is broken into 3 layers: task switching, light-
weight threads, and handlers. Some of the optimizations
described in this section take place at the handler layer, but
there are also some that use the other two layers as well to
optimize scheduling.

3.1 Request Processing
The run and end rules describe all of the queue manage-

ment facilities that a handler has to perform. This correspon-
dence is shown in the high-level implementation of the main
handler-loop given in Fig. 7.

// RUN rule, when there is a private queue
// available
while (qoq.dequeue (&private_queue))
{
// if dequeue returns true:
// RUN rule; process calls from
// this queue.
// otherwise:
// END rule; switch to the next
// private queue
while (private_queue.dequeue (&call))

{
execute_call (call);

}
}

Figure 7: Main handler-loop

The structure of the handler’s loop directly corresponds to
the data structure implementation (a queue of queues). One
can see that private queues are continually taken from the
outer queue, where the dequeue operation returns a Boolean
result. False corresponds to no more work (indicating the

737

processor can shut down), not that the queue is empty as
may be in a non-blocking queue implementation. For each
private queue that is received, calls are repeatedly dequeued
out of it and executed until false is returned from the dequeue
operation, indicating that the end rule has been triggered,
and the client presently does not wish to log more requests.

Note that the arrangement of clients and handlers follows a
particular pattern when the queue-of-queues pattern is used.
Namely, that each handler first reserves a position in the
queue-of-queues: each queue-of-queues has many clients try-
ing to gain access, but only one handler removing the private
queues. This is a typical multiple-producer single-consumer
arrangement, so an efficient lock-free queue specialized for this
case can be used to implement the queue-of-queues. Similarly,
once the private queue has been dequeued by the handler
the communication is then single-producer single-consumer;
the client enqueues calls, the handler dequeues and executes
them. Again an efficient queue can be constructed to espe-
cially handle this case. These optimizations are important as
they are involved in all communication between clients and
handlers.

3.2 Client Requests
The handler-loop implementation, above, resides in the

runtime library. The client-side is where the compilation and
runtime system meet. In particular, the compiler emits the
code allowing the client to package and enqueue requests for
the handler, and handle waiting for the results of separate
queries.

private_queue* h_p = client.queue_for (h);

// SEPARATE rule, adding an empty queue
// to the queue of queues
h.qoq.enqueue (h_p);

<compiled body>

// SEPARATE rule, compiler adds the
// code to enqueue the END marker
h_p.enqueue (END);

Figure 8: A compiled separate block

When a client reserves a handler with separate h do <
body> end, this corresponds to the code shown in Fig. 8. The
client receives a private queue h_p for the desired handler
h, represented in the separate rule by the private queue
appearing on the handler’s queue-of-queues. This private
queue can either be freshly created or taken from a cache of
queues, to improve execution speed. The client then enqueues
this new private queue on the queue-of-queues for the handler,
which means the private queue is now ready to log calls in
the body. Finally, corresponding to the end of the separate
block, the constant denoting the end of requests is placed in
the private queue, allowing the handler to move on to the
next client.

There will typically be calls to the handler in the body
of a separate block. The asynchronous calls are packaged
using the libffi library [13], which abstracts away the details
of various calling conventions. This packaged call is then
put into the proper private queue for the desired handler.
This can be seen in Fig. 9, the enqueue operation relating
directly to the call rule. Packaging the call entails setting
up the call interface (cif) with the appropriate argument and

arg_types[0] = &ffi_type_pointer;
arg_values[0] = &arg;
ffi_prep_cif(ffi_call, FFI_DEFAULT_ABI, 1,

&ffi_type_void, arg_types);

// CALL rule, showing the setup via libffi.
h_p.enqueue(call_new(ffi_call, 1, arg_values));

Figure 9: Enqueueing an asynchronous call

return types with ffi_prep_cif, and then storing the actual
arguments for later application by the handler. Note that
the allocation of arguments and argument types for the call
cannot be done on the client’s stack because the call may be
processed by the handler after the client’s stack frame has
been popped.

For efficiency reasons, a different strategy is used for syn-
chronous calls (queries). This is because packaging a call
involves allocating memory, populating structures, and the
handler must later unpack it. In short: this takes longer than
a regular function call. In the asynchronous case these steps
are unavoidable because the execution of the call must be
done in parallel with the client’s operations. However, for
synchronous calls this is not the case: the client will be wait-
ing for a reply from the supplier when the supplier finishes
executing the query. To make use of this optimization op-
portunity, for shared-memory systems, we can change the
query rule to the following:

(h, qh, query(x, f)) || (x, qx, t)⇒
(h, qh,wait x; f) || (x, qx [h 7→ qx[h] + [release h]] , t)

Note that the execution of the call f is shifted to the client,
after the synchronization with the handler has occurred. This
does not change the execution behaviour because, as in the
original rule, all calls on the handler are processed before the
query and the client does not proceed to log more calls until
the query has finished executing. As can be seen from Fig. 10,
the old rule first generates the call, sends it to the handler,

<packing same as async>
ffi_call(&ffi_call, f,

&result, 0);
// QUERY rule
h_p.enqueue(ffi_call);
// SYNC rule
h_p.sync();

(a) Generated code for initial
sync rule.

// New QUERY rule
h_p.enqueue(SYNC);
// SYNC rule
h_p.sync();
// New QUERY rule
result = f();

(b) Generated code for modified
sync rule.

Figure 10: Executing a query f

and then synchronizes (Fig. 10a), these actions come from
the combination of the query and sync rule. The new rule
just performs the call after synchronization occurs (Fig. 10b).
This approach offers three main benefits:

• there is no memory allocation required,

• no encoding/decoding of the call is required, and

• which call is being made is known statically.

The last item is important, as now the underlying optimizer
knows which call is being made, statically. This allows opti-
mizations such as inlining.

738

One last optimization uses the knowledge that when the
handler finishes synchronizing with a client, it will have no
more work to do. Therefore, it control passes directly from
the handler to the client, using the scheduling layer of the
lightweight threads to avoid global scheduler. This optimiza-
tion is safe, because the handler will otherwise just be idle,
and avoids unnecessary context switching.

3.3 Multi-reservation Separate Blocks
The code generation for the multi-reservation separate

block differs slightly from the single-reservation case which is
optimized due to it being a simpler operation. One can see in
Fig. 11 that some of the complexity is pushed into the client

client.new_reservations ();
client.add_handler (h1);
client.add_handler (h2);
client.reserve_handlers();

private_queue* h1_p = client.queue_for (h1);
private_queue* h2_p = client.queue_for (h2);

<compiled body>

h1_p.enqueue (END);
h2_p.enqueue (END);

Figure 11: A compiled 2-reservation separate block

run-time library. The run-time maintains structures that al-
low the multiple handlers to be stored. The interface between
the compiled code and run-time consists of marking the start
of a new set of reservations with new_reservations, adding
a handler with add_handler, and finally safely reserving all
handlers with reserve_handlers. The client can now retrieve
the private queues that were just reserved; they do not need
to be inserted into the handler’s queue-of-queues because
the reservation mechanism has already done that. Signalling
the end of the private queue is done as before. Currently,
the multiple reservation implementation uses one spinlock
for every handler to maintain the ordering guarantees. How-
ever, since the number of memory accesses to enqueue in the
queue-of-queues is quite small, a more sophisticated imple-
mentation could use transactional memory to implement the
same behaviour. These spinlocks were not found to decrease
performance.

3.4 Removing Redundant Synchronization
The SCOOP model prevents data races by mandating that

one must access (read and write) separate areas of memory
through their respective handlers. Due to this separation of
memory spaces, it is common to copy data from one handler
to another and then to work on the data. To do this, many
synchronous calls must be issued to fetch data from one place
to another.

Therefore, it is important to make synchronous calls effi-
cient. This was partially addressed by using sync operations
and executing the call on the client. There is a further en-
hancement that can be made to this approach, which is
removing unnecessary sync calls altogether. A sync call is
only performed to ensure that there is no more work on the
handler, and the client can safely execute the function. Thus,
a sync call is unnecessary if the previous call to the same
handler was also a sync call.

3.4.1 Dynamic Avoidance
A dynamic method of eliding sync calls keeps the synced

status in the private queue structure. When a sync call is
made on a private queue, nothing happens if the queue is
already synchronized (the private queue is empty and the
handler is idle); the call merely returns and the synced status
is unaffected. If the queue is not currently synced, the sync
message is sent to the handler as usual and when it returns
the synced flag is set in the handler reflecting that the handler
is processing this private queue, but the queue is empty.

3.4.2 Static Removal
The static analysis starts by traversing the control flow

graph (CFG). It annotates every basic block, basic blocks
being sequences of basic instructions, with a set of handlers
that are synchronized by the end of the block. This set of
handlers is called the sync-set. The traversal of a function’s
basic blocks can be seen in Fig. 12. Each block acts as a

while changed 6= ∅
b ∈ changed, changed := changed − {b}
common :=

⋂
b.predecessors.sync set

if b.sync set 6= UpdateSync (b, common)
b.sync set := UpdateSync (b, common)
changed := changed ∪ b.successors

Figure 12: Sync-set calculation for a function

sync-set transformer, adding and removing handlers from the
set. As an initial input, the intersection of the sync-sets of
all the block’s predecessors is used. The traversal continues
until every basic block’s sync-set has stopped changing.

Of course this only says how the blocks are traversed,
not how a given block’s sync set is calculated given the in-
struction in that block. This is described in the UpdateSync
function, shown in Fig. 13. Each type of instruction is han-

UpdateSync (b, synced):
for inst ∈ b

h := HandlerOf(inst)
synced := synced ∪ {h} if inst is sync.

synced− {h} if inst is async.
∅ if inst has side effects
synced otherwise

return synced

Figure 13: Sync-set calculation for a block

dled differently: synchronization calls add the target handler
to the sync-set, asynchronous calls remove those handlers
(and anything they may be aliased to), and arbitrary calls
clear the sync-set entirely. Obviously this final case is quite
severe, as it has to be, because a call could subsequently issue
asynchronous calls on all the handlers currently in the sync-
set. This can be mitigated by not emptying the sync-set for
functions which are marked with the readonly and readnone
flags. LLVM will automatically add these flags when it can
determine that they hold.

The static analysis operates on LLVM bitcode, and is
implemented as a standard LLVM pass (outside of the base
compiler). Keeping the pass outside of the base SCOOP/Qs
compiler has the advantage that it separates the generation

739

of code from the analysis and transformation of the generated
control flow graph.

3.4.3 Example
The effect of the sync coalescing pass can be seen in Fig. 14.

This program has three blocks, with sync operations in each

h_p.sync()
x[i] := a[i]

h_p.sync()

{}

True False

{}

h_p.sync()

{}

B1

B2

B3

(a) A simple loop before the sync-
coalescing pass.

x[i] := a[i]

h_p.sync()

{h_p}

True False

{h_p}

{h_p}

B1

B2

B3

(b) After sync-coalescing sync-
sets label edges.

Figure 14: Sync-coalescing pass

one. Before the sync-coalescing pass, in Fig. 14a, the client
is reading values out of a handler’s array, for which a näıve
code generator will produce a sync before every array read.
Fig. 14b shows the results of the sync-coalescing pass in such
a situation. The sync-sets are shown explicitly on the edges
out of each block. In this case there are no calls that may
invalidate a sync-set, so the handler h_p appears on all edges.
The result of this is that the sync calls in blocks B2 and B3
can be removed. Removing sync calls in the body of a loop
can greatly increase performance. Note that even though the
sync call in the body of B2 was removed, h_p still appears
on B2’s outgoing edges because B2 doesn’t invalidate the
synchronization on h_p by issuing an asynchronous call.

The static analysis is important as it goes further towards
getting SCOOP-specific operations out of the way of the
optimization passes. In the end our implementation uses
both the static and dynamic approaches. The static analysis
is used when it can be, but it is necessarily conservative.
For the cases where the static analysis fails to eliminate a
sync call, the dynamic check will step in and eliminate the
round-trip to the handler.

4. OPTIMIZATION EVALUATION
Here we examine the impact of the following optimiza-

tions (also outlined in Section 3) of applying no optimiza-
tions (None), dynamically and statically coalescing sync
operations (Dynamic, Static), using the queue-of-queues
structure (QoQ), and finally applying all optimizations (All).
Note that the None variant is already quite efficient, lacking
only the SCOOP-specific optimizations.

To rigorously evaluate performance, two types of bench-
marks are used: parallel and concurrent. The parallel bench-
marks come from the Cowichan problem set [24] and focus

on numerical processing and working over large arrays and
matrices.

The programs include:

• randmat: randomly generate a matrix of size nr.

• thresh: pick the top p% of a matrix of size nr and
construct a mask.

• winnow: apply a mask to a matrix of size nr, sorting
the elements that passed the mask based on their value
and position, and taking only nw from that sorted list.

• outer: constructing a matrix and vector based off a list
of points.

• product: matrix-vector product.

These benchmarks can be sequentially composed together,
the output of one becoming the input to the next, to form
a chain. This chain is more complex and sizable than the
individual and gives a more diverse picture of a language’s
parallel performance.

The concurrent problems focus on coordination between
different threads or handlers. For this purpose, we have cre-
ated three benchmarks that represent different interaction
patterns:

• mutex: n threads all compete for access to a single
resource, the threads do not depend on each other.

• prodcons: n producers and n consumers each operate on
a shared queue; the queue has no upper limit so produc-
ers do not depend on consumers, but consumers must
wait until the queue is non-empty to make progress.

• condition: n “odd” and n “even” workers increment a
variable from an odd (even) to an even (odd) number.
Each group depends on the other to make progress.

All of the above are repeated for m iterations. Finally to these
we add two concurrency benchmarks from the Computer
Language Benchmarks Game [6]:

• threadring: threads pass a token around a ring in se-
quence until the token has been passed nt times.

• chameneos: colour changing “chameneos” mate and
change their colours depending on who they mate with.
This is done nc times.

The combination of these parallel and concurrent benchmarks
gives us a balanced view of the performance characteristics
of the approach.

All benchmarks were performed 20 times on a Intel Xeon
Processor E7-4830 server (4 × 2.13 GHz, each with 8 cores;
32 physical cores total) with 256 GB of RAM, running Red
Hat Enterprise Linux Server release 6.3. Language and com-
piler versions used were: gcc-4.8.1, go-1.1.2, ghc-7.6.3, erlang-
R16B01. For the parallel benchmarks, the problem sizes used
are nr = 10,000, p = 1 and nw = 10,000; for the concur-
rent benchmarks n = 32, m = 20,000, nt = 600,000, and
nc = 5,000,000.

Results.
The results for the parallel and concurrent benchmarks

can be seen in Table 1 and Table 2, respectively. They show
that each optimization either improves or doesn’t change the
running time of each benchmark, however the magnitude of
the effect differs depending on the work load.

740

Table 1: Times (in seconds) with optimizations applied on
parallel benchmarks

Task None Dyn. Static QoQ All All/TC
randmat 56.73 0.65 0.22 47.07 0.22 0.24
thresh 123.14 3.37 2.51 94.54 2.40 2.30
winnow 116.33 3.55 2.72 95.14 2.58 2.59
outer 57.55 1.27 0.94 46.76 0.88 0.91
product 57.81 1.81 1.34 47.10 1.35 1.36
chain 8.47 0.68 0.63 6.67 0.59 0.60

Table 2: Times (in seconds) for optimizations applied on
concurrent benchmarks

Task None Dyn. Static QoQ All All/TC
chameneos 21.93 10.99 10.80 14.08 4.76 4.19
condition 3.13 3.04 3.02 1.52 1.54 1.46
mutex 1.10 1.12 1.08 0.69 0.68 0.14
prodcons 2.76 2.45 2.41 1.97 1.59 0.88
threadring 21.74 16.17 16.09 14.54 5.24 5.08

In particular, Dynamic and Static sync coalescing dra-
matically improve the running time of SCOOP on the parallel
benchmarks, due to the copying of large arrays between han-
dlers. This improvement is between 12× and 250×, which
puts solving data-heavy problems within reach of SCOOP,
which it was not previously. The effect of the QoQ optimiza-
tion is still significant (around a 20% improvement), but not
as dramatic.

The benefit of QoQ in the concurrent benchmarks, where
the improvements move between 1.5× and 2× for individual
optimizations, is more comparable to the sync coalescing
optimizations. This is not entirely surprising as QoQ in-
creases the amount of inherent concurrency in the execution.
The concurrent benchmarks also benefit from sync coalesc-
ing, though mostly on chameneos and threadring. chameneos
and threadring are also interesting because applying all op-
timizations results in a faster execution than applying any
single optimization by itself (as it tended to be in other
benchmarks). Therefore, the sync coalescing and QoQ can
also be quite effective in combination. prodcons and mutex
are, in particular, improved by TCMalloc due to the heavy
use of asynchronous calls (thus many small allocations by
many threads) by all workers in mutex, and the producers in
prodcons.

Over all benchmarks, the geometric mean for All/TC (us-
ing all optimizations and the TCMalloc implementation) is
about 12× faster than no optimizations. This shows that the
optimization techniques provide a new level of performance
for SCOOP programs.

5. LANGUAGE COMPARISON
This section presents a comparison of SCOOP/Qs with

four well-established languages. We have chosen the follow-
ing languages: C++/TBB (Threading Building Blocks) [12],
Erlang [1], Go [8], and Haskell [19]. To make the diversity of
the languages clear, we present an overview of their character-
istics in Table 3. The Memory column refers to how memory
is shared between threads. Erlang copies data (messages)
between processes, so there is no sharing. In SCOOP/Qs the
programmer is only able to access shared memory through a
handler. Repa is a Haskell library to parallelize certain pure
functions over arrays.

To increase confidence in the overall quality of the bench-

Table 3: Language characteristics

Language Races Threads Type Memory Approach
C++/TBB yes OS Imper. Shared Traditional

Go yes light Imper. Shared Goroutines
Haskell no light Func. STM STM/Repa
Erlang no light Func. Unshared Actors

SCOOP no light O-O Unshared Active Objects

mark set, experts reviewed the parallel benchmarks for C++
and Go [17]; Erlang’s parallel benchmarks also received exter-
nal review. For C++, Go, Haskell, and Erlang, the chameneos
and threading implementations are taken from the Language
Benchmark Game.

5.1 Parallel Benchmarks
The parallel benchmarks are meant to measure how well a

language can handle taking a particular program and scaling
it given more computational resources (cores). Note that it is
common in the Erlang and SCOOP/Qs implementations of
the Cowichan problems that a significant amount of time is
spent sharing results among the threads. To more clearly see
the effect of communication, we distinguish the time spent
computing versus the time spent communicating the results.

Execution Time.
We can see the graph of performance given 32 cores in

Fig. 15. The general trend seen in this figure is also present
with 1, 2, 4, 8, and 16 cores (limited space allows to present
the precise timing data, Table 4, only for 32 cores).

Table 4: Parallel benchmark times on 32 cores (in seconds)

Task C++ Erlang Go Haskell SCOOP/Qs
randmat 0.08 4.14 0.08 1.03 0.24
thresh 0.11 11.96 0.17 0.50 2.30
winnow 0.15 23.95 0.28 0.52 2.59
outer 0.14 8.05 0.67 0.36 0.91
product 0.12 11.33 0.13 0.15 1.36
chain 0.32 16.01 2.60 2.94 0.60

As with SCOOP/Qs, to give a clearer picture of the perfor-
mance characteristics of Erlang, we also distinguish in Fig. 15
the computation time from the communication time. We
can see that SCOOP/Qs and Erlang both spend a majority
of their time in communication, with the exception of the
chain problem, which has much less communication between
the workers. For less fine-grained tasks, like the chain prob-
lem, the communication burden is much lighter. Erlang has
unfavorable absolute performance results compared to the
other languages due to it having no compact array structure
available.

Besides Erlang, the other languages are more closely
grouped. The geometric means for total time are, in increas-
ing order: C++/TBB (0.32s), Go (0.57s), Haskell (0.89s),
SCOOP/Qs (1.32s), and Erlang (18.07s).

Scalability.
The other aspect that we investigated was the speedup

of the benchmarks across 32 cores. In Fig. 16 we can see
the performance of the various languages on the different
problems. We can see that on chain, most languages manage
to achieve a speedup of at least 5x. Go is the exception to
this, and performance decreases past 8 cores. Erlang also sees
a performance degradation, though only past 16 cores.

741

chain outer product randmat thresh winnow

0

5

10

15

0.0

2.5

5.0

7.5

0

3

6

9

12

0

1

2

3

4

5

0.0

2.5

5.0

7.5

10.0

12.5

0

5

10

15

20

25

cxx erlang go haskell Qs cxx erlang go haskell Qs cxx erlang go haskell Qs cxx erlang go haskell Qs cxx erlang go haskell Qs cxx erlang go haskell Qs
Language

Ti
m

e
(s

)
Computation time Communication time

Figure 15: Execution times of parallel tasks on different languages, executed on 32 cores

chain outer product randmat thresh winnow

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●0

10

20

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Benchmark

Sp
ee

du
p

Language ● cxx erlang go haskell Qs erlang (comp.) Qs (comp.)

Figure 16: Speedup over single-core performance, up to 32 cores

5.2 Concurrent Benchmarks
The concurrent task times are given in Table 5.

Table 5: Concurrent benchmark times (in seconds)

Task C++ Erlang Go Haskell SCOOP/Qs
chameneos 0.32 8.67 2.40 61.97 4.19
condition 15.92 2.15 5.95 26.05 1.46
mutex 0.14 6.13 0.17 0.86 0.14
prodcons 0.40 8.78 0.66 2.99 0.88
threadring 34.13 3.30 13.98 57.44 5.08

Haskell tends to perform the worst, which is likely due to
the use of STM, which incurs an extra level of bookkeeping
on every operation. Erlang performs better, but in general
lags behind the other approaches. C++/TBB tends to be
the fastest, except in the condition and threadring bench-
marks, which are both essentially single-threaded; they are
designed to test context switching overhead in various forms.
Go does quite well uniformly, never the fastest, but never
the slowest. Lastly, SCOOP/Qs is the fastest overall, the
fastest in condition, tying for fastest with C++ on mutex,
and performing reasonably well in all other benchmarks. The
times in increasing order of geometric means: SCOOP/Qs
(1.31s), C++/TBB (1.57s), Go (1.82s), Erlang (5.01s), and
Haskell (12.20s).

5.3 Summary
This evaluation presents a wide variety of approaches to

concurrency and situates SCOOP/Qs among them. In par-
ticular, we can see that SCOOP/Qs is generally quite com-
parable on coordination or concurrency tasks, falling in the
middle of the pack after Go and C++/TBB, but faring better
than Erlang and Haskell. Note, however, that neither Go nor

C++/TBB offers any of the guarantees of SCOOP/Qs, and
SCOOP/Qs offers more guarantees than Erlang.

For all problems, concurrent and parallel, the geomet-
ric means are: C++/TBB (0.71s), Go (1.02s), SCOOP/Qs
(1.31s), Haskell (3.30s), and Erlang (9.51s). This places
SCOOP/Qs as the best performing of the safe languages.

6. RELATED WORK
Finding runtime and compiler optimizations is a vital re-

search goal when developing programming approaches for
concurrency and parallelism. While approaches in this area
are based on a broad variety of concepts, and in this re-
spect each require different solutions, this work profited from
insights and discussions of a number of related works.

Cilk [2] is an approach to multi-threaded parallel program-
ming based on a runtime system that provides load balancing
using dynamic scheduling through work stealing. Work steal-
ing [3] assumes the scheduling forms a directed acyclic graph.
In contrast, we tolerate some cyclic schedules through the use
of queues. Since we use queues, handler A can log work on
handler B while handler B logs work on A, as long as they do
not issue queries on one another (forcing a join edge). We are
not strict: edges go into handlers from the outside, other than
at spawn; this is actually the normal case when logging calls.
Although Cilk has been extended into Cilk++ [7], this does
not indicate a significant uptake of object-oriented concepts
to ensure correctness properties such as race freedom.

X10 [5] is an object-oriented language for high perfor-
mance computing based on the partitioned global address
space model, which aims to combine distributed memory pro-
gramming techniques with the data referencing advantages
in shared-memory systems. Although there is a mechanism
to ensure local atomicity through the keyword atomic, it

742

is opt-in, and as such admits programs with data races by
default. The async blocks allow computations to run on dif-
ferent address spaces, but there is no way for the caller to
ensure consistency between async blocks directed to the same
address space. The help-first stealing discipline [10] in X10
offers that the spawned task is left to be stolen, while the
worker first executes the continuation; this is in contrast to
Cilk’s work-first strategy where the spawned task is executed
first. The help-first strategy has benefits as it avoids the ne-
cessity of the thieves synchronizing. This only applies because
the thefts in a finish block in X10 are serialized in work-first,
whereas they are not for help-first. This technique would not
be directly applicable to our work because SCOOP/Qs waits
only on the result of a single handler.

Aida [15] is an execution model that, like SCOOP, as-
sociates threads of control with portions of the heap. The
technique is implemented on top of Habanero-Java [4], an
extension of the X10 implementation for Java. When there
is contention for a particular heap location, the “loser” rolls
back its heap modifications, suspends, and appends itself
(delegates) to the run queue of the winner, effectively turning
two concurrent tasks into a single one. This is fundamentally
different from the SCOOP model, which also has isolated
heaps, but allows interaction between threads of control, and
even provides reasoning guarantees on this interaction. There-
fore the underlying mechanisms are fundamentally different,
where Aida requires efficient heap ownership and conflict
resolution via a parallel union-find algorithm, SCOOP/Qs
requires efficient communication which is attained via novel
and nested uses of specialized queue structures. Otello [25]
extends the isolation found in Aida to include support for
nested tasks.

Another object-oriented approach which, like SCOOP,
associates threads of execution with areas of the heap
is JCoBox [21]. It also makes the distinction (similar to
separate) between references that are local and those that
are remote, although this can only be applied per-class, not
per-object as in SCOOP. Each CoBox contains a queue for
incoming asynchronous calls, though the reasoning guaran-
tees are weaker for JCoBox, so this structure can be simple.
The synchronous calls in JCoBox are also executed locally,
but no dynamic or static method to reduce communication,
ensuring data race freedom, is performed.

Kilim [23] is a framework that supports the implementa-
tion of Actor-based approaches in Java. It improves message-
passing performance by treating messages differently from
other Java objects, in that they are free of internal aliases
and owned by at most one Actor at a time. The messages
arrive via explicitly declared mailboxes in the objects, which
also do not provide the reasoning guarantees between mes-
sages that the SCOOP model provides. The Kilim mailboxes
have, therefore, a more simplistic behaviour compared to the
queue-of-queues approach in SCOOP/Qs. Kilim also sets
new standards in creating lightweight threads, which are
not tied to kernel resources, thereby providing scalability
and low context switching costs. SCOOP implementations
have previously been based on operating system threads,
and using lightweight threads in SCOOP/Qs we can report
similar improvements in scalability as observed by Kilim.
Kilim is extended with ownership-based memory isolation [9]
for messages to reduce the amount of unnecessary copying.
Although not strictly a message-based model, SCOOP/Qs
may be able to apply this technique to so-called expanded

classes, which are more like standard C structures, and are
presently copied when used as arguments to separate calls.

We summarize the above approaches by stating whether
they offer guards (protection against races) and delegation
(ability for one entity to give work to another).

• No guarding, no delegation – Cilk/Cilk++.

• Partial guarding, delegation – X10 allows delegation as
the only way for one place to modify another. However,
a place can asynchronously modify itself using the same
mechanism, thus there may be races within a place.

• Guarding, protective delegation – Aida and Otello ex-
tend X10 with the ability to resolve races by rolling
back changes and reducing the amount of concurrent
execution.

• Guarding, delegation – JCoBox and Kilim both have
different approaches to the actor/active object model.
This implies strict guarding and delegation of actions.

• Guarding, enhanced delegation – SCOOP follows the
actor approach, but also offers enhanced delegation by
allowing clients to maintain pre/postcondition reason-
ing with the handlers that they are delegating to.

7. CONCLUSION
We have presented SCOOP/Qs, an efficient execution

model and implementation for the SCOOP concurrency model.
As many other programming models that ensure strong safety
guarantees, SCOOP introduces restrictions on program ex-
ecutions, which can become performance bottlenecks when
implemented naively, standing in the way of practicality
and more widespread adoption. The key to our approach
was a reformulation of the SCOOP guarantees in abstract
form, allowing one to explore a larger design space for run-
time and compiler optimizations than previous operational
descriptions. In particular, it enabled us to remove much
of the need for synchronization between threads, thereby
providing more opportunities for parallelism. In the eval-
uation of our approach, we traced the impact of the key
optimizations, and compared SCOOP/Qs with a number of
well-known and varied approaches to concurrency and paral-
lelism: C++/TBB, Go, Haskell, and Erlang. This confirmed
that, on a broad benchmark including both coordination-
intensive and computation-intensive tasks, SCOOP/Qs can
compete with and often outperform its competitors.

SCOOP offers a method of controlling access to other actors
which is more exclusive than typical Actor-like languages. In
SCOOP, messages can be bundled together to provide better
pre/postcondition reasoning between messages (calls). The
underlying techniques used in SCOOP/Qs are an efficient
way to offer temporary control of one active object, or actor,
over another. As such the technique could also be used in
approaches like JCoBox [21] or Kilim [23] to provide more
structured interactions between entities.

In the future, we plan to further explore the utility of
the private queue design, in particular the usage of sockets
as the underlying implementation. To further investigate
and advance the efficiency of the runtime, a SCOOP-specific
instrumentation for the runtime, providing detailed measure-
ments for the internal components, will be essential.

8. ACKNOWLEDGMENTS
This work was supported by ERC grant CME #291389.

743

9. REFERENCES
[1] J. Armstrong, R. Virding, C. Wikström, and

M. Williams. Concurrent programming in Erlang.
Prentice Hall, 2nd edition, 1996.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP ’95,
pages 207–216, New York, NY, USA, 1995. ACM.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal
of the ACM, 46(5):720–748, Sept. 1999.

[4] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar.
Habanero-java: The new adventures of old x10. In
Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java, PPPJ
’11, pages 51–61, New York, NY, USA, 2011. ACM.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 519–538, New York, NY, USA,
2005. ACM.

[6] Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/, 2013.

[7] M. Frigo, P. Halpern, C. E. Leiserson, and
S. Lewin-Berlin. Reducers and other Cilk++
hyperobjects. In Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and
Architectures, SPAA ’09, pages 79–90, New York, NY,
USA, 2009. ACM.

[8] Go programming language. http://golang.org/, 2013.

[9] O. Gruber and F. Boyer. Ownership-based isolation for
concurrent actors on multi-core machines. In
Proceedings of the 27th European Conference on
Object-Oriented Programming, ECOOP’13, pages
281–301, Berlin, Heidelberg, 2013. Springer-Verlag.

[10] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first
and help-first scheduling policies for async-finish task
parallelism. In Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed
Processing, IPDPS ’09, pages 1–12, Washington, DC,
USA, 2009. IEEE Computer Society.

[11] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular Actor formalism for artificial intelligence. In
Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245, San
Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[12] W. Kim and M. Voss. Multicore desktop programming

with Intel Threading Building Blocks. IEEE Software,
28(1):23–31, 2011.

[13] libffi. http:://sourcware.org/libffi/, Mar. 2014.

[14] LLVM. http:://www.llvm.org, Mar. 2014.

[15] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri,
and V. Sarkar. Delegated isolation. In Proceedings of
the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and
Applications, OOPSLA ’11, pages 885–902, New York,
NY, USA, 2011. ACM.

[16] B. Morandi, M. Schill, S. Nanz, and B. Meyer.
Prototyping a concurrency model. In Proc. ACSD’13,
pages 170–179. IEEE, 2013.

[17] S. Nanz, S. West, K. Soares da Silveira, and B. Meyer.
Benchmarking usability and performance of multicore
languages. In Proc. ESEM’13, pages 183–192. IEEE,
2013.

[18] P. Nienaltowski. Practical framework for contract-based
concurrent object-oriented programming. PhD thesis,
ETH Zurich, 2007.

[19] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent
haskell. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’96, pages 295–308,
New York, NY, USA, 1996. ACM.

[20] Quicksilver, an implementation of the SCOOP/Qs
model. https://github.com/scottgw/quicksilver, Sept.
2014.

[21] J. Schäfer and A. Poetzsch-Heffter. JCoBox:
Generalizing active objects to concurrent components.
In Proceedings of the 24th European Conference on
Object-oriented Programming, ECOOP’10, pages
275–299, Berlin, Heidelberg, 2010. Springer-Verlag.

[22] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Distributed Computing,
PODC ’95, pages 204–213, New York, NY, USA, 1995.
ACM.

[23] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed
actors for java. In Proceedings of the 22nd European
Conference on Object-Oriented Programming, ECOOP
’08, pages 104–128, Berlin, Heidelberg, 2008.
Springer-Verlag.

[24] G. V. Wilson and R. B. Irvin. Assessing and comparing
the usability of parallel programming systems.
Technical Report CSRI-321, University of Toronto,
1995.

[25] J. Zhao, R. Lublinerman, Z. Budimlić, S. Chaudhuri,
and V. Sarkar. Isolation for nested task parallelism. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages
571–588, New York, NY, USA, 2013. ACM.

744

