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Abstract. Operational semantics has established itself as a flexible but rigorous means to describe the
meaning of programming languages. Oftentimes, it is felt necessary to keep a semantics small, for example to
facilitate its use for model checking by avoiding state space explosion. However, omitting many details in a
semantics typically makes results valid for a limited core language only, leaving a wide gap towards any real
implementation. In this paper we present a full-fledged semantics of the concurrent object-oriented program-
ming language SCOOP (Simple Concurrent Object-Oriented Programming). The semantics has been found
detailed enough to guide an implementation of the SCOOP compiler and runtime system, and to detect and
correct a variety of errors and ambiguities in the original informal specification and prototype implemen-
tation. In our formal specification, we use abstract data types with preconditions and axioms to describe
the state, and introduce a number of special run-time operations to model the runtime system with our
inference rules. This approach allows us to make our large formal specification manageable, providing a first
step towards reference documents for specifying object-oriented languages based on operational semantics.

Keywords: concurrent programming, operational semantics

1. Introduction

Concurrent programming has become an important part of mainstream software development, caused by the
widespread use of multicore processors. The notorious difficulty of writing concurrent programs correctly has
on the other hand spawned work into novel language abstractions to express concurrency and synchronization.
One such language is SCOOP [19, 22, 21], an object-oriented programming model for concurrency based on
the idea of contracts.

The main idea of SCOOP is to simplify the writing of correct concurrent programs for developers, who
can use familiar concepts from object-oriented programming but are protected by the model from common
concurrency errors such as data races. This is achieved by a runtime system that automatically takes care
of operations such as obtaining and releasing of necessary locks, without the need of explicit program
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statements. While being based on conceptually simple ideas, the semantics of the language concepts and
runtime system turns out to be very complex.

The question is therefore how the semantics can be properly documented. The initial version of SCOOP
has been defined in [19], where all the main concepts are outlined but implementation aspects are neglected
for the most part. A first prototype implementation was then introduced in [22], where the semantics was
described only informally, with the exception of a formalization of the type system. In this paper we provide
a full formalization of the operational behavior of SCOOP, specified by a structural operational semantics.
The main contributions of the paper are:

• a formal specification of SCOOP that treats all important language elements;

• clarification and correction of the informal specification in [22];

• an approach to writing large formal language specifications, using abstract data types with preconditions
and axioms for the state formalization, and special operations (run-time syntax) to model the behavior
of the runtime within an inference system.

The paper is structured as follows. In the remainder of this introduction, we give a brief overview of the
main ideas of the SCOOP model to provide a basic intuition for the main part of the paper. In Section 2 we
give an overview of related work. In Section 3 we describe the syntax of SCOOP. The two following chapters
contain the main parts of our model: in Section 4 we describe the state formalization and in Section 5 the
formalization of computations. We conclude and discuss future applications of our model in Section 6.

An informal overview of SCOOP

The central idea of SCOOP is that every object is associated for its lifetime with a processor, an abstract
notion denoting a site for computation: just as threads may be assigned to cores on a multicore system,
processors may be assigned to cores, or even to remote processing units. References can point to local objects
(on the same processor) or to objects on other processors; the latter ones are called separate references. Calls
within a single processor remain synchronous, while calls to objects on other processors are dispatched
asynchronously to those processors for execution, thus giving rise to concurrent execution.

The SCOOP version of the producer/consumer problem serves as a simple illustration of these main
ideas. In a root class, the main entities producer and consumer are defined. The keyword separate denotes
that these entities may be associated with a processor different from the current one.

producer: separate PRODUCER
consumer: separate CONSUMER

Creation of a separate object such as producer results in the creation of a new processor and of a new object
of type PRODUCER that is associated with this processor. Hence in this example, calls to producer and
consumer will be executed concurrently, as they will be associated with two different new processors.

Both producer and consumer access an unbounded buffer

buffer: separate BUFFER [INTEGER]

and thus their access attempts need be synchronized to avoid data races, by mutual exclusion, and to avoid
that an empty buffer is accessed, by condition synchronization. In the following we explain how these two
mechanisms are expressed in SCOOP.

To ensure mutual exclusion, the model prescribes that separate objects needed by a routine be controlled,
i.e. passed as arguments to the routine. The runtime system will automatically lock the processors corre-
sponding to such objects, hence preventing data races on the group of controlled objects for the duration
of the routine. For example, in a call consume (buffer), the separate object buffer is controlled and thus the
processor associated with buffer gets locked.

For condition synchronization, the condition to be waited upon can be explicitly stated as a precondition,
indicated by the keyword require. The evaluation of the condition uses wait semantics: the runtime system
automatically delays the routine execution until the condition is true. For example, the implementation of
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the routine consume, defined in the consumer, ensures that an item from a buffer is only removed if a buffer
is not empty.

consume (a buffer: separate BUFFER[INTEGER])
require

not (a buffer.count = 0)
local

value: INTEGER
do

value := a buffer.get
end

The runtime system further ensures that the result of the call a buffer.get is properly assigned to value
using a mechanism called wait by necessity : while the client usually does not have to wait for an asynchronous
call to finish, it will do so if it needs the result of this call.

As the buffer is unbounded, the corresponding producer routine does not need a condition to be waited
upon, however mutual exclusion will be ensured as before:

produce (a buffer: separate BUFFER[INTEGER])
local

value: INTEGER
do

value := new value
a buffer.put (value)

end

In the main part of the paper, we define formally the implementation that gives rise to the behavior
outlined above. We will also introduce advanced concepts and additional language elements, which cannot
be covered in a brief overview, and show how these give rise to a complexity which can only be dealt with
satisfactorily by formal specification.

2. Related Work

We divide the presentation in this section into related work on SCOOP and related work on other concurrent
programming languages.

2.1. SCOOP

In his dissertation, Nienaltowski [22] worked out the details of an implementation of SCOOP as suggested by
Meyer [19], and provided a prototype implementation. The language semantics is described informally only,
with the exception of the type system which is defined using an inference system. The informal description
and the prototype contain various ambiguities and omissions, which we are able to clarify with our semantics.

Torshizi et al. [30] have defined and implemented JSCOOP, a version of the SCOOP model for the Java
language. Only the most important language elements are considered, and no attempt at formalization is
made. In contrast, our specification and implementation [29] on top of Eiffel considers all language elements.
We believe that our specification could help to extend JSCOOP to a full treatment of the language concepts
as well.

Brooke, Paige and Jacob [5] have used CSP [11] to give a semantics to SCOOP as described by Meyer [19].
Their initial hope was to use tools for analyzing CSP specifications, such as FDR, to automatically check
for deadlock in SCOOP programs, but found that the available tools could not handle their specification. A
benefit of their approach is that CSP provides the machinery needed to express concurrency and synchro-
nization, leading to a relatively concise model. Our goal is to provide formal descriptions close to an actual
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implementation, and therefore prefer to design an own operational semantics, rather than going through the
indirection of another process algebra.

Structural operational semantics, introduced by Plotkin [26], is a flavor of operational semantics that
has been used with great success to define various concurrent systems. Our specification uses this style of
semantics as well. To model SCOOP we also make use of established modeling concepts from process algebra,
such as the notion of channels, which is present in most calculi such as CSP [11] or the π-calculus [20]. We
use the theory of abstract data types (ADT) [15] to model the elements of a program text and to model the
state of a SCOOP program.

Ostroff et al. [25] describe a structural operational semantics for SCOOP in the refined version by Nien-
altowski [22]. This operational semantics inspired our work, and we have attempted to stay close to their
modeling ideas where possible, so that [25] can be viewed as a reduced version of the semantics we describe
in this paper. While [25] covers some of the most significant aspects of SCOOP, it falls short of describing
a number of other critical language concepts: in their reduced model, a query routine handled by some
processor p must not make calls to a processor other than p; lock passing, expanded objects and the import
mechanism, once routines, evaluation of (asynchronous) postconditions and invariants, and explicit processor
tags are not considered. We clarify these aspects in this paper. Furthermore, [25] have pursued the goal to
check temporal logic properties of SCOOP programs using their semantics and the SPIN model checker, but
were limited to small programs by state space explosion. We have the different goal of providing a reference
document for SCOOP, and thus don’t have to sacrifice coverage of the language for keeping the size of the
specification small.

2.2. Other concurrent programming languages

Axum [3] is a concurrent programming language. The language is based on the actor model. In Axum, actors
are called agents. An agent is an isolated runtime component that executes in parallel with other agents. The
agents communicate with each other by sending messages through channels. Each channel has input ports,
output ports, and a protocol. The ports are queues of messages. The protocol is a state machine that defines
how the channel behaves. Schemas define the structure of messages. Besides message passing, Axum also
provides domains - shared state between groups of actors. SCOOP does not use the actor model. Instead,
SCOOP defines processors that execute in parallel. Each processor can only operate on its assigned set of
objects. Processor do not exchange messages as such, but they do exchange feature requests where a client
processor asks a supplier processor to execute a feature. SCOOP does not define shared space. However, it
would be interesting to explore this concept for SCOOP. SCOOP takes a different approach to concurrency
than Axum. Axum is a domain-specific language for concurrency. SCOOP considers a concurrent program as
a generalization of a sequential program. For this reason, all object-oriented concepts such as inheritance have
been generalized for the concurrent case. As a consequence of this effort, the synchronization mechanisms
have been defined in such a way that inheritance anomalies [17] do not occur.

Cω [4] is an extension of C#. It integrates elements of the Join Calculus [10]. Cω allows computations to
be spawned off into different threads using asynchronous methods: while for synchronous methods the caller
must wait until a routine completes, asynchronous methods return immediately while their body is scheduled
for execution in another thread. Cω supports so-called chords, which associate the body of a routine with
more than one method; only if all methods have been called will the body be executed.

X10 [7], Fortress [2], and Chapel [12] are based on the Partitioned Global Address Space (PGAS) model.
PGAS uses a global shared memory. It defines portions on the global shared memory and associates them
to specific processors to improve performance and scalability. X10 provides important abstractions such as
places, asynchronous methods, future invocations, and barriers. However, it places a considerable burden
on programmers. Fortress offers implicit parallelization of loops and operations on data structures. Chapel
provides a higher-level multithreaded parallel programming model with abstractions for data parallelism,
task parallelism, and nested parallelism.

For the related languages mentioned above, we are not aware of rigorous behavioral specifications, with
the exception of Cω, which uses the Join Calculus as the underlying model. For multi-threaded Java however,
such formalizations have been attempted.

Ábrahám, de Boer, de Roever, and Steffen [1] present an operational semantics for a subset of multi-
threaded Java. They focus on the most important multi-threaded aspects, i.e. dynamic thread creation,
thread termination, and re-entrant monitors. The semantics consists of two components: the semantics for
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isolated objects and the semantics for interacting objects. The authors want to use the semantics to develop a
proof system that is based on an existing proof-system for isolated objects. A configuration is a set of instance
configurations. An instance configuration contains the attribute values of one object. It also contains the
local environment and the expression of each thread that is concurrently executing within the object. In
modeling the state of a program, our semantics strictly separates the actions to be executed from the data.
This makes it easier to derive implementations from the semantics because an implementation is likely to
keep the program text and data separate. Ábrahám et al. use transition labels to synchronize inference rules.
The labels allow an external observer to follow the transitions. Our semantics is a pure reduction semantics
without labels because we do not require observable transitions.

Cenciarelli, Knapp, Reus, and Wirsing [6] also describe an operational semantics for a larger subset
of multi-threaded Java. They cover a larger number of multi-threaded aspect than [1]. In particular they
formalize Java’s notification mechanism and the working memory. A configuration consists of a function that
maps each thread to its expression and its local environments. The configuration also has a container with
the objects and the static typing information. Lastly, the configuration consist of an event space. The event
space is a partially ordered set of events that have been executed by the threads. The ordering reflects the
order in which the events took place. An event space serves two purposes. First, it contain certain aspects of
the state. For example, the lock and unlock actions tell us which thread owns which lock. Second, it records
the history. A number of constraints state when an event space is valid. Hence, the event space indicates
which further actions can take place. The authors use two different validity constraints for both Java’s
non-prescient semantics and its prescient semantics. Using this, they show that any prescient execution of a
properly synchronized program can be simulated by a non-prescient execution. Compared to our semantics,
there is no clean division between program text and the state and there is no clean division between the
state and the typing information.

Lochbihler [16] suggest a different operational semantics for a large subset of multi-threaded Java. Just
like [6], he covers the notification mechanism, but he does not formalize the working memory. He defines an
instantiating semantics based on an extension of Jinja [14]. Jinja is an operational semantics for a subset
of single-threaded Java. The instantiating semantics is used for the sequential case. Lochbihler defines a
generic formal framework to lift the instantiating semantics to the concurrent case. The configuration of the
instantiating semantics consists of the expression, a container with the objects, and the local environments.
The state of the framework semantics consists of the lock status, the thread information with the thread’s
expression along with the thread’s local environments, a container with the objects, and the wait sets.
Lochbihler formalizes the notion of deadlocks, where deadlocks are either based on locks or on wait sets.
He then proves that every program that satisfies certain criteria either produces a final value, throws an
exception, or deadlocks. He also shows that every such program preserves type safety. Every notion and every
theorem is proved with the theorem prover Isabelle/HOL [23]. In future work we want to prove properties
of the SCOOP model.

3. Language overview

SCOOP is a programming language based on Eiffel, an object-oriented programming language, defined in
the Eiffel ECMA standard [9]. The programming language SCOOP defines the SCOOP model, which can
be applied to other programming languages as well. For this reason, we do not focus on Eiffel, but on the
SCOOP model. We define a subset of the SCOOP programming language that only covers the parts that
are relevant for the SCOOP model. This excludes aspects of Eiffel that are not relevant for the SCOOP
model. In this section we describe this subset. In the following we first define the syntax of the considered
language. We then discuss the simplifications that have been taken with respect to Eiffel. We then discuss
the intermediate representation of a program, which is based on the notion of abstract data types (ADT).
For this purpose we introduce a number of basic ADTs.

3.1. Syntax

The following EBNF grammar defines the set of all considered programs:

program = class declaration∗ root procedure declaration ;
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root procedure declaration = {class name}.routine name ;
class declaration =

[”expanded”] ”class” class name
”inherit” class name
[”create” routine name {”,” routine name}]
”feature” [”{” class name {”,” class name} ”}”] {feature declaration}
[”invariant” expression]

”end” ;

feature declaration = routine declaration | attribute declaration ;
routine declaration =

routine name [”(” entity declaration {”,” entity declaration} ”)”] [”:” type]
[”require” expression]
[”local” entity declaration {entity declaration}]
(”do” | ”once”)

instruction {”;” instruction}
[”ensure” expression]
”end” ;

attribute declaration = entity declaration ;
entity declaration = entity name ”:” type ;

instruction =
entity name ”:=” expression |
expression ”.” feature name [”(” expression {”,” expression} ”)”] |
”create” entity name ”.” routine name [”(” expression {, expression} ”)”] |
”if” expression ”then” instruction {”;” instruction} ”else” instruction {”;” instruction} ”end” |
”until” expression ”loop” instruction {”;” instruction} ”end” ;

expression =
literal |
entity name |
expression ”.” feature name [”(” expression {, expression} ”)”] ;

literal = boolean literal | integer literal | character literal | void literal ;
boolean literal = ”True” | ”False” ;
integer literal = [”−”](”0” | . . . | ”9”) {”0” | . . . | ”9”} ;
character literal = ” ’ ” ”a” | . . . | ”z” | ”A” | . . . | ”Z” | ”0” | . . . | ”9” ” ’ ” ;
void literal = ”Void” ;

type =
[detachable tag]
[”separate”] [explicit processor specification]
class name [actual generics] ;

detachable tag =
”attached” | ”detachable” ;

explicit processor specification =
qualified explicit processor specification |
unqualified explicit processor specification ;

qualified explicit processor specification =
”<” entity name ”.” ”handler” ”>” ;

unqualified explicit processor specification =
”<” entity name ”>” ;

class name = name ;
feature name = routine name | entity name ;
routine name = name ;
entity name = name | ”Result” | ”Current” ;
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name = (”a” | . . . | ”z” | ”A” | . . . | ”Z”) {”a” | . . . | ”z” | ”A” | . . . | ”Z”};

The absence of both the attached and detachable keyword is treated as if there was an attached
keyword. Note that the grammar anticipates a change in the syntax of the detachable tag which is not
yet part of the Eiffel ECMA standard [9]. In the following we assume that each program follows the above
grammar and that each program satisfies the SCOOP type rules. A formalization of these rules can be found
in Nienaltowski’s dissertation [22].

3.2. Simplifications

In the following we point out the most important simplifications with respect to Eiffel.

• We do not consider unqualified feature calls. We expect all feature calls to be in the qualified form. This
includes accesses to attributes of the current object in expressions.

• We do not consider infix feature calls. We expect all feature calls in the non-infix form. For example, an
expression x > y must be transformed into the equivalent form x.is greater(y).

• We simplify the automatic initialization of entities. All entities, except for the current object entity, are
initialized with the void reference.

• We neglect exception handling. The exception handling mechanism for SCOOP is still under development.

• We do not consider garbage collection because garbage collection is not refined in the SCOOP model.

3.3. Intermediate representation

For the purpose of the formalization we assume that a program is given to us in an enriched intermediate
representation, where the syntactical elements are replaced with instances of abstract data types. In particular
we assume ADTs for class types, features, expressions, and instructions. We briefly summarize these ADTs
in figure 1.

The instances of the ADT CLASS TYPE are all possible class types, i.e. the types directly defined
by all non-generic classes and all possible generic derivations of all possible generic classes. We omit the
creation of such instances because it is not relevant for our formalization. We discuss in Section 4.1.3 how
we can get these instances. The class type ADT defines a name query name. Each class type can either be
a reference class type or an expanded class type. The queries is ref and is exp provide this information.
Each class type defines a number of features. These features can be divided into attributes, functions, and
procedures. An attribute of an object stores a value. A function performs a computation and returns the
result. This computation must not modify the state. A procedure performs a computation that modifies
the state. Functions and procedures are also known as routines. For each of these categories, the class type
ADT defines a query that returns a tuple of features. The query attributes returns a tuple of attributes, the
query functions returns a tuple of functions, and the query procedures returns a tuple of procedures. If the
name of a feature is known, then the query feature by name can be used to get the feature with that name.
Every class type can have an invariant. The query inv exists indicates whether such an invariant exists. In
case an invariant exists, it can accessed with the query inv as an expression. As one of the instances of
the CLASS TYPE ADT we assume an instance BOOLEAN . This class type is expanded and it has an
attribute with name item. The value of this attribute is the represented boolean value, i.e. an instance of
the BOOLEAN ADT.

In our formalization, a feature is an instance of the ADT FEATURE. We assume that these instances are
given to us in the intermediate representation. The name of the feature can be retrieved with the query name
and the formal arguments are given by the query formals that returns a tuple with the formal arguments
as entities. Whether or not the feature is a once feature can be determined using the query is once. The
queries pre and post return an expression for the precondition respectively the postcondition, provided that
the queries pre exists and post exists indicate that the assertions exist. Next, we have the query locals that
gives us the locals of the feature as entities. The query body returns the body of the feature as a tuple of
instructions. Each feature is either exported or not. A non-exported feature is only available in calls on the
current object within the class that declared the feature. An exported feature can be called by other clients
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+name : NAME

+formals : TUPLE

+is_once : BOOLEAN

+pre_exists : BOOLEAN

+pre : EXPRESSION

+post_exists : BOOLEAN

+post : EXPRESSION

+locals : TUPLE

+body : TUPLE

+is_exported : BOOLEAN

+class_type : CLASS_TYPE

FEATURE

ROUTINE

FUNCTION PROCEDURE ATTRIBUTE

+name : NAME

+context_feature : FEATURE

ENTITY

+feature_by_name(in name : NAME) : FEATURE

+name : NAME

+is_ref : BOOLEAN

+is_exp : BOOLEAN

+attributes : TUPLE

+functions : TUPLE

+procedures : TUPLE

+inv_exists : BOOLEAN

+inv : EXPRESSION

CLASS_TYPE

INSTRUCTION

ASSIGNMENT

IF_INSTRUCTION LOOP_INSTRUCTION

CREATION_INSTRUCTIONCOMMAND_CALL

EXPRESSION

QUERY_CALL

+obj : OBJECT

LITERAL

Figure 1. ADTS for the intermediate representation

as well. The query is exported returns whether a feature is exported or not. Lastly, ever feature has a link
to the class it belongs to. This is given by the query class type. This can be used for example to retrieve
the invariant that must be preserved by a feature. For each feature category we define an ADT that inherits
from the FEATURE ADT.

Expressions can either be entities, literals, or query calls. We introduce an ADT EXPRESSION whose
instances are all expressions. For each form of expression, we introduce an ADT that inherits from the
EXPRESSION ADT. For entities we introduce an ADT with a query name that returns the name of
an entity. A query context feature links an entity to the feature in which the entity is declared. A literal
is a character sequence that represents a constant value. As such, literals count as manifest expressions
- programming constructs whose values can be deduced by the compiler statically. We model literals as
instances of an ADT LITERAL. This ADT has instances for booleans, integers, characters, and the void
literal. Each literal except the void literal can be translated into an object with the query obj . This object
matches the literal in both type and value. We look at the object ADT later on in this article. The following
notation is used to describe instances of the EXPRESSION ADT:

e , w | b | e.f(e, . . . , e)

Here, w is an element of the LITERAL ADT, b is an instance of the ENTITY ADT, and f is an
instance of the FEATURE ADT. Note once again, that we reserve entity expressions for internal purposes.

For instructions we also introduce an ADT INSTRUCTION with ADTs for each kind of instruction.
The following notation is used to describe such instances:
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h ,

b := e |
e.f(e, . . . , e) |
create b.f(e, . . . , e) |
if e then [s{; s}∗] else [s{; s}∗] end |
until e loop [s{; s}∗] end

Here, s stands either for an instance of the INSTRUCTION ADT or an operation. Instructions are
actions that are explicit in the intermediate representation (user syntax). Operations are actions that do not
explicitly occur in the intermediate representation (run-time syntax).

Up until now we omitted the types. While it is possible to model this information as queries of the ADTs,
we build on an existing type formalization. As we will explain later, we assume the existence of a typing
environment that can be queried for type information.

3.4. Basic ADTs

We assume an ADT BOOLEAN for the two boolean values true and false along with the typical boolean
operators. We assume an ADT NAME for names and an ADT ID for identifiers.

Based on these ADTs, we have a generic ADT SET[G] whose instances are sets of elements with type G.
A set can be created with a call to the constructor make and it can be populated with a call to the command
add that takes an element and returns a new set containing the element. However, we prefer to define an
instance of this ADT with set inference or with a set expression {x1, . . . , xn}. A set can be inspected with the
query has that returns whether an element is part of the set or not. The ∈ notation is used as an equivalent
alias to the has query. A query is empty tells us whether the set is empty or not, and the query count returns
the number of elements in the set.

A tuple is an ordered list of elements. We assume a generic ADT TUPLE that takes zero or more generic
parameters for the types of each tuple element. Each generic parameter G restricts the set of possible tuples
to the ones who have an element of type G in the respective position. For example, the instances of the ADT
TUPLE without any generic parameters are all possible tuples. The instances of the ADT TUPLE[A] are
all tuples whose first elements are of type A. Note that this also includes tuples with more than one element,
as long as the first element is of type A. A tuple can be constructed with a call to the constructor make.
Elements can be added to the end of the tuple with a call to the command add . We prefer to construct
tuples with tuple expression (x1, . . . , xn). The query has checks whether an element is part of the tuple or
not and the query is empty checks whether the tuple is empty or not. The query count returns the number
of elements in the tuple.

Furthermore, we assume a generic ADT STACK[G] for stacks with elements of type G. A stack gets
constructed with a call to make. An element gets pushed with a call to push and is then available through
the query top. The element can then be popped with a call to pop. A query is empty returns whether the
stack is empty or not. We add a query flat that returns a set of type SET[G]. This set contains all the
elements in the stack.

Next, we assume an ADT MAP[K,G] for maps with keys of type K and values of type G. As the name
suggests, a map associates keys to values. A map gets constructed with a call to the constructor make. An
association can be added with a call to add where the first argument is the key and the second argument is
the value. The set of all possible keys can be retrieved with a call to the query keys. The value for a specific
key in this key set is returned by the query val .

4. State formalization

In this section we provide a formalization of the state of a SCOOP program. This is necessary to describe
the effect of SCOOP constructs on the state, as it is done later on. We start with some comments on the
general approach. Then we dive into the description of the state.
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4.1. General approach

We consider the state of a SCOOP program to be a data structure that can be created, modified, and
queried through features. We are mainly interested in the interface of the state data structure and we defer
the implementation of the data structure to other projects. For the specification of the state we use Liskov’s
ADT theory [15]. We begin with a justification of this choice. We finish the general comments with our
solution on identity management and an explanation of how to get types for elements in the intermediate
representation.

4.1.1. Abstract data types

Meyer’s work on a three-level approach to the description of data structure [18] defines three levels on
which a data structure can be described: functional, constructive, and physical. The functional specification
is an algebraic approach that uses an implicit characterization of the data structure. The constructive
specification provides a means to construct instances of the data structure. The instances constructed like
this are mathematical entities. A physical description describes the layout of instances in memory. The
constructive specification can be derived from the functional specification and the physical description can
be derived from the constructive description.

We describe the type of the state as an ADT on the functional level in the hierarchy described above.
This has several reasons. First of all, ADT theory allows us to describe the state on an abstract level without
dealing with aspects of the implementation. The constructive and the physical level can be derived from our
ADTs on the functional level. Second, ADT theory allows us to modularize the state. Different concerns of
the state can be modeled as individual ADTs, while a single ADT can be used to consolidate the individual
ADTs. This improves understandability and maintainability of the state description. Lastly, ADT theory is
well established and suitable for what we have to do.

An ADT t consists of queries, commands, and constructors. A query of t provides information about an
instance of t. The query takes as a first argument the target of type t, which is the instance to be queried.
Next to the target, the query can take further arguments with types t1, . . . , tn. Finally, the query returns a
result of a type tn+1. We write the declaration of this query as query : t→ t1 → . . .→ tn → tn+1. Note that
for flexibility reasons we use the curried form as used in Haskell instead of the equivalent Cartesian form
query : t× t1 × . . .× tn → tn+1. A command is used to modify an instance of t. However, instances of t are
mathematical objects and as such they do not get modified. A modified instance is a different instance. This
is reflected in the way a command gets declared. The declaration looks much like the one of a query. However,
the result of the command is an instance of t. The result is the updated target according to the semantics
of the command. A constructor of t creates a new instance of t. In contrast to query and commands, a
constructor does not take the target as the first argument because its purpose is to create a new instance.
However, a constructor can take a number of arguments.

To describe an instance of an ADT we can build an expression that starts with a constructor call. This
expression can then be used as the first actual argument of a command call. The resulting expression can
then be used as the first actual argument of the next command. This leads to a nested expression, in which
the first feature call is in the root of the expression and the last feature call is on the outside of the expression.
The instance described in such a way can then be queried. We find this functional notation hard to read.
Therefore we use an equivalent object-oriented notation in which the first feature call is on the left and the
last feature call is on the right. The main idea is to not to write targets as arguments, but to write a target
in front of the feature name and to use a dot to separate the two parts from each other. This leads to the
following translation between the functional notation and the object-oriented notation:

• The query expression query(e0, e1, . . . , en) written in functional notation is equivalent to the expression
e0.query(e1, . . . , en) written in object-oriented notation.

• The command expression command(e0, e1, . . . , en) written in functional notation is equivalent to the
expression e0.command(e1, . . . , en) written in object-oriented notation.

• The creation expression constructor(e1, . . . , en) for an instance of an ADT t written in functional notation
is equivalent to the expression new t.constructor(e1, . . . , en) written in object-oriented notation.

Example 1 (Functional notation versus object-oriented notation) The expression in functional no-
tation is empty(pop(push(new STACK[PROC].make, p))) can be written in object-oriented notation as
new STACK[PROC].make.push(p).pop.is empty . �
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Each feature can have a precondition that must be satisfied before the feature gets called. A precondition
is expressed as a number of assertions on the target and the arguments. A feature with a precondition
is a partial feature. A partial feature is a feature whose domain is restricted. We indicate such a partial
feature with a crossed arrow 9 after the type of each formal argument that got restricted by the feature’s
precondition. For non-restricted formal arguments we use the normal arrow →. The effect of an ADT
command is described in a number of axioms. We deviate from the practice of bundling all axioms for a
specific ADT. Instead, we write all the axioms for a specific feature in a single feature declaration. Note that
we do not aspire a sufficiently complete ADT because it would lead to rule explosion. An ADT is sufficiently
complete if its axioms make it possible to reduce any query expression to a form that does not involve an
instance of the ADT. This requires that the axioms describe the effect of each command on each query. We
follow the practice to describe the effect of each command of an ADT on all the queries of the ADT that
have been changed by the command. Unmentioned queries are unchanged.

Example 2 (Command declaration) The following declaration shows a command to set the value of an
attribute f of an object o to the value v. The value can either be a reference or a processor. The command
takes the object as the target and returns an updated object whose attribute value is set.

set att val : OBJ→ FEATURE 9 REF ∪PROC→ OBJ

o.set att val(f, v) require

o.class type.attributes.has(f)

axioms

o.set att val(f, v).att val(f) = v

The command states in its precondition that the class type of the target object o must have an attribute
f . This is expressed as an assertion after the require keyword. The part in front of the require keyword is
used to give names to the target and to the arguments. Note that the precondition makes the command
partial. The updated object has the value of its attribute f set to v. This is stated as an axiom after the
ensure keyword. �

So far we looked at queries, commands, and constructors for ADTs. We extend the ADT theory with
the notion of auxiliary features. Auxiliary features are convenience features that are not essential for the
definition of the ADT, but nevertheless useful. In the remaining of this article we will declare various ADTs
to model the state of a SCOOP program. Unless it would create confusion, we will use the same name for
an instance of an ADT and for the corresponding domain element. For example, we will call the instance of
the OBJ ADT an object.

4.1.2. Identifier management

Our formalization models objects, references, and processors. All of these domain elements have an identity.
These identities are automatically managed by the runtime system. The work by Khoshafian and Copeland
[13] on different levels of object identity provides good reasons for this decision. They introduce a scale that
starts with identities given by the value, goes on with user-supplied identities, and ends with built-in identi-
ties. Built-in identities have the advantage that the identities are preserved in case of user modifications. For
example, if an object gets updated with a new attribute value then the identity of the object is preserved.
According to this hierarchy, our domain elements have a built-in identity. We must model this in our formal-
ization. One straightforward way is to model each domain element as an instance of an ADT. However, with
this direct approach we do not properly capture the identities of our domain elements because the identity
of an ADT instance is not built-in but based on its value. A user modification of an ADT instance leads to
an ADT instance with a new identity. For example, if an ADT instance that models an object gets updated
with a new attribute value then we get an ADT instance with a new identity. In this section we describe a
way to introduce built-in identities for ADT instances.

In short, explicit identifiers are used to model domain elements with an identity. To model a single domain
element, we use a number of ADT instances of the same ADT. This ADT defines an identity query. Each of
these ADT instances has the same value for the identity query at all times. A modification of the domain
element can then be modeled as a new ADT instance based on an existing ADT instance where the value of
the identity query is preserved and all other queries modulo the modification are preserved.
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For this to work, we must somehow ensure that no two ADT instances that model different domain
elements have the same identity. We ensure this with a fresh identifier for each ADT instance that is used
to model a new domain element. We then preserve the built-in identity of the ADT instance in every
modification. For this, we make use of a universal stateful query new id that returns a fresh identifier.

4.1.3. Typing Environment

Nienaltowski [22] presented a formalization of the SCOOP type system for a core of SCOOP called SCOOPC.
We base our work on this formalization because it only requires minor extensions to be reused for our pur-
poses. We want to get the types of features and expressions. We are also interested in whether an expression
is controlled or not. All of this information can be retrieved from Nienaltowski’s typing environment Γ and
his type rules. The typing environment contains the class hierarchy of a SCOOP program along with all the
type definitions of all features and entities. The type rules are based on the typing environment. They allow
us to derive conclusion based on the typing environment.

We use the notation Γ ` e : t to denote that we can derive from Γ that expression e is of type t. Based
on this derivation we introduce the function type of (Γ, e) to denote the type of expression e in the typing
environment Γ. A type t is a triple (d, p, c). The component d is the detachable tag, p is the processor tag, and
c is the class type. The detachable tag d captures detachability. An entity of attached type, written as d = !,
is statically guaranteed to be non-void. An entity of detachable type, written as d = ?, can be void. As we
discuss later, the detachable tag is also used for the selective locking mechanism to prevent a request queue
from being locked. The processor tag p captures the locality of objects accessed by an entity of type t. The
processor tag p can be separate, written as p = >. The object attached to the entity of type t is potentially
handled by a different processor than the current processor. The processor tag p can be explicit, written as
p = α. The object attached to the entity of type t is handled by the processor specified by α. The processor
tag p can be non-separate, written as p = •. The object attached to the entity of type t is handled by the
current processor. The processor tag p can denote no processor, written as p = ⊥. It is used to type the
void reference. A processor can be specified more explicitly. This can be done either in an unqualified or a
qualified way. An unqualified explicit processor specification is based on a processor attribute p. We write it
as < p >. The processor attribute p must have the type (!, •,PROCESSOR) and it must be declared in the
same class as the explicit processor specification or in one of the ancestors. The processor denoted by this
explicit processor specification is the processor stored in p. A qualified explicit processor specification relies
on an entity e occurring in the same class as the explicit processor specification or in one of the ancestors. We
write it as < e.handler >. The entity e must be a non-writable entity of attached type and the type of e must
not have a qualified explicit processor tag. The processor denoted by this explicit processor specification is
the same processor as the one of the object referenced by e. Explicit processor tags support precise reasoning
about object locality. Entities declared with the same processor tag represent objects handled by the same
processor. Last but not least, the class type c is an instance of CLASS TYPE.

The type rules can be used to check whether an expression is controlled or not. In a SCOOP program,
each processor p that wants to apply a feature f must make sure that all the processors (q1, . . . , qn) of all
attached actual arguments of f are exclusively available on behalf of processor p. This guarantees exclusive
access on all objects handled by processors {p, q1, . . . , qn}. Note that processor p is in this set too because p
can exclusively access its objects during a feature execution. For safety, the type system only allows feature
calls in f on expressions, where the type system can derive that the value of the expression is a reference
to an object and this object is handled by one of the processors {p, q1, . . . , qn}. Such an expression is called
controlled. Whether or not an expression is controlled can be determined through the context in which the
expression appears and the type of the expression. The context can either be the enclosing class, in case
of expressions in invariants, or it can be the enclosing feature, in case of all other expressions. To be more
precise, an expression e of type t = (d, p, c) is controlled if and only if t is attached, i.e. d = !, and t satisfies
at least one of the following conditions:

• The expression e is non-separate, i.e. p = •.
• The expression e appears in a routine f that has an attached formal argument w with the same handler

as e, i.e. p = w.handler .

The second condition is satisfied if and only if at least one of the following conditions is true:

• The expression e appears as an attached formal argument of f .
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• The expression e has a qualified explicit processor specification w.handler and w is an attached formal
argument of f .

• The expression e has an unqualified explicit processor specification p, and some attached formal argument
of f has p as its unqualified explicit processor specification.

We write Γ ` is controlled(t) to say that we can derive from Γ that an expression e of type t is controlled.
To establish the derivation Γ ` is controlled(t) one has to find an attached formal argument w in the

enclosing routine such that the types suggest that w and e are handled by the same processor or one
has the establish that the type t is non-separate. We can therefore be sure that whenever an expression e
is controlled, either a matching formal argument exists or its type is non-separate. For the first case, we
call this formal argument the controlling entity for e. For the second case, we call the current entity the
controlling entity. Although not present in Nienaltowski’s formalization of the type system, we introduce a
new derivation Γ ` y = controlling entity(e) that returns the controlling entity y for an expression e as an
instance of ENTITY. This notion is essential to determine the handler of any controlled expression without
evaluating the expression. We can simply determine the controlling entity and then determine the handler
of the controlling entity. This is important to formalize the conditions for the asynchronous postcondition
evaluation.

4.2. Components of the state

We divide the state into three parts: the regions, the heap, and the store. The main purpose of the heap is to
keep track of objects and to maintain the mapping of references to objects. It also maintains the once status
of once routines, i.e. whether a once routine is fresh on a processor. The regions manage the association
between objects and processors. Objects that are handled by the same processor form a region. The regions
are also concerned with locking. The store is a map of names to references. This is used to map names of
formal argument, names of local variables, the name of the current object entity, and the name of the result
entity to references.

We model the state with a state ADT that has one query for each of the three parts:

regions : STATE→ REGIONS

heap : STATE→ HEAP

store : STATE→ STORE

Before we give further details of the state ADT we will introduce one ADT for each of the parts. We
then declare auxiliary features in the state ADT to construct a facade. The facade provides an abstraction
on top of the three parts. This abstraction makes the execution formalization easier.

4.3. Heap ADT

The heap keeps track of the objects and the references associated to them. It also keeps track of the status
of once routines. We first define an ADT for objects and references and then we introduce a heap ADT.

4.3.1. Objects and references

There are two kinds of class types in the SCOOP type system: reference class types and expanded class types.
The main difference lies in the semantics of using an instance of the types as the source of an attachment,
such as assignment or argument passing. If an object of reference class type is the source of an attachment
then the reference to the object gets copied over to the destination of the attachment. The object is then
accessible both through the source of the attachment as well as through the destination of the attachment.
If an object of expanded class type is the source of an attachment then a copy of the object gets attached to
the destination of the attachment. The details can be found in Section 7.4 of the Eiffel ECMA standard [9].

In our formalization we take a unified view on objects and references that is compatible with the semantics
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described in the Eiffel ECMA standard. We do not consider objects of expanded class type as sub-objects
in other objects or in an environment. Instead we locate expanded objects on the heap, just like objects
of reference class type. For each object we have exactly one reference. Assigning references to objects of
expanded type has one major advantage for the formalization. If an ADT instance x that models an object y
gets updated then we get a new ADT instance z. If we would model expanded objects as sub-objects stored
in other objects or in environments then such an update might trigger a cascade of ADT instance updates.
Each ADT instance that has x as a query value has to be updated with y, and so on. A consequent use of
references avoids this issue. An update can be handled by redirecting the reference to x to y.

In the following we show an ADT for references. We define an ADT for references with an identity query
and a constructor. The empty reference void is an instance of this ADT.

id : REF→ ID

make : REF

axioms

make.id = new id

Next, we show an ADT for objects. We start with a number of queries. Each object has an identifier, a
class type, and attribute values for each attribute. An object can only have attribute values for attributes
that are defined in its class type.

id : OBJ→ ID

class type : OBJ→ CLASS TYPE

att val : OBJ→ FEATURE 9 REF ∪PROC

o.att val(f) require

o.class type.attributes.has(f)

An object can only be modified with the command set att val . Only the attribute values for attributes
that are defined in the class type can be modified. The result is an updated object where the attribute value
of f is set to v. Note that the value can either be a reference or a processor. Processor values are necessary
to support processor attributes. We introduce the PROC ADT later on.

set att val : OBJ→ FEATURE 9 REF ∪PROC→ OBJ

o.set att val(f, v) require

o.class type.attributes.has(f)

axioms

o.set att val(f, v).att val(f) = v

The constructor make can be used to create a new object. It creates a new object with the given class
type. The new object has a new identifier that is given by the query new id . The constructor initializes all
the attribute values of the new object with the void reference void .
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make : CLASS TYPE→ OBJ

axioms

make(c).id = new id

make(c).class type = c

∀i ∈ {1, . . . , n} : make(c).att val(ai) = void

where

{a1, . . . , an}
def
= c.attributes

An object can also be copied with the auxiliary query copy . This is relevant for expanded objects with
a copy semantics. The copied object has the same class type and the same attribute values as the original
object, but it has a new identity. The new identity comes from the call to the constructor make.

copy : OBJ→ OBJ

axioms

o.copy = make(o.class type)

.set att val(a1, o.att val(a1))

. . . .

.set att val(an, o.att val(an))

where

n
def
= o.class type.attributes.count

{a1, . . . , an}
def
= o.class type.attributes

4.3.2. Mapping from references to objects

We introduce a heap ADT that makes use of the ADTs for objects and references to model the mapping
from references to objects. For this purpose we declare the query objs to store all the objects on the heap
and we declare the query refs to get all the references to these objects. The reference void is not part of the
reference set. We also declare the query last added obj to keep track of the last object that has been added
to the heap. We use this query to define the effect of adding an object to the heap. The query ref obj defines
the actual mapping. For each reference in refs an object in objs gets returned.

objs : HEAP→ SET[OBJ]

refs : HEAP→ SET[REF]

ref obj : HEAP→ REF 9 OBJ

h.ref obj (r) require

h.refs.has(r)

last added obj : HEAP→ OBJ

h.last added obj require

¬h.objs.is empty

We define a number of commands to add objects and to alter the mapping of references to objects. The
command add obj takes an object o and adds it to the heap. The result of the command is a new heap
with the object o and a new reference that points to o. The newly added object is indicated in the query
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last added obj . Note that this command does not create a new object. It simply adds an object that has
been provided as an argument. The command requires that the object is not yet part of the heap.

add obj : HEAP→ OBJ 9 HEAP

h.add obj (o) require

∀u ∈ h.objs : u.id 6= o.id

∀a ∈ o.class type.attributes : o.att val(a) ∈ REF→ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))

axioms

h.add obj (o).objs = h.objs ∪ {o}
h.add obj (o).refs = h.refs ∪ {r}
h.add obj (o).ref obj (r) = o

h.add obj (o).last added obj = o

where

r
def
= new REF.make

If an object that is already part of the heap gets updated then it is necessary to update the mapping
from the reference to the object on the heap. This can be done with the command update ref that takes a
reference r and an updated object o and returns a heap where the reference r points to o. The command
requires that r is a valid reference and that o is an updated version of the original object. Because the
remaining part of the state only deals with references rather than objects directly, a reference update does
not require an update of these parts.

update ref : HEAP→ REF 9 OBJ 9 HEAP

h.update ref (r, o) require

h.refs.has(r)

o.id = h.ref obj (r).id

∀a ∈ o.class type.attributes : o.att val(a) ∈ REF→ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))

axioms

h.update ref (r, o).objs.has(o)

o 6= h.ref obj (r)→ ¬h.update ref (r, o).objs.has(h.ref obj (r))

h.update ref (r, o).ref obj (r) = o

h.last added obj = h.ref obj (r)→ h.update ref (r, o).last added obj = o

So far we have defined the mapping from references to objects. Occasionally it is necessary to have the
inverse mapping. The commands add obj and update ref ensure that there is a exactly one reference for
every object on the heap. Thus it is possible to define the inverse query ref as an auxiliary query.

ref : HEAP→ OBJ 9 REF

h.ref (o) require

h.objs.has(o)

axioms

h.ref obj (h.ref (o)) = o

4.3.3. Once routines

A once routine can either be a once function or a once procedure. A once routine gets executed at most
once in a certain context. If a once routine has been executed in a the context then it is called non-fresh in
the context. Otherwise it is called fresh in the context. The context is either the set of all processors in the
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system or a single processor. We use the heap to remember which once routines are fresh. For this purpose,
we refine the heap ADT and declare the queries is fresh and once result . For any processor p and any once
routine f , the query is fresh states whether f is fresh on p or not. For a once function f that is not fresh on
a processor p the query once result returns the result of f on p.

is fresh : HEAP→ PROC→ FEATURE 9 BOOLEAN

h.is fresh(p, f) require

f.is once

once result : HEAP→ PROC→ FEATURE 9 REF

h.once result(p, f) require

f ∈ FUNCTION ∧ f.is once

¬h.is fresh(p, f)

We declare two commands to change the once status of a fresh once routine to non-fresh. One version is
used for once functions and the other one for once procedures. Both commands take the once routine f and
the processor p. The version for once functions also takes a once result r. The two commands implement the
semantics for once routines: A once routine has either a once per system or a once per processor semantics.
Once functions declared as separate with or without an explicit processor specification have the once per
system semantics. In this case, the command set once func not fresh defines f as non-fresh on all processors.
Once functions with a non-separate result type have the once per processor semantics. In this case, the
command set once func not fresh sets f as non-fresh on p with the once result r. Once procedures have the
once per processor semantics. In this case, the command set once proc not fresh sets f as non-fresh on p.
We use the typing environment Γ to get the type of once routines.

set once func not fresh : HEAP→ PROC→ FEATURE 9 REF 9 HEAP

h.set once func not fresh(p, f, r) require

f ∈ FUNCTION ∧ f.is once

r 6= void → h.refs.has(r)

axioms

(∃d, c : Γ ` f : (d, •, c))→
h.set once func not fresh(p, f, r).is fresh(p, f) = false∧
h.set once func not fresh(p, f, r).once result(p, f) = r

(∃d, c : Γ ` f : (d, p, c) ∧ p 6= •)→ ∀q ∈ PROC :

h.set once func not fresh(p, f, r).is fresh(q, f) = false∧
h.set once func not fresh(p, f, r).once result(q, f) = r

set once proc not fresh : HEAP→ PROC→ FEATURE 9 HEAP

h.set once proc not fresh(p, f) require

f ∈ PROCEDURE ∧ f.is once

axioms

h.set once proc not fresh(p, f).is fresh(p, f) = false

4.3.4. Creation

A new heap can be created with the constructor make. A new heap has no objects and no references. All once
routines are marked as fresh on all processors. Note that we do not make any assumptions on processors, as
the heap does not know about the processors in the system. Later on, we take a look at how to guarantee
consistency between the heap and the regions.
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make : HEAP

axioms

make.objs.is empty

make.refs.is empty

∀p ∈ PROC, f ∈ FEATURE : f.is once → make.is fresh(p, f) = true

4.4. Regions ADT

We partition the heap into disjunct regions and assign each region to exactly one processor. This concept
relates to the concept of a ken in Schmidt’s work on reasoning about concurrent objects [28]. The processor
of a region is the handler of all the objects in the region. Regions are also used to maintain locks. In the
following we first describe an ADT for processor and then use it to describe an ADT for regions.

4.4.1. Processors

A processor is an autonomous thread of control capable of executing features on objects. Every processor
is responsible for a set of objects. As such a processor is called the handler of its associated objects. Every
object is assigned to exactly one processor that is the authority of feature executions on this object. If a
processor q wants to call a feature on an object handled by a different processor p then q needs to send a
feature request to processor p. This is where the request queue of processor p comes into place. The request
queue keeps track of features to be executed on behalf of other processors. Processor q can add a request to
this queue and processor p will execute the request as soon as it executed all previous requests in the request
queue. Processor p uses its call stack to execute the feature request at the beginning of the request queue.
The call stack is responsible for the order of feature executions on the same processor. In a situation of a
non-separate call, the call stack ensures that the calling feature execution resumes once the called feature
execution terminated. The interaction between the call stack and the request queue is best described with
the following loop through which every processor goes:

1. Idle wait: If both the call stack and the request queue are empty then wait for new requests to be
enqueued.

2. Request scheduling: If the call stack is empty but the request queue is not empty then dequeue an item
and push it onto the call stack.

3. Request processing: If there is an item on the call stack then pop the item from the call stack and process
it. If the item is a feature request then apply the feature. If the items is an operation then execute the
operation.

For every processor there is a request queue lock and a call stack lock. A lock on the request queue grants
permission to add a feature request to the end of the request queue. A lock on the call stack grants permission
to add a feature request to the top of the call stack. Later on we formalize the call stack and the request
queue as we introduce action queues. Before processor q can add a request to p’s request queue, it must
have a lock on this request queue. Otherwise another processor could intervene. Once processor q is done
with the request queue of processor p it can add an unlock operation to the end of the request queue. This
makes sure that the request queue lock of p will be released after all the previous feature requests have been
executed. Similarly, processor p must have a lock on its call stack to add features to its call stack. Initially,
every processor has a lock on its own call stack and its request queue is not locked.

Processor q could also make a synchronous call to p. However q might be in possession of some locks that
are necessary for the execution the resulting feature request on p. In such a situation, q is waiting for the
synchronous call to terminate and p is waiting for locks to be available. According to the conditions given
by Coffman et al [8] a deadlock occurred. This can be avoided if q temporarily passes its locks to the p. This
allows p to finish the execution and hence q can continue. This operation is called lock passing, which we
discuss in more details later on.

Clarification 1 (Request queue locks and call stack locks) The notion of request queue locks and call
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stack locks was not present in Nienaltowski’s [22] definition of SCOOP. He defines one lock for each processor.
A lock on a processor means exclusive access to the whole processor. This lock model is not sufficient to
describe SCOOP. 1 In particular, this lock model creates a contradiction with respect to separate callbacks.
A separate callback is a feature call in which processor q made a direct or indirect call to processor p and
now p is calling back processor q. The separate callback is only possible, if p has a lock on q. However, p
does not necessarily have this lock because the lock might be in possession of the processor that locked q in
the first place. Request queue locks and call stack locks allow us to clarify the situation. Thus we propose a
new lock model with request queue locks and call stack locks.

We consider the lock model used in Nienaltowski’s work [22] as an abstraction of our lock model. The
abstraction works under the assumption that no processor passes its locks. Under this assumption every
processor keeps its call stack lock. In this abstraction we call the request queue lock on a processor p simply
the lock on p. As long as the call stack lock on a processor p is in possession of p, a request queue lock on p
in possession of a processor q means that processor p will be executing new feature requests in the request
queue exclusively on behalf of q. This means that a request queue lock grants exclusive access to all the
objects handled by p. Transferring this insight to our abstractions, a lock on processor p denotes exclusive
access to the objects handled by p. �

After this informal explanation of processors, we introduce an ADT for processors. A processor only has
an identifier stored in the query id .

id : PROC→ ID

The constructor make returns a new processor with a fresh identifier. The fresh identifier is defined
through the query new id .

make : PROC

axioms

make.id = new id

The ADT for processors is very simple. It neither takes care of the mapping from processors to the handled
objects nor does it take care of the locks. These aspects are taken care of by the ADT for regions. The reason
for this design decision comes once again from the fact that updating an ADT instance creates a new ADT
instance that could cause a cascade of updates. Unfortunately, we do not have the notion of references for
processors and therefore we cannot apply the technique that helped us for objects. Our solution is to make
processors immutable and to deal with the mentioned aspects in the regions ADT where an update is simple
because regions are stored in a single query in the state.

4.4.2. Mapping of processors to objects and locking

In this section, we introduce an ADT for regions. The regions ADT declares a query procs that keeps track
of all the processors in the system. The query handled objs defines a set of handled objects for each processor
in procs. Finally, the query last added proc denotes the last processor that has been added to procs.

procs : REGIONS→ SET[PROC]

handled objs : REGIONS→ PROC 9 SET[OBJ]

k.handled objs(p) require

k.procs.has(p)

1 We thank Stephan van Staden for interesting discussions on this topic.
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last added proc : REGIONS 9 PROC

k.last added proc require

¬k.procs.is empty

Next to the queries that are concerned with the mapping from processors to objects, there are a number
of queries that deal with locking. The feature is rq locked states whether the request queue of a processor
in procs is locked or not. Similarly, the feature is cs locked states whether the call stack is locked.

The remaining queries are used to specify the owners of the locks. For this, we distinguish between
obtained and retrieved locks. Obtained locks are locks that got acquired by a processor. Retrieved locks are
locks that got passed from another processor.

The query obtained rq locks returns a stack of obtained processor sets for a processor. We use a stack
of sets to model the way processors acquire locks: They go through a nested series of feature applications
and each feature application requires a set of locks before the feature can be executed. For each feature
application we add a new set on top of the stack and as soon as the feature application finished, the top set
gets removed from the stack. The query obtained cs lock returns the acquired call stack lock of a processor.
Initially every processor starts with a lock on its own call stack and this call stack lock never changes. Thus
this query is only declared for reasons of completeness. Note that we use a processor itself to denote either
its request queue lock or its call stack lock. If a processor appears in a set of request queue locks then the
processor denotes its request queue lock. If a processor appears in a set of call stack locks then the processor
denotes its call stack lock. We follow this scheme because we do not want to introduce an ADT for locks.

A processors can pass its locks to another processor. There are several queries to formalize this aspects.
The features retrieved rq locks and retrieved cs locks return the retrieved locks of a processor. Both of these
queries return a stack of sets. The stack is used to keep track of the set of retrieved locks for each feature
application. These two stacks grow and shrink in parallel to the stack obtained rq locks. Once a processor
passed its locks, it cannot use them anymore until the locks are revoked. The query are locks passed returns
whether a processor passed some or all of its locks or not.

is rq locked : REGIONS→ PROC 9 BOOLEAN

k.is rq locked(p) require

k.procs.has(p)

is cs locked : REGIONS→ PROC 9 BOOLEAN

k.is cs locked(p) require

k.procs.has(p)

obtained rq locks : REGIONS→ PROC 9 STACK[SET[PROC]]

k.obtained rq locks(p) require

k.procs.has(p)

obtained cs lock : REGIONS→ PROC 9 PROC

k.obtained cs lock(p) require

k.procs.has(p)

retrieved rq locks : REGIONS→ PROC 9 STACK[SET[PROC]]

k.retrieved rq locks(p) require

k.procs.has(p)

retrieved cs locks : REGIONS→ PROC 9 STACK[SET[PROC]]

k.retrieved cs locks(p) require

k.procs.has(p)
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are locks passed : REGIONS→ PROC 9 BOOLEAN

k.are locks passed(p) require

k.procs.has(p)

We study these queries in more details as we discuss the commands that operate on them. In the following
we first go through the list of commands that add processors and commands that change the association of
processors to objects. We then proceed with the commands that handle locks.

The command add proc updates the regions with a new processor. Note that the processor must have
been created beforehand. The axioms state that the new processor will be included in procs and that it will
be stored in last added proc. The axioms also state how the new processor is initialized. The new processor’s
request queue is unlocked and its call stack is locked. Apart from the initial lock on the call stack there are
no obtained or retrieved locks and hence the processor did not pass its locks.

add proc : REGIONS→ PROC 9 REGIONS

k.add proc(p) require

¬k.procs.has(p)

axioms

k.add proc(p).procs.has(p)

k.add proc(p).last added proc = p

k.add proc(p).handled objs(p).is empty

k.add proc(p).is rq locked(p) = false

k.add proc(p).is cs locked(p) = true

k.add proc(p).obtained rq locks(p).is empty

k.add proc(p).obtained cs lock(p) = p

k.add proc(p).retrieved rq locks(p).is empty

k.add proc(p).retrieved cs locks(p).is empty

k.add proc(p).are locks passed(p) = false

The command add obj takes a processor p in procs and an object o that is not handled by a processor
in procs yet. It returns the updated regions in which o is handled by p.

add obj : REGIONS→ PROC 9 OBJ 9 REGIONS

k.add obj (p, o) require

k.procs.has(p)

∀q ∈ k.procs, u ∈ k.handled objs(q) : u.id 6= o.id

axioms

k.add obj (p, o).handled objs(p).has(o)

In the opposite direction, the command remove obj removes an object that is handled by a processor in
procs from the regions.

remove obj : REGIONS→ OBJ 9 REGIONS

k.remove obj (o) require

∃p ∈ k.procs : k.handled objs(p).has(o)

axioms

¬∃p ∈ k.procs : k.remove obj (o).handled objs(p).has(o)

In the following, we discuss the commands that deal with the locking aspects of the regions. We declare
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a command lock rqs to lock the request queues of a set of processors q on behalf of a processor p. None of
these request queues must be locked beforehand.

lock rqs : REGIONS→ PROC 9 SET[PROC] 9 REGIONS

k.lock rqs(p, l) require

k.procs.has(p)

∀x ∈ l : k.procs.has(x)

∀x ∈ l : k.is rq locked(x) = false

axioms

k.lock rqs(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)

∀x ∈ l : k.lock rqs(p, l).is rq locked(x)

At some point, processor p will not require the obtained request queue locks anymore because p made
sure to enqueue all necessary features requests. The command pop obtained rq locks is used by processor p
to remove his claims on the obtained request queue locks. This requires that processor p is in possession of
these locks, i.e. that p did not pass its locks.

pop obtained rq locks : REGIONS→ PROC 9 REGIONS

k.pop obtained rq locks(p) require

k.procs.has(p)

¬k.obtained rq locks(p).is empty

k.are locks passed(p) = false

axioms

k.pop obtained rq locks(p).obtained rq locks(p) = k.obtained rq locks(p).pop

Removing the locks from p’s obtained request queue locks stack does not mean that these request queues
are unlocked. It just means that the request queue locks are not claimed by p anymore and therefore p will not
enqueue further feature requests on the respective processors. The request queues remain locked until they
get unlocked with a call to the command unlock rq . As we discuss later, this happens after the processors
whose request queues got locked by p finished all the requested feature applications. The precondition of the
command states that a request queue can only be unlocked if it is not claimed by any other processor. This
precondition guarantees that the request queue can only be unlocked when it is not used as an obtained or
retrieved lock by any other processor anymore. Note that there is no unlock command for call stack locks
because the call stack never gets unlocked.

unlock rq : REGIONS→ PROC 9 REGIONS

k.unlock rq(p) require

k.procs.has(p)

k.is rq locked(p) = true

∀q ∈ k : ¬k.obtained rq locks(q).flat .has(p)

axioms

k.unlock rq(p).is rq locked(p) = false

We just saw that the request queues remain locked until explicitly unlocked with a call to unlock rq .
Between the call to pop obtained rq locks and the call to unlock rq , the owner of these locks is undefined.
In some situations this is not satisfactory. A different solution must be found if another processor wants
to claim the locks until they are unlocked. We declare the command delegate obtained rq locks to serve for
this purpose. The command takes a processor p and a number of processors l and makes p the owner of the
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request queue locks of all processors in l by adding these locks to the obtained request queue locks stack of
p. This can only work if there is no current owner and the request queues are indeed locked.

delegate obtained rq locks : REGIONS→ PROC 9 SET[PROC] 9 REGIONS

k.delegate obtained rq locks(p, l) require

k.procs.has(p)

∀x ∈ l : k.procs.has(x)

∀x ∈ l : ¬∃y ∈ k.procs : k.obtained rq locks(y).flat .has(x)

∀x ∈ l : k.is rq locked(x) = true

axioms

k.delegate obtained rq locks(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)

Delegation is different from lock passing: delegation is the permanent transfer of ownership and lock
passing is the temporary transfer of the right to use the locks. In the following, we look at the commands
to pass and revoke locks. The command pass locks takes a processor p and a processor q as well as a set
of request queue locks lr along with a set of call stack locks lc. The result is an updated instance of the
REGIONS ADT in which lr and lc have been passed from p to q. As a precondition for this task, processor
p must be in possession of all these locks. This means that all the locks in lr and lc must be obtained or
retrieved locks of p and the locks must not be passed. In addition, we must remember that some or all of p’s
locks have been passed. However, because the two sets of locks can potentially be empty, we only mark p’s
locks as passed, if at least one of the two sets of locks is non-empty. Lastly, we must take care of one special
case of the lock passing operation. If a processor q different from processor p passed its locks in a previous
lock passing operation and now we pass these locks back to q then we have to mark the locks of processor q
as not passed. As we discuss later on, this case is important to handle separate callbacks.

pass locks : REGIONS→ PROC 9 PROC 9 TUPLE[SET[PROC],SET[PROC]] 9 REGIONS

k.pass locks(p, q, (lr, lc)) require

k.procs.has(p) ∧ k.procs.has(q)

∀x ∈ lr : k.procs.has(x) ∧ ∀x ∈ lc : k.procs.has(x)

∀x ∈ lr : k.obtained rq locks(p).flat .has(x) ∨ k.retrieved rq locks(p).flat .has(x)

∀x ∈ lc : x = k.obtained cs lock(p) ∨ k.retrieved cs locks(p).flat .has(x)

k.are locks passed(p) = false

axioms

k.pass locks(p, q, (lr, lc)).are locks passed(p) =

{
true if ¬lr.is empty ∨ ¬lc.is empty
false otherwise

k.pass locks(p, q, (lr, lc)).retrieved rq locks(q) = k.retrieved rq locks(q).push(lr)

k.pass locks(p, q, (lr, lc)).retrieved cs locks(q) = k.retrieved cs locks(q).push(lc)
p 6= q∧
k.are locks passed(q) = true∧
k.obtained rq locks(q).flat ⊆ lr∧
k.retrieved rq locks(q).flat ⊆ lr∧
k.obtained cs lock(q) ∈ lc∧
k.retrieved cs locks(q).flat ⊆ lc

→ k.pass locks(p, q, (lr, lc)).are locks passed(q) = false

The command revoke locks takes a processor p and a processor q. It reverses the effect of a lock passing
operation from a processor p to q and returns an updated instance of the k ADT. This is only allowed, if
processor p passed locks to q in a preceding lock passing operation. Note that the lock passing operation
from p to q potentially marked the locks of q as not passed after they were marked as passed before the
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lock passing operation. Revoking the locks from q to p requires the reverse action. If p has retrieved locks in
common with the locks of q, even after the retrieved locks from p have been removed from q, then q’s locks
must be marked as passed because they are now in possession of p.

revoke locks : REGIONS→ PROC 9 PROC 9 REGIONS

k.revoke locks(p, q) require

k.procs.has(p) ∧ k.procs.has(q)

¬k.retrieved rq locks(q).is empty ∧ ¬k.retrieved cs locks(q).is empty

k.retrieved rq locks(q).top ⊆ k.obtained rq locks(p).flat ∪ k.retrieved rq locks(p).flat

k.retrieved cs locks(q).top ⊆ {k.obtained cs lock(p)} ∪ k.retrieved cs locks(p).flat

k.retrieved rq locks(q).top ∪ k.retrieved cs locks(q).top 6= {} → k.are locks passed(p) = true

k.are locks passed(q) = false

axioms

k.revoke locks(p, q).are locks passed(p) = false

k.revoke locks(p, q).retrieved rq locks(q) = k.retrieved rq locks(q).pop

k.revoke locks(p, q).retrieved cs locks(q) = k.retrieved cs locks(q).pop

p 6= q∧

∃x ∈ k.retrieved rq locks(p).flat : (
k.obtained rq locks(q).flat .has(x)∨
k.retrieved rq locks(q).pop.flat .has(x)

)∨
∃x ∈ k.retrieved cs locks(p).flat : (
x = k.obtained cs lock(q)∨
k.retrieved cs locks(q).pop.flat .has(x)

)




→ k.revoke locks(p, q).are locks passed(q) = true

With these commands, we can wrap up the mapping of processors to objects and the locking aspects of
the ADT for regions. We are now at the point to introduce a number of auxiliary queries to simplify access
to the presented queries. We saw that the command add obj makes sure that a processor is assigned to
each object that gets added. This mapping is available through the query handled objs. Thus it is possible
to define an auxiliary query handler that is inverse to the query handled objs in a sense that whenever an
object o is in the set of handled objects for a processor p then handler will return p for o.

We introduced four different categories of locks that each processor can have. For both the request queue
locks and the call stack locks, we have queries for obtained and retrieved locks. In some situations it is easier
to just work with request queue locks and call stack locks without splitting them into obtained and retrieved
locks. The auxiliary queries rq locks and cs locks serve this purpose. The auxiliary query rq locks returns
a set that contains all the obtained and the retrieved request queue locks of a processor p. Similarly, the
auxiliary query cs locks returns all the call stack locks of a processor p.

handler : REGIONS→ OBJ 9 PROC

k.handler(o) require

∃p ∈ k.procs : k.handled objs(p).has(o)

axioms

k.handled objs(k.handler(o)).has(o)
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rq locks : REGIONS→ PROC 9 SET[PROC]

k.rq locks(p) require

k.procs.has(p)

axioms

k.rq locks(p) = k.obtained rq locks(p).flat ∪ k.retrieved rq locks(p).flat

cs locks : REGIONS→ PROC 9 SET[PROC]

k.cs locks(p) require

k.procs.has(p)

axioms

k.cs locks(p) = {k.obtained cs lock(p)} ∪ k.retrieved cs locks(p).flat

4.4.3. Creation

We declare a single constructor make that creates a new instance of the REGIONS ADT. The new instance
has no processors.

make : REGIONS

axioms

make.procs.is empty

4.5. Store ADT

Each processor in the system has a call stack to execute features. Every time a processor executes a feature,
a new call stack frame gets created on top of the call stack. The new call stack frame is used to store the
values of formal arguments, local variables, the current object entity, and the result entity for the current
feature execution. The call stack is also responsible for the order of feature executions on the same processor.
In our formalization, we separate the two concerns of the call stack. As we will see later, we use the action
queue of a processor to model the ordering of feature executions. We use the store to model the values in
each stack frame. A store has a stack of environments for each processor, where each environment maps
names to values. We first present an ADT for environments and then we present an ADT for the store.

4.5.1. Environments

The ENV ADT has a query names that stores all the defined names. The query val can then be used to
get the value for each such name.

names : ENV→ SET[NAME]

val : ENV→ NAME 9 REF ∪PROC

e.val(n) require

e.names.has(n)

The command update takes a name and a value and returns an updated environment. Note that it does
not matter whether the name is already defined in the environment or not. In any case, the name will be
defined in the updated environment and the name will be mapped to the value. The value can either be a
reference or a processor. Environments with processor values are not strictly needed to describe SCOOP,
however they will make it possible to have a unified view on attribute values and environment values.
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update : ENV→ NAME→ REF ∪PROC→ ENV

axioms

e.update(n, v).names = e.names ∪ {n}
e.update(n, v).val(n) = v

The constructor make returns an empty environment.

make : ENV

axioms

make.names.is empty

4.5.2. Mapping from processors to environments

The store ADT has a single query envs that stores a stack of environments for each processor. Note that we
do not make restrictions on the processors because for modularity reasons the store does not know about
the regions. The consistency between the store and the regions are expressed in the state ADT.

envs : STORE→ PROC→ STACK[ENV]

The command push env pushes a given environment on top a processor’s stack of environments. The
command pop env pops the top environment from a non-empty stack of environments.

push env : STORE→ PROC→ ENV→ STORE

axioms

s.push env(p, e).envs(p) = s.envs(p).push(e)

pop env : STORE→ PROC 9 STORE

s.pop env(p) require

¬s.envs(p).is empty

axioms

s.pop env(p).envs(p) = s.envs(p).pop

The constructor make creates an empty store.

make : STORE

axioms

∀p ∈ PROC : make.envs(p).is empty

4.6. State ADT

The ADT for the state has three queries to retrieve the different parts of the ADT.

regions : STATE→ REGIONS

heap : STATE→ HEAP

store : STATE→ STORE
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We use one command set to set the regions, the heap, and the store at the same time. This has the
advantage that we can use the precondition to specify consistency criteria between the parts of the state.
For instance, we require that the regions and the heap deal with the same set of references, objects and
processors. The first precondition clause states that a processor can handle an object if and only if the
object is on the heap. The second precondition clause states that if the heap declares a feature as non-fresh
on a processor p then the regions must know about this processor. The third precondition clause requires
that all processors stored in attribute values are known by the regions. Note that we already require in the
heap ADT that all references stored in attribute values are known. The forth precondition clause states that
every non-empty environment in the store must belong to a processor that is known by the regions. The
fifth precondition clause states that every value in the store must either be a know reference or a known
processor.

set : STATE→ REGIONS 9 HEAP 9 STORE 9 STATE

σ.set(k, h, s) require

∃p ∈ k.procs,∃o ∈ OBJ : k.handled objs(p).has(o)↔ h.objs.has(o)

∃p ∈ PROC, f ∈ FEATURE : ¬h.is fresh(p, f)→ k.procs.has(p)

∀o ∈ h.objs, a ∈ o.class type.attributes : o.att val(a) ∈ PROC→ k.procs.has(o.att val(a))

∀p ∈ PROC, e ∈ s.envs(p) : ¬e.names.is empty → k.procs.has(p)

∀p ∈ k.procs, e ∈ s.envs(p), x ∈ e.names :

(e.val(x) ∈ REF→ e.val(x) = void ∨ h.refs.has(e.val(x)))∧
(e.val(x) ∈ PROC→ k.procs.has(e.val(x)))

axioms

σ.set(k, h, s).regions = k

σ.set(k, h, s).heap = h

σ.set(k, h, s).store = s

4.6.1. Creation

To create a state, one has to create the three parts of the state. This is done with the constructor make.

make : STATE

axioms

make.regions = new REGIONS.make

make.heap = new HEAP.make

make.store = new STORE.make

4.6.2. Facade

Now we have a complete description of the state. However, it is too cumbersome to work with the STATE
ADT as it is. For example, the following expression defines a new state σ′ in which a new processor has been

added to the state σ: σ′
def
= σ.set(σ.regions.add proc(new PROC.make), σ.heap, σ.store). This expression

is too long for this simple task, especially if the expression is used multiple times. It would be easier to
have an auxiliary command that does this job for us. To this end, we declare an abstraction with auxiliary
features that provide easy access to the state functionality. We call this abstraction the facade and we locate
the facade in the state ADT. We divide the facade into different aspects and dedicate one section to the
description of each aspect. We start with the mapping of processors to objects and the mapping of references
to objects. We continue with a section on how to set values, followed by a section on how to get values. We
conclude with a section on locking.
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4.6.3. Mapping of processors to objects and mapping of references to objects

The regions and the heap manage the references, the objects, the processors, and the mapping between them.
The facade unifies all related features in one aspects. First, we define a number of auxiliary queries for the
mapping of processors to objects. Next, we define auxiliary queries for the mapping of references to objects.
We then define auxiliary commands that work on both aspects.

The two auxiliary queries procs and last added proc give access to all the processors and the last added
processor.

procs : STATE→ SET[PROC]

axioms

σ.procs = σ.regions.procs

last added proc : STATE 9 PROC

σ.last added proc require

¬σ.regions.procs.is empty

axioms

σ.last added proc = σ.regions.last added proc

The auxiliary query handler gives the handler of an object referenced by r. In contrast to the correspond-
ing auxiliary query in the k ADT, the version here takes a reference instead of an object. The version in
the k ADT deals directly with objects rather than references because it does not know about the heap and
thus the mapping from references to objects is not available. The facade, however, has access to both the
regions and the heap and thus it can use the preferred way of identifying objects: references. The handler of
the facade takes a reference and uses the heap to get the referenced object. This object is then given to the
regions to get the handler.

handler : STATE→ REF 9 PROC

σ.handler(r) require

σ.heap.refs.has(r)

axioms

σ.handler(r) = σ.regions.handler(σ.heap.ref obj (r))

We define the auxiliary query new proc as a shorthand for processor creation.

new proc : STATE→ PROC

axioms

σ.new proc = new PROC.make

The auxiliary query last added obj returns the object that has been added last to the heap. It uses the
corresponding feature of the heap ADT.

last added obj : STATE 9 OBJ

σ.last added obj require

¬σ.heap.objs.is empty

axioms

σ.last added obj = σ.heap.last added obj

The auxiliary query ref obj returns the object referenced by a reference r.



A comprehensive operational semantics of the SCOOP programming model 29

ref obj : STATE→ REF 9 OBJ

σ.ref obj (r) require

σ.heap.refs.has(r)

axioms

σ.ref obj (r) = σ.heap.ref obj (r)

The auxiliary query ref returns the reference of an object o.

ref : STATE→ OBJ 9 REF

σ.ref (o) require

σ.heap.objs.has(o)

axioms

σ.ref (o) = σ.heap.ref (o)

As a shorthand for object creation, we declare an auxiliary query new obj that returns a new object with
class type c.

new obj : STATE→ CLASS TYPE→ OBJ

axioms

σ.new obj (c) = new OBJ.make(c)

With this, we conclude the auxiliary queries in this section. We now take a look at auxiliary commands
that modify the mapping of processors to objects and the mapping of references to objects. Before an object
can be added to the set of handled objects of a processor, the processor must exist. If the processor does not
exist yet, the command add proc can be used to update a state with a new processor.

add proc : STATE→ PROC 9 STATE

σ.add proc(p) require

¬σ.regions.procs.has(p)

axioms

σ.add proc(p) = σ.set(σ.regions.add proc(p), σ.heap, σ.store)

The auxiliary command add obj can then be used to add an object to the processor and the heap. The
auxiliary command takes a processor p and an object o and it returns a state in which object o is part of
the heap and handled by processor p.

add obj : STATE→ PROC 9 OBJ 9 STATE

σ.add obj (p, o) require

σ.regions.procs.has(p)

∀u ∈ σ.heap.objs : u.id 6= o.id

∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ.regions.procs.has(o.att val(a)))

axioms

σ.add obj (p, o) = σ.set(σ.regions.add obj (p, o), σ.heap.add obj (o), σ.store)

Next, we define an auxiliary command update ref to update a reference with an updated object. The
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auxiliary command takes a reference r on the heap and an object o and it returns a state in which o replaced
the object u referenced by r on the heap and in the regions. Note that o must indeed be an updated version of
the object referenced by r. The auxiliary command first removes u from the set of handled objects and then
adds o to the set of handled objects of u’s handler. Then it updates the heap with the command update ref ,
which is declared in the heap ADT.

update ref : STATE→ REF 9 OBJ 9 STATE

σ.update ref (r, o) require

σ.heap.refs.has(r)

o.id = σ.heap.ref obj (r).id

∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ.regions.procs.has(o.att val(a)))

axioms

σ.update ref (r, o) = σ.set(k, h, s)

where

u
def
= σ.heap.ref obj (r)

k
def
= σ.regions.remove obj (u).add obj (σ.regions.handler(u), o)

h
def
= σ.heap.update ref (r, o)

s
def
= σ.store

4.6.4. Setting values

In this section we take a look at how to set values. To start, we look at a prerequisite for this task: the deep
import operation. Setting values includes setting values of formal arguments, values of local variables, the
value of the current object entity, the value of the result entity, and attribute values of the current object.
All of these values can be written and read without a feature call. We conclude this section with auxiliary
commands to set the status of once routines. The SCOOP validity rules exclude other types of value setting
operations.

Deep import operation Expanded objects have a copy semantics: If an object o of expanded class type
is the source of an attachment then a copy u gets attached to the destination of the attachment. However,
a shallow copy is not sufficient if o’s handler p is different from u’s handler q. If o has an attached non-
separate entity then u now has a non-separate entity to which a separate object is attached. We would have
introduced a traitor - a non-separate entity that points to a separate object. The SCOOP model, as defined
by Nienaltowski [22], introduces the import operation to solve this issue. Applied to o the import operation
creates a copied object structure that mirrors the original object structure in a way that o and all the objects
reachable from o through non-separate references are replaced with copied objects that are handled by q.
This data structure then gets attached to the destination of the attachment. The import operation computes
the non-separate version of an object structure.

Clarification 2 (Deep import operation) The import operation potentially results in a copied object
structure that contains both copied and original objects. This can be an issue in case one of the copied
objects has an invariant over the identities of objects, as shown in example 4.6.4.

Example 3 (Invariant violation as a result of the import operation) Imagine two objects x and y
handled by one processor and another object z handled by another processor. Object x has a separate entity
a that points to z and a non-separate entity b that points to y. Object z has a separate entity c that points
to y. Object x has an invariant with a query a.c = b. An import operation on x executed by a third processor
will result in two new objects x′ and y′ on the third processor. The reference a of object x′ will point to the
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a : separate Z

b : Y

x : X

y : Y

c : separate Y

z : Z
a : separate Z

b : Y

x' : X

y' : Y

Figure 2. Invariant violation as a result of the import operation

original z. The reference b of object x′ will point to the new object y′. This situation is illustrated in figure
2. Now object x′ is inconsistent, because a.c and b identify different objects, namely y and y′. �

The deep import operation is a variant of the import operation that does not mix the copied and the
original objects. �

Instead of copying only the objects that are reachable through non-separate references, the deep import
operation makes a full copy of the object structure. The deep importing processor handles all the copies of
the objects that are non-separate with respect to the object to be imported. Each other separate object is
handled by the processor of the respective original object. The deep import operation does not show the
issue with invariants. The drawback of the deep import operation is that more objects must be copied.
Nevertheless, we use the deep import operation in our formalization because we cannot tolerate violated
invariants. Once routines complicate the deep import operation a bit. We consider a processor p that wants
to deep import an object o handled by a different processor q. For every non-separate once function f of
every copied object the following must be done: If a non-separate once function f is fresh on p and non-fresh
on q then f must be marked as non-fresh on p and the value of f on q must be used as the value of f on p.
If a once procedure f is fresh on p and non-fresh on q then f must be marked as non-fresh on p. In all other
cases, nothing must be done.

We formalize the deep import operation as an auxiliary command deep import . The command takes an
importing processor p and a reference r to be imported. The command returns a state in which the copied
object structure exists on the heap and the objects are associated to the respective processors. The copied
object structure is accessible through the auxiliary query last imported ref .

deep import : STATE→ PROC 9 REF 9 STATE

σ.deep import(p, r) require

σ.regions.procs.has(p)

σ.heap.refs.has(r)

axioms

σ.deep import(p, r) = σ′

σ.deep import(p, r).last imported ref = r′

where

w
def
= new MAP[REF,REF].make

(r′, w′, σ′)
def
= deep import rec with map(p, σ.handler(r), r, w, σ)

The auxiliary command deep import is based on an auxiliary function deep import rec with map. This
function takes a tuple containing an importing processor p, a processor q that handles the root of the object
structure to be imported, a reference r to be deep imported, and a state σ to be modified. Note that the
object referenced by r is not necessarily handled by q because this object might be on a different processor
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than the handler of the root of the object structure to be deep imported. The function returns another
tuple with a reference r′′ to the copied object structure and an updated state σ′′. The auxiliary function
deep import rec with map works hand in hand with the auxiliary function deep import rec without map.
They have the same signature and together they recursively traverse the object structure and make a deep
copy of it. The functions must ensure that no object gets copied twice. For this purpose the functions take
as an additional argument a map w that maps references to objects in the input data structure to references
in the copied data structure. A mapping from one reference x to another reference y means that the object
referenced by y is the copy of the object referenced by x. An updated map is returned as part of the result
tuple. The auxiliary command deep import starts the recursion with an empty map. The auxiliary function
deep import rec with map uses the map to determine whether the object referenced by r has already been
copied. In such a case, the result of the function comes from the map. Otherwise the auxiliary function
deep import rec with map returns the result of the auxiliary function deep import rec without map. The
auxiliary function deep import rec without map creates a copy of the object referenced by r and handles
once routines. Finally, it returns a new reference r′, an updated map w′ in which r is mapped to r′, and an
updated state σ′.

deep import rec with map(p, q, r, w, σ) = (r′′, w′′, σ′′)

where

(r′, w′, σ′)
def
= deep import rec without map(p, q, r, w, σ)

r′′
def
=

{
w.val(r) ifw.keys.has(r)
r′ if ¬w.keys.has(r)

w′′
def
=

{
w ifw.keys.has(r)
w′ if ¬w.keys.has(r)

σ′′
def
=

{
σ ifw.keys.has(r)
σ′ if ¬w.keys.has(r)

The auxiliary function deep import rec without map is divided into several steps: a copy step, an attribute
values update step, a clients update state, a once status update step, and a result generation step. Each of
the steps has several definitions associated to it and each set of definitions depends on the definitions of the
previous step. In the following we go through each of these steps in more details.

The copy step includes the definitions of o, o′0, σ′0 and w′0. The definition o is the object referenced by
r. This definition is used to define a copy o′0. In the next step we have to define an updated state σ′0 that
includes the copy o′0. There are two cases to be differentiated at this point. If o is handled by q then o′0 must
be handled by p. Otherwise o′0 must be handled by the handler of o. The definition w′0 is the updated map.

The attribute values update step recursively uses deep import rec with map to import all the non-void
reference attribute values of o using the updated map. This leads to an updated object with the deep
imported values. This step includes the definition of {a1, . . . , an}, as well as the definitions of {r′1, . . . , r′n},
{w′1, . . . , w′n}, {σ′1, . . . , σ′n}, and {o′1, . . . , o′n}. The set {a1, . . . , an} contains each attributes of o whose value
is a non-void reference. We define (r′i, w

′
i, σ
′
i) for i = 1 . . . n as a sequence of tuples. Each of the tuples is

responsible for a single recursive deep import operation for one of the attributes in {a1, . . . , an}. Each such
operation results in an updated map and an updated state that must be used in the next deep import
operation. The result of this is an updated map w′n, and updated state σ′n, and references r1, . . . , rn to deep
imported data structures. Finally, we define a sequence of updated objects {o′1, . . . , o′n} that ends with the
updated object o′n. The updated object has the values of the attributes {a1, . . . , an} set to the deep imported
data structures referenced by r1, . . . , rn.

Up until now we have an updated state σ′n that contains the initial copy o′0. In the client update step we
update σ′n such that the reference to o′0 points to the updated object o′n. This is done in the clients update
step. This step includes the definition σ′x. Note that σ′n is derived from the state σ′0, which includes the
object o′0.

In a next step we take care of the once routines of the imported object. For this, we define a new state σ′y
based on the state σ′x. We define {f1, . . . , fw} as the set of all non-separate once functions of o that are fresh
on the processor σ′x.handler(σ′x.ref (o′n)), which handles the copied object, but non-fresh on the processor
σ′x.handler(r), which handles the object referenced by r. Note that the two processor can be the same, in
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which case the set {f1, . . . , fw} is empty. Similarly, we define the set {fw+1, . . . , fm} for once procedures.
For each once routine defined in this way, we update the state σ′x such that the once status is taken over
to the handler of the copied object. These definitions deal with the case where a once routine is fresh on
the handler of the copied object, but non-fresh on the handler of the object referenced by r. Note that the
remaining cases are implicitly taken care of because no change to the state is necessary. The result is the
state σ′y.

The last step defines the result of the function, based on the definitions of the preceding steps. The result
generation step defines the resulting reference r′ to the imported object o′n, the resulting map w′, and the
resulting state σ′.

deep import rec without map(p, q, r, w, σ) = (r′, w′, σ′)

where

o
def
= σ.ref obj (r)

o′0
def
= o.copy

σ′0
def
=

{
σ.add obj (p, o′0) if σ.handler(r) = q
σ.add obj (σ.handler(r), o′0) otherwise

w′0
def
= w.add(r, σ′0.ref (o′0))

{a1, . . . , an}
def
= {a | o.att val(a) ∈ REF ∧ o.att val(a) 6= void}

∀i ∈ {1, . . . , n} : (r′i, w
′
i, σ
′
i)

def
= deep import rec with map(p, q, o.att val(ai), w

′
i−1, σ

′
i−1)

∀i ∈ {1, . . . , n} : o′i
def
= o′i−1.set att val(ai, r

′
i)

σ′x
def
= σ′n.update ref (σ′n.ref (o′0), o′n)

σ′y
def
= σ′x

.set once func not fresh(σ′x.handler(σ′x.ref (o′n)), f1, σ
′
x.once result(σ′x.handler(r), f1))

. . . .

.set once func not fresh(σ′x.handler(σ′x.ref (o′n)), fw, σ
′
x.once result(σ′x.handler(r), fw))

.set once proc not fresh(σ′x.handler(σ′x.ref (o′n)), fw+1)

. . . .

.set once proc not fresh(σ′x.handler(σ′x.ref (o′n)), fm)

where

{f1, . . . , fw}
def
=

{x ∈ o.class type.functions | x.is once ∧ ∃c, d : Γ ` x : (d, •, c)∧
σ′x.is fresh(σ′x.handler(σ′x.ref (o′n)), x)∧
¬σ′x.is fresh(σ′x.handler(r), x)}

{fw+1, . . . , fm}
def
=

{x ∈ o.class type.procedures | x.is once∧
σ′x.is fresh(σ′x.handler(σ′x.ref (o′n)), x)∧
¬σ′x.is fresh(σ′x.handler(r), x)}

r′
def
= σ′y.ref (o′n)

w′
def
= w′n

σ′
def
= σ′y

Setting values of formal arguments and the value of the current object entity The deep import
operation is used in two ways. It is used when an expanded object handled by one processor gets used as
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an actual argument for a formal argument on another processor. The deep import operation also gets used
when an expanded object handled by one processor gets returned to another processor. In this section, we
focus on the argument passing aspect.

To pass actual arguments, we introduce the auxiliary command push env with feature. It defines a state
in which a processor p receives a new environment. The new environment is initialized for the execution
of the feature f with target reference r0 and actual argument references (r1, . . . , rn). Actual arguments of
expanded type must either be copied or they must be deep imported.

push env with feature : STATE→ PROC 9 FEATURE→ REF→ TUPLE 9 STATE

σ.push env with feature(p, f, r0, (r1, . . . , rn)) require

σ.regions.procs.has(p)

f.formals.count = n

∀i ∈ {0, . . . , n} : ri 6= void → σ.heap.refs.has(ri)

axioms

σ.push env with feature(p, f, r0, (r1, . . . , rn)) = σ′n.set(σ′n.regions, σ′n.heap, σ′n.store.push env(p, e))

where

σ′0
def
= σ

∀i ∈ {1, . . . , n} :

(σ′i, r
′
i)

def
=



if ∃d, q, c : Γ ` f.formals(i) : (d, q, c) ∧ c.is exp ∧ ri 6= void ∧ σ′i−1.handler(ri) 6= p

(σx, σx.last imported ref )

where

σx
def
= σ′i−1.deep import(p, ri)

if ∃d, q, c : Γ ` f.formals(i) : (d, q, c) ∧ c.is exp ∧ ri 6= void ∧ σ′i−1.handler(ri) = p

(σx, σx.last added obj )

where

σx
def
= σ′i−1.add obj (p, σ′i−1.heap.ref obj (ri).copy)

otherwise

(σ′i−1, ri)

w
def
= new ENV.make

.update(f.formals(1).name, r′1) . . . .update(f.formals(n).name, r′n)

.update(f.locals(1).name, void) . . . .update(f.locals(f.locals.count).name, void)

.update(Current, r0)

e
def
=

{
w if f ∈ PROCEDURE
w.update(Result, void) if f ∈ FUNCTION

In a first step, the auxiliary command defines an updated state, in which p gets a new initialized en-
vironment e. The updated state is based on an intermediate state σ′n, which gets defined in a cascade of
state updates with the goal of either copying or deep importing the actual arguments of expanded type. The
cascade starts with the definition of a starting state σ′0. For each formal argument, the cascade defines a
tuple (σ′i, r

′
i) with an updated state and a reference. If the corresponding actual argument is of reference class

type, nothing needs to be done. If the actual argument is of expanded class type and the referenced object is
not handled by p then p must deep import the object structure. This results in an updated state and a new
reference to the deep imported object structure. If the actual argument is of expanded class type and the
referenced object is handled by p then the expanded object must be copied. This results in an updated state
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and a new reference to the copy. The resulting state σ′n contains all the deep imported and copied objects.
The resulting references r′1, . . . , r

′
n will be used for values of the formal argument names.

In a next step, the command defines the environment w as a new environment that gets updated to map
formal argument names, local variable names, the current entity name, and the result entity name to the
respective values. The names of the formal arguments get mapped to the references r′1, . . . , r

′
n. Names of

local variables are mapped to the void reference. The current entity name is mapped to the target reference.

The environment w is used to define the final environment e in which the result name gets mapped to
the void reference. This environment and the updated state σ′n are used to define the result of the command.
The auxiliary command push env is used to push e onto p’s stack of environments. The auxiliary command
push env takes a processor p and an environment e. It returns a state in which e is pushed on top of p’s
environment stack.

push env : STATE→ PROC 9 ENV→ STATE

σ.push env(p, e) require

σ.regions.procs.has(p)

axioms

σ.push env(p, e) = σ.set(σ.regions, σ.heap, σ.store.push env(p, e))

The effect of a call to push env with feature or a call to push env can be undone with a call to the
auxiliary command pop env . This auxiliary command takes a processor p and removes the top environment
from p’s stack of environments.

pop env : STATE→ PROC 9 STATE

σ.pop env(p) require

σ.regions.procs.has(p)

¬σ.store.envs(p).is empty

axioms

σ.pop env(p) = σ.set(σ.regions, σ.heap, σ.store.pop env(p))

Setting values of local variables and the value of the result entity The values of local variables and
the value of the result entity are maintained in the store. Note that formal arguments and the current entity
are non-writable. The values of these entities can only be set at the beginning during the definition of the
environment. We introduce the auxiliary command set env val to set a value v for the name n in processor
p’s top environment. For this, we define an updated environment e in which n is set to v. We then define
an updated store s by first removing the top environment and then adding the updated environment e. The
updated store is then used to define an updated state. The updated state becomes the result of the auxiliary
command.
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set env val : STATE→ PROC 9 NAME 9 REF ∪PROC 9 STATE

σ.set env val(p, n, v) require

σ.regions.procs.has(p)

¬σ.store.envs(p).is empty

v ∈ REF ∧ v 6= void → σ.heap.refs.has(v)

v ∈ PROC→ σ.regions.procs.has(v)

axioms

σ.set env val(p, n, v) = σ.set(k, h, s)

where

e
def
= σ.store.envs(p).top.update(n, v)

k
def
= σ.regions

h
def
= σ.heap

s
def
= σ.store.pop env(p).push env(p, e)

Setting attribute values of the current object The auxiliary command set att val takes an object o,
a name n, and a value v. It returns an updated state in which the attribute with name n of object o is set
to the value v. In a first step, the auxiliary command defines an updated object with a call to set att val .
This updated object is then used to update the existing reference to o in the state.

set att val : STATE→ OBJ 9 NAME 9 REF ∪PROC 9 STATE

σ.set att val(o, n, v) require

σ.heap.objs.has(o)

∃a ∈ o.class type.attributes : a.name = n

v ∈ REF ∧ v 6= void → σ.heap.refs.has(v)

v ∈ PROC→ σ.regions.procs.has(v)

axioms

σ.set att val(o, n, v) = σ.update ref (σ.heap.ref (o), o.set att val(a, v))

where

a
def
= o.class type.feature by name(n)

Setting values of local variables, the value of the result entity, and attribute values of the
current object in a unified way The auxiliary command set val is used to attach a value v to an entity
with name n. The entity can either be a local variable or the result entity in the top environment of p. It
can also be an attribute of the current object on p. In either case, the update affects an entity on p.

The definition of the resulting state is based on the auxiliary definitions o, σ′, and v′. The definition o
defines the current object, as defined by the top environment of processor p. The precondition makes sure
that there is always such an environment on p where the current object is defined. If v is a reference and
the referenced object is an object of reference class type then v can be attached directly to the entity with
name n. If the object is an expanded object handled by processor p then the referenced object must first
be copied. Expanded objects handled by a processor different than p must be deep imported. However, this
is done right when the object gets returned from another processor to p. The definitions σ′ and v′ define a
state and a value that are potentially updated according to these rules.

The state σ′ must be updated with the value v′. The update can either affect the current object on p
or it can affect the top environment of p. Attribute names of the current object, local variable names, and
formal argument names are distinct. Therefore it is safe to first check whether the current object o has an



A comprehensive operational semantics of the SCOOP programming model 37

attribute with name n, in which case the current object gets updated with a v′. If the current object does
not have such an attribute, then it is safe to assume that the top environment contains an entity with name
n, in which case the top environment gets updated.

set val : STATE→ PROC 9 NAME 9 REF ∪PROC 9 STATE

σ.set val(p, n, v) require

σ.regions.procs.has(p)

¬σ.store.envs(p).is empty ∧ σ.store.envs(p).top.names.has(Current)

v ∈ REF ∧ v 6= void → σ.heap.refs.has(v)

v ∈ PROC→ σ.regions.procs.has(v)

axioms

σ.set val(p, n, v) =


if ∃a ∈ o.class type.attributes : a.name = n

σ′.set att val(o, n, v′)

otherwise

σ′.set env val(p, n, v′)

where

o
def
= σ.heap.ref obj (σ.store.envs(p).top.val(Current))

(σ′, v′)
def
=



if v ∈ REF ∧ v 6= void ∧ σ.heap.ref obj (v).class type.is exp ∧ σ.handler(v) = p

(σx, σx.last added obj )

where

σx
def
= σ.add obj (p, σ.heap.ref obj (v).copy)

otherwise

(σ, v)

Setting values of once functions Values can also be stored in the status of once functions. A once function
can be fresh or non-fresh. If the once function is non-fresh on a processor p then there is a once result for
the once function on p. A once function is set as non-fresh during the execution of the once function. In the
following, we take a look at how a processor can set the status of once routines in general, i.e. we consider
both once functions and once procedures.

The auxiliary command set once func not fresh takes a processor p, a once function f , and a value r. It
returns an updated state in which f is set as non-fresh with the once result r. If f is declared as non-separate,
then f is set as non-fresh on p with the once result r. If f is declared as separate with or without an explicit
processor specification then f is set as non-fresh on all processors.

set once func not fresh : STATE→ PROC 9 FEATURE 9 REF 9 STATE

σ.set once func not fresh(p, f, r) require

σ.regions.procs.has(p)

f ∈ FUNCTION ∧ f.is once

r 6= void → σ.heap.refs.has(r)

axioms

σ.set once func not fresh(p, f, r) = σ.set(σ.regions, σ.heap.set once func not fresh(p, f, r), σ.store)

The auxiliary command set once proc not fresh does the same for once procedures. It takes a processor
p and a once procedure f and it returns a state in which f is set as non-fresh on p.



38 B. Morandi, S. Nanz, and B. Meyer

set once proc not fresh : STATE→ PROC→ FEATURE→ STATE

σ.set once proc not fresh(p, f) require

σ.regions.procs.has(p)

f ∈ PROCEDURE ∧ f.is once

axioms

σ.set once proc not fresh(p, f) = σ.set(σ.regions, σ.heap.set once proc not fresh(p, f), σ.store)

4.6.5. Getting values

In this section, we take a look at how a processor can read the a value that got written with one of the
mechanisms from Section 4.6.4.

Getting values of local variables, the value of the current object entity, and the value of the
result entity The auxiliary query envs takes a processor p and returns the stack of environments for p.
The auxiliary query env val is more specialized. It takes a processor p and a name n and it returns the value
stored under n in the top environment of p.

envs : STATE→ PROC 9 STACK[ENV]

σ.envs(p) require

σ.regions.procs.has(p)

axioms

σ.envs(p) = σ.store.envs(p)

env val : STATE→ PROC 9 NAME 9 REF ∪PROC

σ.env val(p, n) require

σ.regions.procs.has(p)

¬σ.store.envs(p).is empty ∧ σ.store.envs(p).top.names.has(n)

axioms

σ.env val(p, n) = σ.store.envs(p).top.val(n)

Getting attribute values of the current object The auxiliary query att val takes an object o and a
name n and returns the attribute value for the attribute with name n of object o.

att val : STATE→ OBJ 9 NAME 9 REF ∪PROC

σ.att val(o, n) require

σ.heap.objs.has(o)

∃a ∈ o.class type.attributes : a.name = n

axioms

σ.att val(o, n) = o.att val(a)

where

a
def
= o.class type.feature by name(n)

Getting values of local variables, the value of the current object entity, the value of the result
entity, and attribute values of the current object in a unified way We use the existing auxiliary
queries env val and att val to define a new auxiliary query val that deals both with values in the top
environment as well as with values stored in attribute values of the current object. The auxiliary query val
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takes a processor p and a name n and it returns the value of n in p’s current feature execution context. This
context consists of the top environment and its reference to the current object. The auxiliary query requires
that the execution context of processor p is setup properly, i.e. there is a top environment with a reference to
the current object. The precondition also states that either the top environment has the name n registered or
the current object has an attribute with name n. In any valid SCOOP program, any environment variables
has a name that is distinct from the attribute names of the current object. This allows us to define the result
of the auxiliary query in a simple way. If the name exists in the top environment then the result is the value
given by env val . Otherwise the name must be the name of an attribute of the current object, in which case
the result is given by att val .

val : STATE→ PROC 9 NAME 9 REF ∪PROC

σ.val(p, n) require

σ.regions.procs.has(p)

¬σ.store.envs(p).is empty

e.names.has(Current)

e.names.has(n) ∨ ∃a ∈ o.class type.attributes : a.name = n

where

e
def
= σ.store.envs(p).top

o
def
= σ.heap.ref obj (e.val(Current))

axioms

σ.val(p, n) =



if e.names.has(n)

σ.env val(p, n)

where

e
def
= σ.store.envs(p).top

if ∃a ∈ o.class type.attributes : a.name = n

σ.att val(o, n)

where

e
def
= σ.store.envs(p).top

o
def
= σ.heap.ref obj (e.val(Current))

Getting values of once functions In the following we take a look at the auxiliary queries to access the
status of once routines. We describe once routines in general, i.e. we also describe once procedures.

The auxiliary query is fresh takes a processor p and a once routine f . It returns whether f is fresh on p
or not.

is fresh : STATE→ PROC 9 FEATURE 9 BOOLEAN

σ.is fresh(p, f) require

σ.regions.procs.has(p)

f.is once

axioms

σ.is fresh(p, f) = σ.heap.is fresh(p, f)

For non-fresh once functions, the auxiliary query once result returns the once result of f on p.
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once result : STATE→ PROC 9 FEATURE 9 REF

σ.once result(p, f) require

σ.regions.procs.has(p)

f ∈ FUNCTION ∧ f.is once

¬σ.heap.is fresh(p, f)

axioms

σ.once result(p, f) = σ.heap.once result(p, f)

4.6.6. Locking

In this section we explore the aspect of the facade that deals with locking. The auxiliary query is rq locked
returns whether a processor p’s request queue is locked or not. We do not provide auxiliary queries to
distinguish between obtained and retrieved locks. Instead, we define the auxiliary queries rq locks and cs locks
that return the set of all request queue locks, respectively the set of all call stack locks of a processor p. These
locks are only usable if they are not passed. This information can be retrieved with a call to the auxiliary
query are locks passed .

is rq locked : STATE→ PROC 9 BOOLEAN

σ.is rq locked(p) require

σ.regions.procs.has(p)

axioms

σ.is rq locked(p) = σ.regions.is rq locked(p)

rq locks : STATE→ PROC 9 SET[PROC]

σ.rq locks(p) require

σ.regions.procs.has(p)

axioms

σ.rq locks(p) = σ.regions.rq locks(p)

cs locks : STATE→ PROC 9 SET[PROC]

σ.cs locks(p) require

σ.regions.procs.has(p)

axioms

σ.cs locks(p) = σ.regions.cs locks(p)

are locks passed : STATE→ PROC 9 BOOLEAN

σ.are locks passed(p) require

σ.regions.procs.has(p)

axioms

σ.are locks passed(p) = σ.regions.are locks passed(p)

The facade provides auxiliary commands for locking request queues, removing obtained request queue
locks, unlocking request queues, delegating obtained request queue locks, passing locks, and revoking locks.
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lock rqs : STATE→ PROC 9 SET[PROC] 9 STATE

σ.lock rqs(p, l) require

σ.regions.procs.has(p)

∀x ∈ l : σ.regions.procs.has(x)

∀x ∈ l : σ.regions.is rq locked(x) = false

axioms

σ.lock rqs(p, l) = σ.set(σ.regions.lock rqs(p, l), σ.heap, σ.store)

pop obtained rq locks : STATE→ PROC 9 STATE

σ.pop obtained rq locks(p) require

σ.regions.procs.has(p)

¬σ.regions.obtained rq locks(p).is empty

σ.regions.are locks passed(p) = false

axioms

σ.pop obtained rq locks(p) = σ.set(σ.regions.pop obtained rq locks(p), σ.heap, σ.store)

unlock rq : STATE→ PROC 9 STATE

σ.unlock rq(p) require

σ.regions.procs.has(p)

σ.regions.is rq locked(p) = true

∀q ∈ σ.regions.procs : ¬σ.regions.obtained rq locks(q).flat .has(p)

axioms

σ.unlock rq(p) = σ.set(σ.regions.unlock rq(p), σ.heap, σ.store)

delegate obtained rq locks : STATE→ PROC 9 SET[PROC] 9 STATE

σ.delegate obtained rq locks(p, l) require

σ.regions.procs.has(p)

∀x ∈ l : σ.regions.procs.has(x)

∀x ∈ l : ¬∃y ∈ σ.regions.procs : σ.regions.obtained rq locks(y).flat .has(x)

∀x ∈ l : σ.regions.is rq locked(x) = true

axioms

σ.delegate obtained rq locks(p, l) = σ.set(σ.regions.delegate obtained rq locks(p, l), σ.heap, σ.store)
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pass locks : STATE→ PROC 9 PROC 9 TUPLE[SET[PROC],SET[PROC]] 9 STATE

σ.pass locks(p, q, (lr, lc)) require

σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)

∀x ∈ lr : σ.regions.procs.has(x) ∧ ∀x ∈ lc : σ.regions.procs.has(x)

∀x ∈ lr : σ.regions.obtained rq locks(p).flat .has(x) ∨ σ.regions.retrieved rq locks(p).flat .has(x)

∀x ∈ lc : x = σ.regions.obtained cs lock(p) ∨ σ.regions.retrieved cs locks(p).flat .has(x)

σ.regions.are locks passed(p) = false

axioms

σ.pass locks(p, q, (lr, lc)) = σ.set(σ.regions.pass locks(p, q, (lr, lc)), σ.heap, σ.store)

revoke locks : STATE→ PROC 9 PROC 9 STATE

σ.revoke locks(p, q) require

σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)

¬σ.regions.retrieved rq locks(q).is empty ∧ ¬σ.regions.retrieved cs locks(q).is empty

σ.regions.retrieved rq locks(q).top ⊆
σ.regions.obtained rq locks(p).flat ∪ σ.regions.retrieved rq locks(p).flat

σ.regions.retrieved cs locks(q).top ⊆
{σ.regions.obtained cs lock(p)} ∪ σ.regions.retrieved cs locks(p).flat

σ.regions.retrieved rq locks(q).top ∪ σ.regions.retrieved cs locks(q).top 6= {} →
σ.regions.are locks passed(p) = true

σ.regions.are locks passed(q) = false

axioms

σ.revoke locks(p, q) = σ.set(σ.regions.revoke locks(p, q), σ.heap, σ.store)

4.7. Simplified state description

In previous sections we formalized the state as an instance of an ADT. Each such instance is uniquely
described by the values of all its queries. However, a description produced in this manner is not practical
because it is too verbose. In this section, we develop a simplified state description that provides an abstract
view on the queries of the state. We divide the description into four parts: the locks, the objects, the once
status, and the environments. We identify each part with a label.

In the locks part, we mention for each processor the stack of obtained request queue locks, the stack of
retrieved request queue locks and the stack of retrieved call stack locks. We do not mention the obtained call
stack lock because it is constant. We use two indicators to say that a processor’s request queue is locked or
unlocked. We also use an indicator to state when a processor passed its locks. The absence of this indicator
implies that the locks are not passed.

The objects part shows for each processor the handled objects with their references. We also show the
content of the objects. In particular, for objects other than arrays or objects of basic class type we show a
list of attribute values. Attributes that are void are omitted. For objects of basic type, we show the basic
value. For arrays, we show the cells of the array.

The part on once status shows the status for each non-fresh routine. For once functions we show the
value of the once function. For once procedures we simply indicate that they are non-fresh. Once routines
can be non-fresh either with respect to a subset of processors or with respect to all processors. In the first
case we mention the once routine for each processor in the subset. In the second case we use an indicator to
indicate all processors.

The store is represented in the environments part. This part shows the environments for each processor.
Each environment maps names to values.
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Example 4 (Simplified state description) We assume a system with three processors p1, p2, and p3.
The following simplified state description shows a state in which all request queues are locked. Processor p1
has a stack of obtained request queue locks with two items. On the bottom of the stack there is the set {p2}
and on the top there is the set {p3}. Processor p1’s stack of retrieved request queue locks and retrieved call
stack locks each consists of two empty sets. Processor p1 passed its locks. From p3’s entry, we can see that
these locks have been passed from p1 to p3. Processor p2 does not have any locks, except its own call stack
lock.

In the objects part, we can see that processor p1 handles an object o1 that is referenced by r1. Processors
p2 and p3 each handle multiple objects. Object o5 is an object with an attribute id that references object o6
through the reference r6. Objects o6 and o4 are objects with the integer values 2 and 1. Object o2 is a two
dimensional array with 2× 2 cells. Each of the cells references the object o3 through the reference r3.

The once status part shows two items for the once function id and the once procedure initialize of class
APPLICATION. The once function id is non-fresh with the value r4 on processor p2. The once procedure
initialize is non-fresh on all processors in the system.

In the last part we have the environments for our processors. Processor p1 has a stack with two envi-
ronments. The environment on the left is at the bottom of the stack and the environment on the right is
at the top of the stack. Processor p2 has no environments and processor p3 has one environment. In p3’s
environment we have three mappings. The entity a root has the value r1, the current entity has the value
r5, and the result entity has the void value.

locks :

p1 :: orq : ({p2}, {p3}) rrq : ({}, {}) rcs : ({}, {}) locked passed

p2 :: orq : () rrq : () rcs : () locked

p3 :: orq : () rrq : ({p2, p3}) rcs : ({p1}) locked

objects :

p1 :: r1 → o1

p2 :: r2 → o2[[r3, r3], [r3, r3]], r3 → o3, r4 → o4(1)

p3 :: r5 → o5(id→ r6), r6 → o6(2)

once status :

p2 :: {APPLICATION}.id→ r4
all :: {APPLICATION}.initialize

environments :

p1 :: a node→ r2,Current→ r1 / a node→ r5,Current→ r1

p2 ::

p3 :: a root→ r1,Current→ r5,Result→ void

�

5. Formalization of execution

In this section we formalize the execution of a SCOOP program. We start with an introduction to our
approach. We then define the starting point and explain the rules. The rules are divided into rules for
mechanisms and rules for code elements.

5.1. General approach

We formalize the execution of a SCOOP program with a structural operational semantics as described by
Plotkin [27]. The idea behind a structural operational semantics is to define the behavior of a program in
terms of its parts, i.e. the syntactical elements of the program. Such a semantics is intuitive because it talks
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directly about elements in the code. It is a very powerful semantics because it allows us to apply structural
induction as a proof technique. We reuse parts of the terminology from Ostroff et al. [25]. They provide a
limited structural operational semantics for SCOOP.

5.1.1. Computations

A computation models the execution of a SCOOP program. We define a computation as a sequence of config-
urations, where each non-initial configuration is derived from a previous configuration through a transition.
Each configuration defines a state and a list of statements for each processor. Each transition is described
by an inference rule that maps one configuration to another. The transition from one configuration to the
next models an atomic step of one processor. The concurrent execution of a SCOOP program is modeled by
the interleaved transitions taken by different processors.

Example 5 (Modeling of parallel execution) Suppose we have two processors p and q. Processor p
executes the following sequence of statements: sp,1; sp,2. In parallel, processor q executes the following se-
quence of statements: sq,1. We model this execution with any of the following computations: sp,1; sp,2; sq,1
or sp,1; sq,1; sp,2 or sq,1; sp,1; sp,2. �

5.1.2. Configurations

A configuration models a snapshot in the execution of a SCOOP program. Each configuration consists of
a state and a number of processors, each with a queue of statements. The state is given as an instance of
the state ADT. For the processors and their statements, we introduce the notion of a schedule. A schedule
is a set of processors with associated action queues where each action queue is a queue of statements. Each
processor must execute the statements in its action queue in a FIFO order. The beginning of the action
queue contains the statements for the features that are being executed at the moment. The order of these
statements models the way the call stack orders feature executions. The tail of the action queue is the request
queue of the processor. A call stack lock is the right to add a feature request to the beginning of the action
queue and a request queue lock is the right to add a feature request to the end of the action queue. We write
a configuration with processors p1, . . . , pn, respective action queues s1, . . . , sn, and state σ as:

〈p1 :: s1 | . . . | pn :: sn, σ〉

The configuration is well-defined if and only if ¬∃i, j ∈ {1, . . . , n} : pi = pj . Note that we use | to
separate processors. This operator is commutative and associative, i.e. p1 :: s1 | p2 :: s2 = p2 :: s2 | p1 :: s1
and p1 :: s1 | (p2 :: s2 | p3 :: s3) = (p1 :: s1 | p2 :: s2) | p3 :: s3. Within an action queue we use ; to separate
statements.

5.1.3. Statements

A statement is an element of the action queue. A statement is either an instruction or an operation. An
instruction is user syntax, i.e an action that occurs explicitly in the SCOOP program. The instructions that
we take into consideration are shown in Section 3. An operation is run-time syntax, i.e an action that does
not explicitly occur in a SCOOP program. For example, locking of request queues is not an action that is
explicit in a SCOOP program. Instead, locking is based on the formal argument list. It is done implicitly
before a feature gets executed. We defined a number of operations later on.

5.1.4. Transitions

A transition takes a system in a start configuration and leaves it in a result configuration. The following
shows the general form of a transition definition that declares a start configuration 〈P, σ〉 with schedule

P
def
= p1 :: s1 | . . . | pn :: sn and a result configuration 〈P ′, σ′〉 with schedule P ′

def
= p′1 :: s′1 | . . . | p′m :: s′m:

Γ ` 〈P, σ〉 → 〈P ′, σ′〉
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The typing environment Γ can be used in the transition definition to access static information about the
SCOOP program.

5.1.5. Inference rules

An inference rule describes the circumstances under which a transition can be used. The inference rule has
a premise and a conclusion, divided by a horizontal bar. The conclusion is the transition and the premise
describes the circumstances under which the transition can be used. The premise consists of a number of
transitions and a side condition. The premise is satisfied if all transitions in the premise can be taken and if
the side condition is true. The following shows a template for inference rules:

General Inference Rule Template

side condition
Γ ` 〈P1, σP1

〉 → 〈P ′1, σ′P1
〉

. . .
Γ ` 〈Pn, σPn

〉 → 〈P ′n, σ′Pn
〉

Γ ` 〈Pn+1, σPn+1
〉 → 〈P ′n+1, σ

′
Pn+1
〉

In our formalization, most of the rules have no transition in the premise. Only the structural inference
rules make use of this possibility. All other rules only have a side condition in their premise. For these cases
we define the following simplified inference rule template:

Simplified Inference Rule Template

condition
new stateσ′ definition
fresh channels definitions

Γ ` 〈P, σ〉 → 〈P ′, σ′〉
We divide the side condition into three parts. The first part defines a condition that is based on the

typing environment and the start configuration. The second part is the new state definition that defines the
state of the result configuration. This new state is based on the state in the start configuration. The last
part are the fresh channels definitions. Later on we discuss how we define fresh channels and how they are
used. Auxiliary definitions can be used in the condition, the new state definition, and the fresh channels
definitions. The side condition can mention features of the state ADT. The preconditions of these features
serve as additional conditions in the side condition.

5.1.6. Structural inference rules

In this section we introduce inference rules that change the structure of configurations. We introduce an
inference rule that generalizes a transition by adding processors both to the start configuration and to the
result configuration. These additional processors run in parallel but do not take any actions during the
generalized transition.

Parallelism

Γ ` 〈P, σ〉 → 〈P ′, σ′〉

Γ ` 〈P | Q, σ〉 → 〈P ′ | Q, σ′〉

5.1.7. Scheduler

Before a processor can execute a feature it must acquire locks and it must wait until the wait condition is
satisfied. A locking request encapsulates these two requirements: It consist of the requested locks and the
wait condition. At every moment, multiple processors can have conflicting locking requests. The scheduler
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is the arbiter for these conflicts. The scheduler takes locking requests and stores them in a queue. It then
grants requests according to a certain scheduling algorithm.

The model permits a number of possible scheduling algorithms. The algorithms differ in their level of
fairness and their performance. In this work, we do not focus on a particular scheduling algorithm. Instead
we use the conditions of the inference rules to express locking requests. If more than one processor satisfies
the conditions then any of these processors can proceed.

5.2. Initial configuration

The initial configuration is defined by the SCOOP program. Every SCOOP program defines a root class
type c and a root procedure f . The root procedure is a creation procedure of the root class type that has
no formal arguments and no precondition.

In the beginning, the runtime generates a bootstrap processor p and root processor q with a root object
of the root class type. The request queue of the root processor is locked on behalf of the bootstrap processor.
This defines our initial state σ:

σx
def
= new STATE.make

σy
def
= σx.add proc(σx.new proc)

p
def
= σy.last added proc

σz
def
= σy.add proc(σy.new proc)

q
def
= σz.last added proc

σw
def
= σz.add obj (q, σz.new obj (c))

r
def
= σw.ref (σw.last added obj )

σ
def
= σw.lock rqs(p, {q})

The bootstrap processor first asks the root processor to execute the root procedure on the root object and
then asks the root processor to unlock its request queue as soon as it finished the execution. The bootstrap
processor can do this because it has the request queue lock on the root processor. Finally, the bootstrap
processor removes the request queue lock from its stack of obtained request queue locks. This is shown in
the following initial configuration:

〈
p :: call(r, f, (), ());

issue(q, unlock);

pop obtained rq locks |
q ::

,

σ

〉
The statements call, issue, unlock, and pop obtained rq locks are operations. In a nutshell, the

call(r, f, (), ()) operation asks the handler of the target r to make a call to the feature f on target
r. The unlock operation unlocks the request queue of the processor that executes the operation. The
issue(q, unlock) operation adds the unlock operation to q’s action queue. The pop obtained rq locks
operation removes the top element from the stack of obtained request queue locks.

Example 6 (Initial configuration) In this example we define the initial configuration of a share market
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application. The domain of our application consist of a number of markets, a number of investors, and a
number of issuers. Each issuer can offer a number of shares on each market. Each investor can have an
amount of cash available on each market. With this cash, the investor can buy the shares that are available
on the market. Investors can sell a share on the market where they bought the share. Selling shares increases
the investor’s amount of cash on the market. Each market determines the price for each share. Financial
regulations require the investors to keep track of the markets on which they operate. For simplicity, we keep
the price constant and we restrict ourselves to one market, two investors, and one issuer with one share.

We introduce a class MARKET for the market and a class INVESTOR for the investor. The issuers
are represented through identifiers of class INTEGER. The root class APPLICATION contains the root
procedure make, where the actors get created and where the trade begins.

We start with a bootstrap processor p0, a root processor p1 and a root object o0 of root class type
APPLICATION . The root object is referenced by r0. The following initial configuration shows this:

〈
p0 :: call(r0,make, (), ());

issue(p1, unlock);

pop obtained rq locks |
p1 ::

,

locks :

p0 :: orq : ({p1}) rrq : () rcs : () unlocked

p1 :: orq : () rrq : () rcs : () locked

objects :

p0 ::

p1 :: r0 → o0

once status :

environments :

p0 ::

p1 ::

〉
�

5.3. Mechanisms

Mechanisms are the machinery for the execution of code elements. In this section, we study the mechanisms
that take place in a SCOOP program execution. Later on, we use these mechanisms to explain the semantics
of code elements.

5.3.1. Issuing mechanism

In this section we look at how a processor p can add statements to the action queue of a processor q. We
define a number of inference rules for the issue operation to get a result configuration in which a processor’s
action queue is extended with the new statements. We differentiate two main cases: p adds the statements
to its own action queue, i.e. p = q, or p adds the statements to the action queue of a different processor, i.e.
p 6= q. The first case is the non-separate case and the second one is the separate case.

For the non-separate case p puts the statements to the beginning of q’s action queue, which is the same
as putting the statements on top of the call stack. This requires that p is in possession of its own call stack
lock.
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Issue Operation – Non-Separate

q = p
¬σ.are locks passed(p)
σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp, σ〉 → 〈p :: sw; sp, σ〉
For the separate case we distinguish between a normal and a callback case. In the normal case p adds

the statements to the end of q’s action queue. This is the same as performing an enqueue operation on q’s
request queue. This requires that p is in possession of q’s request queue lock. We also require that q does
not have a lock on p to distinguish the normal case from the callback case.

Issue Operation – Separate

q 6= p
¬σ.are locks passed(p)
σ.rq locks(p).has(q)
¬(σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sq; sw, σ〉
The callback case is given if q has a lock on p. In this situation we have p that can issue a statement sw

on q and then wait for q to complete the execution of this statement and we have q that could already be
waiting for p to complete. If we handle this case the same way as the normal case then we might end up in a
deadlock. Processor q would be waiting for p to finish and p would be waiting for q to finish. However, since
sw would be at the end of q’s action queue and q would be waiting there cannot be any progress. This type
of deadlock can be prevented by adding sw not to the of q’s action queue but to the beginning. This will
make sure that q can execute the statement right away and hence p can continue. This in return will enable
q to continue. As a prerequisite, p must possess q’s call stack lock.

Issue Operation – Separate Callback

q 6= p
¬σ.are locks passed(p)
σ.cs locks(p).has(q)
σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sw; sq, σ〉

5.3.2. Delegated execution mechanism

In this section we discuss how a processor q can delegate the execution of statements to a different processor
p. We use this mechanism for the asynchronous postcondition evaluation. Processor q must make sure that
the statements make sense in the context of processor p: The names that occur in these statements must
be defined in the top environment of p and p must have the necessary locks to execute the statements. We
restrict the statements that can be delegated to those that satisfy the following conditions:

• All names that occur in the statements are defined in q’s top environment.

• Their execution only requires the top set of q’s stack of obtained request queue locks.

For example, these conditions exclude statements that involve non-separate calls or separate callbacks
because such calls require a call stack lock. If these conditions are met, we can transfer q’s top environment
and the top of q’s obtained request queue locks to p. Given this context we can then execute the delegated
statements on p rather than on q.

We introduce the execute delegated(sw, x, {q1, . . . , qm}) operation to set up a new context on p with an
environment x and obtained request queue locks {q1, . . . , qm}. To set up the new context, the operation uses
the commands push env and delegate obtained rq locks. The command delegate obtained rq locks requires
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that the request queue locks {q1, . . . , qm} are not in possession of an other processor anymore. It also requires
that the request queues of {q1, . . . , qm} are locked. Once the context is set up, processor p executes the
statements sw and then gets rid of the context. To get rid of the context, we introduce the leave delegated
operation.

To delegate the execution of the statements sw, processor q must make sure that its top environment
x is set up correctly and it must make sure that the top set of its obtained request queue locks con-
tains all locks {q1, . . . , qm} that are necessary for the execution of sw. Processor q must then issue a
execute delegated(sw, x, {q1, . . . , qm}) operation to processor p. Processor q must then remove {q1, . . . , qm}
from its stack of obtained request queue locks so that the delegate obtained rq locks operation can take place.

Execute Delegated Operation

∀x ∈ {q1, . . . , qm} : ¬∃y ∈ σ.procs : σ.rq locks(y).has(x)
∀x ∈ {q1, . . . , qm} : σ.is rq locked(x)

σ′
def
= σ.push env(p, x).delegate obtained rq locks(p, {q1, . . . , qm})

Γ ` 〈p :: execute delegated(sw, x, {q1, . . . , qm}); sp, σ〉 → 〈p :: sw; leave delegated; sp, σ
′〉

Leave Delegated Execution Operation

¬σ.envs(p).is empty
¬σ.obtained rq locks(p).is empty

σ′
def
= σ.pop env(p).pop obtained rq locks(p)

Γ ` 〈p :: leave delegated; sp, σ〉 → 〈p :: sp, σ
′〉

5.3.3. Notification mechanism

Processors can notify each other. A notification can optionally include a value. We use channels to describe
such communication. Channels are described in Milner’s π-calculus [20]. In the π-calculus, the expression
c(x).P denotes a process that is waiting for a notification sent on a channel c. Once the notification has
been received, the value of the notification is bound to the variable x and the process continues with the
expression P . The notification comes from a process that executes cy.Q that emits the value y on the channel
c before executing Q.

The channels from the π-calculus seem to almost fit our requirements. However, we need to introduce
the channel idea in two flavors: once as a notification mechanism with a value and once as a notification
mechanism without a value. A processor sends a notification with a value r over a channel a as it executes
the operation result(a, r). Similarly, the process sends a notification without a value over a channel a by
executing the operation notify(a). For both cases, any processor can wait for a notification by executing
the operation wait(a). In case a notification on a channel a carries a value, the value can be accessed with
a.data. This way of accessing the value of a channel is different from the way it is done in the π-calculus.
In the π-calculus, each value is bound to a variable. For our channels, we do not define a new variable for
the value. Instead we use a.data to identify the value of a channel a. With this approach we save us from
introducing too many variables.

A number of inference rules describe the interaction between a processor that sent a notification over a
channel and a processor that is waiting for a notification over the same channel. We distinguish two main
cases: either a processor sends a notification to itself or it sends a notification to a different processor. The
first case is the non-separate case and the latter case is the separate case. For each of these two main cases
we distinguish whether the channel carries a notification with or without a value. For each of these sub cases
we introduce one inference rule.

In the non-separate case, one processor has a result(a, r) operation or a notify(a) operation at the
beginning of its action queue and a wait(a) operation on the same channel later in the action queue. In this
case, we can remove the wait(a) operation along with the result(a, r) operation respectively the notify(a)
operation. If the channel carries a value then the value must be installed on the processor. We can install the
value on the processor, by substituting all occurrences of a.data with the posted value in all the statements
sp after the wait(a) operation.
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Wait and Result Operation – Non-Separate

Γ ` 〈p :: result(a, r); sw; wait(a); sp, σ〉 → 〈p :: sw; sp[r/a.data], σ〉

Wait and Notify Operation – Non-Separate

Γ ` 〈p :: notify(a); sw; wait(a); sp, σ〉 → 〈p :: sw; sp, σ〉

In the separate case, one processor has a result(a, r) or a notify(a) operation at the beginning of its
action queue and a different processor has a wait(a) somewhere in its action queue. In this situation, we
can remove the wait(a), result(a, r), and notify(a) from the action queues. In case the notification has a
value, we can install the value in the statements sp proceeding the wait(a).

Wait and Result Operation – Separate

Γ ` 〈p :: sw; wait(a); sp | q :: result(a, r); sq, σ〉 → 〈p :: sw; sp[r/a.data] | q :: sq, σ〉

Wait and Notify Operation – Separate

Γ ` 〈p :: sw; wait(a); sp | q :: notify(a); sq, σ〉 → 〈p :: sw; sp | q :: sq, σ〉

The operations presented here must be used so that each wait operation can be resolved with exactly one
result or notify operation. To define this more precisely, we say that one statement s1 weakly precedes a
statement s2 if and only if s1 occurs earlier than s2 in the same action queue or s1 and s2 occur in different
action queues. We say that one statement s1 strongly precedes a statement s1 if and only if s1 occurs earlier
than s2 in the same action queue. With these definitions, we can restate the condition as:

• For each wait(a) operation there must be either exactly one result(a, r) or exactly one notify(a)
operation.

• For each result(a, r) or notify(a) operation there must be exactly one wait(a) operation.

• Each result(a, r) or notify(a) operation weakly precedes the wait(a) operation.

5.3.4. Expression evaluation mechanism

An expression can either be a literal, an entity, or a query call. The query call can contain actual arguments
that are expressions themselves. In this section we discuss the general mechanism to evaluate expressions.
We focus on the general approach and defer the evaluation of particular expressions to later sections.

We introduce an operation eval(a, e) that takes a channel a and an expression e. Every eval(a, e)
operation determines the value r of the expression e and then sends a notification with value r on channel
a. This means that every eval(a, e) operation creates a result(a, r) operation in the action queue. It is
therefore important to follow every eval(a, e) operation with exactly one wait(a) to receive the notification
with the value.

5.3.5. Locking and unlocking mechanism

A processor p that wants to execute a feature must first obtain the request queue locks of a number of
processors {q1, . . . , qn}. For this, p adds {q1, . . . , qn} on top of its obtained request queue locks stack. Only
then can p issue statements to these processors. The lock({q1, . . . , qn}) operation serves this purpose. The
operation requires that none of the request queues is already locked.
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Lock Operation

¬∃qi ∈ {q1, . . . , qm} : σ.is rq locked(qi)

σ′
def
= σ.lock rqs(p, {q1, . . . , qm})

Γ ` 〈p :: lock({q1, . . . , qm}); sp, σ〉 → 〈p :: sp, σ
′〉

Once p is done with the execution of the feature, it asks {q1, . . . , qn} to unlock their request queues once
they are done with the issued statements. For this, we introduce the unlock operation that unlocks the
request queue. Processor p issues the unlock operation to processors {q1, . . . , qn}. This operation requires
that the request queue is indeed locked and that no processor possesses the request queue lock.

As a side note, Brooke, Paige, and Jacob [5] noticed in Section 7.3 that unlock operations are not
optimal. In essence, it could be possible to unlock the request queue of a processor qi directly after p issued
all statements. The request queue lock is important to guarantee exclusive access on qi’s request queue.
However, as soon as p issued all statements on qi, this lock is no longer needed. Unlocking the request queue
right away could improve the performance in some situations because qi’s request queue could be locked
again earlier and hence another processor that is waiting for this lock could proceed earlier.

Unlock Operation

σ.is rq locked(p)
∀q ∈ σ.procs : ¬σ.rq locks(q).has(p)

σ′
def
= σ.unlock rq(p)

Γ ` 〈p :: unlock; sp, σ〉 → 〈p :: sp, σ
′〉

After p issued the unlock operations, it can remove {q1, . . . , qn} from its stack of obtained request queue
locks using the pop obtained rq locks operation. This ensures that the unlock operations can proceed.

Pop Obtained Request Queue Locks

σ′
def
= σ.pop obtained rq locks(p)

Γ ` 〈p :: pop obtained rq locks; sp, σ〉 → 〈p :: sp, σ
′〉

5.3.6. Write and read mechanism

A processor p can set a value v of an entity with name x using the write(x, v) operation. This operation
uses the set val command. Hence, p can both set attribute values of its current object and values of entities
in its top environment.

Write Value Operation

σ′
def
= σ.set val(p, x, v)

Γ ` 〈p :: write(x, v); sp, σ〉 → 〈p :: sp, σ
′〉

Similarly, a processor p can execute the read(x, a) operation to read a value of an entity with name x and
send the value over channel a. The read operation does not present its result in a result operation because,
unlike an eval operation, a read operation always produces a result for the surrounding action queue. It
is easier to do the substitution of the channel access directly. Later on, we introduce the eval operation
for entity expressions. This variant of the eval operation makes use of the read operation and presents the
result in a result operation.
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Read Value Operation

Γ ` 〈p :: read(x, a); sp, σ〉 → 〈p :: sp[σ.val(p, x)/a.data], σ〉

Finally, we have the set not fresh operation in a variant for once functions and in a variant for once
procedures. This operation sets the once status of a once routine. The variant set not fresh(f, r) sets the
once status of a once function f to non-fresh with value r. If f is of separate type then the once function
becomes non-fresh on all processors in the system. If f has a non-separate type then f becomes non-fresh
only on processor p. The variant set not fresh(f) sets the once status of a once procedure f to non-fresh
on processor p.

Set Once Routine Not Fresh Operation – Function

f ∈ FUNCTION ∧ f.is once

σ′
def
= σ.set once func not fresh(p, f, r)

Γ ` 〈p :: set not fresh(f, r); sp, σ〉 → 〈p :: sp, σ
′〉

Set Once Routine Not Fresh Operation – Procedure

f ∈ FUNCTION ∧ f.is once

σ′
def
= σ.set once proc not fresh(p, f)

Γ ` 〈p :: set not fresh(f); sp, σ〉 → 〈p :: sp, σ
′〉

5.3.7. Flow control mechanism

Next to flow control instructions in the user code we introduce flow control operations. We use these oper-
ations to implement flow control in the inference rules. With these operations we can write fewer inference
rules because we can handle multiple variants in one inference rule.

The provided x then st else sf end operation takes the condition x as an argument. The operation
either executes st if x indicates that the condition is true or sf if x indicates that the condition is false. For
each possibility there is one inference rule. The condition x can either be an instance of the BOOLEAN
ADT or it can be a reference that points to an object of class type BOOLEAN . To decide which branch to
take, we must evaluate x. If x is an instance of the BOOLEAN ADT then we can determine which instance
x is, i.e. true or false. If x is a reference then we must get the referenced object and see which boolean value
it represents. For this purpose, we evaluate the attribute item of the referenced object.

If Operation – True

y
def
=

 x if x ∈ BOOLEAN
σ.att val(σ.ref obj (x), item) if x ∈ REF ∧ σ.ref obj (x).class type = BOOLEAN
false otherwise

y = true

Γ ` 〈p :: provided x then st else sf end; sp, σ〉 → 〈p :: st; sp, σ〉
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If Operation – False

y
def
=

 x if x ∈ BOOLEAN
σ.att val(σ.ref obj (x), item) if x ∈ REF ∧ σ.ref obj (x).class type = BOOLEAN
true otherwise

y = false

Γ ` 〈p :: provided x then st else sf end; sp, σ〉 → 〈p :: sf ; sp, σ〉
The provided x then st else sf end operation has two branches. Sometimes it is necessary to only have

one branch. We introduce the nop operation that can be executed without an effect. It can be used in the
conditional operation to define an empty branch. The nop operation can also be used to indicate that an
action queue is empty.

No Operation

Γ ` 〈p :: nop; sp, σ〉 → 〈p :: sp, σ〉

5.4. Code elements

In this section we explain the semantics of code elements: entity expressions, literal expressions, feature calls,
feature applications, creation instructions, flow control instructions, and assignment instructions.

5.4.1. Entity expressions

To evaluate an entity expression we introduce a variant of the eval(a, e) operation. In our variant, the
expression e is an entity. We use the read operation to send a notification with the value of the entity over
a new channel a′. We then use the value of this channel to define the result of the eval operation.

Entity Expression

e ∈ ENTITY
a′ is fresh

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: read(e.name, a′); result(a, a′.data); sp, σ〉

5.4.2. Literal expressions

For the evaluation of a literal expression, we introduce a variant of the eval(a, e) operation. In this variant,
e is an instance of the LITERAL ADT. To evaluate a non-void literal expression, we create a new object
of the literal class type so that the new object represents the literal value. For this purpose, we use the
query obj of the LITERAL ADT. Since the type of every literal is non-separate, we create the new object
on the processor that evaluates the literal expression. The reference r to the new object is the result of the
evaluation. To evaluate a void literal, we take the void reference.

Literal Expression

e ∈ LITERAL

σ′
def
=

{
σ if e = Void
σ.add obj (p, e.obj ) otherwise

r
def
=

{
void if e = Void
σ′.ref (σ′.last added obj ) otherwise

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: result(a, r); sp, σ
′〉
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5.4.3. Feature calls

A feature call can occur in two ways. First, a feature call can be a call to a command in a command
instruction. Second, a feature call can be a call to a query in an expression. In this section we study both
variants. A processor p that executes a feature call e0.f(e1, . . . , en) goes through the following steps:

1. Target evaluation: Evaluate the target expression e0 and let q denote the handler of the target.

2. Argument passing: Evaluate the actual arguments expressions (e1, . . . , en).

3. Lock passing: Determine which locks to pass to q.

• Take all request queue locks and call stack locks, if a controlled actual argument gets attached to an
attached formal argument of reference type.

• Take all request queue locks and call stack locks, if the feature call is a separate callback, i.e. q has a
lock on p.

• Otherwise, take no locks.

4. Feature request:

• Ask q to apply f to the target immediately and wait until the execution terminates, if any of the
following conditions holds:

– The feature call is non-separate, i.e. p = q.

– The feature call is a separate callback, i.e. q has a lock on p.

• Otherwise, ask q to apply f to the target after the previous feature requests.

5. Wait by necessity: If f is a query then wait for the result.

6. Lock revocation: If lock passing happened then wait for the locks to come back.

A command instruction is a statement in the action queue. A query is an expression on the right hand
side of an assignment, a condition in a flow control instruction, or an actual argument in a feature call.
Whenever a query occurs in one of these constructs, the inference rule of the construct encloses the query
in an eval operation. To handle feature calls, we can therefore provide one inference rule for a command
instruction and one variant of the eval operation for query calls.

In each case, we first have to evaluate the target expression and all actual argument expressions. For
each of these expressions ei we use one eval(aei , ei) operation and a corresponding wait(aei) operation
with a fresh channel aei . Each of the channel values gets used in the subsequent call operation. With this,
we handled the target evaluation and the argument passing step. We defer the attachment of the actual
arguments to the formal arguments to the point where the called feature gets applied. The reason for this is
simple: At this point the context for the feature application does not exist yet.

The call operation takes care of the remaining steps. The operation exists in two variants, one for
command instructions and one for queries. The variant for queries takes a channel a′ that is used for the result
of the query. Since a call to a command does not produce a result, such a channel is not required for command
instructions. Both call variants take the reference to the target ae0 , the feature f to be called, the references
to the actual arguments (ae1 .data, . . . , aen .data), and the actual argument expressions (e1, . . . , en)). The
actual argument expressions are used to check whether there is a controlled actual argument. This information
is used to determine whether the locks should be passed.

Command Instruction

∀i ∈ {0, . . . , n} : aei is fresh

Γ `〈p :: e0.f(e1, . . . , en); sp, σ〉 →
〈p :: eval(ae0 , e0); eval(ae1 , e1); . . . ; eval(aen , en);

wait(ae0); wait(ae1); . . . ; wait(aen);

call(ae0 .data, f, (ae1 .data, . . . , aen .data), (e1, . . . , en));

sp, σ〉
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Query Expression

∀i ∈ {0, . . . , n} : aei is fresh
a′ is fresh

Γ `〈p :: eval(a, e0.f(e1, . . . , en)); sp, σ〉 →
〈p :: eval(ae0 , e0); eval(ae1 , e1); . . . ; eval(aen , en);

wait(ae0); wait(ae1); . . . ; wait(aen);

call(a′, ae0 .data, f, (ae1 .data, . . . , aen .data), (e1, . . . , en));

result(a, a′.data);

sp, σ〉

In the following, we take a closer look at the call operation. Both variants take the reference to the
target ro, the feature f to be called, the references to the actual arguments (r1, . . . , rn), and the actual
argument expressions (e1, . . . , en). The variant for queries takes an additional channel a to be used for the
result of the query. In a first step, we must evaluate the handler q of the target. The handler is used in an
issue operation to issue a feature request on the responsible processor. The feature request comes in the
form of an apply operation. The apply operation takes a channel a for the communication between p and
q, the target reference r0, the called feature f , the references to the actual arguments (r1, . . . , rn), the caller
processor p, and the passed locks l.

Clarification 3 (Lock passing) Processor p passes all its request queue locks and all its call stack locks,
either if there is a controlled actual argument that will get attached to an attached formal argument of
reference type or if the feature call is a separate callback. An attached formal argument of reference type
means that the request queue lock or the call stack lock on the actual argument’s handler is required during
the application of f . A controlled actual argument means that p has a request queue lock or a call stack
lock on the handler of the actual argument. In short, p has a lock that is required by q and thus we have
to pass the locks. A separate callback is given if q has a lock on p. In this situation p can issue a statement
to q and then wait for q to complete. However, processor q could already be waiting for p to complete. To
handle this case, the issue operation in the call operation triggers an immediate execution by adding the
apply to the beginning of q’s action queue. The issue operation requires that p has the call stack lock of q.
If we want q to do an immediate execution, we have to give back q’s call stack lock.

In both cases, we have to wait for the locks to come back. Thus it does not hurt to pass all the locks in
both cases. In contrast to Nienaltowski’s [22] description of SCOOP, p only passes the locks that it really
has. In particular, p does not pass its own request queue lock in situations where p does not possess this
lock, such as when the processor that called p possesses p’s request queue lock. �

In the two cases where we pass the locks, l is defined as (σ.rq locks(p), σ.cs locks(p)). In all other cases
there is no lock passing and thus l = ({}, {}). At this point we just determine which locks to pass. The actual
lock passing action will be executed by q. Similarly, the actual lock revocation action will be executed by q.

For command calls, lock passing is the only reason to wait. In this case, p creates a fresh channel a to
wait for a notification from q. The notification arrives when q is ready to return the locks. For query calls,
p has to wait for the result. Processor p uses channel a, given in the call operation, to wait for the result.
This has the advantage that once the result arrives, it will be substituted after the call operation, i.e in the
result operation of the eval operation.
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Call Operation – Command

q
def
= σ.handler(r0)

l
def
=



if
q 6= p ∧ ∃i ∈ {1, . . . , n} : Γ ` ei : t ∧ is controlled(t) ∧ Γ ` f.formals(i) : (!, g, c) ∧ c.is ref

then
(σ.rq locks(p), σ.cs locks(p))

if
q 6= p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))

then
(σ.rq locks(p), σ.cs locks(p))

otherwise
({}, {})

a is fresh

Γ `〈p :: call(r0, f, (r1, . . . , rn), (e1, . . . , en)); sp, σ〉 →
〈p :: issue(q, apply(a, r0, f, (r1, . . . , rn), p, l));

provided l 6= ({}, {}) then wait(a) else nop end;

sp, σ〉

Call Operation – Query

q
def
= σ.handler(r0)

l
def
=



if
q 6= p ∧ ∃i ∈ {1, . . . , n} : Γ ` ei : t ∧ is controlled(t) ∧ Γ ` f.formals(i) : (!, g, c) ∧ c.is ref

then
(σ.rq locks(p), σ.cs locks(p))

if
q 6= p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))

then
(σ.rq locks(p), σ.cs locks(p))

otherwise
({}, {})

Γ `〈p :: call(a, r0, f, (r1, . . . , rn), (e1, . . . , en)); sp, σ〉 →
〈p :: issue(q, apply(a, r0, f, (r1, . . . , rn), p, l)); wait(a); sp, σ〉
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Example 7 (Feature call) This example demonstrates the inference rules for feature calls. For this pur-
pose, we come back to the share market example. We start in a situation where the root processor p1 started
with the execution of the procedure do transaction on the root object o0. This procedure is shown in listing
1.

Listing 1: Application class with implementation

class APPLICATION

create
make

feature −− Initialization
make

do
...

end

feature {APPLICATION} −− Implementation
market: separate MARKET
−− The market.

do transaction (
a first investor: separate INVESTOR;
a second investor: separate INVESTOR;
a issuer id: INTEGER

)
−− Make each of the two investors ’a first investor’ and ’a second investor’ buy and then sell a

share of the issuer with identifier ’a issuer id’.
do

a first investor.buy (Current.market, a issuer id)
a second investor.buy (Current.market, a issuer id)
a first investor.sell (Current.market, a issuer id)
a second investor.sell (Current.market, a issuer id)

end
end

The following configuration is our starting point. Processor p1 has one environment for the callee pro-
cedure make and one for the called procedure do transaction. Processor p2 handles the market object o35,
processor p3 handles the first investor object o44, and processor p4 handles the second investor object o46.
The market object references three arrays. The cash array o25 shows that each investor has the same amount
of cash. The available shares array o33 shows that there is one issuer with one available share. The owned
shares array o38 shows that none of the investors owns a share. The action queue of p1 indicates that p1 is
about to make the feature calls on the two investors. For this purpose, p1 obtained the request queue locks
of their handlers.
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〈
p1 :: a first investor.buy(current .market, a issuer id);

a second investor.buy(current .market, a issuer id);

a first investor.sell(current .market, a issuer id);

a second investor.sell(current .market, a issuer id);

. . . |
p2 :: |
p3 :: |
p4 ::

,

locks :

p1 :: orq : ({}, {p3, p4}) rrq : ({}, {}) rcs : ({}, {}) locked

p2 :: orq : () rrq : () rcs : () unlocked

p3 :: orq : () rrq : () rcs : () locked

p4 :: orq : () rrq : () rcs : () locked

objects :

p1 :: r0 → o0(market→ r1), r39 → o48(1)

p2 :: r1 → o35(cash→ r16, available shares→ r23, owned shares→ r29),

r16 → o25[r21, r22], r21 → o23(100), r22 → o24(100),

r23 → o33[r28], r28 → o32(1),

r29 → o38[[r34], [r35]], r34 → o41(0), r35 → o42(0)

p3 :: r6 → o44(id→ r36), r36 → o43(1)

p4 :: r8 → o46(id→ r37), r37 → o45(2)

once status :

environments :

p1 :: l first investor→ r6, l second investor→ r8,Current→ r0 /

a first investor→ r6, a second investor→ r8, a issuer id→ r39,Current→ r0

p2 ::

p3 ::

p4 ::

〉

The inference rule for command instructions leads to the following configuration, where a59, a60, and a61
are fresh channels:



A comprehensive operational semantics of the SCOOP programming model 59

〈
p1 :: eval(a59, a first investor);

eval(a60, current .market);

eval(a61, a issuer id);

wait(a59);

wait(a60);

wait(a61);

call(a59.data, buy, (a60.data, a61.data), (current .market, a issuer id));

a second investor.buy(current .market, a issuer id);

a first investor.sell(current .market, a issuer id);

a second investor.sell(current .market, a issuer id);

. . . |
p2 :: |
p3 :: |
p4 ::

,

. . .

〉

First, we have to evaluate the target expression and the actual argument expressions. After the evaluation,
we have the following configuration:

〈
p1 :: call(r6, buy, (r1, r39), (current .market, a issuer id));

a second investor.buy(current .market, a issuer id);

a first investor.sell(current .market, a issuer id);

a second investor.sell(current .market, a issuer id);

. . . |
p2 :: |
p3 :: |
p4 ::

,

. . .

〉

During the execution of the call operation, p1 determines that no locks need to be passed. Then p1
executes an issue operation to enqueue an apply operation to the action queue of the first investor’s
handler. �

5.4.4. Feature applications

A feature call by a client processor q results in a feature request for a supplier processor p. A feature
application is the serving of the feature request. In this section, we discuss how p applies a feature f on a
target referenced by r0. Processor p takes the following steps:

1. Once status update: If f is a once routine then set its status to non-fresh.

2. Lock passing: Pass the locks from q to p.
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3. Argument passing: Bind the actual arguments to the formal arguments. Arguments of expanded type
that are handled by a different processor than p must be deep imported by p.

4. Synchronization: Involve the scheduler to wait until the following synchronization conditions are satisfied
atomically:

• Processor p owns the request queue lock of each processor q such that:

– Processor q handles an actual argument of f and the corresponding formal argument has an
attached reference type.

– Processor p and processor q are different.

– Processor p does not have q’s request queue lock.

– Processor q does not have p’s request queue lock.

• The precondition of f holds.

5. Execution:

• If f is a non-once routine or a fresh once routine then run its body.

• If f is a non-fresh procedure then do nothing. If f is a non-fresh function then take its once value as
the result.

• If f is an attribute then evaluate it.

6. Postcondition evaluation: Evaluate the postcondition, if any of the following conditions is given:

• A feature call in the postcondition requires a lock that was not obtained in the synchronization step.

• The evaluation of the postcondition involves lock passing.

Otherwise ask any processor whose request queue lock was obtained in the synchronization step to
evaluate the postcondition.

7. Lock releasing: Ask each processor whose request queue has been locked in the synchronization step to
unlock its request queue after it is done with the feature requests issued by p.

8. Invariant evaluation: Evaluate the invariant.

9. Result returning: If f is a query then return the result to q. If the result is of expanded type and p 6= q
then the result must be deep imported by q.

10. Lock revocation: Return the passed locks from p to q.

Each feature application starts with an operation apply(a, r0, f, (r1, . . . , rn), q, l) in the action queue of
processor p. The channel a is used to communicate with the client processor q: If the called feature f is a
procedure and the caller processor q passed some locks then a is used to signal that the locks returned. If f
is query then a is used to return the value. The reference r0 points to the target of the call. The references
(r1, . . . , rn) point to the actual arguments. The tuple l contains the locks to be passed from q to p.

If we take a look at the execution step, we can differentiate three cases:

• The feature f is a non-once routine or a fresh once routine.

• The feature f is a non-fresh once routine.

• The feature f is an attribute.

For each of these cases, we introduce one inference rule. Each inference rule covers one variant of the
apply operation. We continue with the most involved case: The feature f is a non-once routine or a fresh
once routine.
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Application Operation – Non-Once Routine or Fresh Once Routine

f ∈ ROUTINE ∧ f.is once → σ.is fresh(p, f)
σ.handler(r0) = p
¬σ.are locks passed(p)

σ′
def
=

 σ.set once func not fresh(p, f, void) if f ∈ FUNCTION ∧ f.is once
σ.set once proc not fresh(p, f) if f ∈ PROCEDURE ∧ f.is once
σ otherwise

σ′′
def
= σ′.pass locks(q, p, l).push env with feature(p, f, r0, (r1, . . . , rn))

grequired locks
def
=

{p} ∪ {x ∈ PROC | ∃i ∈ {1, . . . , n}, g, c : Γ ` f.formals(i) : (!, g, c) ∧ c.is ref ∧ x = σ′′.handler(ri)}
grequired cs locks

def
=

{x ∈ grequired locks | x = p ∨ (x 6= p ∧ (σ′′.rq locks(x).has(p) ∨ σ′′.cs locks(x).has(p)))}
grequired rq locks

def
= grequired locks \ grequired cs locks

gmissing rq locks
def
= {x ∈ grequired rq locks | ¬σ′′.rq locks(p).has(x)}

∀x ∈ grequired cs locks : σ′′.cs locks(p).has(x)
ainv is fresh ∧ a′ is fresh
Γ `〈p :: apply(a, r0, f, (r1, . . . , rn), q, l); sp, σ〉 →
〈p :: check pre and lock rqs(gmissing rq locks, f);

provided f ∈ FUNCTION ∧ f.is once then

f.body

[result := y; read(Result, ar); set not fresh(f, ar.data) where ar is fresh/result := y]

[create result .y; read(Result, ar); set not fresh(f, ar.data) where ar is fresh/

create result .y]

else

f.body

end;

check post and unlock rqs(gmissing rq locks, f);

provided f.class type.inv exists ∧ f.is exported then

eval(ainv, f.class type.inv); wait(ainv)

else

nop

end;

provided f ∈ FUNCTION then

read(Result, a′); return(a, a′.data, q)

else

return(a, q)

end;

sp, σ
′′〉

The condition states that each processor can only apply a feature on one of its own objects. The condition
also states the p must not have passed its locks. This part of the condition is always given because p waits
whenever it passes its locks. In a first step, we define an updated state σ′ to set f ’s once status to non-fresh,
in case f is a once routine. We do this before deep importing the actual arguments to avoid the following
contradiction.
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Clarification 4 (When to set the status of a fresh once routine to non-fresh) We assume f is ei-
ther a once procedure or a non-separate once routine. We know that f was fresh at the beginning of the
apply operation. We assume that we passed an expanded actual argument that is handled by a processor
g 6= p. Therefore p has to deep import the actual argument. We assume furthermore that the class type of the
actual argument has the once routine f and that f is non-fresh on g. If we would deep import before setting
f as non-fresh on p, then the deep import operation would take over the once status of f from processor g
to processor p. But then the apply operation on p would not make much sense anymore because f would
now be non-fresh on p. If we set f as non-fresh at the beginning of the apply operation, the the deep import
operation does not take over the once status from g because f is already non-fresh on p. �

We define an updated state σ′′ in which the locks are passed from q to p and in which we created a new
environment with the actual arguments (r1, . . . , rn). The call to the push env with feature feature takes care
of copying and deep importing actual arguments of expanded type. The caller processor q can also pass an
empty tuple ({}, {}) which simply means that q did not pass any locks.

In the next step we have to synchronize. For each target expressions in the body of f , we can get its
controlling entity. Each of these controlling entities is mapped to an object and each of these objects is
handled by a processor. For each of these processors we must either have a request queue lock or a call
stack lock. We have seen that there are three types of calls: non-separate calls, separate calls, and separate
callback. Non-separate calls and separate callbacks require a call stack lock. Separate calls require a request
queue lock. This leads to two sets of required locks: one set with required request queue locks and another
set with required call stack locks. The set of required call stack locks is composed of p that will lead to
a non-separate call and all the processors that will lead to separate callbacks. The set of required request
queue locks is composed of the processors that will lead to separate calls. We define two sets for these two
categories: grequired cs locks and grequired rq locks.

Each processor initially has its own call stack lock as its obtained call stack lock. This call stack never
gets unlocked. This means that other call stack locks cannot be obtained; they must be retrieved through
lock passing. The condition of the inference rule expresses this: ∀x ∈ grequired cs locks : σ′′.cs locks(p).has(x).
We can be assured that p did not pass its own call stack lock because otherwise p would be waiting. The
remaining required call stack locks are the ones for the processors that will lead to separate callbacks. Note
that the lock passing conditions are not sufficient to guarantee that the call stack locks for separate callbacks
are always available.

As for the request queue locks, we calculate the missing request queue locks gmissing rq locks as the required
request queue locks minus the already owned request queue locks. The already owned request queue locks are
the previously obtained request queue locks and the retrieved request queue locks. In the synchronization
step, we must obtain the difference on behalf of p. If this is not possible because some of the missing
request queue locks are not available then we must wait. This can potentially lead to a deadlock. To get
the missing request queue locks, we introduce the check pre and lock rqs operation. This operation takes
gmissing rq locks and the feature f . If the execution succeeds, p has the request queue locks of gmissing rq locks
and the precondition of f holds.

We can be assured that each processor g whose obtained request queue lock we got in the synchronization
step must be in possession of its call stack lock. If g was not in possession of its call stack lock, it must have
passed its locks. This means that g is executing a feature call and still waiting for the locks to return. In
order to execute the feature call, there must have been a lock on g’s request queue lock so that its action
queue can contain the feature call. The request queue must still be locked because g is still executing the
feature call. Hence, it would not have been possible to obtain g’s request queue lock. The only exception is
the bootstrap processor. However this processor only plays a role in the system setup and it never passes its
own call stack lock.

Once we got all the required locks, we can execute the body. For once functions we must update the once
status whenever we write to the result entity as part of an assignment instruction or as part of a creation
instruction. For this purpose we add a read operation and a set not fresh operation after each assignment
instruction or creation instruction. For each assignment instruction or creation instruction we have to use a
fresh channel.

After the execution of the body, we have to evaluate the postcondition and we have to make sure that
the locked request queues get unlocked at the right time. We combine the two steps into one operation
check post and unlock rqs that takes the missing request queue locks gmissing rq locks and the feature f .
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The operation evaluates the postcondition either synchronously or asynchronously. After the evaluation of
the postcondition, the operation enqueues an unlock operation to each request queue in gmissing rq locks.

SCOOP relies on the Eiffel invariant mechanism. This mechanism is described in Section 7.5 and Sec-
tion 8.9.16 of the Eiffel ECMA standard [9]. On one hand, Section 7.5 describes the semantics of invariants:
Invariants must be satisfied after the execution of every exported routine and after the execution of every
creation procedure. On the other hand, Section 8.9.16 describes the runtime monitoring of invariants: In-
variants get evaluated on both start and termination of a qualified call to a routine and after every call to
a creation procedure. We had to decide whether to rely on the semantics of invariants or on the runtime
monitoring of invariants. We decided to rely on the semantics of invariants for two reasons. First, the runtime
invariant monitoring mechanism is only one possible implementation of the invariant semantics. Second, the
runtime invariant monitoring mechanism relies on the notion of unqualified calls. However, for simplicity we
assume feature calls to be in the canonical qualified form. The apply operation reflects our decision: We
evaluate the invariant whenever f is exported. Note that the invariant can only contain non-separate target
expressions. Hence, each call in the invariant will only require p’s call stack lock.

Finally, we have to return the locks and we have to return the result if f is a function. For this purpose
we introduce the return operation that comes in a variant for queries and in a variant for commands. Both
variants take the channel a and the caller processor q in order to communicate with q. The variant for queries
additionally takes the value to be returned to q.

Before we go on with the variants of the apply operation for non-fresh once routines and attributes, we
discuss the operations that we did not discuss in details so far: the check pre and lock rqs operation, the
check post and unlock rqs operation, and the return operation.

The check pre and lock rqs({q1, . . . , qm}, f) operation, executed by processor p, takes a processor set
{q1, . . . , qm} whose request queues must be locked on behalf of p and it takes a feature f whose precondition
must be satisfied. The operation treats the precondition as a wait condition. It goes through a number of
iterations. Each iteration obtains the request queue locks and then evaluates the precondition. If the pre-
condition is satisfied then the check pre and lock rqs operation finishes. Otherwise it unlocks the request
queues and then starts a new iteration. If the check pre and lock rqs operation finishes we can be assured
that p obtained all the request queue locks and the precondition holds.

Check Precondition and Lock Request Queues Operation

a is fresh

Γ `〈p :: check pre and lock rqs({q1, . . . , qm}, f); sp, σ〉 →
〈p :: lock({q1, . . . , qm});

provided f.pre exists then

eval(a, f.pre);

wait(a)

else

nop

end;

provided ¬f.pre exists ∨ a.data then

nop

else

issue(q1, unlock);

. . .

issue(qm, unlock);

pop obtained rq locks;

check pre and lock rqs({q1, . . . , qm}, f)

end;

sp, σ〉
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The check post and unlock rqs operation also takes a processor set {q1, . . . , qm} and a feature f . The
processor set is the same as the one that was given to the check pre and lock rqs operation, i.e. the set
of processors whose request queues got locked in the synchronization step. The operation first determines
whether the postcondition should be evaluated synchronously or asynchronously. Then the operation starts
the evaluation. Finally, the operation enqueues an unlock operation to each request queue in {q1, . . . , qm}.

Check Postcondition and Unlock Request Queues Operation

q
def
= {q1, . . . , qm}

p /∈ q

targets(e)
def
=

{
{e0} ∪

⋃
i=0...n targets(ei) if e = e0.w(e1, . . . , en)

{} otherwise

args(e)
def
=

{ ⋃
i=1...n {(ei, w, i)} ∪ args(ei) if e = e0.w(e1, . . . , en)
{} otherwise

g0
def
∈



if
q 6= {}∧
∀x ∈ targets(f.post) : (Γ ` σ.handler(σ.val(p, controlling entity(x).name)) ∈ q)∧
¬∃(x, y, z) ∈ args(f.post), t, h, c : (Γ ` x : t ∧ is controlled(t) ∧ y.formals(z) : (!, h, c) ∧ c.is ref )

then
q

otherwise
{p}

{g1, . . . , gj}
def
= q \ g0

a is fresh

Γ `〈p :: check post and unlock rqs({q1, . . . , qm}, f); sp, σ〉 →
〈p :: provided f.post exists ∧ g0 6= p then

issue(

g0,

execute delegated(

eval(a, f.post); wait(a);

issue(g1, unlock); . . . ; issue(gj , unlock)

,

σ.envs(p).top, {q1, . . . , qm}
);

unlock

);

pop obtained rq locks

else

provided f.post exists then

eval(a, f.post); wait(a)

else

nop

end;

issue(q1, unlock); . . . ; issue(qm, unlock);

pop obtained rq locks

end;

sp, σ〉
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Clarification 5 (Asynchronous postcondition evaluation) The postcondition can be evaluated asyn-
chronously if every feature call in the postcondition only requires a request queue lock that was obtained
in the synchronization step and if the postcondition does not involve lock passing. If the postcondition has
a feature call that requires a lock different from the obtained request queue locks then p cannot delegate
its obtained request queue lock and then continue because the required lock would be required in another
feature execution context as well. Hence the postcondition must be evaluated synchronously in this case.
If the postcondition involves lock passing then one of p’s lock might be necessary for the evaluation of the
postcondition. Hence, p must pass its locks and cannot proceed until the postcondition is evaluated and the
passed locks returned. Once again, the postcondition must be evaluated synchronously. In Nienaltowski’s
description of SCOOP [22] a postcondition can be evaluated asynchronously if the current processor is not
involved in the postcondition evaluation. This rule permits configurations in which the evaluating processor
does not have the necessary locks for the evaluation. �

If the postcondition can be evaluated asynchronously then we can take one of the processors in {q1, . . . , qm}.
This set does not contain processor p because processor p never obtains its own request queue lock. Each
processor in this set is exclusively available in the current execution context and can thus be used to evaluate
the postcondition asynchronously. For the check post and unlock rqs operation we define g0 to be the eval-
uating processor according to the rule just presented. We also define {g1, . . . , gj} to be the set {q1, . . . , qm}
minus the request queue lock of g0. If p is the evaluating processor, then this set is the same as {q1, . . . , qm}.
As a result of these definitions, the postcondition can be evaluated asynchronously if g0 6= p. Otherwise the
postcondition must be evaluated synchronously.

In the synchronous case, processor p evaluates the postcondition, enqueues unlock operations to each
request queue in {q1, . . . , qm}, and then removes the corresponding locks from its stack of obtained request
queue locks. The unlock operations won’t proceed until the locks have been removed from p’s stack of
obtained request queue locks. In the asynchronous case, processor p must delegate the postcondition evalu-
ation to processor g0. For this purpose, p enqueues an execute delegated operation to g0. The workload
involves the postcondition evaluation along with the subsequent issuing of unlock operations to all processor
in {g1, . . . , gj}. Processor g0 unlocks its own request queue after the delegated execution. The evaluation of
the postcondition on g0 requires the environment that defines the values of the entities in the postcondition.
Furthermore, the evaluation requires the request queue locks {q1, . . . , qm}. These locks are sufficient because
we only evaluate the postcondition asynchronously if the evaluation only requires these locks. To satisfy
these two requirements, p gives its top environment and {q1, . . . , qm} to g0. After g0 performed the delegated
execution, it can unlock its own request queue. In the meantime, processor p removes {q1, . . . , qm} from its
obtained request queue locks to enable g0 to proceed with the delegated execution.

The return operation comes in two variants: one for queries and one for commands.

Return Operation – Query

(σ′, r′)
def
=



if r 6= void ∧ σ.ref obj (r).class type.is exp ∧ σ.handler(r) 6= q
(σx, σx.last imported ref )
where

σx
def
= σ.deep import(q, r)

otherwise
(σ, r)

σ′′
def
= σ′.pop env(p).revoke locks(q, p)

Γ ` 〈p :: return(a, r, q); sp, σ〉 → 〈p :: result(a, r′); sp, σ
′′〉

Return Operation – Command

σ′
def
= σ.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, q); sp, σ〉 →
〈p :: provided σ.are locks passed(q) then notify(a) else nop end; sp, σ

′〉
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The variant for queries returns the result and the locks. The variant for commands only returns the
locks. Both variants take a channel a and the caller processor q. For queries, the channel is used to return
the result. For this purpose, the operation takes a reference r that points to the result. Processor q is waiting
for this result on channel a. This can be seen in the call operation, which issues an apply operation and
a subsequent wait(a). The apply operation calls the return operation with the same channel a. To return
the result to q, processor p executes a result on a. The value to be returned is not always r directly. If r
points to an object of expanded class type and q 6= p then q must deep import the object. In all other cases,
q can take r as the return value. An explanation why the deep import operation is necessary can be found
in Section 4.6.4. For commands, the channel is used to signal to q that the locks have been returned in case
q passed its locks. This can be determined by looking at the state: σ.are locks passed(q). In both variants of
the return operation, p removes the passed locks from the stacks of retrieved locks. In case q did not pass
any locks, the removed entries might be the empty set. Processor p also removes its top environment because
this environment is no longer needed. In case of an asynchronous postcondition evaluation, this environment
temporarily gets delegated to the evaluating processor.

So far we have looked at the apply variant for non-once routines and fresh once routines. We left out
the discussion of the non-fresh once routines and the attributes. In the following, we make up for this. Non-
fresh once functions already have a result. We just need to get this result from the state and return it. For
non-fresh once procedures we do not even have to do this. The only obligation we have in both cases is the
invariant evaluation. The evaluation of the invariant requires the call stack lock of p. This lock is given if
the condition ¬σ.are locks passed(p) holds.

Application Operation – Non-Fresh Once Routine

f ∈ ROUTINE ∧ f.is once ∧ ¬σ.is fresh(p, f)
σ.handler(r0) = p
¬σ.are locks passed(p)

σ′
def
= σ.pass locks(q, p, l).push env with feature(p, f, r0, (r1, . . . , rn))

a is fresh

Γ `〈p :: apply(a, r0, f, (r1, . . . , rn), q, l); sp, σ〉 →
〈p :: provided f.class type.inv exists ∧ f.is exported then

eval(a, f.class type.inv); wait(a)

else

nop

end;

provided f ∈ FUNCTION then

return(a, σ′.once result(p, f), q)

else

return(a, q)

end;

sp, σ
′〉
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Application Operation – Attribute

f ∈ ATTRIBUTE
σ.handler(r0) = p
¬σ.are locks passed(p)

σ′
def
= σ.pass locks(q, p, l).push env with feature(p, f, r0, ())

a′ is fresh

Γ `〈p :: apply(a, r0, f, (), q, l); sp, σ〉 →
〈p :: eval(a′, f);

wait(a′);

return(a, a′.data, q);

sp, σ
′〉

Example 8 (Feature application) In this example, we look at the application of the feature buy on the
first investor. Listing 2 shows this feature as part of the class INVESTOR.

Listing 2: Investor class

class INVESTOR

create
make

feature −− Initialization
make (a id: INTEGER)
−− Create an investor with identifier ’a id’.

do
id := a id

end

feature −− Access
id: INTEGER
−− The identifier.

log: separate UUID
−− The identifier of the last market.

buy (a market: separate MARKET; a issuer id: INTEGER)
−− Buy a share of the issuer with identifier ’a issuer id’ on the market ’a market’.

require
a market.can buy (Current.id, a issuer id)

do
a market.buy (Current, a issuer id)
log := a market.id

ensure
a market.can sell (Current.id, a issuer id)

end

...
end

We start with a configuration where processor p1 finished executing the feature calls in feature do transaction.
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These feature calls led to one apply operation for the buy feature and one for the sell feature in the action
queue of each investor’s handler.

〈
p1 :: . . . |
p2 :: |
p3 :: apply(a62, r6, buy, (r1, r39), p1, ({}, {}));

apply(a70, r6, sell, (r1, r39), p1, ({}, {})) |
p4 :: apply(a66, r8, buy, (r1, r39), p1, ({}, {}));

apply(a74, r8, sell, (r1, r39), p1, ({}, {}))
,

locks :

p1 :: orq : ({}, {p3, p4}) rrq : ({}, {}) rcs : ({}, {}) locked

p2 :: orq : () rrq : () rcs : () unlocked

p3 :: orq : () rrq : () rcs : () locked

p4 :: orq : () rrq : () rcs : () locked

objects :

p1 :: r0 → o0(market→ r1), r39 → o48(1)

p2 :: r1 → o35(cash→ r16, available shares→ r23, owned shares→ r29),

r16 → o25[r21, r22], r21 → o23(100), r22 → o24(100),

r23 → o33[r28], r28 → o32(1),

r29 → o38[[r34], [r35]], r34 → o41(0), r35 → o42(0)

p3 :: r6 → o44(id→ r36), r36 → o43(1)

p4 :: r8 → o46(id→ r37), r37 → o45(2)

once status :

environments :

p1 :: l first investor→ r6, l second investor→ r8,Current→ r0 /

a first investor→ r6, a second investor→ r8, a issuer id→ r39,Current→ r0

p2 ::

p3 ::

p4 ::

〉

At this point, processor p3 and p4 can each take the transition that is described by the inference rule for
the apply operation for non-once routines. Each processor can then take an additional transition according
to the inference rule for the check pre and lock rqs operation. The result configuration is shown below.
The channel a75 is a fresh channel. Both processors added a new environment that maps the expanded formal
argument to a copy of the expanded actual argument. In case of processor p3, the copied object is referenced
by r40. On processor p4, the copied object is referenced by r41. Since processor p1 did not pass its locks,
both p3 and p4 added empty lock sets to their stack of retrieved locks.
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〈
p1 :: . . . |
p2 :: |
p3 :: lock({p2});

eval(a75, a market.can buy(current .id, a issuer id));

wait(a75);

provided a75.data then

nop

else

issue(p2, unlock);

pop obtained rq locks;

check pre and lock rqs({p2}, buy)

end;

a market.buy(current , a issuer id);

log := a market.id;

check post and unlock rqs({p2}, buy);

return(a62, p1);

apply(a70, r6, sell, (r1, r39), p1, ({}, {})) |
p4 :: lock({p2});

. . .

,

locks :

p1 :: orq : ({}, {p3, p4}) rrq : ({}, {}) rcs : ({}, {}) locked

p2 :: orq : () rrq : () rcs : () unlocked

p3 :: orq : () rrq : ({}) rcs : ({}) locked

p4 :: orq : () rrq : ({}) rcs : ({}) locked

objects :

p1 :: r0 → o0(market→ r1), r39 → o48(1)

p2 :: r1 → o35(cash→ r16, available shares→ r23, owned shares→ r29),

r16 → o25[r21, r22], r21 → o23(100), r22 → o24(100),

r23 → o33[r28], r28 → o32(1),

r29 → o38[[r34], [r35]], r34 → o41(0), r35 → o42(0)

p3 :: r6 → o44(id→ r36), r36 → o43(1), r40 → o49(1)

p4 :: r8 → o46(id→ r37), r37 → o45(2), r41 → o50(1)

once status :

environments :

p1 :: l first investor→ r6, l second investor→ r8,Current→ r0 /

a first investor→ r6, a second investor→ r8, a issuer id→ r39,Current→ r0

p2 ::

p3 :: a market→ r1, a issuer id→ r40,Current→ r6

p4 :: a market→ r1, a issuer id→ r41,Current→ r8

〉
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The inference rule for the lock operation shows that both p3 and p4 require the request queue lock of
p2. We decide to give priority to p3. This leads to the following configuration, where p2’s request queue is
locked on behalf of p3:

〈
p1 :: . . . |
p2 :: |
p3 :: eval(a75, a market.can buy(current .id, a issuer id));

wait(a75);

provided a75.data then

nop

else

issue(p2, unlock);

pop obtained rq locks;

check pre and lock rqs({p2}, buy)

end;

a market.buy(current , a issuer id);

log := a market.id;

check post and unlock rqs({p2}, buy);

return(a62, p1);

apply(a70, r6, sell, (r1, r39), p1, ({}, {})) |
p4 :: . . .

,

locks :

p1 :: orq : ({}, {p3, p4}) rrq : ({}, {}) rcs : ({}, {}) locked

p2 :: orq : () rrq : () rcs : () locked

p3 :: orq : ({p2}) rrq : ({}) rcs : ({}) locked

p4 :: orq : () rrq : ({}) rcs : ({}) locked

objects :

. . .

once status :

environments :

. . .

〉

The evaluation of the precondition produces a result on p2 that is awaited by p3. The result is a deep
imported object of class type BOOLEAN that is referenced by r58. The boolean value of this object indicates
that the precondition is satisfied and hence p3 can continue with the execution of the body. In the following
resulting configuration, the arrays referenced by r16, r23, and r29 have been updated; The first investor
bought a share of the issuer. Consequently, the first investor has a lower amount of cash and there is one
fewer share available. Furthermore, the log attribute of the first investor object has been updated with the
identifier of the market. This identifier object is referenced by r65. It has been computed by p2 in a once
function of separate type. Hence the object is available as a once result on all processors in the system.
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〈
p1 :: . . . |
p2 :: |
p3 :: check post and unlock rqs({p2}, buy);

return(a62, p1);

apply(a70, r6, sell, (r1, r39), p1, ({}, {})) |
p4 :: . . .

,

locks :

. . .

objects :

p1 :: r0 → o0(market→ r1), r39 → o48(1)

p2 :: r1 → o35(cash→ r16, available shares→ r23, owned shares→ r29),

r16 → o71[r61, r22], r61 → o70(90), r22 → o24(100),

r23 → o73[r62], r62 → o72(0),

r29 → o75[[r63], [r35]], r63 → o74(1), r35 → o42(0),

r65 → o77

p3 :: r6 → o78(id→ r36, log→ r65), r36 → o43(1), r40 → o49(1), r58 → o67(true)

p4 :: r8 → o46(id→ r37), r37 → o45(2), r41 → o50(1)

once status :

all :: {MARKET}.id→ r65

environments :

. . .

〉

The postcondition of the feature buy contains the expression current.id. The controlling entity of the
target current is the current entity. The handler of the current object is p3 itself. Processor p3 did not
obtain its own request queue lock. Hence the postcondition must be evaluated synchronously. After the
postcondition evaluation, p3 enqueues the unlock operation to p2 and then removes p2’s request queue lock
from its stack of obtained request queue locks. This enables p2 to unlock its request queue lock. Processor p3
then executes the return operation. This leads to the following configuration, where p3’s top environment
and retrieved locks are removed:
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〈
p1 :: . . . |
p2 :: |
p3 :: apply(a70, r6, sell, (r1, r39), p1, ({}, {})) |
p4 :: . . .

,

locks :

p1 :: orq : ({}, {p3, p4}) rrq : ({}, {}) rcs : ({}, {}) locked

p2 :: orq : () rrq : () rcs : () unlocked

p3 :: orq : () rrq : () rcs : () locked

p4 :: orq : () rrq : ({}) rcs : ({}) locked

objects :

. . .

once status :

. . .

environments :

p1 :: l first investor→ r6, l second investor→ r8,Current→ r0 /

a first investor→ r6, a second investor→ r8, a issuer id→ r39,Current→ r0

p2 ::

p3 ::

p4 :: a market→ r1, a issuer id→ r41,Current→ r8

〉
�

5.4.5. Creation instructions

A creation instruction has the form create b.f(e1, . . . , en) where b is the target entity, f is the creation
procedure, and e1, . . . , en are the actual arguments. We assume that b is of type (d, g, c). A processor p that
executes this instruction takes the following steps:

1. Processor q creation:

• If b is separate, i.e. g = >, then create a new processor.

• If b has an explicit processor specification, i.e. g = α, then

– take the processor denoted by α, if it already exists.

– create a new processor, if the processor denoted by α does not exist yet.

• If b is non-separate, i.e. g = •, then take p.

2. Locking: Lock the request queue of q if the following conditions hold:

• Processor p and processor q are different.

• Processor p does not have q’s request queue lock.

• Processor q does not have p’s request queue lock.

3. Object creation: Ask q to create a new instance with class type c using the creation procedure f . Attach
the newly created object to b.

4. Invariant evaluation: If f is not exported then ask q to evaluate the invariant.
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5. Lock releasing: If q’s request queue has been locked in the locking step, then ask q to unlock its request
queue after it is done with the feature request.

There are four cases in the processor creation step:

• The entity b has a separate type.

• The entity b has an explicit processor specification and the denoted processor already exists.

• The entity b has an explicit processor specification and the denoted processor does not yet exist.

• The entity b has a non-separate type.

For each of these cases we introduce one inference rule. We start with the variant where b has a separate
type. In this case we define q as a new processor and o as a new object of class type c. The reference r
points to the this object. First we acquire a request queue lock on the new processor q so that we can issue
statements on q. Next, we write the value r into the entity b. To make a call to the creation procedure, we
execute a command instruction. Once this is done, we must check whether we have to evaluate the invariant.
If f is exported then the invariant will be evaluated as part of f ’s feature application. In this case we must
do nothing. However, if f is not exported then we must issue the invariant evaluation to q. After this step,
we can issue an unlock operation to q and remove the request queue lock from p’s obtained request queue
locks.

Create Instruction – Top

(d, h, c)
def
= type of (Γ, b)

h = >
q

def
= σ.new proc

o
def
= σ.new obj (c)

σ′
def
= σ.add proc(q).add obj (q, o)

r
def
= σ′.ref (o)

a is fresh

Γ `〈p :: create b.f(e1, . . . , en); sp, σ〉 →
〈p :: lock({q});

write(b.name, r);

b.f(e1, . . . , en);

provided ¬f.class type.inv exists ∨ f.is exported then

nop

else

issue(q, eval(a, f.class type.inv); wait(a))

end;

issue(q, unlock);

pop obtained rq locks;

sp | q :: nop, σ′〉

In the following, we look at the two variants for the cases where b has an explicit processor specification.
There are two forms of explicit processor specifications: unqualified and qualified. An unqualified explicit
processor specification is based on a processor attribute x with an attached type. We write the processor
specification as < x >. The processor denoted by this explicit processor specification is the processor stored
in x. A qualified explicit processor specification is based on an entity y. The entity y is a non-writable
entity of attached type. We write this processor specification as < y.handler >. The processor denoted by
this explicit processor specification is the same processor as the one handling the object referenced by y.
We notice that a qualified explicit processor specification always denotes an existing processor because this
specification is based on an attached entity. This means that there is already an object attached to this
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entity and thus its handler must exist. This insight helps us to write the conditions for the two inference
rule variants.

Create Instruction – Existing Explicit Processor

(d, h, c)
def
= type of (Γ, b)

h =< x > ∨h =< y.handler >

q
def
=

{
σ.val(p, x) if t = (d,< x >, c)
σ.handler(σ.val(p, y)) if t = (d,< y.handler >, c)

σ.procs.has(q)

grequired cs locks
def
=

{
{q} if q 6= p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))
{} otherwise

∀x ∈ grequired cs locks : ¬σ.are locks passed(p) ∧ σ.cs locks(p).has(x)

o
def
= σ.new obj (c)

σ′
def
= σ.add obj (q, o)

r
def
= σ′.ref (o)

a is fresh

Γ `〈p :: create b.f(e1, . . . , en); sp, σ〉 →
〈p :: provided q 6= p ∧ ¬σ′.rq locks(p).has(q) ∧ ¬σ′.rq locks(q).has(p) then

lock({q})
else

nop

end;

write(b.name, r);

b.f(e1, . . . , en);

provided ¬f.class type.inv exists ∨ f.is exported then

nop

else

issue(q, eval(a, f.class type.inv); wait(a))

end;

provided q 6= p ∧ ¬σ′.rq locks(p).has(q) ∧ ¬σ′.rq locks(q).has(p) then

issue(q, unlock);

pop obtained rq locks

else

nop

end;

sp, σ
′〉

For the variant that handles existing processors, we have to determine the denoted processor for both
the qualified and the unqualified possibility. For the qualified option, we can simply lookup the value of the
attribute x. For the unqualified option, we must first lookup the value of the entity y and then determine
the handler of the referenced object. In either case, the result q is either the denoted processor, if it exists,
or the void value. We can then check whether q is in the set of processors of our system. We can only use
this inference rule, if q is in this processor set. The overall idea of this inference rule is the same as in the
case where b has a separate type. The difference lies in the processor creation, locking, and lock releasing
steps. Instead of creating a new processor we can take the existing processor q. If q = p then the call to the
creation procedure will be a non-separate call. In this case, p’s call stack lock is required. This lock is given
because otherwise p would be waiting. If p 6= q and q has a lock on p then the call to the creation procedure
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will be a separate callback. In this case, p requires q’s call stack lock. This is expressed in the condition with
the help of the set grequired cs locks. If p 6= q and q does not have p’s request queue lock then the call to
the creation procedure will be a separate call. In this case, p must obtain q’s request queue lock, provided p
does not already have this lock. Only when p obtained q’s request queue lock, do we have to issue an unlock
operation and remove q from p’s stack of obtained request queue locks.

For the variant that handles non-existing processors, we have to determine the denoted processor only
for unqualified processor specifications. The condition states that the denoted processor must not yet exist.
If the condition is satisfied then we create a new processor q with a new object o and reference r. The steps
in this variant are similar to those we saw in the variant where b has a separate type. However, we have
to set the value of the processor attribute x to the newly created processor. This ensures that the denoted
processor will be found to exist in the future.

Create Instruction – Non-Existing Explicit Processor

(d, h, c)
def
= type of (Γ, b)

h =< x >
¬σ.procs.has(σ.val(p, x))

q
def
= σ.new proc

o
def
= σ.new obj (c)

σ′
def
= σ.add proc(q).add obj (q, o)

r
def
= σ′.ref (o)

a is fresh

Γ `〈p :: create b.f(e1, . . . , en); sp, σ〉 →
〈p :: write(x.name, q);

lock({q});
write(b.name, r);

b.f(e1, . . . , en);

provided ¬f.class type.inv exists ∨ f.is exported then

nop

else

issue(q, eval(a, f.class type.inv); wait(a))

end;

issue(q, unlock);

pop obtained rq locks;

sp | q :: nop, σ′〉

Lastly, we have the variant for the case where b has a non-separate type. In this case, we create the object
on the current processor. Processor creation, locking, and lock releasing is not necessary. The required call
stack lock on p is given because otherwise p would be waiting.
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Create Instruction – Non-Separate

(d, h, c)
def
= type of (Γ, b)

h = •
o

def
= σ.new obj (c)

σ′
def
= σ.add obj (p, o)

r
def
= σ′.ref (o)

a is fresh

Γ `〈p :: create b.f(e1, . . . , en); sp, σ〉 →
〈p :: write(b.name, r);

b.f(e1, . . . , en);

provided ¬f.class type.inv exists ∨ f.is exported then

nop

else

eval(a, f.class type.inv); wait(a)

end;

sp, σ
′〉

Example 9 (Object creation) To illustrate object creation, we start in a configuration where the root
processor p1 is executing the root procedure make on the root object o0. This procedure is shown in listing
3.

Listing 3: Application class with initialization

class APPLICATION

create
make

feature −− Initialization
make
−− Create a market with investors and issuers. Then do some transactions.

local
l first investor: separate INVESTOR
l second investor: separate INVESTOR

do
−− Create the market with 2 investors each of which has 10 units of cash and with 1 issuer that has

1 share. Create the investors with identifiers 1 and 2.
create market.make (2, 100, 1, 1)
create l first investor.make (1)
create l second investor.make (2)

−− Do a transaction.
Current.do transaction (l first investor, l second investor, 1)

end

feature {APPLICATION} −− Implementation
market: separate MARKET
−− The market.

do transaction
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...
end

The following configuration is our starting point:

〈
p1 :: create market.make(2, 100, 1, 1);

. . .

,

locks :

p1 :: orq : ({}) rrq : ({}) rcs : ({}) locked

objects :

p1 :: r0 → o0(market→ void)

once status :

environments :

p1 :: l first investor→ void , l second investor→ void ,Current→ r0

〉

Processor p1 can now take the transition as described by the inference rule for the top variant. The result
is a new configuration, in which o1 is the new market object handled by a new processor p2:

〈
p1 :: lock({p2});

write(market.name, r1);

market.make(2, 100, 1, 1);

issue(p2, unlock);

pop obtained rq locks;

. . . | p2 :: nop

,

locks :

p1 :: orq : ({}) rrq : ({}) rcs : ({}) locked

p2 :: orq : () rrq : () rcs : () unlocked

objects :

p1 :: r0 → o0(market→ void)

p2 :: r1 → o1

once status :

environments :

p1 :: l first investor→ void , l second investor→ void ,Current→ r0

p2 ::

〉

Now processor p1 locks the request queue of processor p2. It then stores the reference r1 into the entity
market. With these two steps, processor p1 set up the context to execute a feature call to the creation
procedure make. The resulting feature request will be executed by processor p2. Processor p1 then asks
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processor p2 to unlock its request queue after it is done with the feature request. Then processor p1 removes
the obtained request queue lock from its stack of obtained request queue locks. �

5.4.6. Flow control instructions

The if e then st else sf end instruction executes st if the expression e evaluates to true. Otherwise the
instruction executes sf . We introduce one inference rule for this instruction. In a first step, we evaluate the
expression e using a fresh channel a and then we wait for a notification on a. In a second step, we use the
provided operator to either execute st or sf , depending on the value of the expression.

If Instruction

a is fresh

Γ `〈p :: if e then st else sf end; sp, σ〉 →
〈p :: eval(a, e);

wait(a);

provided a.data then

st
else

sf
end;

sp, σ〉

The until e loop st end operation executes a sequence of sl instructions until the expression e evaluates
to true. If e is true initially then the executed sequence is empty. We introduce one inference rule for this
instruction. First, we evaluate e using a fresh channel a. Then we wait for a notification on a. Next, we use
the provided operation to check whether e evaluates to true or false. If e is true then we are done. Otherwise,
we execute sl followed by another until e loop st end operation.

Loop Instruction

a is fresh

Γ `〈p :: until e loop sl end; sp, σ〉 →
〈p :: eval(a, e);

wait(a);

provided a.data then

nop

else

sl; until e loop sl end

end;

sp, σ〉

5.4.7. Assignment instructions

An assignment instruction b := e assigns the value of the expression e to the entity b. The following inference
rule implements the assignment instruction. We first evaluate the expression e and then wait for a notification
on a fresh channel a. Once we get this notification, we use the write operation to set the value to the entity
b.
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Assignment

a is fresh

Γ ` 〈p :: b := e; sp, σ〉 → 〈p :: eval(a, e); wait(a); write(b.name, a.data); sp, σ〉

5.5. Termination

The system terminates when we reach a configuration where all action queues are empty, i.e. when there is
no more work to do.

6. Conclusion

In this paper we have presented a formal specification of the SCOOP model, based on operational semantics.
We have demonstrated that this level of rigor is necessary if the specification is to be used as a guideline
for an implementation. In particular, we were able to clarify a number of omissions and ambiguities in the
available informal specification, which had gone undetected in other formalizations:

• Are processor locks fine-grained enough? We require request queue locks and call stack locks.

• Which locks must be passed? Which locks can be passed? We pass all the locks we actually have. We
pass these locks both for normal lock passing and for separate callbacks.

• How do we move object structures from one processor to another processor without violating the invari-
ant? The deep import operation must be used.

• When do we set the status of a fresh once routine to non-fresh? The status of the once routine must be
set to non-fresh before deep importing.

• When can a postcondition be evaluated asynchronously? The postcondition can be evaluated asyn-
chronously if every feature call in the postcondition only requires a lock that was obtained in the syn-
chronization step and if the postcondition does not involve lock passing.

Because of the complexity of the SCOOP model, our resulting specification is large, the management
of which is a challenge for a fully formal development. To address this problem, we used abstract data
types and a notation with an object-oriented flavor, which made the specification more readable and more
easily extendable, without sacrificing any of the rigor of operational semantics. Furthermore, we introduced
a distinction between two kinds of statements, namely instructions (user syntax) and operations (run-time
syntax). This made it possible to treat within one inference system both the actual language elements and
the implementation details of the runtime system, and to distinguish clearly between them.

The main application of this work is as a formal reference document to guide the implementation of the
SCOOP model. This has led to a successful implementation of SCOOP on top of the Eiffel language, which
supersedes the previous prototype implementation and is publicly available [29]. The SCOOP model can
however be implemented on top of any object-oriented language (support for contracts, as offered by Java
or Spec#, is beneficial), and our work also facilitates such future implementation efforts. In the case of Java,
first steps towards such an implementation have been taken [30], which could certainly be supported by our
work.

A number of other applications of our semantics can be envisioned. First, the semantics can be used to
prove correct various properties of the model which have so far only been postulated, such as absence of
object-level data races and type safety (absence of traitors). In light of the complexity of the full model,
these properties are no longer obvious. For example, as processor locks serve as an abstraction only, it must
be shown that locks are not misused in situations such as separate callbacks, which involve call stack locks.
Second, our operational semantics can also be used to prove correct an axiomatic semantics for the SCOOP
model, which is planned for future work. In the case of sequential Eiffel, a similar development is documented
in [24].

Third, we feel our semantics is detailed enough that its rules can directly be implemented as an interpreter
for SCOOP programs. Such an interpreter could serve as a true reference implementation, which could in
turn be used for conformance checking of real implementations.
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