
How to Cancel a Task

Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer

ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Task parallelism is ubiquitous in modern applications for
event-based, distributed, or reactive systems. In this type of program-
ming, the ability to cancel a running task arises as a critical feature.
Although there are a variety of cancellation techniques, a comprehen-
sive account of their characteristics is missing. This paper provides a
classification of task cancellation patterns, as well as a detailed analy-
sis of their advantages and disadvantages. One promising approach is
cooperative cancellation, where threads must be continuously prepared
for external cancellation requests. Based on this pattern, we propose an
extension of SCOOP, an object-oriented concurrency model.

1 Introduction

Task parallelism has become part of the standard inventory of professional devel-
opers, and programming frameworks for this domain are sprouting to help them
express their intentions in a safe and concise manner. At the same time, learn-
ing to proficiently use such frameworks is far from easy. They offer a confusing
variety of abstractions and constructs, often to provide similar but subtly differ-
ent functionality. Frequently, the only source of information are code examples
where the relevance of the constructs cannot be sufficiently discussed. Too little
research is spent on consolidating the various approaches by explaining common-
alities and differences, which would help developers learn to use new frameworks
more quickly and aid designers in developing their frameworks further.

This paper strives to address these deficiencies, focusing on one central
problem in task parallelism: task cancellation techniques. Cancellable tasks are
mainly used for interrupting long-running or outdated tasks, but the pattern can
also be used as a building block for more high-level patterns, such as MapReduce.
The paper provides an overview of existing cancellation approaches, extracting
techniques from different programming languages and concurrency libraries, clas-
sifying them, and discussing their strong and their weak points. This knowledge
is then applied to provide a novel task cancellation technique for SCOOP [8,10],
an object-oriented concurrency model. The technique is based on the idea of
cooperative cancellation where both the canceling and the canceled task must
cooperate in order to succeed.

The remainder of the paper is structured as follows. Section 2 provides a
taxonomy and discussion of task cancellation techniques. Section 3 describes a
cooperative cancellation technique for SCOOP. Section 4 provides an overview
of related work and Section 5 concludes with an outlook on future work.

How to cancel
a task?

in the supplier

Failing Cooperative HostilePassiveForceful

Abortive

in the client

Interruptive

in combination

Fig. 1. A taxonomy of task cancellation techniques

2 Classification of task cancellation techniques

A task denotes the abstraction of an execution, such as a CPU thread, a thread
pool, or a remote machine. Designing a programming model for task parallelism
has to deal with the cancellation of tasks, a highly reusable pattern which can
be applied to stand-alone applications, client-server systems, and distributed
clusters alike. Without proper support for task cancellation, the developer has
to write the synchronization code by hand, a task prone to subtle errors.

Various approaches to canceling a running task have been implemented in
programming languages and libraries and described in theory. However, so far
there is little evaluation and comparison of the proposed techniques. To provide a
foundation for discussing them, we have examined a number of popular languages
(Java, Python, C# TPL, Pthreads, etc.) and provide a taxonomy in Figure 1.

Client-based cancellation describes techniques where the control over the
cancellation process lies entirely with the client (the canceling task):
– Forceful cancellation The client forces the supplier (the canceled task)

to stop without the possibility to resist:
• Abortive cancellation The supplier is terminated immediately.
• Interruptive cancellation The supplier is allowed to reach a safe point

before being terminated.
– Passive cancellation The client stops waiting for the result of a supplier,

allowing it to continue on its own.
Supplier-based cancellation describes techniques where the control over the

cancellation process lies entirely with the supplier:
– Failing The supplier encounters an unrecoverable error and needs to

inform its clients.
Client/supplier combination describes techniques where client and supplier

must act together in order to succeed with the cancellation:
– Cooperative cancellation The client asks the supplier to terminate, which

decides itself how and when it should terminate.
– Hostile cancellation The supplier may resist a cancellation request of the

client, and interrupt the client instead.

In the following, we discuss each of the approaches and provide examples of
languages where they are employed.

2.1 Client-based cancellation

Abortive cancellation. Immediate termination does not give the canceled thread
a chance to respond. As an example, consider the Java code in Listing 1, where
t.stop() aborts the thread.

Thread t = new Thread () { @override void run () { . . . } }
t . start () ;
. . .
t . stop () ; // abort s the running thread

Listing 1. Aborting a thread-based task in Java

The advantage of the approach is clearly its simplicity. However, the ap-
proach is unsafe because aborting a running thread can leave a program in an
inconsistent state. Consider the money transfer example in Listing 2.

void transfer (Account from , Account to , int amount) {
synchronized{

from . withdraw (amount) ; // i f stopped here , money i s l o s t
to . deposit (amount) ;

}
}

Listing 2. Unsafe cancellation using abortion

In this example, a synchronized block is used to guarantee that no thread
interferes with the transfer. However, if a running thread is aborted during
execution and is forced to unlock all of the monitors that it has locked, the
transferred money may be lost and the remaining execution started in an incon-
sistent state. The Pthreads library [12] with set_cancellalation mode set to
PTHREAD_CANCEL_ASYNCHRONOUS is a further example of abortive cancellation.

Interruptive cancellation. Using this technique, a running task is aware of poten-
tial interruption and usually cannot ignore it. However, a task cannot be canceled
in every execution state, but only at so-called safe points: places where certain
program invariants hold such that the execution may be interrupted safely. Usu-
ally a programmer must specify these places by hand, either by calling a library
function, or handling a specific type of exception [5]. A special case of this tech-
nique allows interrupting a task at only one point in its lifetime: when the task
has not been started yet. While it may seem not very useful, in some languages
(Scala [13], Python [3]) this is the only built-in cancellation mechanism.

Consider the example in the Pthreads library1 in Listing 3.

1 Pthreads supports two cancellation modes: Deferred (as in the example) and Asyn-
chronous. The latter one is an example of aborting tasks, with no safety guarantees.

// s e t t i n g the c an c e l l a t i o n mode to i n t e r r up t i on
pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED , NULL) ;
. . .
void* CancellablePthread (void* argument){

. . .
pthread_testcancel () ; // the execut ion can be s a f e l y cance l ed here

}

Listing 3. Cancellation points in Pthreads

At a safe point for cancellation, the call pthread_testcancel() checks on
potential cancellation requests. Additionally, some of the blocking system calls
are also considered to be cancellation points in Pthreads [12]. Java’s thread inter-
ruptions2 and thread.Abort() in C# (unlike the method’s name is suggesting)
are another examples of interruptive cancellation [6,1].

Its potential safety guarantees are a benefit of this approach: if the approach
is applied correctly, a program can be considered to be in a consistent state after
a cancellation. Writing correct interruption-aware code is however difficult [11,1]
as a programmer has to remember subtle rules (e.g. in Pthreads some I/O calls
are interruptible, others are not) and maintain a program’s invariants by hand.

Passive cancellation. This technique is different from the forceful methods in
that a canceling task does not need to become active: it simply stops waiting for
a task result, while the running task is still being executed.

As an example, consider downloading a file over a network, illustrated in
Listing 4 with C#’s Task Parallel Library (TPL). The call to a StartDownload()
is asynchronous and returns only a handle to a future (an object, representing
a computation that is still being computed [2]), represented by the Task class.
After some time the downloader’s result might not be needed anymore, i.e. the
execution is abandoned (in the if branch).

void PassiveCancellation (string url){
Downloader downloader = new Downloader (url) ;
Task<byte []> bytesFuture = downloader . StartDownload () ;
. . .
i f (noNeedToDownload) {

// the download i s not needed anymore
return ; // data i s s t i l l be ing downloaded . . .

}
else {

// the download i s s t i l l needed
var result = bytesFuture . Result ; // f e t ch i n g the r e s u l t

}
}

Listing 4. Passive cancellation in the Task Parallel Library (TPL) of C#

Obviously, this approach is not uniformly applicable; for example, we might
still want to cancel a state-changing procedure. And it is important to know

2 User-defined code may ignore interruption [11], but only between calls to library
methods (which will not ignore it).

in advance that the task will eventually be completed, i.e. listening to a TCP-
socket cannot be canceled in this way. Another disadvantage is that the running
task continues to consume machine resources. However, in a distributed setting
this approach can find its application: consider a framework for a distributed
computing, such as MapReduce. Often for the last piece of work several tasks
are spawned [4] but only a single result will be used. In this case, there is no
need to write sophisticated cancellation code, and it is valid to “forget” about
the remaining executing tasks.

2.2 Supplier-based cancellation

This class of techniques deals with the special case that cancellation is not re-
quested by a client but that a failure happens in supplier, i.e. it cannot fulfill
it’s obligations to clients; the supplier therefore needs to terminate. To indicate
a failure, exceptions are typically used in object-oriented programming envi-
ronments. Hence, this case boils down to the problem of exception handling in
concurrent environments [9], which is not the focus of this paper.

2.3 Client/supplier combination

Cooperative cancellation. A gentle way to stop a task is to cooperate and ask it
to do so. The rationale for this approach is simple: a task is the abstraction of
an execution, and hence should contain the information about how and when it
should be stopped.

In other words, a task must be ready to be canceled at any time by external
request. C#’s Task Parallel Library (TPL) follows this pattern, where a single
point of cooperation is denoted by two classes: CancellationTokenSource, a
generator of CancellationToken, which itself is a concrete request to cease the
execution. An example is given in Listing 5.

void Client () {
var cts = new CancellationTokenSource () ; // c r ea t e the token source
// pass the token to the canc e l ab l e operat ion
Task . Run (() => Supplier (cts . Token)) ;
. . .
cts . Cancel () ; // r eques t c a n c e l l a t i o n

}
void Supplier (CancellationToken token) {

for (int i = 0 ; i < 100000; i++) {
// some work
i f (token . IsCancellationRequested) {

break ; // p o t e n t i a l l y perform cleanup , terminate
}

}
}

Listing 5. Cooperative cancellation in TPL

This technique provides a solid general structure for writing a cancellable
tasks (see Listing 6), with a guarantee that no invariants will be violated. Unlike

retain yield

demand the client is interrupted the supplier is interrupted
insist the client waits the supplier is interrupted

Table 1. Dueling rules

in interruptive cancellation, the programmer does not need to remember subtle
rules of a concrete library or language. Cooperative cancellation also does not
require any runtime support. Unfortunately, one cannot use the true power of
this technique unless libraries support this pattern too (as far as we know, to
date only limited support is introduced in C#). As another disadvantage, the
latency between a cancellation request and actual cancellation is increased.

void function run (CancelRequest cancel)
while (not is_done){

i f cancel is requested
exit

loop_once
}

//need to be s p e c i f i e d f o r conc re t e task .
void function loop_once ;
boolean function is_done ;

Listing 6. General structure of a cancellable task in cooperative cancellation

Hostile cancellation. While in the previous paragraph client and supplier are
cooperating in order to succeed, in hostile techniques involve a struggle between
the canceling and the canceled task. We describe these techniques on the example
of duels, a mechanism was theoretically described in [8] but not yet implemented.
We are using the terminology from [8] in the rest of this chapter.

The key insight in this approach is that a canceling task (a “challenger”, in
the original) might not be strong enough to request an actual cancellation. If the
canceling task is worthy enough, its request is fulfilled (the task is “killed”); if
not, it gets an exception itself (therefore the approach is named a duel). In other
words, dueling is a two-way interruption, where the result depends on which of
the tasks is stronger.

To specify its preferences, a supplier can be in one of the two modes: either
retain or yield. The former means that the task refuses to be canceled, and the
latter specifies that it is OK to be interrupted. On the side of the client, there
are also two options available: demand and insist. The first is more impatient,
the second more gentle. The complete set of rules is shown in Table 1.

The dueling mechanism is useful in environments where executions are pri-
oritized. For example, one can imagine a robotics system that needs to handle
simultaneously a variety of different tasks: route planning, controlling the mo-
tors, etc. These tasks can arise non-deterministically and compete for processing
units, attempting to cancel other activities. However, it is completely unaccept-
able that low priority task succeeds in canceling a more important one (for

producer : separate PRODUCER
consumer : separate CONSUMER
buffer : separate BUFFER [INTEGER]

consume (a_buffer : separate BUFFER [INTEGER])
−− consume an item from the bu f f e r
require

not (a_buffer . count = 0)
local

consumed_item : INTEGER
do

consumed_item := a_buffer . item
end

Listing 7. Producer-consumer example in SCOOP

example, the data collection routine should not be able to cancel a task that ad-
justs the speed of the motors). In this case, a proper setup of dueling rules could
both permit a cancellation request from high priority challengers and provide
security from cancellation for important computational tasks.

3 Cooperative cancellation in SCOOP

This section provides an introduction to SCOOP, an object-oriented concurrency
model for contract-equipped languages, and evaluates the patterns of Section 2
for use within this model. Furthermore, the section shows how the cooperative
cancellation pattern can be applied to a SCOOP, implemented in Eiffel. For the
rest of the paper, we are using Eiffel notation and terminology [8].

3.1 Overview of SCOOP

The goal of SCOOP [8,10] is to provide a simple and safe way to write concurrent
code while retaining sequential object-oriented programming principles in as far
as possible. Each object in SCOOP is associated with a processor (typically
implemented as a thread), called its handler. Features of objects that reside on
different processors can be executed in parallel. The keyword separate is used
to mark objects residing on different processors, relative to the current object.

The producer-consumer problem serves as an illustration of these ideas. The
main entities producer, consumer, and buffer are shown in Listing 7. The
keyword separate specifies that the referenced objects may be handled by a
processor different from the current one. A creation instruction on a separate
entity such as producer will create an object on another processor; by default
the instruction also creates that processor.

A consumer accesses an unbounded buffer in a feature call a_buffer.item.
To ensure exclusive access, the consumer must lock the buffer before accessing
it. Such locking requirements of a feature must be expressed in the formal argu-
ment list: any target of separate type within the feature must occur as a formal
argument; the arguments’ handlers are locked for the duration of the feature

execution, thus preventing data races. Such targets are called controlled. For in-
stance, in consume, a_buffer is a formal argument; the consumer has exclusive
access to the buffer while executing consume.

Condition synchronization relies on preconditions (after the require key-
word) to express wait conditions. Any precondition makes the execution of the
feature wait until the condition is true. For example, the precondition of consume
delays the execution until the buffer is not empty.

3.2 Choosing a cancellation mechanism for SCOOP

The main goal of SCOOP is to provide an easy-to-use model for expressing
concurrency, with a focus on the correctness of the resulting programs. Any
cancellation mechanism proposed for SCOOP must be designed in this spirit.

Clearly, abortive cancellation is an error-prone pattern, and it does not go
well with SCOOP’s focus on design-by-contract mechanisms. Interruptive can-
cellation has no strict correctness guarantees and can be complicated to use,
which does not correspond to SCOOP’s simplicity principle. In other concur-
rency models, where stricter techniques are not favored, interrupting may be a
viable option. As mentioned, passive cancellation does not need to be explicitly
implemented. As it is highly depended on particular usage scenarios, and has no
guarantees that it will succeed (the termination of a passively canceled thread
is not ensured), it also partly contradicts SCOOP design principles.

A concurrent object-oriented language needs to have well-defined rules about
exception handling. The SCOOP implementation is discussed in [9].

As a simple and safe approach, cooperative cancellation is a natural candidate
to be implemented in SCOOP. It can be implemented as a library approach, thus
even eliminating the need to modify the compiler. Dueling could be considered
as an alternative to cooperative cancellation. However, while duels are only a
good fit for specific scenarios, and less suitable in others, we prefer cooperative
cancellation as a general-purpose approach.

3.3 SCOOP with cooperative cancellation

It is instructive to try to directly implement the approach introduced in Listing 6
in SCOOP. One can start with an abstract3 class CANCELLABLE_EXECUTOR and
introduce a CANCEL_REQUEST as a shared object that propagates a cancellation
request; the descendants need to define the termination criteria in is_done and
a single loop iteration loop_once.

An example of using this implementation of cooperative cancellation is shown
in Listing 8. Unfortunately, this attempt does not work because in SCOOP
a cross-processor call of run would force the executing processor to block on
executing the loop for the entire execution. Thus all subsequent cancellation
requests would be queued in the processor’s request queue, effectively making
CANCELLABLE_EXECUTOR useless. This happens because CANCELLABLE_EXECUTOR

is both responsible for listening to cancellation requests and the execution itself.

3 deferred in Eiffel notation.

executor : separate CONCRETE_CANCELLABLE_EXECUTOR
cancel : separate CANCEL_REQUEST −−shared between two p ro c e s s o r s
. . .
−− launching an execut ion
executor . run (cancel) −− execut ion s t a r t ed on d i f f e r e n t p roc e s s o r

cancel . request −− cance l i ng an execut ion

Listing 8. Usage of CANCELLABLE_EXECUTOR

This problem can be solved by decoupling the listening and the execution
logic; the design is provided in Figure 2. The CANCELLABLE_EXECUTOR is now
responsible only for listening for cancellation requests; the actual execution is
handled by a different processor. To represent a concrete execution, a concretiza-
tion of the deferred class EXECUTION_UNIT is needed. The CANCEL_REQUEST may
not be actually separate, but keeping it this way provides additional flexibil-
ity for the case when cancellation request is coming from a client residing on
processor separate from CANCELLABLE_EXECUTOR.

CANCELLABLE_EXECUTOR

run (unit : separate EXECUTION_UNIT)
set_new_token (request : separate
CANCEL_REQUEST)

<<abstract>>
EXECUTION_UNIT

is_done*: BOOLEAN
loop_once*

CANCEL_REQUEST

cancel : BOOLEAN

CONCRETE_UNIT1 CONCRETE_UNIT2

is_done : BOOLEAN
loop_once

is_done : BOOLEAN
loop_once

is_done : BOOLEAN
loop_once

is_done : BOOLEAN
loop_once

Processor boundary
Optional boundary

Fig. 2. SCOOP cancellation design

In this design, EXECUTION_UNIT is a deferred class, only responsible for per-
forming a single-loop iteration and termination criteria4. A task’s life cycle is
expressed in CANCELLABLE_EXECUTOR (see Listing 9), with the following methods:

– make (omitted) creates an empty cancellation request. At this point execution
cannot be canceled from the outside.

– set_new_token(a_token: separate CANCELLATION_REQUEST) sets a new can-
cellation request, enabling a cancellation.

– run(a_unit: separate EXECUTION_UNIT) accepts the execution unit (where
execution details are encapsulated) and starts the cancellation-aware execu-
tion, according to Listing 6.

4 This functionality could also be implemented with Eiffel agents (function objects),
but we present an abstract class to avoid providing execution details.

class CANCELLABLE_EXECUTOR
feature

set_new_token (a_token : separate CANCELLATION_REQUEST)
do token := a_token end

run (a_unit : separate EXECUTION_UNIT)
do

from until
is_done (a_unit) or cancel_requested

loop
i f check_cancel_requested (token) then

cancel_requested := TRUE
else

loop_once (a_unit)
end

end
cancel_requested := FALSE

end
end

feature{NONE}
cancel_requested : BOOLEAN
token : separate CANCELLATION_REQUEST

Listing 9. Cancellable executor

As soon as a cancellation is requested, the loop body can be executed at
most once more. After one cancellation request, the instance of CANCEL_REQUEST
becomes useless, therefore we provide set_new_token to refresh a request as
many times as needed.

3.4 Example of usage

As an example of using cooperative cancellation in SCOOP, we present a down-
loader application that requests a URL, starts a background download process
and provides progress reports. While still in progress, downloading can be can-
celed by the user. The complete source code is available for download;5 in the
following description, we focus on key aspects of this application.

The DOWNLOADER_UNIT, responsible for downloading a single portion of bytes
from specified URL, is shown in Listing 10 (some code is omitted for brevity).
Note that a separate STRING is required in the constructor to obtain control
over it, as DOWNLOADER_UNIT resides on a different processor than its clients.
The implementation is straightforward otherwise. Launching an asynchronous
download task is done in a pattern similar to Listing 8, applying the design
in Section 3.3. One should create one CANCEL_REQUEST per launch: the cancel
requests are designed to be used only once.

4 Related work

To the best of our knowledge, this work is the first to attempt a comprehensive
classification and evaluation of task cancellation techniques. The work closest

5 http://se.inf.ethz.ch/people/kolesnichenko/src/downloader_sample.7z

http://se.inf.ethz.ch/people/kolesnichenko/src/downloader_sample.7z

class DOWNLOADER_UNIT inherit EXECUTION_UNIT
feature

make (a_url : separate STRING)
do
−− use URL ' a ur l ' and i n i t http downloader (omitted)
create parts . make −− c r e a t e a s to rage bu f f e r

end

is_done : BOOLEAN −− done when a l l bytes are t r a n s f e r r e d
do

Result := http_downloder . bytes_transferred = http_downloder . count
end

action
do

http_downloder . read
i f attached http_downloder . last_packet as last_p then

parts . put_front (last_p)
end

end

feature {NONE}
http_downloder : HTTP_PROTOCOL
parts : LINKED_LIST [STRING] −− bu f f e r f o r content

end

Listing 10. Example: Downloader unit

to ours is [11], Chapter 7, where some cancellation techniques are discussed for
Java. In particular, cooperative cancellation with a shared variable or future is
presented, along with rules to write a correct interrupt-aware code.

Further related work is also found in descriptions of individual techniques as
part of language and library designs. The degree of support of task cancellation
varies in such approaches. C# natively supports interruptive cancellation, and
since release of TPL also cooperative techniques were introduced [7].

Things get even more complicated when cancellation involves several tasks
that need to agree on shutting down and terminate in a safe order. One approach
taking this into account is applied to OpenMP [14]. The authors introduce an
abortive cancellation of already launched OpenMP tasks (which boils down to
the cancellation mechanisms of Pthreads), with unrestricted possibility to cancel
unstarted tasks. Their techique works on task groups, involving a child-parent
relationship allowing to cancel the whole group, starting from the root.

Python supports interruptive cancellation of non-started tasks via execu-
tors [3] and abortive cancellation of already started ones. Similiarly, Scala sup-
ports the Cancellable interface which allows canceling only non-started tasks [13].

Java supports interruptive cancellations natively [11]. Pthreads library sup-
ports both abortion and interruption, depending on the setup [12].

5 Conclusion

The role of parallel programming in modern applications is notable and contin-
uously increasing; research into programming models for this setting is therefore

critical. Indeed, many new models and frameworks for concurrent and parallel
programming have been proposed in the past decade. To provide guidance in
this vast field, it is important to consolidate the knowledge about commonly
used patterns, and to provide a coherent frame for discussion and evaluation.
In this paper we selected one important task parallelism pattern, task cancella-
tion, provided a taxonomy of techniques, scrutinized their usage, and proposed
a novel cancellation technique for SCOOP on this basis.

In future work, cooperative cancellation in SCOOP could be further extended
to support task chaining (canceling an intermediate task causes all other tasks
to be canceled) and precondition-aware tasks (these could effectively be deferred
in the executing process). Another extension of this work is to provide a formal
model, describing the control flow in different cancellation techniques.

Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389,
the Hasler Foundation, and ETH (ETHIIRA).

References

1. Albahari, J., Albahari, B.: C# 3.0 in a Nutshell: A Desktop Quick Reference.
O’Reilly Media, Incorporated (2007)

2. Baker, Jr., H.C., Hewitt, C.: The incremental garbage collection of processes. In:
Artificial Intelligence and Programming Languages. pp. 55–59. ACM (1977)

3. Concurrent futures in Python: http://docs.python.org/dev/library/

concurrent.futures.html (2013)
4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Communications of the ACM 51(1), 107–113 (2008)
5. Destroying Threads in C#: http://msdn.microsoft.com/en-us/library/

cyayh29d.aspx (2013)
6. Hyde, P.: Java thread programming. Sams Pub. (1999)
7. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:

OOPSLA’09. pp. 227–242. ACM (2009)
8. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, 2nd edn. (1997)
9. Morandi, B., Nanz, S., Meyer, B.: Who is accountable for asynchronous exceptions?

In: APSEC’12. pp. 462–471. IEEE Computer Society (2012)
10. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. Ph.D. thesis, ETH Zurich (2007)
11. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-

rency in Practice. Addison-Wesley (2005)
12. POSIX threads specification: http://man7.org/linux/man-pages/man7/

pthreads.7.html (2013)
13. Scala Scheduler: http://doc.akka.io/docs/akka/snapshot/scala/scheduler.

html (2013)
14. Tahan, O., Brorsson, M., Shawky, M.: Introducing task cancellation to OpenMP.

In: IWOMP’12. pp. 73–87. Springer-Verlag (2012)

http://docs.python.org/dev/library/concurrent.futures.html
http://docs.python.org/dev/library/concurrent.futures.html
http://msdn.microsoft.com/en-us/library/cyayh29d.aspx
http://msdn.microsoft.com/en-us/library/cyayh29d.aspx
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html

	How to Cancel a Task

