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Abstract. Operational semantics is a flexible but rigorous means to describe the
meaning of programming languages. Small semantics are often preferred, for ex-
ample to facilitate model checking. However, omitting too many details in a se-
mantics limits results to a core language only, leaving a wide gap towards real
implementations. In this paper we present a comprehensive semantics of the con-
current programming model SCOOP (Simple Concurrent Object-Oriented Pro-
gramming). The semantics has been found detailed enough to guide an imple-
mentation of the SCOOP compiler and runtime system, and to detect and correct
a variety of errors and ambiguities in the original informal specification and pro-
totype implementation. In our formal specification, we use abstract data types
with preconditions and axioms to describe the state, and introduce a number of
special operations to model the runtime system with our inference rules. This
approach makes our large formal specification manageable, providing a first step
towards reference documents for specifying concurrent object-oriented languages
based on operational semantics.

1 Introduction

Concurrent programming has become an important part of mainstream software devel-
opment, caused by the widespread use of multicore processors. The notorious difficulty
of writing concurrent programs correctly has on the other hand spawned work into novel
language abstractions to express concurrency and synchronization. One such language
is SCOOP [21,25], an object-oriented programming model for concurrency based on
the idea of contracts.

The main idea of SCOOP is to simplify the writing of correct concurrent programs
for developers, who can use familiar concepts from object-oriented programming but
are protected by the model from common concurrency errors such as data races. This
is achieved by a runtime system that automatically takes care of operations such as
obtaining and releasing of necessary locks, without the need for explicit program state-
ments. While being based on conceptually simple ideas, the semantics of the language
concepts and runtime system turns out to be very complex.

The question is therefore how the semantics can be properly documented. The initial
version of SCOOP has been defined in [21], where all the main concepts are outlined
but implementation aspects are neglected for the most part. A first prototype implemen-
tation was then introduced in [25], where the semantics was described only informally,
with the exception of a formalization of the type system. In this paper we provide a full
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formalization of the operational behavior of SCOOP, specified by a structural opera-
tional semantics. The main contributions of the paper are:

– A formal specification of SCOOP that treats all important language elements.
– Clarification and correction of the informal specification in [25].

This work does not provide a formal completeness and soundness proof with respect
to an axiomatic semantics. Sec. 6 discusses this possibility as part of future work. This
work focuses on a formal reference for a concurrent programming language. We argue
that this formal reference reflects and corrects the informal description by following a
systematic approach.

This article is a condensed version of our technical report [24] on the same subject.
This paper is structured as follows. The remainder of this introduction gives a brief
overview of the main ideas of the SCOOP model to provide a basic intuition for the main
part of the paper. Sec. 2 gives an overview of related work. Sec. 3 gives an overview
of the considered language. The two following chapters contain the main parts of the
formalization: Sec. 4 describes the state formalization and Sec. 5 the formalization of
computations. Sec. 6 concludes and discusses future applications of the formalization.

1.1 An Informal Overview of SCOOP

The starting idea of SCOOP is that every object is associated for its lifetime with a
processor, called its handler. A processor is an autonomous thread of control capable
of executing actions (features) on objects. A processor can be a hardware CPU, but
it can also be implemented in software, for example as a process or as a thread; any
mechanism that can execute instructions sequentially is suitable as a processor.

A reference variable belonging to a processor (for example, a field of an object han-
dled by that processor) can point to an object with the same handler, or to an object on
another processor. In the second case the reference is said to be separate. The semantics
of a call x.f depends on this distinction: if x is not separate (as always in sequential pro-
gramming), the call is synchronous; if x is separate, meaning that it points to an object
handled by a different processor, that processor will execute the call asynchronously.
This possibility of asynchronous calls is the main source of concurrent execution.

The producer-consumer problem serves as a simple illustration of these ideas. A
root class defines the entities producer and consumer. The keyword separate specifies
that these entities may be handled by a processor different from the current one. A
creation instruction on a separate entity such as producer and consumer will create an
object on another processor; by default the instruction also creates that processor.

producer: separate PRODUCER
−− The producer.

consumer: separate CONSUMER
−− The consumer.

Both the producer and the consumer access an unbounded buffer:
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buffer: separate BUFFER [INTEGER]
−− The data structure for exchanging objects between the producer and the

consumer.

Both the producer and the consumer need to access the buffer, in calls such as buffer.put
(x) and buffer.item. The basic SCOOP rule to ensure mutual exclusion and guarantee
the absence of data races is that any target that is declared as separate, such as buffer,
must be an argument of an enclosing routine, which in turn guarantees that this routine
has exclusive access to the corresponding separate object for the duration of its execu-
tion. The SCOOP scheduler locks the processors handling all objects corresponding to
these controlled arguments. This rule prevents any data races on the group of controlled
objects. For example, in a call consume (buffer), the buffer is controlled; the call gets
exclusive access to its handler.

Condition synchronization relies on preconditions (after the require keyword) to
express wait conditions. Any precondition of the form x.some condition will make the
execution of the routine wait until the condition is true. For example, the precondition
of the consume routine ensures that the routine will wait until the buffer is not empty.

consume (buffer: separate BUFFER [INTEGER])
−− Consume an item from the buffer.

require
not (buffer.count = 0)

local
consumed item: INTEGER

do
consumed item := buffer.item

end

During a feature call, the consumer processor could pass its locks to the buffer processor
if it has a lock that the buffer processor requires. This mechanism is known as lock
passing. In such a case, the consumer processor would have to wait for the passed locks
to return. For the feature call buffer.item, the buffer processor does not require any
locks from the consumer processor. Hence, the consumer processor does not have to
wait due to lock passing. However, the runtime system ensures that the result of the call
buffer.item is properly assigned to the entity consumed item using a mechanism called
wait by necessity: while the consumer processor usually does not have to wait for an
asynchronous call to finish, it will do so if it needs the result of this call.

As the buffer is unbounded, the corresponding producer routine does not need a
wait condition; mutual exclusion will be ensured as before:

produce (buffer: separate BUFFER [INTEGER])
−− Produce an item and put it into the buffer.

local
produced item: INTEGER
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do
produced item := new item
buffer.put (produced item)

end

The asynchronous nature of separate calls such as buffer.put (x) implies a distinction
between the notion of feature call and feature application. In sequential programming,
executing a call means executing the corresponding feature immediately. With asyn-
chronous calls, the client processor logs the call with the supplier processor (feature
call) and moves on. Only at some later time will the supplier processor actually execute
the body (feature application).

The main part of the paper defines formally the implementation that gives rise to the
behavior outlined above. It also introduces advanced concepts and additional language
elements, which cannot be covered in a brief overview, and shows how these give rise
to a complexity which can only be dealt with satisfactorily with a formal specification.

2 Related Work

The discussion is divided into work on SCOOP and work on other languages.

2.1 Approaches for SCOOP

In his dissertation, Nienaltowski [25] worked out the details of an implementation of
SCOOP as suggested by Meyer [21], and provided a prototype implementation. The
language semantics is described informally only, with the exception of the type system
which is defined using an inference system. The informal description and the prototype
contain various ambiguities and omissions, which we are able to clarify.

Torshizi et al. [33] have defined and implemented JSCOOP, a version of the SCOOP
model for the Java language. Only the most important language elements are consid-
ered, and no attempt at formalization is made. In contrast, our specification and imple-
mentation [31] on top of Eiffel considers all language elements. We believe that our
specification could help to extend JSCOOP to a full treatment of the language concepts.

Brooke, Paige and Jacob [5] have used CSP [13] to give a semantics to SCOOP as
described by Meyer [21]. Their initial hope was to use tools for analyzing CSP speci-
fications, such as FDR, to automatically check for deadlock in SCOOP programs, but
found the size of the specification prohibitive. A benefit of their approach is that CSP
provides the machinery needed to express concurrency and synchronization, leading to
a relatively concise model. Our goal is to provide formal descriptions close to an actual
implementation, and therefore prefer to design an own operational semantics, rather
than going through the indirection of another process algebra.

Structural operational semantics, introduced by Plotkin [29], is a flavor of opera-
tional semantics that has been used with great success to define various concurrent sys-
tems. Our specification uses this style of semantics as well. To model SCOOP we also
make use of established modeling concepts from process algebra, such as the notion of
channels, which is present in most calculi such as CSP [13] or the π-calculus [23]. We
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use the theory of abstract data types (ADT) [18] to model the elements of a program
text and to model the state of a SCOOP program.

Ostroff et al. [28] describe a structural operational semantics for SCOOP in the
refined version by Nienaltowski [25]. This operational semantics inspired our work,
and we have attempted to stay close to their modeling ideas where possible, so that
[28] can be viewed as a reduced version of the semantics we describe in this paper.
While [28] covers some of the most significant aspects of SCOOP, it falls short of
describing a number of other critical language concepts: in their reduced model, a query
routine handled by some processor p must not make calls to a processor other than p;
lock passing, expanded objects and the import mechanism, once routines, evaluation
of (asynchronous) postconditions and invariants, and explicit processor tags are not
considered. We clarify these aspects in this paper. Furthermore, [28] have pursued the
goal to check temporal logic properties of SCOOP programs using their semantics and
the SPIN model checker, but were limited to small programs by state space explosion.
We have the different goal of providing a reference document for SCOOP, and thus
don’t have to sacrifice coverage of the language for keeping the specification small.

2.2 Approaches for Other Concurrent Programming Languages

Axum [22] is a concurrent programming language based on the actor model. In Axum,
actors are called agents. An agent is an isolated runtime component that executes in par-
allel with other agents. The agents communicate with each other by sending messages
through channels. Each channel has input ports, output ports, and a protocol. The ports
are queues of messages. The protocol is a state machine that defines how the channel
behaves. Schemas define the structure of messages. Besides message passing, Axum
also provides domains – shared state between groups of actors. Erlang [10] and Scala
[27] are further examples of actor-based programming languages.

Cω [3] is an extension of C# that integrates elements of the Join Calculus [11].
Cω allows computations to be spawned off into different threads using asynchronous
methods: while for synchronous methods the caller must wait until a routine completes,
asynchronous methods return immediately while their body is scheduled for execution
in another thread. Cω supports so-called chords, which associate the body of a routine
with more than one method; the body is executed only if all methods have been called.

Another language is Cilk [4], which extends C with concurrency concepts. A method
marked with the cilk keyword can be asynchronously spawned with the spawn keyword.
The sync keyword requires the current method to wait for all previously spawned tasks
to complete. An inlet function within a parent method receives the result of a spawned
child method; the inlet functions of a parent method are guaranteed to execute atom-
ically. Within an inlet function, the abort keyword tells the scheduler that any other
child method spawned by the parent method can be aborted. Cilk also implements a
work stealing mechanism to achieve high performance by dividing method executions
efficiently among processors.

Ada [14] defines tasks – units that can run in parallel. A task is declared within a
procedure; it consists of a specification and an implementation. The task is activated
when the procedure starts executing. The task specification can define a number of en-
try points with parameters; an entry point specifies an action the task can synchronize
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on. An accept statement within the task body indicates the point where the rendezvous
can take place. Another task calls the entry point to take part in the rendezvous. With
a select statement, one can wait for multiple entry points; alternatives may be guarded
with boolean expressions. Ada defines protected objects – a monitor-like construct with
guards instead of conditional variables. A protected object is declared within a proce-
dure; it has a specification and an implementation.

The occam programming language [32] builds on the CSP process algebra [13]. A
parallel construct defines a number of processes that execute concurrently; the parallel
construct terminates when all spawned processes terminated. Processes communicate
with each other through named channels. The alternation construct defines a number of
processes, where only one of them gets executed; a guard defines when a process can
be executed.

X10 [7], Fortress [2], and Chapel [15] are based on the Partitioned Global Ad-
dress Space (PGAS) model. PGAS uses a global shared memory. It defines portions
on the global shared memory and associates them to specific processors to improve
performance and scalability. X10 provides important abstractions such as places, asyn-
chronous methods, future invocations, and barriers. However, it places a considerable
burden on programmers. Fortress offers implicit parallelization of loops and operations
on data structures. Chapel provides a higher-level multithreaded parallel programming
model with abstractions for data parallelism, task parallelism, and nested parallelism.

Linda [12] is a coordination language to connect concurrent components; the com-
ponents can be written in different programming languages. The coordination is based
on a tuple space, which holds data tuples that can be stored and retrieved by the pro-
cesses. Pattern matching is used to read and remove tuples; the operations block until a
matching tuple is found. The eval construct creates a new process to evaluate an expres-
sion; the new process writes the evaluation result into the tuple space. Implementations
of Linda can be found in several programming languages such as Java and C.

For the related languages mentioned above, we are not aware of rigorous behav-
ioral specifications, with the exception of Cω and occam, which use the Join Calculus
respectively CSP as the underlying model. For multi-threaded Java however, such for-
malizations have been attempted.

Ábrahám, de Boer, de Roever, and Steffen [1] present an operational semantics for a
subset of multi-threaded Java. They focus on the most important multi-threaded aspects,
i.e., dynamic thread creation, thread termination, and re-entrant monitors. The seman-
tics consists of two components: the semantics for isolated objects and the semantics
for interacting objects. The authors want to use the semantics to develop a proof system
that is based on an existing proof-system for isolated objects. A configuration is a set of
instance configurations. An instance configuration contains the attribute values of one
object. It also contains the local environment and the expression of each thread that is
concurrently executing within the object. In modeling the state of a program, our se-
mantics strictly separates the actions to be executed from the data. This makes it easier
to derive implementations from the semantics because an implementation is likely to
keep the program text and data separate. Ábrahám et al. use transition labels to syn-
chronize inference rules. The labels allow an external observer to follow the transitions.
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Our semantics is a pure reduction semantics without labels because we do not require
observable transitions.

Cenciarelli, Knapp, Reus, and Wirsing [6] also describe an operational semantics for
a larger subset of multi-threaded Java. They cover a larger number of multi-threaded
aspects than [1]. In particular they formalize Java’s notification mechanism and the
working memory. A configuration consists of a function that maps each thread to its
expression and its local environments. The configuration also has a container with the
objects and the static typing information. Lastly, the configuration consists of an event
space. The event space is a partially ordered set of events that have been executed by the
threads. The ordering reflects the order in which the events took place. An event space
serves two purposes. First, it contains certain aspects of the state. For example, the lock
and unlock actions tell us which thread owns which lock. Second, it records the history.
A number of constraints state when an event space is valid. Hence, the event space
indicates which further actions can take place. The authors use two different validity
constraints for both Java’s non-prescient semantics and its prescient semantics. Using
this, they show that any prescient execution of a properly synchronized program can be
simulated by a non-prescient execution. Compared to our semantics, there is no clean
division between program text and the state and there is no clean division between the
state and the typing information.

Lochbihler [19] suggest a different operational semantics for a large subset of multi-
threaded Java. Just like [6], he covers the notification mechanism, but he does not for-
malize the working memory. He defines an instantiating semantics based on an ex-
tension of Jinja [17]. Jinja is an operational semantics for a subset of single-threaded
Java. The instantiating semantics is used for the sequential case. Lochbihler defines a
generic formal framework to lift the instantiating semantics to the concurrent case. The
configuration of the instantiating semantics consists of the expression, a container with
the objects, and the local environments. The state of the framework semantics consists
of the lock status, the thread information with the thread’s expression along with the
thread’s local environments, a container with the objects, and the wait sets. Lochbihler
formalizes the notion of deadlocks, where deadlocks are either based on locks or on
wait sets. He then proves that every program that satisfies certain criteria either pro-
duces a final value, throws an exception, or deadlocks. He also shows that every such
program preserves type safety.

3 Language Overview

SCOOP is a programming language based on Eiffel, an object-oriented programming
language, defined in the Eiffel ECMA standard [9]. SCOOP’s concurrency model can
be applied to other programming languages as well. For this reason, this work does not
focus on SCOOP, but on its concurrency model. This section defines a subset of SCOOP,
reduced to the parts that are relevant for the concurrency model. It presents the syntax
of the subset and a list of simplifications. It then discusses the program representation
that this formalization assumes.
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3.1 Syntax

The following EBNF grammar defines the set of all considered programs:

program = class declaration* root procedure declaration ;
root procedure declaration = {class name}.routine name ;
class declaration =

[”expanded”] ”class” class name
”inherit” class name
[”create” routine name {”,” routine name}]
”feature” [”{” class name {”,” class name} ”}”] {feature declaration}
[”invariant” expression]

”end” ;

feature declaration = routine declaration | attribute declaration ;
routine declaration =

routine name [”(” entity declaration {”,” entity declaration} ”)”] [”:” type]
[”require” expression]
[”local” entity declaration {entity declaration}]
(”do” | ”once”)

instruction {”;” instruction}
[”ensure” expression]
”end” ;

attribute declaration = entity declaration ;
entity declaration = entity name ”:” type ;

instruction =
entity name ”:=” expression |
expression ”.” feature name [”(” expression {”,” expression} ”)”] |
”create” entity name ”.” routine name [”(” expression {, expression} ”)”] |
”if” expression ”then” instruction {”;” instruction} ”else” instruction {”;”

instruction} ”end” |
”until” expression ”loop” instruction {”;” instruction} ”end” ;

expression =
literal |
entity name |
expression ”.” feature name [”(” expression {, expression} ”)”] ;

literal = boolean literal | integer literal | character literal | void literal ;
boolean literal = ”True” | ”False” ;
integer literal = [”−”](”0” | . . . | ”9”) {”0” | . . . | ”9”} ;
character literal = ” ’ ” ”a” | . . . | ”z” | ”A” | . . . | ”Z” | ”0” | . . . | ”9” ” ’ ” ;
void literal = ”Void” ;

type =
[detachable tag]
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[”separate”] [explicit processor specification]
class name [actual generics] ;

detachable tag =
”attached” | ”detachable” ;

explicit processor specification =
qualified explicit processor specification |
unqualified explicit processor specification ;

qualified explicit processor specification =
”<” entity name ”.” ”handler” ”>” ;

unqualified explicit processor specification =
”<” entity name ”>” ;

class name = name ;
feature name = routine name | entity name ;
routine name = name ;
entity name = name | ”Result” | ”Current” ;
name = (”a” | . . . | ”z” | ”A” | . . . | ”Z”) {”a” | . . . | ”z” | ”A” | . . . | ”Z”};

A class consists of a number of features. A feature is either a routine – a sequence
of instructions – or an attribute – a data storage. If a routine returns a result, then it is
called a function; otherwise, it is called a procedure. If a routine is marked as a once
routine (once keyword), then the routine gets executed only once in a given context.
Functions and attributes are also called queries; routines are also called commands. A
routine can define a precondition (require keyword) and a postcondition (ensure key-
word). The enclosing class can define an invariant (invariant keyword). Each feature
can be exported to a list of classes, so that only these classes can use the feature. A
number of procedures are dedicated creation procedures. These procedures can be used
in creation expression (create keyword) to create new objects. A class can be marked as
an expanded class (expanded keyword). Objects of expanded classes get copied when
they get passed around; objects of non-expanded classes get aliased.

Formally, a type t is a triple (d, p,c). The component d is the detachable tag, p is
the processor tag, and c is the class type. The detachable tag d captures detachability.
An entity of attached type (attached keyword), i.e., d = !, is statically guaranteed to
store a value, i.e., to be non-void. An entity of detachable type (detachable keyword),
i.e., d = ?, can be void. As discussed later, the detachable tag is also used for the selec-
tive locking mechanism to prevent a request queue from being locked. The processor
tag p captures the locality of objects accessed by an entity of the type t. The processor
tag p can be separate (separate keyword without explicit processor specification), i.e.,
p =>. The object attached to the entity of the type t is potentially handled by a differ-
ent processor than the current processor. The processor tag p can be explicit (separate
keyword with explicit processor specification), i.e., p = α . The object attached to the
entity of the type t is handled by the processor specified by α . The processor tag p can
be non-separate (no separate keyword), i.e. p = •. The object attached to the entity of
the type t is handled by the current processor. The processor tag p can denote no pro-
cessor, i.e., p =⊥. It is used in the type of the void reference. The explicit processor tag
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either has an unqualified or a qualified specification. An unqualified explicit processor
specification, i.e., < p >, is based on a processor attribute p. The processor attribute
p must have the type (!,•,PROCESSOR) and it must be declared in the same class as
the explicit processor specification or in one of the ancestors. The processor denoted
by this explicit processor specification is the processor stored in p. A qualified explicit
processor specification, i.e., < e.handler >, relies on an entity e occurring in the same
class as the explicit processor specification or in one of the ancestors. The entity e must
be a non-writable entity of attached type and the type of e must not have a qualified
explicit processor tag. The processor denoted by this explicit processor specification is
the same processor as the one of the object referenced by e. Explicit processor tags sup-
port precise reasoning about object locality. Entities declared with the same processor
tag represent objects handled by the same processor. The absence of both the keywords
is treated as if there was an attached keyword.

3.2 Simplifications

This work makes the following simplifications:

– It does not consider unqualified feature calls. It expects all feature calls to be in the
qualified form. This includes accesses to attributes of the current object in expres-
sions.

– It does not consider infix feature calls. It expects all feature calls in the non-infix
form. For example, an expression x > y must be transformed into the equivalent
form x.is greater(y).

– It simplifies the automatic initialization of entities. All entities, except for the cur-
rent object entity, are initialized with the void reference.

– It neglects exception handling. The exception handling mechanism for SCOOP is
still under development.

– It does not consider garbage collection because garbage collection is not refined in
the SCOOP model.

– It does not consider agents. From this work’s point of view, agents are normal
objects.

3.3 Intermediate Representation

For the purpose of the formalization, this work assumes that a program is given in
an enriched intermediate representation, where the syntactical elements are replaced
with instances of abstract data types. In particular, it assumes ADTs for class types,
features, expressions, and instructions. Fig. 1 summarizes these ADTs. The instances
of CLASS TYPE are all possible class types, i.e., the types directly defined by all
non-generic classes and all possible generic derivations of all possible generic classes.
Sec. 4.1 discusses how to get these instances. The ADT CLASS TYPE defines a name
query name. Each class type can either be a reference class type or an expanded class
type. The queries is ref and is exp provide this information. Each class type defines a
number of features. These features can be divided into attributes, functions, and proce-
dures. An attribute of an object stores a value. A function performs a computation and
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+name : NAME

+formals : TUPLE

+is_once : BOOLEAN

+pre_exists : BOOLEAN

+pre : EXPRESSION

+post_exists : BOOLEAN

+post : EXPRESSION

+locals : TUPLE

+body : TUPLE

+is_exported : BOOLEAN

+class_type : CLASS_TYPE

FEATURE

ROUTINE

FUNCTION PROCEDURE ATTRIBUTE

+name : NAME

+context_feature : FEATURE

ENTITY

+feature_by_name(in name : NAME) : FEATURE

+name : NAME

+is_ref : BOOLEAN

+is_exp : BOOLEAN

+attributes : TUPLE

+functions : TUPLE

+procedures : TUPLE

+inv_exists : BOOLEAN

+inv : EXPRESSION

CLASS_TYPE

INSTRUCTION

ASSIGNMENT

IF_INSTRUCTION LOOP_INSTRUCTION

CREATION_INSTRUCTIONCOMMAND_CALL

EXPRESSION

QUERY_CALL

+obj : OBJECT

LITERAL

Fig. 1. ADTs for the intermediate representation

returns the result. This computation must not modify the state. A procedure performs a
computation that modifies the state. Functions and procedures are also known as rou-
tines. For each of these categories, CLASS TYPE defines a query that returns a tuple
of features. The query attributes returns a tuple of attributes, the query functions returns
a tuple of functions, and the query procedures returns a tuple of procedures. If the name
of a feature is known, then the query feature by name can be used to get the feature
with that name. Each class type can have an invariant. The query inv exists indicates
whether such an invariant exists. In case an invariant exists, it can be accessed with the
query inv as an expression. One of the instances of CLASS TYPE is BOOLEAN. This
class type is expanded and it has an attribute with name item. The value of this attribute
is the represented boolean value, i.e., an instance of BOOLEAN.

In this formalization, a feature is an instance of FEATURE. The name of the feature
can be retrieved with the query name and the formal arguments are given by the query
formals that returns a tuple with the formal arguments as entities. Whether or not the
feature is a once feature can be determined using the query is once. The queries pre and
post return an expression for the precondition respectively the postcondition, provided
that the queries pre exists and post exists indicate that the assertions exist. Next, there
is the query locals that gives the locals of the feature as entities. The query body returns
the body of the feature as a tuple of instructions. Each feature is either exported or not.
A non-exported feature is only available in calls on the current object within the class
that declared the feature. An exported feature can be called by other clients as well. The
query exported returns whether a feature is exported or not. Lastly, each feature has a
link to the class it belongs to. This is given by the query class type. This can be used for
example to retrieve the invariant that must be preserved by a feature. For each feature
category, there is an ADT that inherits from the FEATURE ADT.
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Expressions can either be entities, literals, or query calls. Every expression is an
instance of EXPRESSION. For each form of expression, there is one ADT that in-
herits from the EXPRESSION ADT. For entities there is an ADT with a query name
that returns the name of an entity. A query context feature links an entity to the feature
in which the entity is declared. A literal is a character sequence that represents a con-
stant value. As such, literals count as manifest expressions - programming constructs
whose values can be deduced by the compiler statically. Literals are instances of an
ADT LITERAL. This ADT has instances for booleans, integers, characters, and the
void literal. Each literal except the void literal can be translated into an object with the
query obj. This object matches the literal in both type and value. The following notation
describes instances of EXPRESSION:

e , w | b | e. f (e, . . . ,e)

Here, w is an element of LITERAL, b is an instance of ENTITY, and f is an
instance of FEATURE. For instructions, there is an ADT INSTRUCTION and an
ADT for each kind of instruction. The following notation describes such instances:

h ,
b :=e |
e. f (e, . . . ,e) |
create b. f (e, . . . ,e) |
if e then [s{;s}∗] else [s{;s}∗] end |
until e loop [s{;s}∗] end

Here, s stands either for an instance of INSTRUCTION or an operation. Instruc-
tions are actions that occur in the intermediate representation (user syntax). Operations
are actions that do not explicitly occur in the intermediate representation (run-time syn-
tax).

This work builds on an existing type system formalization. It assumes the existence
of a typing environment that can be queried for type information.

4 State Formalization

This section provides a formalization of the state of a SCOOP program. This is neces-
sary to describe the effect of SCOOP constructs on the state. The discussion starts with
the general approach and continues with the description of the state.

4.1 General Approach

This work considers the state of a SCOOP program to be a data structure that can be
created, modified, and queried through features. For the specification of the state, this
work uses Liskov’s ADT theory [18]. The discussion begins with a justification and the
consequences of this choice. The discussion finishes with an explanation on how to get
types for elements in the intermediate representation.
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Abstract data types Meyer’s work on a three-level approach to the description of data
structure [20] defines three levels on which a data structure can be described: func-
tional, constructive, and physical. The functional specification is an algebraic approach
that uses an implicit characterization of the data structure. The constructive specifica-
tion provides a means to construct instances of the data structure. The instances con-
structed like this are mathematical entities. A physical description describes the layout
of instances in memory. The constructive specification can be derived from the func-
tional specification and the physical description can be derived from the constructive
description.

This work models the state as an ADT instance, on the functional level in the hi-
erarchy described above. This has several reasons. First of all, ADT theory allows us
to describe the state on an abstract level without dealing with aspects of the implemen-
tation. The constructive and the physical level can be derived from the ADTs on the
functional level. Second, ADT theory allows us to modularize the state. Different con-
cerns of the state can be modeled as individual ADTs, while a single ADT can be used
to consolidate the individual ADTs. This improves understandability and maintainabil-
ity of the state description. Lastly, ADT theory is well established and suitable for the
task at hand.

An ADT t consists of queries, commands, and constructors. A query of t provides
information about an instance of t. The query takes as a first argument the target of
type t, which is the instance to be queried. Next to the target, the query can take further
arguments with types t1, . . . , tn. Finally, the query returns a result of a type tn+1. The
declaration of this query is written as query : t → t1→ . . .→ tn→ tn+1. For flexibility
reasons, this work uses the curried form (as in Haskell) instead of the equivalent Carte-
sian form query : t× t1× . . .× tn→ tn+1. A command of t returns an updated instance
according to the command’s semantics. The declaration of a command looks much like
the one of a query. However, the result of the command is an instance of t. To simplify
the discussions, the following terminology is used: an update of an ADT instance is
the act of calling a command on the instance; the updated instance is the result of the
command. A constructor of t creates a new instance of t. In contrast to queries and com-
mands, a constructor does not take the target as the first argument because its purpose
is to create a new instance.

To describe an instance of an ADT, one can build an expression that starts with
a constructor call. This expression can then be used as the first actual argument of a
command call. The resulting expression can then be used as the first actual argument of
the next command. This leads to a nested expression, in which the first feature call is in
the root of the expression and the last feature call is on the outside of the expression. The
instance described in such a way can then be queried. We find this functional notation
hard to read. Therefore we use an equivalent object-oriented notation in which the first
feature call is on the left and the last feature call is on the right. The main idea is not to
write targets as arguments, but to write a target in front of the feature name and to use
a dot to separate the two parts from each other. This leads to the following translation
between the functional notation and the object-oriented notation:

– The query expression query(e0,e1, . . . ,en) written in functional notation is equiva-
lent to the expression e0.query(e1, . . . ,en) written in object-oriented notation.
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– The command expression command(e0,e1, . . . ,en) written in functional notation
is equivalent to the expression e0.command(e1, . . . ,en) written in object-oriented
notation.

– The creation expression constructor(e1, . . . ,en) for an instance of an ADT t written
in functional notation is equivalent to the expression new t.constructor(e1, . . . ,en)
written in object-oriented notation.

The identity of an ADT instance is given by its query values. Hence, the following
holds for all ADTs t: new t.constructor(e1, . . . ,en) = new t.constructor(e1, . . . ,en).

Example 1 (Functional notation versus object-oriented notation). The expression in
functional notation is empty(pop(push(new STACK[PROC].make,p))) can be written
in object-oriented notation as new STACK[PROC].make.push(p).pop.is empty.

Each feature can have a precondition that must be satisfied before the feature gets
called. A precondition is expressed as a number of assertions on the target and the ar-
guments. A feature with a precondition is a partial feature. A partial feature is a feature
whose domain is restricted. Such a partial feature is indicated with a crossed arrow 9
after the type of each formal argument that got restricted by the feature’s precondition.
Non-restricted formal arguments are indicated with a normal arrow →. The effect of
an ADT command is described in a number of axioms. This work deviates from the
practice of bundling all axioms for a specific ADT. Instead, all the axioms for a spe-
cific feature occur in the feature’s declaration. Note that this work does not aspire a
sufficiently complete ADT because this would lead to rule explosion. An ADT is suffi-
ciently complete if its axioms make it possible to reduce any query expression to a form
that does not involve an instance of the ADT. This requires that the axioms describe
the effect of each command on each query. This work follows the practice to describe
the effect of each command of an ADT on all the queries of the ADT that have been
changed by the command. Unmentioned queries are unchanged.

Example 2 (Command declaration). The following declaration shows a command to
set the value of an attribute f of an object o to the value v. The value can either be
a reference or a processor. The command takes the object as the target and returns an
updated object whose attribute value is set.

set att val : OBJ→ FEATURE 9 REF∪PROC→OBJ
o.set att val( f ,v) require

o.class type.attributes.has( f )
axioms

o.set att val( f ,v).att val( f ) = v

The command states in its precondition that the class type of the target object o must
have an attribute f . This is expressed as an assertion after the require keyword. The part
in front of the require keyword gives names to the target and the arguments. Note that
the precondition makes the command partial. The updated object has the value of its
attribute f set to v. This is stated as an axiom after the ensure keyword.

So far the discussion covered queries, commands, and constructors for ADTs. This
work extends the ADT theory with the notion of auxiliary features. Auxiliary features
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are convenience features that are not essential for the definition of the ADT, but never-
theless useful.

The remainder of this work declares various ADTs to model the state of a SCOOP
program. Unless it would create confusion, it uses the same name for an instance of
an ADT and the corresponding domain element. For example, the instance of the ADT
OBJ is called an object.

Identifier management This formalization models objects, references, and processors.
All of these domain elements have an identity. These identities are automatically man-
aged by the runtime system. The work by Khoshafian and Copeland [16] on different
levels of object identity provides good reasons for this decision. They introduce a scale
that starts with identities given by the value, goes on with user-supplied identities, and
ends with built-in identities. Built-in identities have the advantage that the identities are
preserved in case of modifications. According to this hierarchy, our domain elements
have a built-in identity. One straightforward way to reflect this, is to model each domain
element as an instance of an ADT. However, this direct approach does not properly cap-
ture the identities of the domain elements because the identity of an ADT instance is
not built-in, but based on the query values. This section describes a way to introduce
built-in identities for ADT instances.

To model domain elements with built-in identities, one can define an ADT with
an identifier query. A number of ADT instances represent a single domain element
over time. Each of the ADT instances has the same value for the identifier query. A
modification of the domain element can then be modeled as a new ADT instance where
the value of the identity query is preserved and all other queries modulo the modification
are preserved.

For this to work, the formalization ensures that no two ADT instances that model
different domain elements have the same identity. This is ensured with a fresh identifier
for each ADT instance that models a new domain element. For this purpose, the univer-
sal stateful query new id returns a fresh identifier. The formalization then preserves the
identifier in every modification.

Typing environment Nienaltowski [25] presents a formalization of the SCOOP type
system for a core of SCOOP called SCOOPC. The type system formalization is part
of the base for this work. The typing environment Γ contains the class hierarchy of a
SCOOP program along with all the type definitions of all features and entities. Type
rules allow us to derive conclusions.

The notation Γ ` e : t denotes that expression e is of type t. Based on this derivation,
the function type of (Γ ,e) denotes the type of expression e in the typing environment
Γ . The type rules can be used to check whether an expression is controlled or not. In a
SCOOP program, each processor p that wants to apply a feature f must make sure that
all the processors (q1, . . . ,qn) of all attached actual arguments of f are exclusively avail-
able on behalf of processor p. This guarantees exclusive access on all objects handled
by processors {p,q1, . . . ,qn}. Note that processor p is in this set too because p can ex-
clusively access its objects during a feature execution. For safety, the type system only
allows feature calls in f on expressions, where the type system can derive that the value
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of the expression is a reference to an object and this object is handled by one of the
processors {p,q1, . . . ,qn}. Such an expression is called controlled. Whether or not an
expression is controlled can be determined through the context in which the expression
appears and the type of the expression. The context can either be the enclosing class, in
case of expressions in invariants, or it can be the enclosing feature, in case of all other
expressions. To be more precise, an expression e of type t = (d, p,c) is controlled if and
only if t is attached, i.e., d = !, and t satisfies at least one of the following conditions:

– The expression e is non-separate, i.e., p = •.
– The expression e appears in a routine f that has an attached formal argument w

with the same handler as e, i.e., p = w.handler.

The second condition is satisfied if and only if at least one of the following conditions
is true:

– The expression e appears as an attached formal argument of f .
– The expression e has a qualified explicit processor specification w.handler and w is

an attached formal argument of f .
– The expression e has an unqualified explicit processor specification p, and some

attached formal argument of f has p as its unqualified explicit processor specifica-
tion.

The notation Γ ` controlled(t) denotes that an expression e of type t is controlled. To
establish the derivation Γ ` controlled(t) one has to find an attached formal argument
w in the enclosing routine such that the types suggest that w and e are handled by the
same processor or one has the establish that the type t is non-separate. One can therefore
be sure that whenever an expression e is controlled, either a matching formal argument
exists or its type is non-separate. For the first case, the formal argument is the controlling
entity for e. For the second case, the current entity is the controlling entity. Although
not present in Nienaltowski’s formalization of the type system, this work introduces
a new derivation Γ ` y = controlling entity(e) that returns the controlling entity y for
an expression e as an instance of ENTITY. This notion is essential to determine the
handler of any controlled expression without evaluating the expression. One can simply
determine the controlling entity and then determine the handler of the controlling entity.

4.2 Components of the State

The state is divided into three parts: the regions, the heap, and the store. The main pur-
pose of the heap is to keep track of objects and to maintain the mapping of references to
objects. It also maintains the once status of once routines, i.e., whether a once routine
is fresh on a processor. The regions manage the association between objects and pro-
cessors. Objects that are handled by the same processor form a region. The regions are
also concerned with locking. The store is a map of names to references. It maps names
of formal argument, names of local variables, the name of the current object entity, and
the name of the result entity to references. A state ADT models the state with one query
for each of the three parts.

regions : STATE→ REG
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heap : STATE→HEAP

store : STATE→ STORE

The next few sections introduce ADTs for each of the parts. A later section presents
the state ADT.

4.3 Heap ADT

The heap keeps track of the objects and the references associated to them. It also keeps
track of the status of once routines. This section first defines an ADT for objects and
references. Then it introduces an ADT for the heap.

Objects and references There are two kinds of class types in the SCOOP type sys-
tem: reference class types and expanded class types. The main difference lies in the
semantics of using an instance of the types as the source of an attachment, such as as-
signment or argument passing. If an object of reference class type is the source of an
attachment, then the reference to the object gets copied over to the destination of the
attachment. The object is then accessible both through the source of the attachment as
well as through the destination of the attachment. If an object of expanded class type is
the source of an attachment, then a copy of the object gets attached to the destination of
the attachment. The details can be found in Sec. 7.4 of the Eiffel ECMA standard [9].

This formalization takes a unified view on objects and references that is compatible
with the semantics described in the Eiffel ECMA standard. It does not consider objects
of expanded class type as sub-objects in other objects or in an environment. Instead it
locates expanded objects on the heap, just like objects of reference class type. For each
object there is exactly one reference. Assigning references to objects of expanded type
has one major advantage for the formalization. If an ADT instance x that models an
object gets updated, then one gets a new ADT instance y. If one would model expanded
objects as sub-objects stored in other objects or in environments, then such an update
might trigger a cascade of ADT instance updates: each ADT instance that has x as
a query value would have to be updated with y, and so on. A consequent usage of
references avoids this issue. To do the update, one simply alters the reference to x so
that it points to y from now on.

The ADT REF models references with an identity query id and a constructor make.
The constructor uses the query new id to create a fresh identifier for the newly created
reference. The void reference void is an instance of this ADT.

The ADT OBJ models objects. Each object has a query id for its identifier, a query
class type for its class type, and a query att val for its attribute values. An object can
only have attribute values for attributes that are defined in its class type.

The attribute values of an object can be modified with the command set att val.
Only the attribute values for attributes that are defined in the class type can be modified.
The result is an updated object where the attribute value of f is set to v. Note that the
value can either be a reference or a processor. Processor values are necessary to support
processor attributes.
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set att val : OBJ→ FEATURE 9 REF∪PROC→OBJ
o.set att val( f ,v) require

o.class type.attributes.has( f )
axioms

o.set att val( f ,v).att val( f ) = v

The constructor make can be used to create a new object. It creates a new object
with the given class type. The new object has a new identifier that is given by the query
new id. The constructor initializes all the attribute values of the new object with the
void reference.

make : CLASS TYPE→OBJ
axioms

make(c).id = new id
make(c).class type = c
∀i ∈ {1, . . . ,n} : make(c).att val(ai) = void
where

{a1, . . . ,an}
de f
= c.attributes

An object can also be copied with the auxiliary query copy. This is important for ex-
panded objects with copy semantics. The copied object has the same class type and the
same attribute values as the original object, but it has a new identity. The new identity
comes from the call to the constructor make.

copy : OBJ→OBJ
axioms

o.copy = make(o.class type)
.set att val(a1,o.att val(a1))
. . . .
.set att val(an,o.att val(an))

where

n
de f
= o.class type.attributes.count

{a1, . . . ,an}
de f
= o.class type.attributes

Mapping from references to objects The ADT HEAP makes use of OBJ and REF
to model the mapping from references to objects. For this purpose, it declares the query
objs to store all the objects on the heap and it declares the query refs to get all the
references to these objects. The reference void is not part of the reference set. The
query ref obj defines the actual mapping. For each reference in refs an object in objs
gets returned. The ADT also declares the query last added obj to keep track of the last
object that has been added to the heap. It uses this query to define the effect of adding
an object to the heap.

objs : HEAP→ SET[OBJ]

refs : HEAP→ SET[REF]
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ref obj : HEAP→ REF 9 OBJ
h.ref obj(r) require

h.refs.has(r)

last added obj : HEAP→OBJ
h.last added obj require
¬h.objs.is empty

A number of commands are responsible for adding objects and for altering the map-
ping of references to objects. The command add obj takes an object o and adds it to the
heap. The result of the command is a new heap with the object o and a new reference
that points to o. The newly added object is indicated in the query last added obj. Note
that this command does not create a new object. It simply adds an object that has been
provided as an argument. The command requires that the object is not yet part of the
heap.

add obj : HEAP→OBJ 9 HEAP
h.add obj(o) require
∀u ∈ h.objs : u.id 6= o.id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF→ (o.att val(a) = void∨h.refs.has(o.att val(a)))
axioms

h.add obj(o).objs = h.objs∪{o}
h.add obj(o).refs = h.refs∪{r}
h.add obj(o).ref obj(r) = o
h.add obj(o).last added obj = o
where

r
de f
= new REF.make

If an object that is already part of the heap gets updated, then it is necessary to
update the mapping from the reference to the object on the heap. This can be done with
the command update ref that takes a reference r and an updated object o and returns a
heap where the reference r points to o. The command requires that r is a valid reference
and that o is an updated version of the original object. Because the remaining part of
the state only deals with references rather than objects directly, a reference update does
not require an update of these parts.

update ref : HEAP→ REF 9 OBJ 9 HEAP
h.update ref (r,o) require

h.refs.has(r)
o.id = h.ref obj(r).id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF→ (o.att val(a) = void∨h.refs.has(o.att val(a)))
axioms

h.update ref (r,o).objs.has(o)
o 6= h.ref obj(r)→¬h.update ref (r,o).objs.has(h.ref obj(r))
h.update ref (r,o).ref obj(r) = o
h.last added obj = h.ref obj(r)→ h.update ref (r,o).last added obj = o
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So far HEAP covers the mapping from references to objects. Occasionally it is
necessary to have the inverse mapping. The commands add obj and update ref ensure
that there is exactly one reference for each object on the heap. Thus it is possible to
define the inverse query ref as an auxiliary query.

ref : HEAP→OBJ 9 REF
h.ref (o) require

h.objs.has(o)
axioms

h.ref obj(h.ref (o)) = o

Once routines A once routine can either be a once function or a once procedure. A
once routine gets executed at most once in a certain context. If a once routine has been
executed in the context, then it is called non-fresh in the context. Otherwise it is called
fresh in the context. The context is either the set of all processors in the system or a
single processor. The heap remembers which once routines are fresh. For this purpose,
HEAP declares the queries is fresh and once result. For any processor p and any once
routine f , the query is fresh states whether f is fresh on p or not. For a once function f
that is not fresh on a processor p, the query once result returns the result of f on p.

Two commands change the once status of a fresh once routine to non-fresh. One ver-
sion works for once functions and the other one for once procedures. Both commands
take the once routine f and the processor p. The version for once functions also takes
a once result r. The two commands implement the semantics for once routines: a once
routine has either a once per system or a once per processor semantics. Once functions
declared as separate with or without an explicit processor specification have the once
per system semantics. In this case, the command set once func not fresh defines f as
non-fresh on all processors. Once functions with a non-separate result type have the
once per processor semantics. In this case, the command set once func not fresh sets f
as non-fresh on p with the once result r. Once procedures have the once per processor
semantics. In this case, the command set once proc not fresh sets f as non-fresh on p.

set once func not fresh : HEAP→ PROC→ FEATURE 9 REF 9 HEAP
h.set once func not fresh(p, f ,r) require

f ∈ FUNCTION∧ f .is once
r 6= void→ h.refs.has(r)

axioms
(∃d,c : Γ ` f : (d,•,c))→
¬h.set once func not fresh(p, f ,r).is fresh(p, f )∧
h.set once func not fresh(p, f ,r).once result(p, f ) = r

(∃d,c : Γ ` f : (d, p,c)∧ p 6= •)→∀q ∈ PROC :
¬h.set once func not fresh(p, f ,r).is fresh(q, f )∧
h.set once func not fresh(p, f ,r).once result(q, f ) = r

set once proc not fresh : HEAP→ PROC→ FEATURE 9 HEAP
h.set once proc not fresh(p, f ) require

f ∈ PROCEDURE∧ f .is once
axioms
¬h.set once proc not fresh(p, f ).is fresh(p, f )
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Creation A new heap can be created with the constructor make. A new heap has no
objects and no references. All once routines are marked as fresh on all processors.

make : HEAP
axioms

make.objs.is empty
make.refs.is empty
∀p ∈ PROC, f ∈ FEATURE : f .is once→ make.is fresh(p, f )

4.4 Regions ADT

The heap is partitioned into disjoint regions, and each region is assigned to exactly one
processor. This concept relates to the concept of a ken in Schmidt’s work [30]. The
processor of a region is the handler of all the objects in the region. Regions are also
used to maintain locks. The following discussion first describes an ADT for processor
and then describes an ADT for regions.

Processors A processor is an autonomous thread of control capable of executing fea-
tures on objects. Each processor is responsible for a set of objects. As such a processor
is called the handler of its associated objects. Each object is assigned to exactly one pro-
cessor that is the authority of feature executions on this object. If a processor q wants
to call a feature on an object handled by a different processor p, then q needs to send
a feature request to processor p. This is where the request queue of processor p comes
into place. The request queue keeps track of features to be executed on behalf of other
processors. Processor q can add a request to this queue and processor p will execute the
request as soon as it executed all previous requests in the request queue. Processor p
uses its call stack to execute the feature request at the beginning of the request queue.
The call stack is responsible for the order of feature executions on the same processor.
In a situation of a non-separate call, the call stack ensures that the calling feature exe-
cution resumes once the called feature execution terminated. The interaction between
the call stack and the request queue is best described with the following loop through
which each processor goes:

1. Idle wait. If both the call stack and the request queue are empty, then wait for new
requests to be enqueued.

2. Request scheduling. If the call stack is empty but the request queue is not empty,
then dequeue an item and push it onto the call stack.

3. Request processing. If there is an item on the call stack, then pop the item from the
call stack and process it. If the item is a feature request, then apply the feature. If
the item is an operation, then execute the operation.

For each processor there is a request queue lock and a call stack lock. A lock on the
request queue grants permission to add a feature request to the end of the request queue.
A lock on the call stack grants permission to add a feature request to the top of the call
stack. Before processor q can add a request to p’s request queue, it must have a lock
on this request queue. Otherwise another processor could intervene. Once processor q
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is done with the request queue of processor p it can add an unlock operation to the end
of the request queue. This makes sure that the request queue lock of p will be released
after all the previous feature requests have been executed. Similarly, processor p must
have a lock on its call stack to add features to its call stack. Initially, each processor has
a lock on its own call stack and its request queue is not locked.

Processor q could also make a synchronous call to p. However q might be in posses-
sion of some locks that are necessary for the execution of the resulting feature request
on p. In such a situation, q is waiting for the synchronous call to terminate and p is wait-
ing for locks to be available. According to the conditions given by Coffman et al. [8] a
deadlock occurred. This can be avoided if q temporarily passes its locks to the p. This
allows p to finish the execution and hence q can continue.

Clarification 1 (Request queue locks and call stack locks). The notion of request queue
locks and call stack locks was not present in Nienaltowski’s [25] definition of SCOOP.
He defines one lock for each processor. A lock on a processor means exclusive access to
the whole processor. This lock model is not sufficient to describe SCOOP. In particular,
this lock model creates a contradiction with respect to separate callbacks. A separate
callback is a feature call in which processor q made a direct or indirect call to processor
p and now p is calling back processor q. The separate callback is only possible if p has
a lock on q. However, p does not necessarily have this lock because the lock might be
in possession of the processor that locked q in the first place. Request queue locks and
call stack locks allow us to clarify the situation. Thus we propose a new lock model
with request queue locks and call stack locks.

The lock model used in Nienaltowski’s work [25] is an abstraction of the new lock
model. The abstraction works under the assumption that no processor passes its locks.
Under this assumption each processor keeps its call stack lock. In this abstraction, the
request queue lock on a processor p is called the lock on p. As long as the call stack
lock on a processor p is in possession of p, a request queue lock on p in possession of a
processor q means that processor p will be executing new feature requests in the request
queue exclusively on behalf of q. This means that a request queue lock grants exclusive
access to all the objects handled by p. Transferring this insight to the abstraction, a lock
on processor p denotes exclusive access to the objects handled by p. �

The formalization defines the ADT PROC for processors. A processor has an iden-
tifier stored in the query id.

The constructor make returns a new processor with a fresh identifier. The fresh
identifier is defined through the query new id.

make : PROC
axioms

make.id = new id

The ADT PROC is very simple. It neither takes care of the mapping from proces-
sors to the handled objects nor does it take care of the locks. These aspects are taken
care of by the ADT for regions.
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Mapping of processors to objects and locking This section introduces the ADT REG
for regions. This ADT declares a query procs that keeps track of all the processors in the
system. The query handled objs defines a set of handled objects for each processor in
procs. Finally, the query last added proc denotes the last processor that has been added
to procs.

procs : REG→ SET[PROC]

handled objs : REG→ PROC 9 SET[OBJ]
k.handled objs(p) require

k.procs.has(p)

last added proc : REG 9 PROC
k.last added proc require
¬k.procs.is empty

Next to the queries that are concerned with the mapping from processors to ob-
jects, there are a number of queries that deal with locking. The feature rq locked states
whether the request queue of a processor in procs is locked or not. Similarly, the feature
cs locked states whether the call stack is locked.

The remaining queries specify the owners of the locks. For this, the formalization
distinguishes between obtained and retrieved locks. Obtained locks are locks that got
acquired by a processor. Retrieved locks are locks that got passed from another proces-
sor.

The query obtained rq locks returns a stack of obtained processor sets for a proces-
sor. A stack of sets models the way processors acquire locks: they go through a nested
series of feature applications and each feature application requires a set of locks before
the feature can be executed. For each feature application the executing processor adds
a new set on top of its stack. As soon as the feature application finished, the processor
removes the top set from its stack. The query obtained cs lock returns the acquired call
stack lock of a processor. Initially each processor starts with a lock on its own call stack
and this call stack lock never changes. Thus this query is only declared for reasons of
completeness. If a processor appears in a set of request queue locks, then the processor
denotes its request queue lock. If a processor appears in a set of call stack locks, then
the processor denotes its call stack lock.

A processor can pass its locks to another processor. There are several queries to
formalize this aspect. The features retrieved rq locks and retrieved cs locks return the
retrieved locks of a processor. Both of these queries return a stack of sets. The stack
keeps track of the set of retrieved locks for each feature application. These two stacks
grow and shrink in parallel to the stack obtained rq locks. Once a processor passed its
locks, it cannot use them anymore until the locks are revoked. The query locks passed
returns whether a processor passed some or all of its locks or not.

The following discussion first goes through the list of commands that add proces-
sors and commands that change the association of processors to objects. It then proceeds
with the commands that handle locks. The command add proc updates the regions with
a new processor. Note that the processor must have been created beforehand. The ax-
ioms state that the new processor will be included in procs and that it will be stored in
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last added proc. The axioms also state how the new processor is initialized. The new
processor’s request queue is unlocked and its call stack is locked. Apart from the initial
lock on the call stack there are no obtained or retrieved locks and hence the processor
did not pass its locks.

add proc : REG→ PROC 9 REG
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).is empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).is empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).is empty
k.add proc(p).retrieved cs locks(p).is empty
¬k.add proc(p).locks passed(p)

The command add obj takes a processor p in procs and an object o that is not
handled by a processor in procs yet. It returns the updated regions in which o is handled
by p.

add obj : REG→ PROC 9 OBJ 9 REG
k.add obj(p,o) require

k.procs.has(p)
∀q ∈ k.procs,u ∈ k.handled objs(q) : u.id 6= o.id

axioms
k.add obj(p,o).handled objs(p).has(o)

In the opposite direction, the command remove obj removes an object that is han-
dled by a processor in procs from the regions.

remove obj : REG→OBJ 9 REG
k.remove obj(o) require
∃p ∈ k.procs : k.handled objs(p).has(o)

axioms
¬∃p ∈ k.procs : k.remove obj(o).handled objs(p).has(o)

The following part discusses the commands that deal with the locking aspects of
the regions. The command lock rqs locks the request queues of a set of processors q on
behalf of a processor p. None of these request queues must be locked beforehand.

lock rqs : REG→ PROC 9 SET[PROC]9 REG
k.lock rqs(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬k.rq locked(x)

axioms
k.lock rqs(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)
∀x ∈ l : k.lock rqs(p, l).rq locked(x)
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At some point, processor p will not require the obtained request queue locks any-
more because p made sure to enqueue all necessary features requests. Processor p
uses the command pop obtained rq locks to remove his claims on the obtained request
queue locks. This requires that processor p is in possession of these locks, i.e., that p
did not pass its locks.

pop obtained rq locks : REG→ PROC 9 REG
k.pop obtained rq locks(p) require

k.procs.has(p)
¬k.obtained rq locks(p).is empty
¬k.locks passed(p)

axioms
k.pop obtained rq locks(p).obtained rq locks(p) = k.obtained rq locks(p).pop

Removing the locks from p’s obtained request queue locks stack does not mean
that these request queues are unlocked. It just means that the request queue locks are
not claimed by p anymore and therefore p will not enqueue further feature requests
on the respective processors. The request queues remain locked until they get unlocked
with a call to the command unlock rq. This happens after the processors whose request
queues got locked by p finished all the requested feature applications. The precondition
of the command states that a request queue can only be unlocked if it is not claimed
by any other processor. This precondition guarantees that the request queue can only
be unlocked when it is not used as an obtained or retrieved lock by any other processor
anymore. Note that there is no unlock command for call stack locks because the call
stack never gets unlocked.

unlock rq : REG→ PROC 9 REG
k.unlock rq(p) require

k.procs.has(p)
k.rq locked(p)
∀q ∈ k : ¬k.obtained rq locks(q).flat.has(p)

axioms
¬k.unlock rq(p).rq locked(p)

The request queues remain locked until explicitly unlocked with a call to unlock rq.
Between the call to pop obtained rq locks and the call to unlock rq, the owner of these
locks is undefined. In some situations this is not satisfactory. A different solution must
be found if another processor wants to claim the locks until they are unlocked. The
command delegate obtained rq locks serves this purpose. It takes a processor p and
a number of processors l and makes p the owner of the request queue locks of all
processors in l by adding these locks to the obtained request queue locks stack of p.
This can only work if there is no current owner and the request queues are indeed
locked.
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delegate obtained rq locks : REG→ PROC 9 SET[PROC]9 REG
k.delegate obtained rq locks(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬∃y ∈ k.procs : k.obtained rq locks(y).flat.has(x)
∀x ∈ l : k.rq locked(x)

axioms
k.delegate obtained rq locks(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)

Delegation is different from lock passing: delegation is the permanent transfer of
ownership and lock passing is the temporary transfer of the right to use the locks. The
following discussion looks at the commands to pass and revoke locks. The command
pass locks takes a processor p and a processor q as well as a set of request queue locks
lr along with a set of call stack locks lc. The result is an updated instance of REG in
which lr and lc have been passed from p to q. As a precondition for this task, processor
p must be in possession of all these locks. This means that all the locks in lr and lc must
be obtained or retrieved locks of p and the locks must not be passed. The updated result
must reflect that some or all of p’s locks have been passed. However, because the two
sets of locks can potentially be empty, p’s locks must only be marked as passed if at
least one of the two sets of locks is non-empty. Lastly, the command must take care of
one special case of the lock passing operation. If a processor q different from processor
p passed its locks in a previous lock passing operation and now the command passes
these locks back to q, then the command has to mark the locks of processor q as not
passed. This case is important to handle separate callbacks.

pass locks : REG→ PROC 9 PROC 9 TUPLE[SET[PROC],SET[PROC]]9 REG
k.pass locks(p,q,(lr, lc)) require

k.procs.has(p)∧ k.procs.has(q)
∀x ∈ lr : k.procs.has(x)∧∀x ∈ lc : k.procs.has(x)
∀x ∈ lr : k.obtained rq locks(p).flat.has(x)∨ k.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = k.obtained cs lock(p)∨ k.retrieved cs locks(p).flat.has(x)
¬k.locks passed(p)

axioms

k.pass locks(p,q,(lr, lc)).locks passed(p) =
{

true if¬lr.is empty∨¬lc.is empty
false otherwise

k.pass locks(p,q,(lr, lc)).retrieved rq locks(q) = k.retrieved rq locks(q).push(lr)
k.pass locks(p,q,(lr, lc)).retrieved cs locks(q) = k.retrieved cs locks(q).push(lc)

p 6= q∧
k.locks passed(q)∧
k.obtained rq locks(q).flat ⊆ lr∧
k.retrieved rq locks(q).flat ⊆ lr∧
k.obtained cs lock(q) ∈ lc∧
k.retrieved cs locks(q).flat ⊆ lc

→¬k.pass locks(p,q,(lr, lc)).locks passed(q)

The command revoke locks takes a processor p and a processor q. It reverses the
effect of a lock passing operation from a processor p to q and returns an updated in-
stance of REG. This is only allowed if processor p passed locks to q in a preceding lock
passing operation. Note that the lock passing operation from p to q potentially marked
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the locks of q as not passed. Revoking the locks from q to p requires the reverse action.
If p has retrieved locks in common with the locks of q, even after the retrieved locks
from p have been removed from q, then q’s locks must be marked as passed because
they are now in possession of p.

revoke locks : REG→ PROC 9 PROC 9 REG
k.revoke locks(p,q) require

k.procs.has(p)∧ k.procs.has(q)
¬k.retrieved rq locks(q).is empty∧¬k.retrieved cs locks(q).is empty
k.retrieved rq locks(q).top⊆ k.obtained rq locks(p).flat∪ k.retrieved rq locks(p).flat
k.retrieved cs locks(q).top⊆ {k.obtained cs lock(p)}∪ k.retrieved cs locks(p).flat
k.retrieved rq locks(q).top∪ k.retrieved cs locks(q).top 6= {}→ k.locks passed(p)
¬k.locks passed(q)

axioms
¬k.revoke locks(p,q).locks passed(p)
k.revoke locks(p,q).retrieved rq locks(q) = k.retrieved rq locks(q).pop
k.revoke locks(p,q).retrieved cs locks(q) = k.retrieved cs locks(q).pop

p 6= q∧

∃x ∈ k.retrieved rq locks(p).flat : (
k.obtained rq locks(q).flat.has(x)∨
k.retrieved rq locks(q).pop.flat.has(x)

)∨
∃x ∈ k.retrieved cs locks(p).flat : (

x = k.obtained cs lock(q)∨
k.retrieved cs locks(q).pop.flat.has(x)

)




→ k.revoke locks(p,q).locks passed(q)

These commands wrap up the mapping of processors to objects and the locking as-
pects. The discussion continues with a number of auxiliary queries to simplify access to
the presented queries. The command add obj makes sure that a processor is assigned to
each object that gets added. This mapping is available through the query handled objs.
Thus it is possible to define an auxiliary query handler that is inverse to the query
handled objs.

handler : REG→OBJ 9 PROC
k.handler(o) require
∃p ∈ k.procs : k.handled objs(p).has(o)

axioms
k.handled objs(k.handler(o)).has(o)

There are four different categories of locks that each processor can have. For both
the request queue locks and the call stack locks, there are queries for obtained and
retrieved locks. In some situations it is easier to just work with request queue locks and
call stack locks without splitting them into obtained and retrieved locks. The auxiliary
queries rq locks and cs locks serve this purpose. The auxiliary query rq locks returns a
set that contains all the obtained and the retrieved request queue locks of a processor p.
Similarly, the auxiliary query cs locks returns all the call stack locks of a processor p.
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rq locks : REG→ PROC 9 SET[PROC]
k.rq locks(p) require

k.procs.has(p)
axioms

k.rq locks(p) = k.obtained rq locks(p).flat∪ k.retrieved rq locks(p).flat

cs locks : REG→ PROC 9 SET[PROC]
k.cs locks(p) require

k.procs.has(p)
axioms

k.cs locks(p) = {k.obtained cs lock(p)}∪ k.retrieved cs locks(p).flat

Creation The constructor make creates a new instance of REG. The new instance has
no processors.

make : REG
axioms

make.procs.is empty

4.5 Store ADT

Each processor in the system has a call stack to execute features. Every time a proces-
sor executes a feature, a new call stack frame gets created on top of the call stack. The
new call stack frame stores the values of formal arguments, local variables, the current
object entity, and the result entity for the current feature execution. The call stack is
also responsible for the order of feature executions on the same processor. This formal-
ization separates the two concerns of the call stack. The store only models the values in
each stack frame. A store has a stack of environments for each processor, where each
environment maps names to values. This section first presents an ADT for environments
and then presents an ADT for the store.

Environments The ADT ENV has a query names that stores all the defined names.
The query val can then be used to get the value for each such name.

names : ENV→ SET[NAME]

val : ENV→ NAME 9 REF∪PROC
e.val(n) require

e.names.has(n)

The command update takes a name and a value and returns an updated environment.
Note that it does not matter whether the name is already defined in the environment or
not. In any case, the name will be defined in the updated environment and the name will
be mapped to the value. The value can either be a reference or a processor. Environments
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with processor values are not strictly needed to describe SCOOP, however they make it
possible to have a unified view on attribute values and environment values.

update : ENV→ NAME→ REF∪PROC→ ENV
axioms

e.update(n,v).names = e.names∪{n}
e.update(n,v).val(n) = v

The constructor make returns an empty environment.

make : ENV
axioms

make.names.is empty

Mapping from processors to environments The ADT STORE has a single query
envs that stores a stack of environments for each processor.

envs : STORE→ PROC→ STACK[ENV]

The command push env pushes a given environment on top a processor’s stack of
environments. The command pop env pops the top environment from a non-empty stack
of environments.

push env : STORE→ PROC→ ENV→ STORE
axioms

s.push env(p,e).envs(p) = s.envs(p).push(e)

pop env : STORE→ PROC 9 STORE
s.pop env(p) require
¬s.envs(p).is empty

axioms
s.pop env(p).envs(p) = s.envs(p).pop

The constructor make creates an empty store.

make : STORE
axioms
∀p ∈ PROC : make.envs(p).is empty

4.6 State ADT

The ADT STATE models the state with three queries to retrieve the different parts of
the ADT.

regions : STATE→ REG

heap : STATE→HEAP

store : STATE→ STORE
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The command set sets the regions, the heap, and the store at the same time. A
precondition specifies consistency criteria between the parts of the state. The first pre-
condition clause states that a processor can handle an object if and only if the object is
on the heap. The second precondition clause states that if the heap declares a feature as
non-fresh on a processor p, then the regions must know about this processor. The third
precondition clause requires that all processors stored in attribute values are known by
the regions. Note that HEAP already requires that the references stored in attribute val-
ues are known. The forth precondition clause states that each non-empty environment in
the store must belong to a processor that is known by the regions. The fifth precondition
clause states that each value in the store must either be a known reference or a known
processor.

set : STATE→ REG 9 HEAP 9 STORE 9 STATE
σ .set(k,h,s) require
∃p ∈ k.procs,∃o ∈OBJ : k.handled objs(p).has(o)↔ h.objs.has(o)
∃p ∈ PROC, f ∈ FEATURE : ¬h.is fresh(p, f )→ k.procs.has(p)
∀o ∈ h.objs,a ∈ o.class type.attributes : o.att val(a) ∈ PROC→ k.procs.has(o.att val(a))
∀p ∈ PROC,e ∈ s.envs(p) : ¬e.names.is empty→ k.procs.has(p)
∀p ∈ k.procs,e ∈ s.envs(p),x ∈ e.names :

(e.val(x) ∈ REF→ e.val(x) = void∨h.refs.has(e.val(x)))∧
(e.val(x) ∈ PROC→ k.procs.has(e.val(x)))

axioms
σ .set(k,h,s).regions = k
σ .set(k,h,s).heap = h
σ .set(k,h,s).store = s

Creation To create a state, one has to create the three parts of the state. This is done
with the constructor make.

make : STATE
axioms

make.regions = new REG.make
make.heap = new HEAP.make
make.store = new STORE.make

Facade It is too cumbersome to work with STATE as it is. For example, the following
expression defines a new state σ ′ in which a new processor has been added to the state

σ : σ ′
de f
= σ .set(σ .regions.add proc(new PROC.make),σ .heap,σ .store). This expres-

sion is too long for this simple task, especially if the expression is used multiple times.
It would be easier to have an auxiliary command that does this job for us. The facade
is an abstraction with auxiliary features that provide easy access to the state functional-
ity. The facade is divided into different aspects. The following discussion dedicates one
section to each aspect. It starts with the mapping of processors to objects and the map-
ping of references to objects. It continues with a section on how to set values, followed
by a section on how to get values. It concludes with a section on locking.
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Mapping of processors to objects and mapping of references to objects The re-
gions and the heap manage the references, the objects, the processors, and the mapping
between them. The facade unifies all related features in one aspect. This section first
defines a number of auxiliary queries for the mapping of processors to objects. Next,
it defines auxiliary queries for the mapping of references to objects. It then defines
auxiliary commands that work on both aspects.

The two auxiliary queries procs and last added proc give access to all the proces-
sors and the last added processor.

The auxiliary query handler gives the handler of an object referenced by r. The
auxiliary query uses the heap to get the referenced object and then gives this object
to the regions to get the handler. In contrast to the corresponding auxiliary query in
REG, the version here takes a reference instead of an object. The version in REG deals
directly with objects rather than references because it does not know about the heap
and thus the mapping from references to objects is not available. The facade, however,
has access to both the regions and the heap and thus it can use the preferred way of
identifying objects: references.

The auxiliary query new proc is a shorthand for processor creation. The auxiliary
query last added obj returns the object that has been added last to the heap. The auxil-
iary query ref obj returns the object that is associated to a given reference. In the other
direction, the auxiliary query ref returns the reference to a given object. The auxiliary
query new obj is a shorthand for object creation; it returns a new object with a given
class type.

The discussion continues with the auxiliary commands that modify the mapping of
processors to objects and the mapping of references to objects. Before an object can
be added to the set of handled objects of a processor, the processor must exist. If the
processor does not exist yet, the command add proc can be used to update a state with
a new processor.

add proc : STATE→ PROC 9 STATE
σ .add proc(p) require
¬σ .regions.procs.has(p)

axioms
σ .add proc(p) = σ .set(σ .regions.add proc(p),σ .heap,σ .store)

The auxiliary command add obj can then be used to add an object to the processor
and the heap. The auxiliary command takes a processor p and an object o and it returns
a state in which object o is part of the heap and handled by processor p.

add obj : STATE→ PROC 9 OBJ 9 STATE
σ .add obj(p,o) require

σ .regions.procs.has(p)
∀u ∈ σ .heap.objs : u.id 6= o.id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void∨σ .heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ .regions.procs.has(o.att val(a)))

axioms
σ .add obj(p,o) = σ .set(σ .regions.add obj(p,o),σ .heap.add obj(o),σ .store)
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The auxiliary command update ref updates a reference with an updated object. It
takes a reference r on the heap and an object o and it returns a state in which o replaced
the object u referenced by r on the heap and in the regions. Note that o must indeed be
an updated version of the object referenced by r. The auxiliary command first removes
u from the set of handled objects and then adds o to the set of handled objects of u’s
handler. Then it updates the heap with the command update ref , which is declared in
HEAP.

update ref : STATE→ REF 9 OBJ 9 STATE
σ .update ref (r,o) require

σ .heap.refs.has(r)
o.id = σ .heap.ref obj(r).id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void∨σ .heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ .regions.procs.has(o.att val(a)))

axioms
σ .update ref (r,o) = σ .set(k,h,s)
where

u
de f
= σ .heap.ref obj(r)

k
de f
= σ .regions.remove obj(u).add obj(σ .regions.handler(u),o)

h
de f
= σ .heap.update ref (r,o)

s
de f
= σ .store

Setting values This section takes a look at how to set values. To start, it looks at a pre-
requisite for this task: the deep import operation. Setting values includes setting values
of formal arguments, values of local variables, the value of the current object entity, the
value of the result entity, and attribute values of the current object. All of these values
can be written and read without a feature call. This section concludes with auxiliary
commands to set the status of once routines. The SCOOP validity rules exclude other
types of value setting operations.

Deep Import Operation Expanded objects have a copy semantics: if an object o of
expanded class type is the source of an attachment, then a copy u gets attached to the
destination of the attachment. However, a shallow copy is not sufficient if o’s handler p
is different from u’s handler q. If o has an attached non-separate entity, then u now has a
non-separate entity to which a separate object is attached. This would result in a traitor
– a non-separate entity that points to a separate object. The SCOOP model, as defined
by Nienaltowski [25], introduces the import operation to solve this issue. Applied to
o the import operation creates a copied object structure that mirrors the original object
structure in a way that o and all the objects reachable from o through non-separate
references are replaced with copied objects that are handled by q. This data structure
then gets attached to the destination of the attachment. The import operation computes
the non-separate version of an object structure.

Clarification 2 (Deep import operation). The import operation potentially results in a
copied object structure that contains both copied and original objects. This can be an
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issue in case one of the copied objects has an invariant over the identities of objects, as
shown in example 3.

Example 3 (Invariant violation as a result of the import operation). Imagine two ob-

a : separate Z

b : Y

x : X

y : Y

c : separate Y

z : Z
a : separate Z

b : Y

x' : X

y' : Y

Fig. 2. Invariant violation as a result of the import operation

jects x and y handled by one processor and another object z handled by another pro-
cessor. Object x has a separate entity a that points to z and a non-separate entity b that
points to y. Object z has a separate entity c that points to y. Object x has an invariant
with a query a.c = b. An import operation on x executed by a third processor will result
in two new objects x′ and y′ on the third processor. The reference a of object x′ will
point to the original z. The reference b of object x′ will point to the new object y′. This
situation is illustrated in Fig. 2. Now object x′ is inconsistent, because a.c and b identify
different objects, namely y and y′.

The deep import operation is a variant of the import operation that does not mix the
copied and the original objects. �

Instead of copying only the objects that are reachable through non-separate refer-
ences, the deep import operation makes a full copy of the object structure. The deep
importing processor handles all the copies of the objects that are non-separate with
respect to the object to be imported. Each other separate object is handled by the pro-
cessor of the respective original object. The deep import operation does not show the
issue with invariants. The drawback of the deep import operation is that more objects
must be copied. Nevertheless, we use the deep import operation in our formalization be-
cause we cannot tolerate violated invariants. Once routines complicate the deep import
operation a bit. Consider a processor p that wants to deep import an object o handled by
a different processor q. For each non-separate once function f of each copied object the
following must be done: if a non-separate once function f is fresh on p and non-fresh
on q, then f must be marked as non-fresh on p and the value of f on q must be used as
the value of f on p. If a once procedure f is fresh on p and non-fresh on q, then f must
be marked as non-fresh on p. In all other cases, nothing must be done.

The auxiliary command deep import implements the deep import operation. The
command takes an importing processor p and a reference r to be imported. The com-
mand returns a state in which the copied object structure exists on the heap and the
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objects are associated to the respective processors. The copied object structure is acces-
sible through the auxiliary query last imported ref .

deep import : STATE→ PROC 9 REF 9 STATE
σ .deep import(p,r) require

σ .regions.procs.has(p)
σ .heap.refs.has(r)

axioms
σ .deep import(p,r) = σ

′

σ .deep import(p,r).last imported ref = r′

where

w
de f
= new MAP[REF,REF].make

(r′,w′,σ ′)
de f
= deep import rec with map(p,σ .handler(r),r,w,σ)

The auxiliary command deep import is based on deep import rec with map. This
auxiliary function takes a tuple containing an importing processor p, a processor q
that handles the root of the object structure to be imported, a reference r to be deep
imported, and a state σ to be modified. Note that the object referenced by r is not
necessarily handled by q because this object might be on a different processor than
the handler of the root of the object structure to be deep imported. The function re-
turns another tuple with a reference r′′ to the copied object structure and an updated
state σ ′′. The auxiliary function deep import rec with map works hand in hand with
the auxiliary function deep import rec without map. They have the same signature and
together they recursively traverse the object structure and make a deep copy of it. The
functions must ensure that no object gets copied twice. For this purpose the functions
take as an additional argument a map w that maps references to objects in the input
data structure to references in the copied data structure. A mapping from one refer-
ence x to another reference y means that the object referenced by y is the copy of the
object referenced by x. An updated map is returned as part of the result tuple. The
auxiliary command deep import starts the recursion with an empty map. The auxiliary
function deep import rec with map uses the map to determine whether the object ref-
erenced by r has already been copied. In such a case, the result of the function comes
from the map. Otherwise the auxiliary function deep import rec with map returns the
result of the auxiliary function deep import rec without map. The auxiliary function
deep import rec without map creates a copy of the object referenced by r and handles
once routines. Finally, it returns a new reference r′, an updated map w′ in which r is
mapped to r′, and an updated state σ ′.

deep import rec with map(p,q,r,w,σ) = (r′′,w′′,σ ′′)
where

(r′,w′,σ ′)
de f
= deep import rec without map(p,q,r,w,σ)

r′′
de f
=

{
w.val(r) if w.keys.has(r)
r′ if¬w.keys.has(r)

w′′
de f
=

{
w if w.keys.has(r)
w′ if¬w.keys.has(r)

σ
′′ de f
=

{
σ if w.keys.has(r)
σ ′ if¬w.keys.has(r)
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The auxiliary function deep import rec without map is divided into several steps:
a copy step, an attribute values update step, a clients update step, a once status update
step, and a result generation step. Each of the steps has several definitions associated
to it and each set of definitions depends on the definitions of the previous step. The
following discussion goes through each of these steps in more details.

The copy step includes the definitions of o, o′0, σ ′0 and w′0. The definition o is the
object referenced by r, and the definition o′0 makes a copy of o. In the next step, the
function defines an updated state σ ′0 that includes the copy o′0. There are two cases to be
differentiated at this point. If o is handled by q, then o′0 must be handled by p. Otherwise
o′0 must be handled by the handler of o. The definition w′0 is the updated map.

The attribute values update step recursively uses deep import rec with map to im-
port all the non-void reference attribute values of o using the updated map. This leads
to an updated object with the deep imported values. This step includes the definition of
{a1, . . . ,an}, as well as the definitions of {r′1, . . . ,r′n}, {w′1, . . . ,w′n}, {σ ′1, . . . ,σ ′n}, and
{o′1, . . . ,o′n}. The set {a1, . . . ,an} contains each attributes of o whose value is a non-
void reference. The function defines (r′i,w

′
i,σ
′
i ) for i = 1 . . .n as a sequence of tuples.

Each of the tuples is responsible for a single recursive deep import operation for one
of the attributes in {a1, . . . ,an}. Each such operation results in an updated map and an
updated state that must be used in the next deep import operation. The result of this is
an updated map w′n, and updated state σ ′n, and references r1, . . . ,rn to deep imported
data structures. Finally, the function defines a sequence of updated objects {o′1, . . . ,o′n}
that ends with the updated object o′n. The updated object has the values of the attributes
{a1, . . . ,an} set to the deep imported data structures referenced by r1, . . . ,rn.

Until now, the function has an updated state σ ′n that contains the initial copy o′0. In
the client update step, the function updates σ ′n such that the reference to o′0 points to
the updated object o′n. This is done in the clients update step. This step includes the
definition σ ′x. Note that σ ′n is derived from the state σ ′0, which includes the object o′0.

In a next step, the function takes care of the once routines of the imported object. For
this, it defines a new state σ ′y based on the state σ ′x. It defines { f1, . . . , fw} as the set of all
non-separate once functions of o that are fresh on the processor σ ′x.handler(σ ′x.ref (o′n)),
which handles the copied object, but non-fresh on the processor σ ′x.handler(r), which
handles the object referenced by r. Note that the two processor can be the same, in
which case the set { f1, . . . , fw} is empty. Similarly, it defines the set { fw+1, . . . , fm} for
once procedures. For each once routine defined in this way, it updates the state σ ′x such
that the once status is taken over to the handler of the copied object. These definitions
deal with the case where a once routine is fresh on the handler of the copied object, but
non-fresh on the handler of the object referenced by r. Note that the remaining cases
are implicitly taken care of because no change to the state is necessary. The result is the
state σ ′y.

The last step defines the result of the function, based on the definitions of the pre-
ceding steps. The result generation step defines the resulting reference r′ to the imported
object o′n, the resulting map w′, and the resulting state σ ′.
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deep import rec without map(p,q,r,w,σ) = (r′,w′,σ ′)
where

o
de f
= σ .ref obj(r)

o′0
de f
= o.copy

σ
′
0

de f
=

{
σ .add obj(p,o′0) if σ .handler(r) = q
σ .add obj(σ .handler(r),o′0) otherwise

w′0
de f
= w.add(r,σ ′0.ref (o′0))

{a1, . . . ,an}
de f
= {a | o.att val(a) ∈ REF∧o.att val(a) 6= void}

∀i ∈ {1, . . . ,n} : (r′i,w
′
i,σ
′
i )

de f
= deep import rec with map(p,q,o.att val(ai),w′i−1,σ

′
i−1)

∀i ∈ {1, . . . ,n} : o′i
de f
= o′i−1.set att val(ai,r′i)

σ
′
x

de f
= σ

′
n.update ref (σ ′n.ref (o′0),o

′
n)

σ
′
y

de f
= σ

′
x

.set once func not fresh(σ ′x.handler(σ ′x.ref (o′n)), f1,σ ′x.once result(σ ′x.handler(r), f1))

. . . .

.set once func not fresh(σ ′x.handler(σ ′x.ref (o′n)), fw,σ ′x.once result(σ ′x.handler(r), fw))

.set once proc not fresh(σ ′x.handler(σ ′x.ref (o′n)), fw+1)

. . . .

.set once proc not fresh(σ ′x.handler(σ ′x.ref (o′n)), fm)
where

{ f1, . . . , fw}
de f
=
{x ∈ o.class type.functions | x.is once∧∃c,d : Γ ` x : (d,•,c)∧

σ
′
x.is fresh(σ ′x.handler(σ ′x.ref (o′n)),x)∧
¬σ
′
x.is fresh(σ ′x.handler(r),x)}

{ fw+1, . . . , fm}
de f
=
{x ∈ o.class type.procedures | x.is once∧

σ
′
x.is fresh(σ ′x.handler(σ ′x.ref (o′n)),x)∧
¬σ
′
x.is fresh(σ ′x.handler(r),x)}

r′
de f
= σ

′
y.ref (o′n)

w′
de f
= w′n

σ
′ de f
= σ

′
y

Setting values of formal arguments and the value of the current object entity The deep
import operation is used in two ways. It is used when an expanded object handled by
one processor gets used as an actual argument for a formal argument on another pro-
cessor. The deep import operation also gets used when an expanded object handled by
one processor gets returned to another processor. This section focuses on the argument
passing aspect.

The auxiliary command push env with feature defines a state in which a processor
p receives a new environment. The new environment is initialized for the execution of
the feature f with target reference r0 and actual argument references (r1, . . . ,rn). Actual
arguments of expanded type must either be copied or they must be deep imported.
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push env with feature : STATE→ PROC 9 FEATURE→ REF→ TUPLE 9 STATE
σ .push env with feature(p, f ,r0,(r1, . . . ,rn)) require

σ .regions.procs.has(p)
f .formals.count = n
∀i ∈ {0, . . . ,n} : ri 6= void→ σ .heap.refs.has(ri)

axioms
σ .push env with feature(p, f ,r0,(r1, . . . ,rn)) =

σ
′
n.set(σ ′n.regions,σ ′n.heap,σ ′n.store.push env(p,e))

where

σ
′
0

de f
= σ

∀i ∈ {1, . . . ,n} : (σ ′i ,r
′
i)

de f
=

if∃d,q,c : Γ ` f .formals(i) : (d,q,c)∧ c.is exp∧ ri 6= void∧σ
′
i−1.handler(ri) 6= p

(σx,σx.last imported ref )
where

σx
de f
= σ

′
i−1.deep import(p,ri)

if∃d,q,c : Γ ` f .formals(i) : (d,q,c)∧ c.is exp∧ ri 6= void∧σ
′
i−1.handler(ri) = p

(σx,σx.last added obj)
where

σx
de f
= σ

′
i−1.add obj(p,σ ′i−1.heap.ref obj(ri).copy)

otherwise
(σ ′i−1,ri)

w
de f
= new ENV.make
.update( f .formals(1).name,r′1) . . . .update( f .formals(n).name,r′n)
.update( f .locals(1).name,void) . . . .update( f .locals( f .locals.count).name,void)
.update(Current,r0)

e
de f
=

{
w if f ∈ PROCEDURE
w.update(Result,void) if f ∈ FUNCTION

In a first step, the auxiliary command defines an updated state, in which p gets a
new initialized environment e. The updated state is based on an intermediate state σ ′n,
which gets defined in a cascade of state updates with the goal of either copying or deep
importing the actual arguments of expanded type. The cascade starts with the definition
of a starting state σ ′0. For each formal argument, the cascade defines a tuple (σ ′i ,r

′
i) with

an updated state and a reference. If the corresponding actual argument is of reference
class type, nothing needs to be done. If the actual argument is of expanded class type
and the referenced object is not handled by p, then p must deep import the object
structure. This results in an updated state and a new reference to the deep imported
object structure. If the actual argument is of expanded class type and the referenced
object is handled by p, then the expanded object must be copied. This results in an
updated state and a new reference to the copy. The resulting state σ ′n contains all the
deep imported and copied objects. The resulting references r′1, . . . ,r

′
n will be used for

values of the formal argument names.
In a next step, the command defines the environment w as a new environment that

gets updated to map formal argument names, local variable names, the current entity
name, and the result entity name to the respective values. The names of the formal
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arguments get mapped to the references r′1, . . . ,r
′
n. Names of local variables are mapped

to the void reference. The current entity name is mapped to the target reference.
The environment w is the final environment e in which the result name gets mapped

to the void reference. This environment and the updated state σ ′n define the result of the
command. The auxiliary command push env pushes e onto p’s stack of environments.
The auxiliary command push env takes a processor p and an environment e. It returns
a state in which e is pushed on top of p’s environment stack.

The effect of a call to push env with feature or a call to push env can be undone with
a call to the auxiliary command pop env. This auxiliary command takes a processor p
and removes the top environment from p’s stack of environments.

Setting values of local variables and the value of the result entity The values of local
variables and the value of the result entity are maintained in the store. The auxiliary
command set env val sets a value v for the name n in processor p’s top environment.
For this, it defines an updated environment e in which n is set to v. It then defines
an updated store s by first removing the top environment and then adding the updated
environment e. The updated store is then used to define an updated state. The updated
state becomes the result of the auxiliary command.

Setting attribute values of the current object The auxiliary command set att val takes
an object o, a name n, and a value v. It returns an updated state in which the attribute
with name n of object o is set to the value v. In a first step, the auxiliary command
defines an updated object with a call to set att val. This updated object is then used to
update the existing reference to o in the state.

Setting values of local variables, the value of the result entity, and attribute values of
the current object in a unified way The auxiliary command set val attaches a value v
to an entity with name n. The entity can either be a local variable or the result entity in
the top environment of p. It can also be an attribute of the current object on p. In either
case, the update affects an entity on p.

The definition of the resulting state is based on the auxiliary definitions o, σ ′, and
v′. The definition o defines the current object, as defined by the top environment of
processor p. The precondition makes sure that there is always such an environment on
p where the current object is defined. If v is a reference and the referenced object is an
object of reference class type, then v can be attached directly to the entity with name n.
If the object is an expanded object handled by processor p, then the referenced object
must first be copied. Expanded objects handled by a processor different than p must be
deep imported. However, this is done right when the object gets returned from another
processor to p. The definitions σ ′ and v′ define a state and a value that are potentially
updated according to these rules.

The state σ ′ must be updated with the value v′. The update can either affect the
current object on p or it can affect the top environment of p. Attribute names of the
current object, local variable names, and formal argument names are distinct. Therefore
it is safe to first check whether the current object o has an attribute with name n, in
which case the current object gets updated with a v′. If the current object does not have
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such an attribute, then it is safe to assume that the top environment contains an entity
with name n, in which case the top environment gets updated.

set val : STATE→ PROC 9 NAME 9 REF∪PROC 9 STATE
σ .set val(p,n,v) require

σ .regions.procs.has(p)
¬σ .store.envs(p).is empty∧σ .store.envs(p).top.names.has(Current)
v ∈ REF∧ v 6= void→ σ .heap.refs.has(v)
v ∈ PROC→ σ .regions.procs.has(v)

axioms

σ .set val(p,n,v) =


if∃a ∈ o.class type.attributes : a.name = n

σ
′.set att val(o,n,v′)

otherwise
σ
′.set env val(p,n,v′)

where

o
de f
= σ .heap.ref obj(σ .store.envs(p).top.val(Current))

(σ ′,v′)
de f
=

if v ∈ REF∧ v 6= void∧σ .heap.ref obj(v).class type.is exp∧σ .handler(v) = p
(σx,σx.last added obj)
where

σx
de f
= σ .add obj(p,σ .heap.ref obj(v).copy)

otherwise
(σ ,v)

Setting values of once functions Values can also be stored in the status of once func-
tions. A once function can be fresh or non-fresh. If the once function is non-fresh on a
processor p, then there is a once result for the once function on p. A once function is set
as non-fresh during the execution of the once function. The following discussion takes
a look at how a processor can set the status of once routines in general, i.e., it considers
both once functions and once procedures.

The auxiliary command set once func not fresh takes a processor p, a once function
f , and a value r. It returns an updated state in which f is set as non-fresh with the once
result r. If f is declared as non-separate, then f is set as non-fresh on p with the once
result r. If f is declared as separate with or without an explicit processor specification,
then f is set as non-fresh on all processors.

The auxiliary command set once proc not fresh does the same for once procedures.
It takes a processor p and a once procedure f and it returns a state in which f is set as
non-fresh on p.

Getting values This section takes a look at how a processor can read a value that got
written with one of the mechanisms from Sec. 4.6.

Getting values of formal arguments, the value of the current object entity, values of local
variables, and the value of the result entity The auxiliary query envs takes a processor
p and returns the stack of environments for p. The auxiliary query env val is more
specialized. It takes a processor p and a name n and it returns the value stored under n
in the top environment of p.
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Getting attribute values of the current object The auxiliary query att val takes an object
o and a name n and returns the attribute value for the attribute with name n of object o.

Getting values of formal arguments, the value of the current object entity, values of
local variables, the value of the result entity, and attribute values of the current object
in a unified way The auxiliary queries env val and att val define a new auxiliary query
val that deals both with values in the top environment as well as with values stored in
attributes of the current object. The auxiliary query val takes a processor p and a name
n and it returns the value of n in p’s current feature execution context. This context
consists of the top environment and its reference to the current object. The auxiliary
query requires that the execution context of processor p is setup properly, i.e., there is
a top environment with a reference to the current object. The precondition also states
that either the top environment has the name n registered or the current object has an
attribute with name n. In any valid SCOOP program, any environment variable has a
name that is distinct from the attribute names of the current object. This allows us to
define the result of the auxiliary query in a simple way. If the name exists in the top
environment, then the result is the value given by env val. Otherwise the name must
be the name of an attribute of the current object, in which case the result is given by
att val.

val : STATE→ PROC 9 NAME 9 REF∪PROC
σ .val(p,n) require

σ .regions.procs.has(p)
¬σ .store.envs(p).is empty
e.names.has(Current)
e.names.has(n)∨∃a ∈ o.class type.attributes : a.name = n
where

e
de f
= σ .store.envs(p).top

o
de f
= σ .heap.ref obj(e.val(Current))

axioms

σ .val(p,n) =



if e.names.has(n)
σ .env val(p,n)

where

e
de f
= σ .store.envs(p).top

if∃a ∈ o.class type.attributes : a.name = n
σ .att val(o,n)

where

e
de f
= σ .store.envs(p).top

o
de f
= σ .heap.ref obj(e.val(Current))

Getting values of once functions The auxiliary query is fresh takes a processor p and a
once routine f . It returns whether f is fresh on p or not.

For non-fresh once functions, the auxiliary query once result returns the once result
of f on p.
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Locking This section explores the aspect of the facade that deals with locking. The
auxiliary query rq locked states whether a processor p’s request queue is locked or
not. There are no auxiliary queries to distinguish between obtained and retrieved locks.
Instead, the auxiliary queries rq locks and cs locks return the set of all request queue
locks, respectively the set of all call stack locks of a processor p. These locks are only
usable if they are not passed. This information can be retrieved with a call to the auxil-
iary query locks passed.

The facade provides auxiliary commands for locking request queues, removing
obtained request queue locks, unlocking request queues, delegating obtained request
queue locks, passing locks, and revoking locks.

5 Formalization of Execution

This section formalizes the execution of a SCOOP program. It explains the general
approach, defines the starting point of the execution, and explains the rules that drive the
execution. The rules are divided into rules for mechanisms and rules for code elements.

5.1 General Approach

The formalization is based on structural operational semantics [29], combined with
parts of the terminology from Ostroff et al. [28]. The idea behind a structural operational
semantics is to define the behavior of a program in terms of its parts, i.e., the syntactical
elements of the program. Such a semantics is intuitive because it talks directly about
elements in the code. It is a very powerful semantics because it allows us to apply
structural induction as a proof technique.

Computations A computation models the execution of a SCOOP program. It is a
sequence of configurations, where each non-initial configuration is derived from a pre-
vious configuration through a transition. Each configuration defines a state and a list
of statements for each processor. Each transition is described by an inference rule that
maps one configuration to another. The transition from one configuration to the next
models an atomic step of one processor. The concurrent execution of a SCOOP pro-
gram is modeled by the interleaved transitions taken by different processors.

Example 4 (Modeling of parallel execution). Suppose there are two processors p and
q. Processor p executes the following sequence of statements: sp,1;sp,2. In parallel, pro-
cessor q executes the following sequence of statements: sq,1. This execution is mod-
eled by any of the following simplified computations: sp,1;sp,2;sq,1 or sp,1;sq,1;sp,2 or
sq,1;sp,1;sp,2.

Configurations A configuration models a snapshot in the execution of a SCOOP pro-
gram. A configuration consists of a state and a set of processors, each with a queue
of statements. The state is an instance of STATE. A schedule models the processors
and the associated queues, called action queues. Each processor must execute the state-
ments in its action queue in a FIFO order. The beginning of the action queue contains
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the statements for the features that are being executed at the moment. The order of these
statements models the way the call stack orders feature executions. The tail of the action
queue is the request queue of the processor. A call stack lock is the right to add a feature
request to the beginning of the action queue and a request queue lock is the right to add
a feature request to the end of the action queue. The notation for a configuration with
processors p1, . . . , pn, respective action queues s1, . . . ,sn, and state σ is:

〈p1 :: s1 | . . . | pn :: sn,σ〉

The processor separator | is commutative and associative, i.e., p1 :: s1 | p2 :: s2 =
p2 :: s2 | p1 :: s1 and p1 :: s1 | (p2 :: s2 | p3 :: s3) = (p1 :: s1 | p2 :: s2) | p3 :: s3. Within
an action queue, ; separates statements. The configuration is well-defined if and only if
¬∃i, j ∈ {1, . . . ,n} : pi = p j.

Statements A statement is an element of the action queue. A statement is either an
instruction or an operation. An instruction is user syntax, i.e. an action that occurs
explicitly in the SCOOP program. An operation is run-time syntax, i.e. an action that
does not explicitly occur in a SCOOP program. For example, locking of request queues
is not an action that is explicit in a SCOOP program. Instead, locking is based on the
formal argument list. It is done implicitly before a feature gets executed.

Transitions A transition takes a system in a start configuration and leaves it in a result
configuration. The following shows the general form of a transition definition that de-

clares a start configuration 〈P,σ〉 with schedule P
de f
= p1 :: s1 | . . . | pn :: sn and a result

configuration 〈P′,σ ′〉 with schedule P′
de f
= p′1 :: s′1 | . . . | p′m :: s′m:

Γ ` 〈P,σ〉 → 〈P′,σ ′〉

The typing environment Γ can be used in the transition definition to access static
information about the SCOOP program.

Inference rules An inference rule describes the circumstances under which a transition
can be used. The inference rule has a premise and a conclusion. The conclusion is the
transition and the premise describes the circumstances under which the transition can be
used. The premise consists of a number of transitions and a side condition. The premise
is satisfied if all transitions in the premise can be taken and if the side condition is true.
In this formalization, most of the rules have no transition in the premise. The following
simplified inference rule template takes this into account:

Simplified Inference Rule Template

condition
new stateσ ′ definition
fresh channels definitions

Γ ` 〈P,σ〉 → 〈P′,σ ′〉
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The side condition has three parts. The first part defines a condition that is based
on the typing environment and the start configuration. The second part is the new state
definition that defines the state of the result configuration. This new state is based on the
state in the start configuration. The last part consists of the fresh channels definitions.
Auxiliary definitions can be used in the condition, the new state definition, and the
fresh channels definitions. The side condition can mention features of STATE. The
preconditions of these features serve as additional conditions in the side condition.

The following inference rule generalizes transitions by adding processors both to
the start configuration and to the result configuration. These additional processors run
in parallel but do not take any actions during the generalized transition.

Parallelism

Γ ` 〈P,σ〉 → 〈P′,σ ′〉

Γ ` 〈P | Q,σ〉 → 〈P′ | Q,σ ′〉

Scheduling Before a processor can execute a feature it must acquire locks and it must
wait until the wait condition is satisfied. A locking request encapsulates these two re-
quirements; it consists of the requested locks and the wait condition. At every moment,
multiple processors can have conflicting locking requests. The scheduler is the arbiter
for these conflicts. The scheduler takes locking requests and stores them in a queue. It
then approves locking requests according to a certain scheduling algorithm.

The model permits a number of possible scheduling algorithms. The algorithms
differ in their level of fairness and their performance. This formalization does not focus
on a particular scheduling algorithm. Instead, it uses the conditions of the inference
rules to express locking requests. If more than one processor satisfies the conditions,
then any of these processors can proceed.

5.2 Initial Configuration

The initial configuration is defined by the SCOOP program. Each SCOOP program
defines a root class type c and a root procedure f . The root procedure is a creation
procedure of the root class type that has no formal arguments and no precondition.

In the beginning, the runtime generates a bootstrap processor p and root processor
q with a root object of the root class type. The request queue of the root processor is
locked on behalf of the bootstrap processor. This defines our initial state σ :

σx
de f
= new STATE.make

σy
de f
= σx.add proc(σx.new proc)

p
de f
= σy.last added proc

σz
de f
= σy.add proc(σy.new proc)

q
de f
= σz.last added proc

σw
de f
= σz.add obj(q,σz.new obj(c))

r
de f
= σw.ref (σw.last added obj)

σ
de f
= σw.lock rqs(p,{q})
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The bootstrap processor first asks the root processor to execute the root procedure
on the root object and then asks the root processor to unlock its request queue as soon
as it finished the execution. The bootstrap processor can do this because it has the re-
quest queue lock on the root processor. Finally, the bootstrap processor removes the
request queue lock from its stack of obtained request queue locks. This is shown in the
following initial configuration:

〈
p :: call(r, f ,(),());

issue(q,unlock);
pop obtained rq locks |

q ::
,

σ

〉

The statements call, issue, unlock, and pop obtained rq locks are opera-
tions. In a nutshell, the call(r, f ,(),()) operation asks the handler of the target r to
make a call to the feature f on target r. The unlock operation unlocks the request
queue of the processor that executes the operation. The issue(q,unlock) operation
adds the unlock operation to q’s action queue. The pop obtained rq locks opera-
tion removes the top element from the stack of obtained request queue locks.

5.3 Mechanisms

Mechanisms are the machinery for the execution of code elements. This section studies
these mechanisms.

Issuing mechanism With the issuing mechanism, a processor p can add statements to
the action queue of a processor q. It uses the issue operation to get a result configura-
tion in which a processor’s action queue is extended with the new statements. There are
two main cases: p adds the statements to its own action queue, i.e., p = q, or p adds the
statements to the action queue of a different processor, i.e., p 6= q. The first case is the
non-separate case and the second one is the separate case.

For the non-separate case p puts the statements to the beginning of q’s action queue,
which is the same as putting the statements on top of the call stack. This requires that p
is in possession of its own call stack lock.

Issue Operation – Non-Separate

q = p
¬σ .locks passed(p)
σ .cs locks(p).has(q)

Γ ` 〈p :: issue(q,sw);sp,σ〉 → 〈p :: sw;sp,σ〉

For the separate case there is a difference between a normal and a callback case. In
the normal case, p adds the statements to the end of q’s action queue. This case requires
that p is in possession of q’s request queue lock. To distinguish the normal case from
the callback case, this case also requires that q does not have a lock on p.
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Issue Operation – Separate

q 6= p
¬σ .locks passed(p)
σ .rq locks(p).has(q)
¬(σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

Γ ` 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sq;sw,σ〉

The callback case occurs if q has a lock on p. In this situation, p could issue a
statement sw on q and then wait for q to complete. On the other side, processor q could
already be waiting for p to complete. Processor q would be waiting for p to finish and
p would be waiting for q to finish. However, since sw would be at the end of q’s action
queue and q would be waiting there cannot be any progress. This type of deadlock can
be prevented by adding sw not to the of q’s action queue but to the beginning. This will
make sure that q can execute the statement right away and hence p can continue. This
in return will enable q to continue. As a prerequisite, p must possess q’s call stack lock.

Issue Operation – Separate Callback

q 6= p
¬σ .locks passed(p)
σ .cs locks(p).has(q)
σ .rq locks(q).has(p)∨σ .cs locks(q).has(p)

Γ ` 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sw;sq,σ〉

Delegated execution mechanism This section discusses how a processor q can dele-
gate the execution of statements to a different processor p. This mechanism is useful
for the evaluation of asynchronous postconditions. Processor q must make sure that the
statements make sense in the context of processor p. The names that occur in these
statements must be defined in the top environment of p and p must have the necessary
locks to execute the statements. Statements that fulfill the following conditions can be
delegated:

– All names that occur in the statements are defined in q’s top environment.
– Their execution only requires the top set of q’s stack of obtained request queue

locks.

These conditions exclude statements that involve non-separate calls or separate call-
backs because such calls require a call stack lock. If these conditions are met, q can
transfer its top environment and the top of its obtained request queue locks to p. Given
this context, p can then execute the delegated statements instead of q.

The execute delegated(sw,x,{q1, . . . ,qm}) operation sets up a new context on
p with an environment x and obtained request queue locks {q1, . . . ,qm}. To set up
the new context, the operation uses a combination of the commands push env and
delegate obtained rq locks. The command delegate obtained rq locks requires that the
request queue locks {q1, . . . ,qm} are not in possession of another processor anymore. It
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also requires that the request queues of {q1, . . . ,qm} are locked. Once the context is set
up, processor p executes the statements sw and then gets rid of the context, using the
leave delegated operation.

To delegate the execution of the statements sw, processor q must make sure that its
top environment x is set up correctly and it must make sure that the top set of its obtained
request queue locks contains all locks {q1, . . . ,qm} that are necessary for the execution
of sw. Processor q must then issue a execute delegated(sw,x,{q1, . . . ,qm}) operation
to processor p. Processor q must then remove {q1, . . . ,qm} from its stack of obtained
request queue locks so that the delegate obtained rq locks operation can take place.

Execute Delegated Operation

∀x ∈ {q1, . . . ,qm} : ¬∃y ∈ σ .procs : σ .rq locks(y).has(x)
∀x ∈ {q1, . . . ,qm} : σ .rq locked(x)

σ ′
de f
= σ .push env(p,x).delegate obtained rq locks(p,{q1, . . . ,qm})
Γ `〈p :: execute delegated(sw,x,{q1, . . . ,qm});sp,σ〉 →
〈p :: sw;leave delegated;sp,σ

′〉

Leave Delegated Execution Operation

¬σ .envs(p).is empty
¬σ .obtained rq locks(p).is empty

σ ′
de f
= σ .pop env(p).pop obtained rq locks(p)

Γ ` 〈p :: leave delegated;sp,σ〉 → 〈p :: sp,σ
′〉

Notification mechanism Processors can notify each other. A notification can option-
ally include a value. The formalization uses channels to describe such communication.
Channels are described in Milner’s π-calculus [23]. In the π-calculus, the expression
c(x).P denotes a process that is waiting for a notification sent on a channel c. Once the
notification has been received, the value of the notification is bound to the variable x
and the process continues with the expression P. The notification comes from a process
that executes cy.Q to emit the value y on the channel c before executing Q.

The formalization reuses the channel idea in two flavors: once as a notification
mechanism with a value and once as a notification mechanism without a value. A pro-
cessor sends a notification with a value r over a channel a as it executes the operation
result(a,r). Similarly, the process sends a notification without a value over a channel
a by executing the operation notify(a). For both cases, any processor can wait for a
notification by executing the operation wait(a). In case a notification on a channel a
carries a value, the value can be accessed with a.data. This way of accessing the value
of a channel is different from the way it is done in the π-calculus. In the π-calculus,
each value is bound to a variable. This formalization does not define a new variable for
the value. Instead, it uses a.data to identify the value of a channel a.

A number of inference rules describe the interaction between a processor that sent
a notification over a channel and a processor that is waiting for a notification over the
same channel. Two main cases can be distinguished: either a processor sends a noti-
fication to itself or it sends a notification to a different processor. The first case is the
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non-separate case and the latter case is the separate case. In each of these two main
cases, the channel carries a notification with or without a value. For each of these sub
cases, there is one inference rule.

In the non-separate case, one processor has a result(a,r) operation or a notify(a)
operation at the beginning of its action queue and a wait(a) operation on the same
channel later in the action queue. In this case, the wait(a) operation can be removed
along with the result(a,r) operation, respectively the notify(a) operation. If the
channel carries a value, then the value must be installed on the processor, by substituting
all occurrences of a.data with the posted value in all the statements sp after the wait(a)
operation.

Wait and Result Operation – Non-Separate

Γ ` 〈p :: result(a,r);sw;wait(a);sp,σ〉 → 〈p :: sw;sp[r/a.data],σ〉

Wait and Notify Operation – Non-Separate

Γ ` 〈p :: notify(a);sw;wait(a);sp,σ〉 → 〈p :: sw;sp,σ〉

In the separate case, one processor has a result(a,r) or a notify(a) operation at
the beginning of its action queue and a different processor has a wait(a) somewhere
in its action queue. In this situation, the wait(a), result(a,r), and notify(a) can be
removed from the action queues. In case the notification has a value, the value can be
installed in the statements sp, after the wait(a) operation.

Wait and Result Operation – Separate

Γ ` 〈p :: sw;wait(a);sp | q :: result(a,r);sq,σ〉 → 〈p :: sw;sp[r/a.data] | q :: sq,σ〉

Wait and Notify Operation – Separate

Γ ` 〈p :: sw;wait(a);sp | q :: notify(a);sq,σ〉 → 〈p :: sw;sp | q :: sq,σ〉

The operations presented here must be used so that each wait operation can be
resolved with exactly one result or notify operation. To define this condition more
precisely, we define that one statement s1 weakly precedes a statement s2 if and only if
s1 occurs earlier than s2 in the same action queue or s1 and s2 occur in different action
queues. One statement s1 strongly precedes a statement s1 if and only if s1 occurs earlier
than s2 in the same action queue. With these definitions, the condition says:

– For each wait(a) operation there must be either exactly one result(a,r) or ex-
actly one notify(a) operation.

– For each result(a,r) or notify(a) operation there must be exactly one wait(a)
operation.

– Each result(a,r) or notify(a) operation weakly precedes the wait(a) operation.
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Expression evaluation mechanism An expression can either be a literal, an entity, or a
query call. The query call can contain actual arguments that are expressions themselves.
This section discusses the general mechanism to evaluate expressions. It focuses on the
general approach and defers the evaluation of particular expressions to later sections.

The operation eval(a,e) takes a channel a and an expression e. Each eval(a,e)
operation determines the value r of the expression e and then sends a notification with
value r on channel a. This means that each eval(a,e) operation creates a result(a,r)
operation in the action queue. It is therefore important to follow each eval(a,e) opera-
tion with exactly one wait(a) to receive the notification with the value.

Locking and unlocking mechanism A processor p that wants to execute a feature
must first obtain the request queue locks of a number of processors {q1, . . . ,qn}. For
this, p adds {q1, . . . ,qn} on top of its obtained request queue locks stack. Only then can
p issue statements to these processors. The lock({q1, . . . ,qn}) operation serves this
purpose. The operation requires that none of the request queues is already locked.

Lock Operation

¬∃qi ∈ {q1, . . . ,qm} : σ .rq locked(qi)

σ ′
de f
= σ .lock rqs(p,{q1, . . . ,qm})

Γ ` 〈p :: lock({q1, . . . ,qm});sp,σ〉 → 〈p :: sp,σ
′〉

Once p is done with the execution of the feature, it asks {q1, . . . ,qn} to unlock
their request queues once they are done with the issued statements. For this purpose,
the unlock operation unlocks the request queue. Processor p issues the unlock opera-
tion to processors {q1, . . . ,qn}. This operation requires that the request queue is indeed
locked and that no processor possesses the request queue lock.

Unlock Operation

σ .rq locked(p)
∀q ∈ σ .procs : ¬σ .rq locks(q).has(p)

σ ′
de f
= σ .unlock rq(p)

Γ ` 〈p :: unlock;sp,σ〉 → 〈p :: sp,σ
′〉

After p issued the unlock operations, it can remove {q1, . . . ,qn} from its stack
of obtained request queue locks using the pop obtained rq locks operation. This
ensures that the unlock operations can proceed.

Pop Obtained Request Queue Locks

σ ′
de f
= σ .pop obtained rq locks(p)

Γ ` 〈p :: pop obtained rq locks;sp,σ〉 → 〈p :: sp,σ
′〉

Brooke, Paige, and Jacob [5] noticed that unlock operations are not optimal. In
essence, it could be possible to unlock the request queue of a processor qi directly after p
issued all statements. The request queue lock is important to guarantee exclusive access
on qi’s request queue. However, as soon as p issued all statements on qi, this lock is no
longer needed. Unlocking the request queue right away could improve the performance
in some situations because qi’s request queue could be locked again earlier and hence
another processor that is waiting for this lock could proceed earlier.
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Write and read mechanism A processor p can use the write(x,v) operation to set a
value v of an entity with name x. This operation uses the set val command. Hence, p can
both set attribute values of its current object and values of entities in its top environment.

Write Value Operation

σ ′
de f
= σ .set val(p,x,v)

Γ ` 〈p :: write(x,v);sp,σ〉 → 〈p :: sp,σ
′〉

Similarly, processor p can execute the read(x,a) operation to read a value of an en-
tity with name x and send the value over channel a. The read operation does not present
its result in a result operation because, unlike an eval operation, a read operation
always produces a result for the surrounding action queue. It is easier to do the substi-
tution of the channel access directly. A later section introduces the eval operation for
entity expressions. This variant of the eval operation makes use of the read operation
and presents the result in a result operation.

Read Value Operation

Γ ` 〈p :: read(x,a);sp,σ〉 → 〈p :: sp[σ .val(p,x)/a.data],σ〉

Finally, there is the set not fresh operation in a variant for once functions and
in a variant for once procedures. This operation sets the once status of a once routine.
The variant set not fresh( f ,r) sets the once status of a once function f to non-fresh
with value r. If f is of separate type, then the once function becomes non-fresh on all
processors in the system. If f has a non-separate type, then f becomes non-fresh only
on processor p. The variant set not fresh( f ) sets the once status of a once procedure
f to non-fresh on processor p.

Set Once Routine Not Fresh Operation – Function

f ∈ FUNCTION∧ f .is once

σ ′
de f
= σ .set once func not fresh(p, f ,r)

Γ ` 〈p :: set not fresh( f ,r);sp,σ〉 → 〈p :: sp,σ
′〉

Set Once Routine Not Fresh Operation – Procedure

f ∈ FUNCTION∧ f .is once

σ ′
de f
= σ .set once proc not fresh(p, f )

Γ ` 〈p :: set not fresh( f );sp,σ〉 → 〈p :: sp,σ
′〉

Flow control mechanism In addition to flow control instructions in the user code,
there are flow control operations, which implement flow control in the inference rules.
This way, fewer inference rules are required because multiple variants can be handled
in one inference rule.

The provided x then st else s f end operation takes the condition x as an argu-
ment. The operation either executes st if x indicates that the condition is true or s f if x
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indicates that the condition is false. For each possibility there is one inference rule. The
condition x can either be an instance of BOOLEAN or it can be a reference that points
to an object of class type BOOLEAN. To decide which branch to take, the operation
must evaluate x. If x is an instance of BOOLEAN, then it can determine which instance
x is, i.e., true or false. If x is a reference, then it must get the referenced object and see
which boolean value it represents. For this purpose, it evaluates the attribute item of the
referenced object.

If Operation – True

y
de f
=


x if x ∈ BOOLEAN
σ .att val(σ .ref obj(x), item) if x ∈ REF∧σ .ref obj(x).class type = BOOLEAN
false otherwise

y = true

Γ ` 〈p :: provided x then st else s f end;sp,σ〉 → 〈p :: st ;sp,σ〉

If Operation – False

y
de f
=


x if x ∈ BOOLEAN
σ .att val(σ .ref obj(x), item) if x ∈ REF∧σ .ref obj(x).class type = BOOLEAN
true otherwise

y = false

Γ ` 〈p :: provided x then st else s f end;sp,σ〉 → 〈p :: s f ;sp,σ〉

The provided x then st else s f end operation has two branches. Sometimes it
is necessary to only have one branch. The nop operation can be executed without an
effect. It can be used in the conditional operation to define an empty branch. The nop

operation can also be used to indicate that an action queue is empty.

No Operation

Γ ` 〈p :: nop;sp,σ〉 → 〈p :: sp,σ〉

5.4 Code Elements

This section explains the semantics of code elements: entity expressions, literal expres-
sions, feature calls, feature applications, creation instructions, flow control instructions,
and assignment instructions.

Entity expressions A variant of the eval(a,e) operation evaluates entity expressions.
The operation uses the read operation to send a notification with the value of the entity
over a new channel a′. It then uses the value of this channel to define the result of the
eval operation.

Entity Expression

e ∈ ENTITY
a′ is f resh

Γ ` 〈p :: eval(a,e);sp,σ〉 → 〈p :: read(e.name,a′);result(a,a′.data);sp,σ〉
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Literal expressions Another variant of the eval(a,e) operation evaluates literal ex-
pressions. To evaluate a non-void literal expression, the operation creates a new object
of the literal class type so that the new object represents the literal value. For this pur-
pose, it uses the query obj of LITERAL. Since the type of every literal is non-separate,
it creates the new object on the processor that evaluates the literal expression. The ref-
erence r to the new object is the result of the evaluation. To evaluate a void literal, the
operation takes the void reference.

Literal Expression

e ∈ LITERAL

σ ′
de f
=

{
σ if e = Void
σ .add obj(p,e.obj) otherwise

r
de f
=

{
void if e = Void
σ ′.ref (σ ′.last added obj) otherwise

Γ ` 〈p :: eval(a,e);sp,σ〉 → 〈p :: result(a,r);sp,σ
′〉

Feature calls A feature call can occur in two ways. First, a feature call can be a call to
a command in a command instruction. Second, a feature call can be a call to a query in
an expression. This section studies both variants. A processor p that executes a feature
call e0. f (e1, . . . ,en) goes through the following steps:

1. Target evaluation. Evaluate the target expression e0 and let q denote the handler of
the target.

2. Argument passing. Evaluate the actual arguments expressions (e1, . . . ,en).
3. Lock passing. Determine which locks to pass to q.

– Take all request queue locks and call stack locks if a controlled actual argument
gets attached to an attached formal argument of reference type.

– Take all request queue locks and call stack locks if the feature call is a separate
callback, i.e., q has a lock on p.

– Otherwise, take no locks.
4. Feature request.

– Ask q to apply f to the target immediately and wait until the execution termi-
nates if any of the following conditions holds:
• The feature call is non-separate, i.e., p = q.
• The feature call is a separate callback, i.e., q has a lock on p.

– Otherwise, ask q to apply f to the target after the previous feature requests.
5. Wait by necessity. If f is a query, then wait for the result.
6. Lock revocation. If lock passing happened, then wait for the locks to come back.

A command instruction is a statement in the action queue. A query is an expression on
the right hand side of an assignment, a condition in a flow control instruction, or an
actual argument in a feature call. Whenever a query occurs in one of these constructs,
the inference rule of the construct encloses the query in an eval operation. To handle
feature calls, there is an inference rule for command instructions and a variant of the
eval operation for query calls.
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In each case, the statement first evaluates the target expression and all actual argu-
ment expressions. For each of these expressions ei, it uses one eval(aei ,ei) operation
and a corresponding wait(aei) operation with a fresh channel aei . Each of the channel
values gets used in the subsequent call operation. With this, the statement handled the
target evaluation and the argument passing step. It defers the attachment of the actual
arguments to the formal arguments to the point where the called feature gets applied.
The reason for this is simple: at this point the context for the feature application does
not exist yet.

The call operation takes care of the remaining steps. The operation exists in two
variants, one for command instructions and one for queries. The variant for queries takes
a channel a′ and uses it for the result of the query. Since a call to a command does not
produce a result, such a channel is not required for command instructions. Both call

variants take the reference to the target ae0 , the feature f to be called, the references
to the actual arguments (ae1 .data, . . . ,aen .data), and the actual argument expressions
(e1, . . . ,en)). The actual argument expressions are used to check whether there is a
controlled actual argument. This information determines whether the locks should be
passed.

Command Instruction

∀i ∈ {0, . . . ,n} : aei is f resh

Γ `〈p :: e0. f (e1, . . . ,en);sp,σ〉 →
〈p :: eval(ae0 ,e0);eval(ae1 ,e1); . . . ;eval(aen ,en);

wait(ae0);wait(ae1); . . . ;wait(aen);
call(ae0 .data, f ,(ae1 .data, . . . ,aen .data),(e1, . . . ,en));
sp,σ〉

Query Expression

∀i ∈ {0, . . . ,n} : aei is f resh
a′ is f resh

Γ `〈p :: eval(a,e0. f (e1, . . . ,en));sp,σ〉 →
〈p :: eval(ae0 ,e0);eval(ae1 ,e1); . . . ;eval(aen ,en);

wait(ae0);wait(ae1); . . . ;wait(aen);
call(a′,ae0 .data, f ,(ae1 .data, . . . ,aen .data),(e1, . . . ,en));
result(a,a′.data);
sp,σ〉

Both variants of the call operation take the reference to the target ro, the feature f
to be called, the references to the actual arguments (r1, . . . ,rn), and the actual argument
expressions (e1, . . . ,en). The variant for queries takes an additional channel a to be used
for the result of the query. In a first step, the operation must evaluate the handler q of the
target. The handler is used in an issue operation to issue a feature request on the re-
sponsible processor. The feature request comes in the form of an apply operation. The
apply operation takes a channel a for the communication between p and q, the target
reference r0, the called feature f , the references to the actual arguments (r1, . . . ,rn), the
caller processor p, and the passed locks l.

Clarification 3 (Lock passing). Processor p passes all its request queue locks and all its
call stack locks either if there is a controlled actual argument that will get attached to an
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attached formal argument of reference type or if the feature call is a separate callback.
An attached formal argument of reference type means that the request queue lock or
the call stack lock on the actual argument’s handler is required during the application
of f . A controlled actual argument means that p has a request queue lock or a call stack
lock on the handler of the actual argument. In short, p has a lock that is required by
q and thus p has to pass the locks. A separate callback occurs if q has a lock on p. In
this situation, p can issue a statement to q and then wait for q to complete. However,
processor q could already be waiting for p to complete. To handle this case, the issue
operation in the call operation triggers an immediate execution by adding the apply

to the beginning of q’s action queue. The issue operation requires that p has the call
stack lock of q. To enable q to perform an immediate execution, p has to give back q’s
call stack lock.

In both cases, p has to wait for the locks to come back. Thus it does not hurt to pass
all the locks in both cases. In contrast to Nienaltowski’s [25] description of SCOOP, p
only passes the locks that it really has. In particular, p does not pass its own request
queue lock in situations where p does not possess this lock, such as when the processor
that called p possesses p’s request queue lock. �

In the cases where the operation passes the locks, l is (σ .rq locks(p),σ .cs locks(p)).
In all other cases there is no lock passing and thus l = ({},{}). The operation just de-
termines which locks to pass. The actual lock passing action will be executed by q.
Similarly, the actual lock revocation action will be executed by q.

For command calls, lock passing is the only reason to wait. In this case, the opera-
tion creates a fresh channel a to wait for a notification from q. The notification arrives
when q is ready to return the locks. For query calls, the operation has to wait for the
result. The operation uses the given channel a to wait for the result. This has the advan-
tage that once the result arrives, it will be substituted after the call operation, i.e. in
the result operation of the eval operation.

Call Operation – Command

q
de f
= σ .handler(r0)

l
de f
=



if
q 6= p∧∃i ∈ {1, . . . ,n} : Γ ` ei : t ∧ controlled(t)∧Γ ` f .formals(i) : (!,g,c)∧ c.is ref

then
(σ .rq locks(p),σ .cs locks(p))

if
q 6= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

then
(σ .rq locks(p),σ .cs locks(p))

otherwise
({},{})

a is f resh

Γ `〈p :: call(r0, f ,(r1, . . . ,rn),(e1, . . . ,en));sp,σ〉 →
〈p :: issue(q,apply(a,r0, f ,(r1, . . . ,rn), p, l));

provided l 6= ({},{}) then wait(a) else nop end;
sp,σ〉
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Call Operation – Query

q
de f
= σ .handler(r0)

l
de f
=



if
q 6= p∧∃i ∈ {1, . . . ,n} : Γ ` ei : t ∧ controlled(t)∧Γ ` f .formals(i) : (!,g,c)∧ c.is ref

then
(σ .rq locks(p),σ .cs locks(p))

if
q 6= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

then
(σ .rq locks(p),σ .cs locks(p))

otherwise
({},{})

Γ `〈p :: call(a,r0, f ,(r1, . . . ,rn),(e1, . . . ,en));sp,σ〉 →
〈p :: issue(q,apply(a,r0, f ,(r1, . . . ,rn), p, l));wait(a);sp,σ〉

Feature applications A feature call by a client processor q results in a feature request
for a supplier processor p. A feature application is the serving of the feature request.
This section discusses how p applies a feature f on a target referenced by r0. Processor
p takes the following steps:

1. Once status update. If f is a once routine, then set its status to non-fresh.
2. Lock passing. Pass the locks from q to p.
3. Argument passing. Bind the actual arguments to the formal arguments. Arguments

of expanded type that are handled by a different processor than p must be deep
imported by p.

4. Synchronization. Involve the scheduler to wait until the following synchronization
conditions are satisfied atomically:

– Processor p owns the request queue lock of each processor q such that:
• Processor q handles an actual argument of f and the corresponding formal

argument has an attached reference type.
• Processor p and processor q are different.
• Processor p does not have q’s request queue lock.
• Processor q does not have p’s request queue lock.

– The precondition of f holds.
5. Execution.

– If f is a non-once routine or a fresh once routine, then run its body.
– If f is a non-fresh procedure, then do nothing. If f is a non-fresh function, then

take its once value as the result.
– If f is an attribute, then evaluate it.

6. Postcondition evaluation. Evaluate the postcondition if any of the following condi-
tions is satisfied:

– A feature call in the postcondition requires a lock that was not obtained in the
synchronization step.

– The evaluation of the postcondition involves lock passing.
Otherwise ask any processor whose request queue lock was obtained in the syn-
chronization step to evaluate the postcondition.
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7. Lock releasing. Ask each processor whose request queue has been locked in the
synchronization step to unlock its request queue after it is done with the feature
requests issued by p.

8. Invariant evaluation. If f is a routine, then evaluate the invariant.
9. Result returning. If f is a query, then return the result to q. If the result is of ex-

panded type and p 6= q, then the result must be deep imported by q.
10. Lock revocation. Return the passed locks from p to q.

Each feature application starts with an operation apply(a,r0, f ,(r1, . . . ,rn),q, l) in the
action queue of processor p. The channel a is used to communicate with the client
processor q. If the called feature f is a procedure and the caller processor q passed
some locks, then a is used to signal that the locks returned. If f is query, then a is
used to return the value. The reference r0 points to the target of the call. The references
(r1, . . . ,rn) point to the actual arguments. The tuple l contains the locks to be passed
from q to p.

If one takes a look at the execution step, one can differentiate three cases:

– The feature f is a non-once routine or a fresh once routine.
– The feature f is a non-fresh once routine.
– The feature f is an attribute.

For each of these cases, there is one inference rule. Each inference rule covers one
variant of the apply operation. The discussion continues with the most involved case:
the feature f is a non-once routine or a fresh once routine.

The condition of the inference rule states that each processor can only apply a fea-
ture on one of its own objects. The condition also states the p must not have passed its
locks. This part of the condition is always given because p waits whenever it passes its
locks. In a first step, the operation defines an updated state σ ′ to set f ’s once status to
non-fresh, in case f is a once routine. The operation does this before deep importing
the actual arguments to avoid the following contradiction.

Clarification 4 (When to change the status of a fresh once routine). Assume f is either
a once procedure or a non-separate once routine. The feature f was fresh at the begin-
ning of the apply operation. Assume that the caller passed an expanded actual argu-
ment that is handled by a processor g 6= p. Therefore p has to deep import the actual
argument. Assume furthermore that the class type of the actual argument has the once
routine f and that f is non-fresh on g. If the operation would deep import before setting
f as non-fresh on p, then the deep import operation would take over the once status of
f from processor g to processor p. But then the apply operation on p would not make
much sense anymore because f would now be non-fresh on p. If the operation sets f as
non-fresh at the beginning of the apply operation, then the deep import operation does
not take over the once status from g because f is already non-fresh on p. �

The operation defines an updated state σ ′′ in which the locks are passed from q
to p and in which there is a new environment with the actual arguments (r1, . . . ,rn).
The call to the push env with feature feature takes care of copying and deep importing
actual arguments of expanded type. The caller processor q can also pass an empty tuple
({},{}) which simply means that q did not pass any locks.
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Application Operation – Non-Once Routine or Fresh Once Routine

f ∈ ROUTINE∧ f .is once→ σ .is fresh(p, f )
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′
de f
=


σ .set once func not fresh(p, f ,void) if f ∈ FUNCTION∧ f .is once
σ .set once proc not fresh(p, f ) if f ∈ PROCEDURE∧ f .is once
σ otherwise

σ ′′
de f
= σ ′.pass locks(q, p, l).push env with feature(p, f ,r0,(r1, . . . ,rn))

grequired locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . ,n},g,c : Γ ` f .formals(i) : (!,g,c)∧ c.is ref ∧ x = σ
′′.handler(ri)}

grequired cs locks
de f
=

{x ∈ grequired locks | x = p∨ (x 6= p∧ (σ ′′.rq locks(x).has(p)∨σ
′′.cs locks(x).has(p)))}

grequired rq locks
de f
= grequired locks \grequired cs locks

gmissing rq locks
de f
= {x ∈ grequired rq locks | ¬σ

′′.rq locks(p).has(x)}
∀x ∈ grequired cs locks : σ ′′.cs locks(p).has(x)
ainv is f resh∧a′ is f resh

Γ `〈p :: apply(a,r0, f ,(r1, . . . ,rn),q, l);sp,σ〉 →
〈p :: check pre and lock rqs(gmissing rq locks, f );

provided f ∈ FUNCTION∧ f .is once then
f .body

[result :=y;read(Result,ar);set not fresh( f ,ar.data) where ar is f resh/
result :=y]

[create result.y;read(Result,ar);set not fresh( f ,ar.data) where ar is f resh/
create result.y]

else
f .body

end;
check post and unlock rqs(gmissing rq locks, f );
provided f .class type.inv exists∧ f .exported then

eval(ainv, f .class type.inv);wait(ainv)
else

nop
end;
provided f ∈ FUNCTION then

read(Result,a′);return(a,a′.data,q)
else

return(a,q)
end;
sp,σ

′′〉

In the next step, the operation synchronizes. For each target expressions in the body
of f , the operation can get the controlling entity. Each of these controlling entities is
mapped to an object and each of these objects is handled by a processor. For each
of these processors the operation must either get a request queue lock or a call stack
lock. There are three types of calls: non-separate calls, separate calls, and separate call-
back. Non-separate calls and separate callbacks require a call stack lock. Separate calls
require a request queue lock. This leads to two sets of required locks: one set with
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required request queue locks and another set with required call stack locks. The set of
required call stack locks is composed of p that will lead to a non-separate call and all the
processors that will lead to separate callbacks. The set of required request queue locks
is composed of the processors that will lead to separate calls. The operation defines two
sets for these two categories: grequired cs locks and grequired rq locks.

Each processor initially has its own call stack lock as its obtained call stack lock.
This call stack never gets unlocked. This means that other call stack locks cannot be
obtained; they must be retrieved through lock passing. The condition of the inference
rule expresses this: ∀x ∈ grequired cs locks : σ ′′.cs locks(p).has(x). The operation can be
assured that p did not pass its own call stack lock because otherwise p would be waiting.
The remaining required call stack locks are the ones for the processors that will lead to
separate callbacks. Note that the lock passing conditions are not sufficient to guarantee
that the call stack locks for separate callbacks are always available.

As for the request queue locks, the operation calculates gmissing rq locks as the re-
quired request queue locks minus the already owned request queue locks. The already
owned request queue locks are the previously obtained request queue locks and the re-
trieved request queue locks. In the synchronization step, the operation must obtain the
difference. If this is not possible because some of the missing request queue locks are
not available, then the operation must wait. The check pre and lock rqs operation
takes care of this; it takes gmissing rq locks and the feature f . Once the execution succeeds,
p has the request queue locks of gmissing rq locks and the precondition of f holds.

The apply operation can be assured that each processor g, whose obtained request
queue lock the operation got in the synchronization step, must be in possession of its
call stack lock. If g was not in possession of its call stack lock, it must have passed
its locks. This means that g is executing a feature call and still waiting for the locks to
return. In order to execute the feature call, there must have been a lock on g’s request
queue lock so that its action queue can contain the feature call. The request queue must
still be locked because g is still executing the feature call. Hence, it would not have been
possible to obtain g’s request queue lock. The only exception is the bootstrap processor.
However this processor only plays a role in the system setup and it never passes its own
call stack lock.

Once the operation got all the required locks, it can execute the body. For once
functions it must update the once status whenever it writes to the result entity as part of
an assignment instruction or as part of a creation instruction. For this purpose it adds
a read operation and a set not fresh operation after each assignment instruction or
creation instruction. For each assignment instruction or creation instruction it has to use
a fresh channel.

After the execution of the body, the operation has to evaluate the postcondition and it
has to make sure that the locked request queues get unlocked at the right time. These two
steps are performed by another operation check post and unlock rqs that takes the
missing request queue locks gmissing rq locks and the feature f . This operation evaluates
the postcondition either synchronously or asynchronously. After the evaluation of the
postcondition, the operation enqueues an unlock operation to each request queue in
gmissing rq locks.
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SCOOP relies on the Eiffel invariant mechanism. This mechanism is described in
Sec. 7.5 and Sec. 8.9.16 of the Eiffel ECMA standard [9]. On one hand, Sec. 7.5 de-
scribes the semantics of invariants: invariants must be satisfied after the execution of
every exported routine and after the execution of every creation procedure. On the other
hand, Sec. 8.9.16 describes the runtime monitoring of invariants: invariants get evalu-
ated on both start and termination of a qualified call to a routine and after every call to
a creation procedure. We had to decide whether to rely on the semantics of invariants
or on the runtime monitoring of invariants. We decided to rely on the semantics of in-
variants for two reasons. First, the runtime invariant monitoring mechanism is only one
possible implementation of the invariant semantics. Second, the runtime invariant mon-
itoring mechanism relies on the notion of unqualified calls. However, for simplicity this
work assumes feature calls to be in the canonical qualified form. The apply operation
reflects this decision: the operation evaluates the invariant whenever f is exported. Note
that the invariant can only contain non-separate target expressions. Hence, each call in
the invariant will only require p’s call stack lock.

Finally, the operation has to return the locks and it has to return the result if f is a
function. The return operation takes care of this. It comes in a variant for queries and
in a variant for commands. Both variants take the channel a and the caller processor q
in order to communicate with q. The variant for queries additionally takes the value to
be returned to q.

Before explaining the variants of the apply operation for non-fresh once routines
and attributes, the discussion continues with the operations that have not been discussed
in details so far, namely check pre and lock rqs, check post and unlock rqs,
and return.

Check Precondition and Lock Request Queues Operation

a is f resh

Γ `〈p :: check pre and lock rqs({q1, . . . ,qm}, f );sp,σ〉 →
〈p :: lock({q1, . . . ,qm});

provided f .pre exists then
eval(a, f .pre);
wait(a)

else
nop

end;
provided ¬ f .pre exists∨a.data then

nop
else

issue(q1,unlock);
. . .
issue(qm,unlock);
pop obtained rq locks;
check pre and lock rqs({q1, . . . ,qm}, f )

end;
sp,σ〉

The check pre and lock rqs({q1, . . . ,qm}, f ) operation, executed by processor
p, takes a processor set {q1, . . . ,qm} whose request queues must be locked on behalf of
p and it takes a feature f whose precondition must be satisfied. The operation treats the
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precondition as a wait condition. It goes through a number of iterations. Each iteration
obtains the request queue locks and then evaluates the precondition. If the precondition
is satisfied, then the check pre and lock rqs operation finishes. Otherwise it unlocks
the request queues and then starts a new iteration. If the check pre and lock rqs

operation finishes, p can be assured that it obtained all the request queue locks and the
precondition holds.

Check Postcondition and Unlock Request Queues Operation

q
de f
= {q1, . . . ,qm}

p /∈ q

targets(e)
de f
=

{
{e0}∪

⋃
i=0...n targets(ei) if e = e0.w(e1, . . . ,en)

{} otherwise

args(e)
de f
=

{⋃
i=1...n {(ei,w, i)}∪args(ei) if e = e0.w(e1, . . . ,en)
{} otherwise

g0
de f
∈



if
q 6= {}∧
∀x ∈ targets( f .post) : (Γ ` σ .handler(σ .val(p,controlling entity(x).name)) ∈ q)∧
¬∃(x,y,z) ∈ args( f .post), t,h,c :

(Γ ` x : t ∧ controlled(t)∧ y.formals(z) : (!,h,c)∧ c.is ref )
then

q
otherwise
{p}

{g1, . . . ,g j}
de f
= q\g0

a is f resh

Γ `〈p :: check post and unlock rqs({q1, . . . ,qm}, f );sp,σ〉 →
〈p :: provided f .post exists∧g0 6= p then

issue(
g0,
execute delegated(

eval(a, f .post);wait(a);
issue(g1,unlock); . . . ;issue(g j,unlock)

,
σ .envs(p).top,{q1, . . . ,qm}

);
unlock

);
pop obtained rq locks

else

provided f .post exists then
eval(a, f .post);wait(a)

else
nop

end;
issue(q1,unlock); . . . ;issue(qm,unlock);
pop obtained rq locks

end;
sp,σ〉
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The check post and unlock rqs operation also takes a processor set {q1, . . . ,qm}
and a feature f . The processor set is the same as for the check pre and lock rqs op-
eration, i.e., the set of processors whose request queues got locked in the synchroniza-
tion step. The operation first determines whether the postcondition should be evaluated
synchronously or asynchronously. Then the operation starts the evaluation. Finally, the
operation enqueues an unlock operation to each request queue in {q1, . . . ,qm}.

Clarification 5 (Asynchronous postcondition evaluation). The postcondition can be eval-
uated asynchronously if every feature call in the postcondition only requires a request
queue lock that was obtained in the synchronization step and if the postcondition does
not involve lock passing. If the postcondition has a feature call that requires a lock
different from the obtained request queue locks, then p cannot delegate its obtained
request queue lock and then continue because the required lock would be required in
another feature execution context as well. Hence the postcondition must be evaluated
synchronously in this case. If the postcondition involves lock passing, then one of p’s
lock might be necessary for the evaluation of the postcondition. Hence, p must pass
its locks and cannot proceed until the postcondition is evaluated and the passed locks
returned. Once again, the postcondition must be evaluated synchronously. In Nienal-
towski’s description of SCOOP [25] a postcondition can be evaluated asynchronously
if the current processor is not involved in the postcondition evaluation. This rule permits
configurations in which the evaluating processor does not have the necessary locks for
the evaluation. �

If the postcondition can be evaluated asynchronously, then the operation can take
one of the processors in {q1, . . . ,qm}. This set does not contain processor p because
processor p never obtains its own request queue lock. Each processor in this set is
exclusively available in the current execution context and can thus be used to eval-
uate the postcondition asynchronously. The check post and unlock rqs operation
defines g0 to be the evaluating processor according to the rule just presented. It also
defines {g1, . . . ,g j} to be the set {q1, . . . ,qm} minus the request queue lock of g0. If p
is the evaluating processor, then this set is the same as {q1, . . . ,qm}. As a result of these
definitions, the postcondition can be evaluated asynchronously if g0 6= p. Otherwise,
the postcondition must be evaluated synchronously.

In the synchronous case, processor p evaluates the postcondition, enqueues unlock
operations to each request queue in {q1, . . . ,qm}, and then removes the corresponding
locks from its stack of obtained request queue locks. The unlock operations will not
proceed until the locks have been removed from p’s stack of obtained request queue
locks. In the asynchronous case, processor p must delegate the postcondition evalua-
tion to processor g0. For this purpose, p enqueues an execute delegated operation
to g0. The workload involves the postcondition evaluation along with the subsequent
issuing of unlock operations to all processor in {g1, . . . ,g j}. Processor g0 unlocks its
own request queue after the delegated execution. The evaluation of the postcondition
on g0 requires the environment that defines the values of the entities in the postcondi-
tion. Furthermore, the evaluation requires the request queue locks {q1, . . . ,qm}. These
locks are sufficient because the postcondition only gets evaluated asynchronously if the
evaluation only requires these locks. To satisfy these two requirements, p gives its top
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environment and {q1, . . . ,qm} to g0. After g0 performed the delegated execution, it can
unlock its own request queue. In the meantime, processor p removes {q1, . . . ,qm} from
its obtained request queue locks to enable g0 to proceed with the delegated execution.

The return operation comes in two variants: one for queries and one for com-
mands.

Return Operation – Query

(σ ′,r′)
de f
=



if r 6= void∧σ .ref obj(r).class type.is exp∧σ .handler(r) 6= q
(σx,σx.last imported ref )
where

σx
de f
= σ .deep import(q,r)

otherwise
(σ ,r)

σ ′′
de f
= σ ′.pop env(p).revoke locks(q, p)

Γ ` 〈p :: return(a,r,q);sp,σ〉 → 〈p :: result(a,r′);sp,σ
′′〉

Return Operation – Command

σ ′
de f
= σ .pop env(p).revoke locks(q, p)

Γ `〈p :: return(a,q);sp,σ〉 →
〈p :: provided σ .locks passed(q) then notify(a) else nop end;sp,σ

′〉

The variant for queries returns the result and the locks. The variant for commands
only returns the locks. Both variants take a channel a and the caller processor q. For
queries, the channel is used to return the result. For this purpose, the operation takes
a reference r that points to the result. Processor q is waiting for this result on channel
a. This can be seen in the call operation, which issues an apply operation and a
subsequent wait(a) operation. The apply operation calls the return operation with
the same channel a. To return the result to q, processor p executes a result on a.
The value to be returned is not always r directly. If r points to an object of expanded
class type and q 6= p, then q must deep import the object. In all other cases, q can take
r as the return value. An explanation why the deep import operation is necessary can
be found in Sec. 4.6. For commands, the channel is used to signal to q that the locks
have been returned in case q passed its locks. This can be determined by looking at
the state: σ .locks passed(q). In both variants of the return operation, p removes the
passed locks from the stacks of retrieved locks. In case q did not pass any locks, the
removed entries might be the empty set. Processor p also removes its top environment
because this environment is no longer needed. In case of an asynchronous postcondition
evaluation, this environment temporarily gets delegated to the evaluating processor.

Until now, the discussion left out the non-fresh once routines and the attributes.
Non-fresh once functions already have a result. The apply operation just needs to get
this result from the state and return it. For non-fresh once procedures it does not even
have to do this. The only obligation is the evaluation of the invariant. The evaluation
of the invariant requires the call stack lock of p. This lock is given if the condition
¬σ .locks passed(p) holds. For attributes, note that an instance of ATTRIBUTE is also
an instance of EXPRESSION. Hence, the operation evaluates the attribute expression
and returns the result of the evaluation. The invariant does not have to be evaluated in
this case.
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Application Operation – Non-Fresh Once Routine

f ∈ ROUTINE∧ f .is once∧¬σ .is fresh(p, f )
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′
de f
= σ .pass locks(q, p, l).push env with feature(p, f ,r0,(r1, . . . ,rn))

a is f resh

Γ `〈p :: apply(a,r0, f ,(r1, . . . ,rn),q, l);sp,σ〉 →
〈p :: provided f .class type.inv exists∧ f .exported then

eval(a, f .class type.inv);wait(a)
else

nop
end;
provided f ∈ FUNCTION then

return(a,σ ′.once result(p, f ),q)
else

return(a,q)
end;
sp,σ

′〉
Application Operation – Attribute

f ∈ ATTRIBUTE
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′
de f
= σ .pass locks(q, p, l).push env with feature(p, f ,r0,())

a′ is f resh

Γ `〈p :: apply(a,r0, f ,(),q, l);sp,σ〉 →
〈p :: eval(a′, f );

wait(a′);
return(a,a′.data,q);
sp,σ

′〉

Creation instructions A creation instruction has the form create b. f (e1, . . . ,en) where
b is the target entity, f is the creation procedure, and e1, . . . ,en are the actual arguments.
Assume that b is of type (d,g,c). A processor p that executes this instruction takes the
following steps:

1. Processor q creation.
– If b is separate, i.e., g =>, then create a new processor.
– If b has an explicit processor specification, i.e., g = α , then
• take the processor denoted by α if it already exists.
• create a new processor if the processor denoted by α does not exist yet.

– If b is non-separate, i.e., g = •, then take p.
2. Locking. Lock the request queue of q if the following conditions hold:

– Processor p and processor q are different.
– Processor p does not have q’s request queue lock.
– Processor q does not have p’s request queue lock.



63

3. Object creation. Ask q to create a new instance with class type c using the creation
procedure f . Attach the newly created object to b.

4. Invariant evaluation. If f is not exported, then ask q to evaluate the invariant.
5. Lock releasing. If q’s request queue has been locked in the locking step, then ask q

to unlock its request queue after it is done with the feature request.

There are four cases in the processor creation step:

– The entity b has a separate type.
– The entity b has an explicit processor specification and the denoted processor al-

ready exists.
– The entity b has an explicit processor specification and the denoted processor does

not yet exist.
– The entity b has a non-separate type.

For each of these cases, there is one inference rule. The discussion starts with the variant
where b has a separate type. In this case, the instruction defines q as a new processor
and o as a new object of class type c. The reference r points to this object. First the
instruction acquires a request queue lock on the new processor q so that it can issue
statements on q. Next, it writes the value r into the entity b. To make a call to the
creation procedure, it executes a command instruction. Once this is done, it checks
whether there is an invariant to evaluate. If f is exported, then the invariant will be
evaluated as part of f ’s feature application. In this case the instruction does nothing.
However, if f is not exported, then it must issue the invariant evaluation to q. After this
step, it can issue an unlock operation to q and remove the request queue lock from p’s
obtained request queue locks.

Create Instruction – Top

(d,h,c)
de f
= type of (Γ ,b)

h =>
q

de f
= σ .new proc

o
de f
= σ .new obj(c)

σ ′
de f
= σ .add proc(q).add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ `〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: lock({q});

write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
issue(q,unlock);
pop obtained rq locks;
sp | q :: nop,σ ′〉
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The following discussion looks at the two variants for the cases where b has an ex-
plicit processor specification. There are two forms of explicit processor specifications:
unqualified and qualified. An unqualified explicit processor specification, i.e., < x >, is
based on a processor attribute x with an attached type. The processor denoted by this ex-
plicit processor specification is the processor stored in x. A qualified explicit processor
specification, i.e., < y.handler >, is based on a non-writable entity y of attached type.
The processor denoted by this explicit processor specification is the same processor as
the one handling the object referenced by y. A qualified explicit processor specification
always denotes an existing processor because this specification is based on an attached
entity. This means that there is already an object attached to this entity and thus its
handler must exist. This insight helps to write the conditions for the two inference rule
variants.

Create Instruction – Existing Explicit Processor

(d,h,c)
de f
= type of (Γ ,b)

h =< x > ∨h =< y.handler >

q
de f
=

{
σ .val(p,x) if t = (d,< x >,c)
σ .handler(σ .val(p,y)) if t = (d,< y.handler >,c)

σ .procs.has(q)

grequired cs locks
de f
=

{
{q} if q 6= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))
{} otherwise

∀x ∈ grequired cs locks : ¬σ .locks passed(p)∧σ .cs locks(p).has(x)

o
de f
= σ .new obj(c)

σ ′
de f
= σ .add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ `〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: provided q 6= p∧¬σ

′.rq locks(p).has(q)∧¬σ
′.rq locks(q).has(p) then

lock({q})
else

nop
end;
write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
provided q 6= p∧¬σ

′.rq locks(p).has(q)∧¬σ
′.rq locks(q).has(p) then

issue(q,unlock);
pop obtained rq locks

else
nop

end;
sp,σ

′〉

The variant that handles existing processors states that the specified processor must
exist. To check this, one must consider both the qualified and the unqualified possibility.
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For the qualified option, one can simply lookup the value of the attribute x. For the
unqualified option, one first looks up the value of the entity y and then determines
the handler of the referenced object. In either case, the result q is either the denoted
processor or the void value. One then checks whether q is in the set of processors of our
system. The overall idea of this inference rule is the same as in the case where b has
a separate type. The difference is in the processor creation, locking, and lock releasing
steps. Instead of creating a new processor, the instruction takes the existing processor
q. If q = p, then the call to the creation procedure will be a non-separate call. In this
case, the instruction requires p’s call stack lock. This lock is given because otherwise p
would be waiting. If p 6= q and q has a lock on p, then the call to the creation procedure
will be a separate callback. In this case, the instruction requires q’s call stack lock. This
is expressed in the condition with the help of the set grequired cs locks. If p 6= q and q
does not have p’s request queue lock, then the call to the creation procedure will be a
separate call. In this case, the instruction must obtain q’s request queue lock, provided it
does not already have this lock. Only when it obtained q’s request queue lock, does the
instruction have to issue an unlock operation and remove q from p’s stack of obtained
request queue locks.

Create Instruction – Non-Existing Explicit Processor

(d,h,c)
de f
= type of (Γ ,b)

h =< x >
¬σ .procs.has(σ .val(p,x))

q
de f
= σ .new proc

o
de f
= σ .new obj(c)

σ ′
de f
= σ .add proc(q).add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ `〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: write(x.name,q);

lock({q});
write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
issue(q,unlock);
pop obtained rq locks;
sp | q :: nop,σ ′〉

For the variant that handles non-existing processors, one has to verify that the spec-
ified processor does not exist. To do so, one considers only unqualified processor speci-
fications. In this case, the instruction creates a new processor q with a new object o and
reference r. The steps in this variant are similar to those in the variant where b has a
separate type. However, the instruction has to set the value of the processor attribute x
to the newly created processor. This ensures that the denoted processor will be found to
exist in the future.
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Lastly, there is a variant for the case where b has a non-separate type. In this case,
the instruction creates the object on p. Processor creation, locking, and lock releasing
is not necessary. The required call stack lock on p is given because otherwise p would
be waiting.

Create Instruction – Non-Separate

(d,h,c)
de f
= type of (Γ ,b)

h = •
o

de f
= σ .new obj(c)

σ ′
de f
= σ .add obj(p,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ `〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: write(b.name,r);

b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

eval(a, f .class type.inv);wait(a)
end;
sp,σ

′〉

Flow control instructions The if e then st else s f end instruction executes st if the
expression e evaluates to true. Otherwise the instruction executes s f . There is one in-
ference rule for this instruction. In a first step, the instruction evaluates the expression
e using a fresh channel a and then waits for a notification on a. In a second step, it
uses the provided operation to either execute st or s f , depending on the value of the
expression.

If Instruction

a is f resh

Γ `〈p :: if e then st else s f end;sp,σ〉 →
〈p :: eval(a,e);

wait(a);
provided a.data then

st
else

s f
end;
sp,σ〉

The until e loop sl end instruction executes a sequence of sl instructions until the
expression e evaluates to true. If e is true initially, then sl never gets executed. There
is one inference rule for this instruction. First, the instruction evaluates e using a fresh
channel a. Then it waits for a notification on a. Next, it uses the provided operation
to check whether e evaluates to true or false. If e is true, then it is done. Otherwise, it
executes sl followed by another until e loop st end operation.
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Loop Instruction

a is f resh

Γ `〈p :: until e loop sl end;sp,σ〉 →
〈p :: eval(a,e);

wait(a);
provided a.data then

nop
else

sl ;until e loop sl end
end;
sp,σ〉

Assignment instructions An assignment instruction b :=e assigns the value of the
expression e to the entity b. The instruction first evaluates the expression e and then
waits for a notification on a fresh channel a. Once it gets this notification, it uses the
write operation to set the value to the entity b.

Assignment

a is f resh

Γ ` 〈p :: b :=e;sp,σ〉 → 〈p :: eval(a,e);wait(a);write(b.name,a.data);sp,σ〉

5.5 Termination

The system terminates when it reaches a configuration where all action queues are
empty, i.e., when there is no more work to do.

6 Conclusion

In this paper we have presented a formal specification of the SCOOP model, based
on operational semantics. We have demonstrated that this level of rigor is necessary if
the specification is to be used as a guideline for an implementation. In particular, we
were able to clarify a number of omissions and ambiguities in the available informal
specification, which had gone undetected in other formalizations:

– Are processor locks fine-grained enough? We require request queue locks and call
stack locks.

– Which locks must be passed? Which locks can be passed? We pass all the locks we
actually have. We pass these locks both for normal lock passing and for separate
callbacks.

– How do we move object structures from one processor to another processor without
violating the invariant? The deep import operation must be used.

– When do we set the status of a fresh once routine to non-fresh? The status of the
once routine must be set to non-fresh before deep importing.
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– When can a postcondition be evaluated asynchronously? The postcondition can be
evaluated asynchronously if every feature call in the postcondition only requires a
lock that was obtained in the synchronization step and if the postcondition does not
involve lock passing.

Because of the complexity of the SCOOP model, our resulting specification is large,
the management of which is a challenge for a fully formal development. To address
this problem, we used abstract data types and a notation with an object-oriented fla-
vor, which made the specification more readable and more easily extendable, without
sacrificing any of the rigors of operational semantics. Furthermore, we introduced a
distinction between two kinds of statements, namely instructions (user syntax) and op-
erations (run-time syntax). This made it possible to treat within one inference system
both the actual language elements and the implementation details of the runtime system,
and to distinguish clearly between them.

The main application of this work is to guide the implementation of the SCOOP
model. This has led to a successful implementation of SCOOP on top of the Eif-
fel language, which supersedes the previous prototype implementation and is publicly
available [31]. The SCOOP model can however be implemented on top of any object-
oriented language (support for contracts, as offered by Java or Spec#, is beneficial), and
our work also facilitates such future implementation efforts. In the case of Java, first
steps towards such an implementation have been taken [33], which could certainly be
supported by our work.

A number of other applications of our semantics can be envisioned. First, the se-
mantics can be used to prove correct various properties of the model which have so far
only been postulated, such as absence of object-level data races and type safety (absence
of traitors). In light of the complexity of the full model, these properties are no longer
obvious. For example, as processor locks serve as an abstraction only, it must be shown
that locks are not misused in situations such as separate callbacks, which involve call
stack locks. Second, our operational semantics can also be used to prove correct an ax-
iomatic semantics for the SCOOP model, which is planned for future work. In the case
of sequential Eiffel, a similar development is documented in [26]. Third, we feel our
semantics is detailed enough that its rules can directly be implemented as an interpreter
for SCOOP programs. Such an interpreter could serve as a true reference implementa-
tion, which could in turn be used for conformance checking of real implementations.

Acknowledgments. We thank Stephan van Staden for interesting discussions on the
lock model. This work is part of the SCOOP project at ETH Zurich, which has bene-
fited from grants from the Hasler Foundation, the Swiss National Foundation, Microsoft
(Multicore award) and ETH (ETHIIRA).

References
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