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Abstract—This paper presents SMARTWALKER and evalu-
ates the appropriateness and usefulness of the walker and its
gesture-based interface for the elderly. As a high-tech exten-
sion of a regular walker, the SMARTWALKER aims to assist
its user intelligently and navigate around its environment
autonomously. Equipped with sensors and actuators, the
prototype accepts gesture commands and navigates around
accordingly. The gesture-based interface uses a k-nearest
neighbors classifier with dynamic time warping to recognize
gestures and the Viola and Jones face detector to locate the
user. We evaluated the walker with 23 residents and eight
staff members at five different retirement homes in Zürich.
The elderly found the SMARTWALKER useful and exciting,
but few were willing to replace their walkers by robotic
walkers. Their reluctance may stem from the walker’s size
and weight and their unfamiliarity with technology.
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I. INTRODUCTION

The percentage of the global population aged 60 years
or over has been increasing steadily, and it is projected
to rise further to 21 percent by 2050 [1]. As the popula-
tion ages, it becomes increasingly important that people
continue to stay active and mobile. Impaired mobility of
older adults is linked to a loss of independence, decreased
quality of life, institutionalization, and a higher risk of
mortality. Unfortunately, impaired mobility is prevalent in
44% of older adults [2]. Thus, ensuring mobility of the
elderly is critical to our aging society.

Mobility aids range from simple external devices such
as canes to mobile vehicles such as wheelchairs. Canes
can reduce falls in patients by increasing gait stability,
but they provide minimal weight support. Wheelchairs
can transport people who cannot move by themselves,
but excessive sitting can cause deterioration of health. In
between the two lie walkers. Walkers provide support for
weight and balance but require patients to use their own
locomotion, thus minimizing deterioration of mobility.
Rollators, or wheeled walkers, are particularly liked for
their usability and support for natural gait patterns [3].

Advancement of technology has given rise to smart
walkers – rollators equipped with sensors and actuators
for better assistance and support. Most research on smart
walkers has been in providing better physical support,
sensory assistance, cognitive assistance, health monitoring,
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or human-machine interface [3], and little attention has
been given to smart walker as an autonomous robotic
device. In certain situations, however, a non-autonomous
walker becomes clumsy to use. For instance, when many
walker users gather in one space for a meeting or a
meal, placing the walkers without hindering the social
situation becomes difficult. Indeed, at retirement homes,
where many residents use walkers, each walker has to be
moved out of a room when residents gather for a meal so
that they can eat more comfortably; at the end of the meal,
the walkers are brought back to the room one at a time.
An autonomous walker, as the one proposed here, which
is able to park itself and return to its user when required,
would eliminate such a repetitive and laborious task.

We propose SMARTWALKER, a high-tech extension of
a regular walker, designed to help the elderly lead more
independent lives. Equipped with sensors and actuators,
our walker can function as a mobility aid as well as an
autonomous robot. In particular, the SMARTWALKER can
receive user commands through its real-time gesture-based
user interface and navigate around its environment accord-
ingly. The underlying algorithm uses a k-nearest neighbors
(k-NN) classifier with dynamic time warping (DTW) to
classify gestures. As people can unintentionally make
gestures similar to the commands, the interface ignores un-
intentional gestures by detecting the user’s attention along
with the gesture recognition. To investigate the viability of
the robotic walker as an alternative to traditional walkers,
the appropriateness of its gesture-based user interface,
and the usefulness of an autonomously moving walker,
we evaluated the prototype with 23 residents and eight
members of the staff at five different retirement homes
in Zürich, Switzerland. In the study, the elderly found
the SMARTWALKER exciting and useful, but they had
difficulties with the gesture-based interface. They were
also reluctant to switch to the robotic walker, possibly
because it is bigger and heavier than traditional walkers
and they are less familiar with technology.

II. RELATED WORK

The first publication on a smart mobility aid was a
personal adaptive mobility aid for the infirm and elderly
blind (PAM-AID) in 1998 [4]. Since then, researchers have
proposed many different smart walkers. Most are purely
assistive, offering physical support, sensorial assistance,



cognitive assistance, or health monitoring [3]. Few have
an additional capability to move around autonomously.
Notable work is by Glover et al. [5], whose walker can
park itself and return to its user according to the user’s
control via a remote button. The SMARTWALKER that this
paper presents also aims to be autonomous but without
requiring an external controller; it achieves this through
its gesture-based user interface.

Smart walker interfaces range from direct interfaces
such as a joystick [6] and modified handlebars [7] to
indirect interfaces such as a gate detection system [8].
Direct interfaces that do not require any physical contact
are particularly relevant to our research. Gharieb [9] pro-
posed a voice-based interface for visually-impaired people
that enables its user to command the walker verbally,
thus eliminating the necessity for physical contact. Simi-
larly, our gesture-based interface receives commands from
its user located at a distance. Gesture recognition is a
well-researched area within the field of computer vision;
however, to our knowledge, no work has investigated the
viability of a gesture-based interface for smart walkers.

The proposed interface uses an RGBD camera as the
input sensor. Using an RGBD camera for image processing
has gained momentum since the release of affordable
devices. In terms of hand gesture recognition, Suarez
and Murphy [10] categorize different techniques that use
RGBD data as input. Work of particular relevance is
a probability-based dynamic time warping approach for
gesture recognition using RGBD data [11]. The authors
employ a Gaussian Mixture Model to model the variance
within a training set. The proposed work also uses dy-
namic time warping on RGBD data, but we do not explic-
itly model the variance; instead, we use k-NN to classify
gestures. In this way, our work is more similar to Ten Holt
et al. [12], who expand dynamic time warping to a multi-
dimensional space and classify gestures using k-NN. Our
recognition system computes the warping distance from
three-dimensional feature vectors with k-NN.

The interface also has face detection and recognition.
The face detection ensures that the system classifies ges-
tures only if the user is looking at the walker whereas the
face recognition ensures that the walker accepts commands
only from its owner. The face detection approach is similar
to Monajjemi et al. [13] in that it computes a face score
for detected faces and accepts only those faces with
face scores higher than a threshold as frontal faces. The
face recognition uses Local Binary Patterns Histograms
(LBPH) Face Recognizer [14].

III. SMARTWALKER

The SMARTWALKER is composed of a walker frame
enhanced with sensors, actuators, and appropriate software
to control these hardware components.

A. Hardware

The SMARTWALKER has a front wheel, two motorized
rear wheels, and two sensors (Figure 1(a)). The front wheel
has no motor and is for stability and maneuverability. The
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Figure 1. The SMARTWALKER hardware and software. In (a), below
the handlebars is the RGBD camera for gesture recognition. (b) shows
the executable nodes (orange) and the data flow (arrows).

rear wheels are powered with e-bike motors and can be
controlled to move the walker as desired. The SMART-
WALKER has a Carmine 1.08 RGBD camera1, which is
attached to a motor for 360◦ rotation and placed below the
handlebar, for gesture recognition. It also has a laser sensor
harvested from a vacuum cleaner by Neato Robotics2, at
the bottom of the frame, intended for obstacle avoidance.

The SMARTWALKER uses two processing units con-
nected via the local network. The first one is a tablet-PC,
where most of the computation is run. The tablet also
provides the user with graphical applications and a touch
interface. The second device is a BeagleBone3 single-
board computer for message passing between the tablet
and the sensors and the actuators.

B. Software

The SMARTWALKER software is distributed between
the tablet-PC and the single-board computer (Figure 1(b)).
The tablet runs the “brain” of the system – the main
control application and the gesture recognition module –
whereas the single-board computer receives raw data from
the sensors and forwards commands from the tablet to the
actuators. The SMARTWALKER control application is writ-
ten in Roboscoop [15], a robotics programming framework
with concurrency support. Built on Simple Concurrent
Object-Oriented Programming (SCOOP) model, which
provides simple and safe concurrency features, Roboscoop
is a robotics library written in Eiffel [16] and has tools for
integration with other frameworks and libraries via C/C++
external interface. The gesture and face recognition are
implemented in C++ as nodes in Robot Operating System
(ROS) [17]. ROS is a popular middleware in robotics and
in addition to network communication, it provides libraries
for image processing among others.

C. Modes of operation

The SMARTWALKER can function in two different
modes: assistive mode and autonomous mode. In the
assistive mode, the frame is driven by the user and it
provides support to the user during the movement, as a

1Discontinued
2http://www.neatorobotics.com/
3http://beagleboard.org/bone



regular walker does. In the autonomous mode, the SMART-
WALKER operates as an autonomous robot, without any
physical exertion by the user. It navigates around its envi-
ronment and executes the user’s commands given through
gestures. Switching between the two modes requires just
a touch of a button in the graphical touch interface on
the tablet-PC. The user can also activate the autonomous
mode by giving a gesture command.

IV. GESTURE-BASED INTERFACE

The gesture-based interface takes images from the
RGBD camera as input and processes the information
in three steps: gesture detection, face detection, and face
recognition. The gesture detection accepts predefined ges-
tures as commands and rejects unknown gestures. The face
detection localizes the user’s position more accurately and
ensures that the commands are processed only when the
user intends to, i.e., when the user is looking at the walker.
Finally, the face recognition ensures that the walker only
responds to the commands given by its owner. The face
detection and recognition modules are independent of
the gesture detection module and can be individually
deactivated through the graphical touch interface.

A. Commands

The gesture detector works with three different pre-
defined gestures and interprets them as commands –
“come here”, “go back”, and “stop”. In addition, the
detector gives voice feedback to the user when a gesture
is detected. The “come here” command requires the user
to move a hand up and down, and when detected, the
SMARTWALKER says “I am coming to you” and moves
to the user with its handle bars towards the user. The “go
back” gesture requires moving a hand sideways, either to
left then right or to right then left, and the robot says
“Going back to the charging station” and moves back to
a predefined location. The “stop” command requires the
hand to push forward, and it causes the robot to beep
and stop. Figure 2 shows how the distance to the starting
position of the hand changes during the execution of each
gesture command.

B. Gesture detection

The gesture detector is built on hand tracking to handle
various input data. Given that the walker is primarily
for elderly people in need of walkers, the user would
usually be sitting and could be partially occluded by a
table, for instance, when they execute commands. The
detector, thus, must impose minimal restrictions on the
user’s pose. In addition, the detector must be able to cope
with variability in the gesture execution that stems from
different levels of cognitive and motor skills of the elderly
and various distances between the user and the walker. As
hand tracking requires only a hand to be visible, it imposes
minimal restrictions.

Hand waving signals the system to start OpenNI’s hand
tracking [18] and thus the gesture recognition. The hand
tracker returns 3-D coordinates ph = {phx, phy , phz} of the
hand, and it marks the 3-D coordinates where the hand

tracking began as ps = {psx, psy, psz}. From ph and ps,
we compute the feature vector fh = {fh

x , f
h
y , f

h
z } as the

absolute distance between the two in each dimension, i.e.,

fh
d = �phd − psd�, (1)

where d indicates the three dimensions, x, y, and z. We
extract one feature vector per frame and represent a gesture
g as a time series Fg of N ∈ N feature vectors,

Fg = {f1, f2, ..., fN}. (2)

Once the time series Fg is extracted from the input
gesture g, the gesture recognition system classifies it using
a k-NN classifier. The classifier requires a training set,
which is built by collecting gestures from seven people.
Every person performed the three gesture commands 5
times per command, resulting in 105 gestures. Using this
training set, the classifier computes the distance from a test
time series Fg to the training data and selects k training
data items F(t), t = 1, ..., k that are closest to Fg . It then
assigns a class yi to Fg that is most represented by the
k neighbors. As Fg may be spurious, we introduce a
threshold dthresh such that no neighboring point in F(t)

lies farther than dthresh away. For this work, we set k = 5
and assign a class yi to the gesture g if 3 or more points
in F(t) have the same class label yi. Performing K-fold
cross validation, with K = 7 for the seven people, showed
that the accuracy remains at 99.1% for k = 1 to k = 12
and drops to 98.5% for k = 20 and to 96.4% for k = 30.

To compute the distance between the test time series Fg

and the training time series F(t), we use DTW [19]. DTW
is a well-known technique in signal processing and has
also been successfully applied to gesture recognition [11],
[12], [20]. Given Fg of length N and Ft of length M ,
DTW finds an optimal match p between Fg and Ft that
aligns the two time series with the minimum cost under
the following conditions:

1) The match starts at (1, 1) and ends at (N,M).
2) The match can move one step in Fg , Ft, or both but

cannot go back in either.

Using these constraints and Euclidean distance as the
distance metric between two feature vectors, we can find
the minimum cost path using dynamic programming [21].
Dynamic programming constructs the N by M cost matrix
that contains the lowest possible matching cost between
the two time series Fg and Ft up to the time index i in
Fg for the ith row and up to the time index j in Ft for the
jth column. At position (N,M), Fg and Ft are completely
matched with the minimal matching cost.

The length N of the test time series is based on the
length M of the training set. On average, the gestures of
the training set were performed in 17 ± 3.5 frames. The
gesture recognition uses the capture window of 50 frames
to provide the user sufficient amount of time to execute
a gesture. It matches the first 50 frames after the hand
tracking starts to the time series stored in the training set.
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Figure 2. Change in distance with respect to the starting position for the three gestures – “come here” (blue), “go back” (red), “stop” (yellow).

Figure 3. Face detection and recognition. Only the frontal face and
slightly turned faces are detected. The text below the green circle
indicates recognition of the detected face.

C. Face detection

The gestures defined as commands can also be per-
formed and detected when the user does not intend to
command the SMARTWALKER. To ignore unintentional
gesture commands, the interface uses a face detector.
Under the assumption that the user making a gesture
to command the walker would look at the walker, the
face detection finds frontal faces in the input stream. The
system then processes the detected gesture command only
if the frontal face detection is successful.

The face detector uses OpenCV’s Viola and Jones face
detector [22]. The detector computes Haar features from
the input image and trains the features on positive and
negative images to select most distinctive features, i.e.,
features that have the highest variance between the positive
and the negative ones. For fast detection, the detector uses
a cascade of classifiers, where each stage uses one or few
features to determine if the input image could contain
a face. Only those images that pass all the stages are
positively classified. For further speed improvement, our
detector uses depth cues given by the RGBD camera to
restrict the search area, as proposed by Burgin et al. [23].
In addition, the detector uses depth information to reduce
false detection by creating a bounding box around the
detected face and validating its size. Any face whose
horizontal or vertical dimension is smaller than 8cm or
greater than 23cm is deemed unlikely to be a face.

To determine if the user is looking at the walker, we
train the aforementioned classifier only on frontal faces.
The detector puts a bounding box around every plausible
frontal face. In turn, a higher number of bounding boxes
indicates a higher probability of a frontal face. Similar to
the approach of Monajjemi et al. [13], which selects the
most attentive face from many faces using a face score, the
detector uses the number of bounding boxes as the face
score; however, as there is only one face, it introduces a
threshold and accepts only those faces whose face scores
are higher than the threshold as frontal faces. Figure 3

shows how turning of a face affects the detection.

D. Face recognition

The face recognition ensures that the SMARTWALKER
only responds to the commands of its owner. Once a face
is detected, the face recognition is activated to determine if
the detected face is the owner. The face recognition system
is based on the LBPH Face Recognizer [14], provided
by the OpenCV library. LBPH takes a detected face –
a cropped image of a face from the face detector – as
input and constructs histograms of local binary pattern
operators. The operators capture fine grained details such
as spots, lines, edges and corners in an image and are
invariant to different lighting conditions. LBPH recognizes
the input face by comparing its histograms to those of the
face training set. It ensures scale invariance by applying
local binary patterns operators of different sizes.

V. METHOD

Our study had three research questions related to the
appropriateness and usefulness of the SMARTWALKER.
To answer these questions, we conducted interviews with
residents and staff at retirement homes.

A. Research questions

1) Is a robotic walker an attractive alternative to a
traditional walker?

2) Is gesture-based interface an acceptable form of user
interface for the elderly?

3) Is the ability to move autonomously a useful func-
tionality?

B. Study setup

The study was conducted with residents of retirement
homes. The experiment required a room with about 5m
by 5m of free space and was conducted either in an
activity room or a dining room of the homes. Each
experiment, which consisted of one participant filling out
a questionnaire (Section V-C) and testing the SMART-
WALKER and its interface, lasted about 30 minutes. To
ease the experimental process, an interviewer read out
every question and possible answers to each participant
and marked the responses on the participant’s behalf;
reading out the questions was especially important for the
elderly with limited or no vision.

Each experiment began with a brief introduction to
the SMARTWALKER and the study. We then collected



each participant’s background information such as the age
and usage of mobility aid. Each participant then walked
around the testing room with the walker and answered
the questions about its functionality as a regular mobility
aid. After the first evaluation, each participant tested the
walker’s gesture-based interface by calling it to them
and sending it back to a predefined location. They then
evaluated the walker as an autonomous robot.

We also had discussions with the staff of the retirement
homes. The staff were present for part or all of the experi-
ments, and after the experiments, they shared their opinion
with us. Their responses varied from general comments
about the visit to specific suggestions for improvement
of the walker. There was no particular format to the
discussion; the authors simply noted their remarks.

C. Questionnaire

The questionnaire had 23 questions, divided into three
groups. The first group was about gender, age, usage of
mobility aids, activity level, and familiarity with tech-
nology. The second part contained questions about their
impression of the SMARTWALKER’s assistive mode such
as how they like the walker and how big, heavy, and
maneuverable the walker is. The last section had questions
related to the SMARTWALKER as an autonomous robot.
The questions included the usefulness of the SMART-
WALKER’s autonomy, the easiness and appropriateness of
its gesture-based interface, and their general impression
and opinion of autonomous robotic walkers. The question-
naire ended with a free response question about desired
functionality of the SMARTWALKER. Appendix A shows
a subset of the interview questions.

VI. RESULTS

We contacted 28 retirement homes via e-mail and
received five positive responses. The homes included one
male-only place and one for visually-impaired and blind
people. Three of the five places made an announcement
of our visit to their residents on bulletin boards and
allowed people to join the experiment freely. The other
two places had contacted individual residents in advance
and brought the interested people one by one. In total, 23
residents (14 men and 9 women) and eight members of
the staff participated in our study. Four of the residents
were visually-impaired or blind.

Table I shows the background information of the study
participants. The majority of the participants were 80
and above. Most used a rollator or a cane, with three
using both. Many stated that they use their mobility aids
regularly, both inside and outside, though outside is often
limited to the garden area of the retirement homes. Most
were unfamiliar with technology, never using a computer
or a smart phone.

A. Responses of the elderly

Twenty-one participants evaluated the SMART-
WALKER’s potential as a mobility aid by walking around
with it; two of the wheelchair users could not participate
in this portion of the test. Figure 4 shows the responses
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Figure 4. Evaluation of the SMARTWALKER as a mobility aid device.

0 5 10 15 20

Operability
Usefulness

Stopping Distance
Comfort

Liking

Number of participants

Great Good Okay Bad Terrible

Figure 5. Evaluation of the SMARTWALKER as an autonomous robot.

of the participants after testing the device. Eleven of
the 17 who were asked how much they like the walker4

stated that they like the SMARTWALKER. Fourteen out of
the 21 found the walker comfortable to use and 13 found
it easy to control. Many, however, found it big (14) and
heavy (15).

All 23 participants tested the SMARTWALKER’s
gesture-based interface by calling it towards them and
sending it back to a predefined location. The results are
shown in Figure 5. The interface failed to recognize ges-
tures of three of the participants because they performed
the gestures too slowly, and we omitted some questions for
those participants. After testing the interface, 12 out of 18
stated that they like the walker. Nineteen out of 20 said that
they were comfortable with the SMARTWALKER coming
towards them, and 15 said that its stopping location, set
at 40cm from the user, is a good distance. Seventeen out
of the 23 found the SMARTWALKER’s ability to move
by itself useful, and sixteen people said that the walker’s
gesture-based interface is easy to operate.

In terms of the interface, 21 out of the 23 said that
the gestures are easy to execute, and 16 said that their
commands were well-understood (Figure 6). The recogni-
tion rate was 0.41, i.e., the participants had to execute the
same command on average 2.4 times before the interface
recognized the command (Figure 7). The low recognition
rate is partially due to the mismatch between the training
set and the test set; the training set was built using healthy
adults in their 20’s and 30’s while the test was performed
by elderly people. Lastly, eleven participants said that the
voice feedback that the robot gives when it recognizes
a gesture is sufficient whereas eleven said that the voice
feedback is insufficient.

4The four visually-impaired people were not asked this question.



Table I
USAGE OF MOBILITY AID AND COMPUTING DEVICES.

Categories Responses
Age group Under 70 (1) 70− 79 (3) 80− 89 (11) 90 and over (6)
Mobility aid usage None (3) Cane (9) Rollator (11) Wheelchair (3)
Years of usage Zero (3) < 1 year (5) 1− 2 years (3) 3− 5 years (8) > 5 years (4)
Frequency of usage Never (3) Rarely (2) Sometimes (3) Often (1) Always (14)
Outside usage Never (4) Rarely (0) Sometimes (1) Often (4) Always (14)
Usage of computing devices Never (16) Rarely (1) Sometimes (3) Often (2) Always (1)
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Figure 6. Evaluation of the gesture-based interface.
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Figure 7. Recognition rate of the two gesture commands. The partic-
ipants gave the same gesture command until it was recognized or until
they no longer wished to try.

Nineteen of the 23 participants found the idea of a
robotic walker very exciting (11) or exciting (8); however,
eleven said that they would rather not (4) or definitely
not (7) replace their traditional mobility aids with robotic
walkers. Only a small portion said that they would defi-
nitely (6) or likely (1) replace their traditional aids. The
low acceptance may be due to the walker’s size and weight
and the elderly’s unfamiliarity with technology.

The elderly suggested several additional features for
the walker. They include a seat, the ability to identify
its owner, which was implemented but not tested with
them as it required collecting their face data first, a better
feedback system, a reduction in size and weight, assistance
for uphill and stair climbing, and safety assurance.

B. Comments from retirement home employees

All eight personnel (5 women, 3 men) from the five
retirement homes had a positive impression of the SMART-
WALKER and our visit. They shared their comments about
the device, recommending new features for the walker.
Their suggestions were uphill/downhill support, a parking
brake for safety, and an ergonomically designed tiltable
hand grip. The retirement home for visually-impaired and
blind additionally wanted obstacle and stair recognition
for warning, more audible warnings when the walker is
in action, a physical interface (e.g. buttons) rather than a
touch screen or a gesture-based one, and an emergency
alarm.

Table II
EVALUATION OF THE SMARTWALKER’S SIZE AND WEIGHT AND

WILLINGNESS TO REPLACE TRADITIONAL WALKER TO THE
SMARTWALKER.
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Definitely (6) 0 4 2 0 3 3
Probably (1) 0 1 0 0 1 0
Not sure (2) 0 1 1 0 1 1

Probably not (4) 2 0 2 1 3 0
Definitely not (7) 4 1 2 5 0 2

Everyone said that an autonomously-moving robotic
walker would be particularly useful at mealtimes. Moving
walkers in and out of a dining room is a laborious
process, requiring a lot of resources. Currently, the staff
parks the walkers outside of the dining room at the
beginning of each meal and brings them back to the
residents one by one when the mealtime is over. A robotic
walker would eliminate this laborious process. Moreover,
a robotic walker would enable the residents to have a meal
and leave the room when they wish, and this prospect was
particularly well-received by the residents.

VII. DISCUSSION

The overall impression of the SMARTWALKER by the
residents and the staff was positive. Most residents found
the walker exciting, and the staff showed their interest in
the device. As a prototype, the SMARTWALKER, however,
was not yet deemed an acceptable replacement of a tradi-
tional walker. This may be because the walker is too big
and heavy and the elderly are unfamiliar with technology.

A. Acceptance of robotic walker

More than half of the participants said that they would
rather stay with a traditional walker. This was especially
true for current walker users, with nine out of the 11
stating that they would definitely not (6) or probably not
(3) change to a robotic walker. This is surprising given that
five of the 11 liked the walker and eight found it exciting.
Unfortunately, their positive review did not translate into
their willingness to switch to the SMARTWALKER.

A possible cause is the SMARTWALKER’s size and
weight. Equipped with extra hardware, the walker is
bigger and heavier than normal walkers. While none of
the seven people who would consider changing found
the SMARTWALKER too heavy and three even found the
weight just right, only two of the 11 who would not change
found the weight acceptable; six of the 11 found the walker
too heavy (Table II). We were told that many have trouble



going over a curb using a traditional walker and thus
stay within the perimeter of the retirement homes. The
residents may have felt that the SMARTWALKER would
hinder their autonomy even further.

Another cause may be the unfamiliarity with tech-
nology. As most participants did not use any comput-
ing devices, they could have found the SMARTWALKER
overwhelming to use. Indeed, those who use technology
regularly were more willing to switch to a robotic walker
than those who do not (Table III).

B. Appropriateness of gesture-based user interface

The evaluation of the gestured-based interface was pos-
itive despite the low recognition rate. In contrary to their
positive feedback that the gestures were easy to perform,
we noticed that the participants had a hard time execut-
ing gesture commands to the walker. Many participants
had limited fine-motor skills due to old age, and some
participants even suffered from movement disorders such
as Parkinson’s disease. The visually-impaired and blind
people had extra difficulty with the gesture commands as
they had to conceptually translate our verbal explanation
of the gestures to physical movements.

As an alternative to gesture, several staff members
suggested using a button and integrating it into the medical
alert system. As most residents have alarm buttons, inte-
grating the interface into the system would make it easier
for the residents to use the interface. Interestingly, they
also pointed out that many residents do not wear their
alarm button despite owning one. They generally prefer
simple and physical interface, but determining the most
appropriate interface requires a further study.

C. Usefulness of autonomous walker

Most residents found the walker’s autonomy useful,
but many were initially unsure of its actual use case.
The staff at the retirement homes saw its usefulness
more readily, stating mealtimes as the main use case. An
autonomous walker would eliminate the laborious process
of parking and fetching walkers. The elderly, once told of
the scenario, were also excited about it. In a longer term,
several imagined the walker developing into a butler.

D. Factors influencing the evaluation

Flandorfer’s meta study [24] showed that different so-
ciodemographic factors influence the elderly’s acceptance
of socially-assistive robots. We analyzed the influence of
the walker’s performance and the elderly’s gender and
experience with technology on their willingness to switch
to the SMARTWALKER (Table III). In terms of the gesture
interface’s recognition rate, we noticed no significant
difference between those who are willing to replace and
those who are reluctant. In terms of gender, about half of
men were interested in switching while no women were
interested. Similarly, more than half of the technology
users were willing to replace to the SMARTWALKER
whereas many non-technology users were unwilling to
change. Although the small sample size makes it difficult
to draw any statistically significant conclusions, our results

Table III
FACTORS INFLUENCING THE EVALUATION.
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Replace (7) 0.31± 0.27 7 0 4 3
Not replace (11) 0.40± 0.36 4 7 2 9

show that gender and technology may have some influence
on the participants’ acceptance of the SMARTWALKER.

E. Limitations

This study was conducted with residents of retirement
homes and would thus reflect the preference of those who
live in community-living environments. No participant
carried out outside activities such as grocery shopping
regularly, if at all; in fact, although most participants went
outside regularly, they mostly stayed in the garden area
and rarely left the perimeter of the retirement homes.
Given that many walker users do live independently, the
findings of this study may not be applicable to the general
population of current and potential walker users.

VIII. CONCLUSION

This paper introduced the SMARTWALKER, an au-
tonomous robotic walker for the elderly, and its gesture-
based user interface. Equipped with low-cost, off-the-
shelf sensors and actuators, the SMARTWALKER’s can
autonomously and intelligently interact with its environ-
ment. Twenty-three residents and eight staff members
at five different retirement homes evaluated the device.
In general, the residents liked the SMARTWALKER and
found its interface easy to use. They also found the
walker exciting and useful; however, they were reluctant to
replace their walker with a robotic one, possibly because
the SMARTWALKER is bulkier and heavier than traditional
walkers and many elderly are unfamiliar with technology.

Next steps of this research include evaluating the face
detection/recognition module, providing more physical
support for the elderly, and investigating different user
interfaces such as a button or voice for remote interaction.
In general, we are interested in understanding the demand
for an autonomous robotic walker among a wider group of
people, in particular, walker users who live independently.

APPENDIX

A. Sample questions from the questionnaire

Part one (1–7):
4) Do you use?

() nothing () cane () walker/rollator () wheelchair
5) How often do you use the device?

() never () seldom () sometimes () often () always
7) How often do you use a smartphone, a computer, ...?

() never () seldom () sometimes () often () always



Part two (8–12):
8) Do you like the rollator?

() a lot () somewhat () neutral () not really () not at all
11) How comfortable was it to walk with the rollator?

() very comfortable () comfortable () neutral
() uncomfortable () very uncomfortable

Part three (13–23):
14) Is it useful that the rollator can come and go away?

() very () somewhat () neutral () not really () not at all
18) Were the hand gestures difficult for you to execute?

() very difficult () difficult () neutral () easy () very easy
19) Did the robot understand your hand gestures well?

() always () mostly () neutral () sometimes not () never
22) Would you change to a robotic walker, or would you
rather stay with a traditional one?

() definitely change () probably change () neutral
() probably not change () definitely not change
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