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Abstract. Programming models for concurrency are optimized for deal-
ing with nondeterminism, for example to handle asynchronously arriving
events. To shield the developer from data race errors effectively, such
models may prevent shared access to data altogether. However, this re-
striction also makes them unsuitable for applications that require data
parallelism. We present a library-based approach for permitting parallel
access to arrays while preserving the safety guarantees of the original
model. When applied to SCOOP, an object-oriented concurrency model,
the approach exhibits a negligible performance overhead compared to or-
dinary threaded implementations of two parallel benchmark programs.

1 Introduction

Writing a multithreaded program can have a variety of very different motiva-
tions [1]. Oftentimes, multithreading is a functional requirement: it enables ap-
plications to remain responsive to input, for example when using a graphical user
interface. Furthermore, it is also an effective program structuring technique that
makes it possible to handle nondeterministic events in a modular way; develop-
ers take advantage of this fact when designing reactive and event-based systems.
In all these cases, multithreading is said to provide concurrency. In contrast to
this, the multicore revolution has accentuated the use of multithreading for im-
proving performance when executing programs on a multicore machine. In this
case, multithreading is said to provide parallelism.

Programming models for multithreaded programming generally support ei-
ther concurrency or parallelism. For example, the Actor model [2] or Simple Con-
current Object-Oriented Programming (SCOOP) [3,4] are typical concurrency
models: they are optimized for coordination and event handling, and provide
safety guarantees such as absence of data races. Models supporting parallelism
on the other hand, for example OpenMP [5] or Chapel [6], put the emphasis on
providing programming abstractions for efficient shared memory computations,
typically without addressing safety concerns.

While a separation of concerns such as this can be very helpful, it is evident
that the two worlds of concurrency and parallelism overlap to a large degree. For
example, applications designed for concurrency may have computational parts
the developer would like to speed up with parallelism. On the other hand, even
simple data-parallel programs may suffer from concurrency issues such as data
races, atomicity violations, or deadlocks. Hence, models aimed at parallelism



could benefit from inheriting some of the safety guarantees commonly ensured
by concurrency models.

This paper presents a library-based approach for parallel processing of shared-
memory arrays within the framework of a concurrency model. To achieve this,
the data structure is extended with features to obtain slices, i.e. contiguous data
sections of the original data structure. These data parts can be safely used by
parallel threads, and the race-freedom guarantee for the original data structure
can be preserved.

The approach is applied to SCOOP [3,4], a concurrency model implemented
on top of the object-oriented language Eiffel [7]. A performance evaluation using
two benchmark programs (parallel Quicksort and matrix multiplication) shows
that the approach is as fast as using threads, and naturally outperforms the
original no-sharing approach. While SCOOP lends itself well to our approach,
the basic idea can be helpful for providing similar extensions to Actor-based
models.

The remainder of the paper is structured as follows. Section 2 describes the
problem and the rationale of our approach. Section 3 presents the slicing tech-
nique. Section 4 provides the results of the performance evaluation. Section 5
describes related work and Section 6 concludes with thoughts on future work.

2 Performance issues of race-free models

To help conquer the complexity of nondeterministic multithreading, program-
ming models for concurrency may provide safety guarantees that exclude com-
mon errors by construction. In Erlang [8] for example, a language famous for
implementing the Actor model [2], there is no shared state among actors; hence
the model is free from data races.

In a similar manner, the object-oriented concurrency model SCOOP [3,4]
does not allow sharing of memory between its computational entities, called
processors (an abstraction of threads, processes, physical cores etc). More specif-
ically, every object in SCOOP belongs to exactly one processor and only this
processor has access to the state of the object. A processor can however be in-
structed to execute a call on behalf of another processor, by adding the call to
the processor’s request queue. Also this regime offers protection from data races.

Unfortunately, the strict avoidance of shared memory has severe performance
disadvantages when trying to parallelize various commonplace computational
problems. As an example, Listing 1 shows an in-place Quicksort algorithm writ-
ten in SCOOP. Every time the array is split, a new worker is created to sort
its part of the array. The workers s1 and s2 and the array data are denoted as
separate, i.e. they reference an object that may belong to another processor.
By creating a separate object, a new processor is spawned. Calls to a separate
object are only valid if the processor owning the separate object is controlled by
the current processor, which is guaranteed if the separate object appears in the
argument list, hence the separate_sort, get, and swap features. Each proces-



data : separate ARRAY [ T ]
lower , upper : INTEGER

make ( d : separate ARRAY [ T ] ; n : INTEGER)
do

i f n > 0 then
lower := d . lower
upper := d . lower + n − 1

else
upper := d . upper
lower := d . upper + n + 1

end
data := d

end

sort
local i , j : INTEGER; s1 , s2 : separate SORTER [ T ]
do

i f upper > lower then
pivot := get ( data , upper )
from i := lower ; j := lower until i = upper loop

i f get ( data , i ) < pivot then
swap ( data , i , j )
j := j + 1

end
i := i + 1

end
swap ( data , upper , j )
create s1 . make ( data , j − lower )
create s2 . make ( data , j − upper )
separate_sort ( s1 , s2 )

end
end

get ( d : separate ARRAY [ T ] ; index : INTEGER) : T
do Result := data [ index ] end

swap ( data : separate ARRAY [ T ] ; i , j : INTEGER)
local tmp : T do tmp := d [ i ] ; d [ i ] := d [ j ] ; d [ j ] := tmp end

separate_sort ( s1 , s2 : separate SORTER [ T ] )
do s1 . sort ; s2 . sort end

Listing 1. SORTER: In-place Quicksort in SCOOP

sor can only be controlled by one other processor at a time, thereby ensuring
freedom from data races.

The execution of this example exhibits parallel slowdown: a sequential version
outperforms the algorithms for most workloads. This has two main reasons:

1. Every call to the data array involves adding the call to the request queue,
removing the call from the request queue, and sending back the result; this
creates a large communication overhead.

2. Only one of the workers at a time can execute the get and swap features on
the array because they require control of the processor handling the array;
this serialization prohibits the algorithm from scaling up.

The same issues occur in a broad range of data-parallel algorithms using
arrays. Efficient implementations of such algorithms are impossible in race-



protective concurrency models such as SCOOP, which is unacceptable. Any
viable solution to the problem has to get rid of the communication overhead
and the serialization. There are two general approaches to this problem:

1. Weaken the concurrency model to allow shared memory without race pro-
tection, or interface with a shared memory language. The programmers are
responsible to take appropriate synchronization measures themselves.

2. Enable shared memory computations, but hide it in an API that preserves
the race-freedom guarantees of the concurrency model.

The first approach shifts the burden to come up with solutions for parallelism
to the programmer. Unfortunately, it also forfeits the purpose of race-protection
mechanisms in the first place. Still, it is the most prominent approach taken. This
paper presents a solution based on the second approach, in particular offering
both race protection and shared memory performance.

3 Array slicing

To allow the implementation of efficient parallel algorithms on arrays, the fol-
lowing two types of array manipulation have to be supported:

– Parallel disjoint access: Each thread has read and write access to disjoint
parts of an array.

– Parallel read: Multiple threads have read-only access to the same array.

The array slicing technique presented in this section enables such array manipu-
lations by defining two data structures, slices and views, representing parts of an
array that can be accessed in parallel while maintaining race-freedom guarantees.

Slice Part of an array that supports read and write access of single threads.
View Proxy that provides read-only access to a slice while preventing modifi-

cations to it.

In the following we give a specification of the operations on slices and views.

3.1 Slices

Slices enable parallel usage patterns of arrays is where each thread works on a
disjoint part of the array. The main operations on slices are defined as follows:

Slicing Creating a slice of an array transfers some of the data of the array into
the slice. If shared memory is used, the transfer can be done efficiently using
aliasing of the memory and adjusting the bounds of the original array.

Merging The reverse operation of slicing. Merging two slices requires them to
be adjacent to form an undivided range of indexes. The content of the two
adjacent slices is transferred to the new slice, using aliasing if the two are
also adjacent in shared memory.



Creation procedures (constructors)
make(n: INTEGER) Create a new slice with a capacity of n
slice_head(slice: SLICE; n: INTEGER) Slice off the first n entries of slice
slice_tail(slice: SLICE; n: INTEGER) Slice off the last n entries of slice
merge(a, b: SLICE) Create a new slice by merging a and b

Queries
item(index: INTEGER): T Retrieve the item at index

indexes: SET[INTEGER] Indexes of this slice
lower: INTEGER Lowest index of the index set
upper: INTEGER Highest index of the index set
count: INTEGER Number of indexes: upper − lower + 1
is_modifiable: BOOLEAN Whether the array is currently modifi-

able, i.e. readers = 0
readers: INTEGER The number of views on the slice

Commands
put(value: T; index: INTEGER): T Store value at index

Commands only accessible to slice views
freeze Notifies the slice that a view on it is

created by incrementing readers

melt Notifies the slice that a view on it is
released by decrementing readers

Internal state
area: POINTER Direct unprotected memory access
base: INTEGER The offset into memory

Table 1. API for slices

Based on this central idea, an API for slices can be defined as in Table 1. Note
that we use the letter T to refer to the type of the array elements. After creating
a new slice using make, the slice can be used like a regular array using item

and put with the indexes ranging from lower to upper, although modifying
it is only allowed if is_modifiable is true, which is exactly if readers is zero.
Internally, the attribute area is a direct pointer into memory which can be
accessed like a 0-based array. The base represents the base of the slice, which is
usually 1 for Eiffel programs, but may differ when a merge results in a copy. The
operations freeze and melt increment and decrement the readers attribute
which influences is_modifiable and are used by views (see section 3.2).

Slicing. Like any other object, a reference to the slice can be passed to other
processors. A processor having a reference to a slice can decide to create a new
slice by slicing from the lower end (slice_head) or upper end (slice_tail).
By doing this, the original slice transfers data to the new slice by altering the
bounds and referencing the same memory if possible. Freedom of race conditions
is ensured through the exclusive access to the disjoint parts.

Listing 2 shows an implementation of the slice_head creation procedure,
taking advantage of shared memory. It copies the lower bound, the base and
the memory reference of the slice a_original. It also sets the upper bound



slice_head ( n : INTEGER; a_original : separate SLICE [ T ] )
require −− Precond i t ion

within_bounds : n > 0 and n <= a_original . count
a_original . is_modifiable

do
lower := a_original . lower
upper := a_original . lower + n − 1
base := a_original . base
area := a_original . area
a_original . lower := a_original . lower + n

ensure −− Postcond i t i on
a_original . count = old a_original . count − n
a_original . lower = old a_original . lower + n
a_original . upper = old a_original . upper
lower = old a_original . lower
upper = a_original . lower − 1
count = n
−− ” f o r a l l i in indexes : item ( i ) = old a o r i g i n a l . item ( i ) ”

end

Listing 2. Slicing

according to the size n of the new slice and increases the lower bound of the
original by n.

We use Eiffel for our implementation. Eiffel provides preconditions and post-
conditions, which we use to make sure only modifiable arrays are altered.

Merging. If a processor has two adjacent slices (the lower index of the one equals
the upper index of the other plus one), calling merge creates a new combined
slice. This transfers all the data from the old slices to the new one, making the
old ones empty. If the two slices are located next to each other in memory, the
transfer simply adjusts the bounds; otherwise, it copies the data into a new slice.

The implementation of merging (see Listing 3) sets the bounds according to
the arguments. It then checks whether the two parts are actually next to each
other in memory by checking whether the area and the base are the same. In
this case, it copies the base and the memory reference. Otherwise, it allocates
new memory and copies all the data of the two arguments. In the end, it empties
the two arguments, setting their count to 0 by making lower = 1 and upper = 0.

Strategies for slicing. The most common choice for disjoint index subsets are
sets with contiguous indexes. Those subsets can be identified by their lower and
upper index and resemble a normal array. A rarer case is to create the disjoint
subsets according to another principle. This warrants a different implementation,
which is possible by using inheritance. However, current cache architectures limit
the usefulness of slices with a size smaller than a cache line.

3.2 Views

Views enable read-only access on arrays. The main operations on views are
defined as follows:



merge ( a_one , a_another : separate SLICE [ T ] )
require

a_one . is_modifiable
a_another . is_modifiable
one . is_adjacent ( a_another )

do
lower := a_one . lower . min ( a_another . lower )
upper := a_another . upper . max ( a_one . upper )
i f a_one . area = a_another . area and a_one . base = a_another . base then

area := a_one . area
base := a_one . base

else
base := lower
−− ”Copy data from the a one and a another to area ”

end
a_another . empty ; a_one . empty

ensure
lower = old a_one . lower . min ( a_another . lower )
upper = old a_one . upper . max ( a_another . upper )
a_one . count = 0 and a_another . count = 0
−− ” f o r a l l i in o ld a one . indexes : item ( i ) = old a one . item ( i ) ”
−− ” f o r a l l i in o ld a another . indexes : item ( i ) = old a another . item

( i ) ”
end

Listing 3. Merging

Creation procedures (constructors)
make(slice: SLICE) Create a new view on slice

Queries
original: SLICE[T] Slice this view references
indexes: SET[INTEGER] Indexes of this view
item(index: INTEGER): T Retrieve the item at index
lower: INTEGER Lowest index of the index set
upper: INTEGER Highest index of the index set

Commands
free Disconnects the view from the slice

Internal state
area: POINTER Direct unprotected memory access
base: INTEGER Offset into memory

Table 2. API for slice views

Viewing Creating a view from a slice copies the bounds and the memory ref-
erence into the view. The original slice is no longer modifiable.

Releasing The reverse operation of viewing. If no other views on the same slice
exist, it is modifiable again. Also, the view is no longer usable.

The API for views is shown in Table 2. A processor is able to read the slice in
parallel by creating a view using the make creation procedure. The original slice is
then available as the original query. This also prevents all further modifications
of the array unless the view is released with the free procedure. All the other
features of views behave exactly like their counterparts in the slices.



make ( a_original : separate SLICE [ T ] )
do

a_original . freeze
original := a_original
lower := a_original . lower
upper := a_original . upper
base := a_original . base
area := a_original . area

ensure
lower = a_original . lower
upper = a_original . upper
not a_original . is_modifiable
−− ” f o r a l l i in indexes : item ( i ) = a o r i g i n a l . item ( i ) ”

end

Listing 4. Viewing

Viewing. Creating a view basically copies the bounds and the memory reference
into the view. By increasing the view counter (readers) using the freeze op-
eration of the slice a_original, the original slice is no longer modifiable (see
Listing 4). By calling free on a view, the view loses its reference to the memory
of the slice and the original slice is notified through melt that there is one less
reader.

Releasing. The free procedure redirects the area to 0 and sets lower to 1
and upper to 0. Therefore no access is possible at any index. In addition, the
number of readers of the original decremented by a call to melt. This causes the
original to be modifiable again if the number of readers falls to zero. Because of
its simplicity, the code is omitted.

4 Performance evaluation

To assess the performance of our approach, we apply it to two benchmark prob-
lems: to determine how well our approach works in a divide-and-conquer sce-
nario, we choose a parallel in-place Quicksort algorithm; to determine the raw
performance, we use parallel matrix multiplication. In both cases, the extension
of SCOOP with the slicing technique is compared with implementations in Eiffel
using only threads and without synchronization except a join at the end.

For the performance tests we use a server with four 8-core Intel Xeon E7-4830
processors and 256 GB of RAM. We ran every program 20 times and report the
mean value of the running times in Table 3. The source code of the benchmarks
is available online1 as well as the support for slicing in SCOOP2. In the following
we discuss both benchmarks and their results in detail.

1 https://bitbucket.org/mischaelschill/array-benchmarks
2 https://bitbucket.org/mischaelschill/scoop-library

https://bitbucket.org/mischaelschill/array-benchmarks
https://bitbucket.org/mischaelschill/scoop-library


Number of cores

1 2 4 8 16 32

Quicksort
Slicing 157.4 147.1 81.9 66.4 59.9 59.2

Threads 158.6 145.1 82.8 68.0 61.5 59.8

Matrix multiplication
Slicing 184.8 95.0 51.2 24.0 14.1 7.3

Threads 178.0 91.7 46.6 23.6 12.6 7.3

Table 3. Mean running times (in seconds)

4.1 Quicksort

Listing 5 shows the constructor of the Quicksort example implemented using
slices instead of regular arrays (compare Section 2). The main difference is the
usage of slice_head and slice_tail instead of storing the bounds in variables.
The implementation of sort can stay the same, although there is no need for
storing the bounds and extra features for swapping and retrieving since data is
no longer separate.

data : SLICE [ T ]

make ( a_data : SLICE [ T ] ; n : INTEGER)
do

i f n > 0 then
create data . slice_head ( a_data , n )

else
create data . slice_tail ( a_data , −n )

end
end

Listing 5. Quicksort algorithm using slices

For the performance measurement, the Quicksort benchmark sorts an array of
size 108, which is first filled using a random number generator with a fixed seed.
The benchmarked code is similar to listing 5, but also adds a limit on the number
of processors used. As evident from Figure 1, the performance characteristics of
the slicing technique and threading is almost identical.

4.2 Matrix multiplication

Listing 6 shows a class facilitating parallel multiplication of matrices, using a two
dimensional version of slices and views (SLICE2 and SLICE_VIEW2, implemented
in a very similar fashion to the one-dimensional version discussed in Section 3.1).
The worker is created using make which slices off the first n rows into product.
The multiply command actually fills the slice with the result of the multipli-
cation of the left and right matrices. Afterwards, the views are decoupled using
free. Dividing the work between multiple workers and merging the result is left
to the client of the worker.
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Fig. 1. Quicksort: scalability

left , right : SLICE_VIEW2 [ T ]
product : SLICE2 [ T ]

make ( l , r , p : separate SLICE2 [ T ] ; n : INTEGER)
do

create left . make ( l ) ; create right . make ( r )
create product . slice_top ( n , p )

end

multiply
local k , i , j : INTEGER
do

from i := product . first_row until i > product . last_row loop
from j := product . first_column until j > product . last_column loop

from k := left . first_column until k > left . last_column loop
product [ i , j ] := product [ i , j ] + left [ i , k ] ∗ right [ k , j ]
k := k + 1

end
j := j + 1

end
i := i + 1

end
left . free ; right . free

end

Listing 6. Matrix multiplication worker using slices and views

For the performance measurement, the matrix multiplication test multiplies
a 2000 to 800 matrix with an 800 to 2000 matrix. Figure 2 shows again similar
performance characteristics between slicing and threads.

5 Related work

We are not aware of any programming model supporting slicing while avoid-
ing race conditions. However, similar means to create an alias to a subset of
an array’s content are common in most programming languages or their stan-
dard library. For example, the standard library of Eiffel as provided by Eiffel
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Fig. 2. Matrix multiplication: scalability

Software [7] can create subarrays. Perl [9] has language integrated support for
slicing arrays. Slices and slicing are a central feature of the Go programming lan-
guage [10]. However, these slicing solutions were not created with the intention
of guaranteeing safe access: the portion of memory aliased by the new array/slice
remains accessible through the original array, which can lead to race conditions
if two threads access them at the same time.

Enabling many processors to access different parts of a single array is a
cornerstone of data parallel programming models. OpenMP [5] is the de-facto
standard for shared-memory multiprocessing. Its API offers various data parallel
directives for handling the access to arrays, e.g. in conjunction with parallel-for
loops. Threading Building Blocks [11] is a C++ library which offers a wide va-
riety of algorithmic skeletons for parallel programming patterns with array ma-
nipulations. Chapel [6] is a parallel programming language for high-performance
computation offering concise abstractions for parallel programming patterns.
Data Parallel Haskell [12] implements the model of nested data parallelism (in-
spired by NESL [13]), extending parallel access also to user-defined data struc-
tures. In difference to our work, these approaches focus on efficient computation
but not on safety guarantees for concurrent access, which is our starting point.

The concept of views is an application of readers-writers locks first introduced
by Courtois, Heymans and Parnas [14], tailored to the concept of slices.

6 Conclusion

While programming models for concurrency and parallelism have different goals,
they can benefit from each other: concurrency models provide safety mechanisms
that can be advantageous for parallelism as well; parallelism models provide per-
formance optimizations that can also be profitable in concurrent programming.
In this paper, we have taken a step in this direction by extending a concurrency
model, SCOOP, with a technique for efficient parallel access of arrays, without
compromising the original data-race freedom guarantees of the model. An im-



portant insight from this work is that safety and performance do not necessarily
have to be trade-offs: results on two typical benchmark problems show that our
approach has the same performance characteristics as ordinary threading.

In future work, it would be interesting to explore the relation between models
for concurrency and parallelism further, with the final goal of defining a safe
parallel programming approach. In particular, programming patterns such as
parallel-for, parallel-reduce, or parallel-scan could be expressed in a safe manner.
In order to ascertain how this API is used by programmers, empirical studies
are needed.
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