ADVANCES IN COMPUTER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS = (1}
R. VICHNEVETSKY and A.S. STEPLEMAN (Editors)
Publ. IMACS-1979

On the Constructive Approach to Programming : The Case of "Partial Choleski Factorisation”
(A Tool for Static Condensation in Structural Analysis)

Alain BOSSAVIT
Bertrand MEYER

Electricité de France, Direction des Etudes et Recherches, Service IMA
1 avenue du Général de Gaulle 92141 CLAMART FRANCE

1 - INTRODUCTION

From our experience in solving PDE's for
engineering problems, we feel confident that the
following statements will generally be agreed upon :

- There is a noticeable gap between
algorithms presented in textbooks, and their
implementation as programs.

- Too much unproductive work is done by
structural engineers, physicists, numerical analysts,
etc., to code again and again close variants of
standard algorithms.

The two points are closely related, we think.

The fact that, in spite of the existence and availa-
bility of popular finite-element codes, in spite of
the broad marketing of well documented subroutine
libraries, so many people continue to code their

own versions of standard methods, is not to be blamed
on human weaknesses only. It is also due to a tenden-
cy to reorganize old methods into new combinations

in order to answer new questions. Thus, slight
modifications of existing implementations are always
required. But the general obscurity and poor reada-
bility of programs make these adaptations harder

than they should be, and would be, if the gap we
mentioned could be bridged.

Our contention is that this gap can be
reduced, thanks to the advances in Computer Science
in the recent years. We shall concentrate here on
algorithms in linear algebra, relying on results
obtained in the domain of proof-oriented program
construction techniques, after the work of Hoare (2)
and Dijkstra (1). In this approach, methods which
were originally used for proving properties of
existing programs are applied instead to the
top-down design of new ones ; programs and their
proofs will be developed in parallel.

The example we discuss is related to
structural analysis by the finite-element method.
It is often necessary to perform a "static conden-
sation", which is nothing else than elimination of
setected variables in a linear system. Though not
new (3] , the idea is currently in the development
stage as far as software is concerned {4), and our
implementation is (we hope) novel.

To avoid mixing all difficulties, we shall
first state the basic concepts on a toy example (the
square root), then proceed with the formal specifi-
cation of the static condensation problem, the design
of the program, and a brief account of the FORTRAN
implementation.

287

IT - PROGRAMS AS PREDICATE TRANSFORMERS - BASIC
CONCEPTS

Underlined words below denote the few
concepts we need. Consider the following text :

program square root (imput a : REAL ; output x : REAL)

{P: a>0}

find z

{(Q::cz:agﬁéx >0}

This is the text of a tautologically correct
"program". The notation should be self-explanatory :
sentences surrounded by braces { and } are treated as
comments ; most often, they will be predicates, i.e.
properties which must be verified by the variables
of the program (x and a in our example). Texts such
as find x are statements ; successive statements
will be separated by semicolons. Proper indentation
will help display the lagical structure. A construct
of the form {P} A {@Q} is used to express that @ is
true after execution of 4 1if P was true before.

The approach known as top-down design calls
now for refinements of the statement find x, which
must eventually be expressed in terms of elementary
actions. A seemingly very productive heuristics toward
that end is uncoupling (or embedding) : let us intro-
duce another variable y also of type REAL, and a
new predicate I which is a weaker form of the
intended conclusion @

(1) xy =a and x>0 and y >0

so that @ = I and C, where C 1is

(c) z =y (within a prescribed margin of accuracy).

A possible way to proceed is to start with
such a state of the variables where I is true, and,
while keeping it true, to try to reach the "goal" C.
One natural way to do this is to look for a program
of the form

{F}

establish T ;

while not C do
bring x and y closer to each other ;
restore I

{C and I}

which we can assert is correct (i.e. will bring the
variables from a state where the initial predicate is
verified to a state where the final predicate is
verified) provided the loop terminates properly.

This is shown by noting thatI is a loop invariant,
i.e.

(2) (I and not €} A (I}

where A stands for the two statements of the loop body.

Hoare's axioms for the while loop imply that, if the
loop terminates, we can deduce from (2) that

(3) (I} while not ¢ do A {I and C}

which ensures the validity of program (1).

A third step in the top-down design will be
to express more precisely how I is to be "established"
(for instance by the two assignments x « a ; y<1),
how = and y are to be "brought closer to each other"
(one possible way is the assignment z « (xz+y)/2), and
how I will then be "restored" (y « a/x).

The program now obtained (a version of
Newton's algorithm) is in a form very close to any
current programming language, and we may stop here.
But the process could be pursued further down if this
proved necessary. For instance, if ordinary floating-
point division were not available, we might have to
refine the statement y<a/x into a loop so designed
as to achieve the final predicate zy = «.

II1 - STATIC CONDENSATION

We consider now the nxn rigidity matrix of
a structure, in block form

A B
17

(4)
8" ¢

where the last blocks correspond to a subset £ < {1,xn]
of the variables, containing only those which may
interact with other parts of a higher-level structure,
and are called "internal" for that reason. It is often
useful to factorize such a matrix in the following

way :

(5) ot

[}

The matrix H(H = ¢ - T7°), which Tinks
displacements (or other generalized variables) of
external type and related forces may be used in a
higher-Tlevel assembly process and T and S allow one
to go back to the elementary displacements once
external variables are known. It seems interesting
to allow "external variables" to include load
parameters, Lagrange multipliers, right-hand members
in general. Thus, a software tool capable of solving
(5), which may be called a "condenser" (it is an
extension of the classical "solver"), appears as
an essential piece of any finite-element code where
sub-structuring is to be implemented.

It is not practical, however, to number the
variables in such a way that internal variables will
always appear first as in (5) : identical
sub-structures may have different sets of external
variables (fig. 1), so that a different set of
pointers to the same file must be used for each
condensation. If interval variables are treated first
(for example through a Cholesky routine), T being
computed next, and then #, a lot of page faults
will occur if the file is not entirely in core.

Figure 1 : Assembly of three identical
substructures, with different sets
of external variables

The problem to be solved may thus be sstated
as follows : given a nxn symmetric matrix a, and a
subset E of {1,n], find a symmetric nxn matrix s such
that

g¥ lsdsisgsn then
f g ¢ E then
’
kz ; Sik Sqk T %G
if j€E and 14 E then
I(n) 7 sl 5. =g
Lo Sik Sk T GG
if J€E and 'LfE then
!
Si5 = %5 - kln Stk %k
1]
where J stands for a summation where external indices

are omitted. Entries s;: correspond to § in (5) when
< and g are both internal, to T when one of them is
external, to # when both are external.

The above predicate, which we call r(n) for
reasons which will be made clear below, is the final
predicate of the program that is to be built.
Obviously, it requires positive definitions
of the internal-internal part of a, which will be
assumed as initial predicate, although checked in
practice by the program itself.

We shall add the following requirement :
assuming that a and s are stored in "symmetric mode",
i.e. Tine after line, in one-dimensional arrays, the
processing should be as "sequential" as possible. This
will guide the search for a suitable loop-invariant.

Only Cholesky factorization is considered

below ; using the LDI* variant would not be more
difficult.

IV - TOP-DOWN DESIGN OF THE SELECTIVE FACTORIZATION

_ Ve embed the final predicate I(n) in a family
of_pred1cates I(1), obtained by substitution of 7 for
nin I(n) 5 I(0) is trivially true.

288

b

. [————
€ o

iy s §

e =

e (I

program selective_Cholesky (imput a :

'

(7) {I(1-1)}

Choosing the "uncoupling"

(6) I(n) = I(1) and (l=n)

then Teads to the following program :
SYMMETRIC MATRIX,

E : subset of
INTEGER;

output s :
SYMMETRI C MATRIX)

variable 1 : INTEGER ;
1+ 0 {I(0)}
while 1 <n do

1+ L+1 ;

restore I(1)
{I(n)}

For the second refinement step, we Took for a

sequence 4 of actions such that

A {I(1)}
It is sufficient to find 4 such that :

{1sdx2¢1-1 and

2¢ Eand j¢& E => }

!
. %5 = B Sq
(8) 2
{J(Z)}
where J(1) is defined as

if 1gJd&l then

. . !
J(1) if J4E then Vs, 5. =a, . .,
T ked ik gk lJ
if JE€E and 1 ¢ E then
ZI
8 S = a,.,
) Lk “gk lj

| =3

f JeE and 1 ¢ E then

for all 2% j and Z¢ E
%157 %5 " kzlsik Sk

In order to solve problem (8), we again use the
"uncoupling" strategy. lLet 1, an INTEGER, and y, a
REAL, be new variables. We can express J(1) as :

(9) J(L) = J(Ll,r,y) and r=1l and = and K(1)

where J(1,r,y) is :

if Z¢dscr and rgl

if i4E then |
k<l
1

then

S1x Sk T %g ¢
E then

'
J(lry) | if GEE and

'
Loow sty s =ay

k<l
and X(1) as :
if LéF ad 1sjsisl and i¢E
and J¢ E
LN
1
sij = aij kgz S’Lk sJk

Examination of (9) suggests that action 4
should be constructed as the composition of a while
Toop admitting J(l,r,y) as an invariant, and suitable
actions which will ensure y =s,, and k(7). In other
words, we shall look for an A of “the following form :

r<«0;y~1;
while v <l do

y « p+l 3
restore J(L,r,y) ;

ensure Y = 8., while maitntatning J(1,Ll,y) ;

ensure K(1)

We could pursue the process further, and show
how the last sub-actions of A can be systematically
developed ; the approach of proof-directed top-down
program design should be clear by now, however, and
we shall give the final product without further
justification, The program for selective Choleski
factorization, expressed in our notation, appears
on the next page.

289

program selective choleski

(‘ingut a : S.YMME’TRIC_MATRIX,
e : FUNCTION (INTEGER -» LOGICAL) ;
output s : SYMMETRIC MATRIX)

{input assertion :

the internal-internal part of a is
posttive-definite}

variables
n, Ly v, 7, J : INTEGER,
Y : REAL ;

n<«order (a) ; 1«0 ;
{I(1)}

while 1<n do {loop invariant : I(1)}
1+ 1+1 ;
{restore I(1) : }
r+«0;y<~1 {J(l,r,y)is satisfied}

{loop invariant :

while r <1 do
J(l,r,y)}

r < r+l

{restore J(1,r,y) :}

if not e(v) then
_-z%ﬁ r <1 then

14
s, « (a, -] 8,,8,)/
ir ir o 1k vk’ “pyr

else

/ ' 2
§,, + Va,, -) &
i1 1T ,L, Tk
{positive definiteness

guarantees that the square
root is defined}

elsif not e(l)
14
8, <« (a, - ayq, a) /Y 3
lr [Ad kgl 1k “rk

then

if not e(l) then

y*©8yy s
for 0< » < 1 whilee(r) do
Slr+slr/y3

or 1sjsisl

while e(t) gﬁé e(j)
do
8..+ 8

25 %25 T %14 515

{J (Lyr,y) }
{r(ez) }

290

¥ - A FORTRAN IMPLEMENTATION OF THE SELECTIVE
_FACTORIZATTON.

Included below is a FORTRAN program which
is Tittle more than a Titteral translation of the
above routine. It embodies a few implementation
decisions ; in particular :

- g and a have been stored as one-dimensional
arrays, where the relative position of an element
(¢,) is computed via a function ADRESS (I, J). In
the implementation below, it is assumed that s and o
are full and fit in core. If skyline is considered,
and/or if secondary storage is required, only ADRESS
has to be modified.

1
- the] operator is effected through a call
to the SCLPRD subroutine, which must be consistent
with ADRESS (pursuing the approach further, we could
have defined these functions as belonging to the same
“virtual machine", or "abstract data type").

VI - CONCLUSION

We hope to have shown that program design,
all the way from the search for an algorithm to the
writing and documenting of the final code, can
proceed in a disciplined way not unlike the classical
mathematical discourse.

We certainly do not mean to imply, however,
that this is a smooth and easy process ; indeed, there
are choices involved at each step, and sometimes there
is no better way to resolve them than trial and errvor.
Uncoupling (9), for instance, requires a good deal
of insight, and we had to try a few blind alleys
before we found it. Top-down proof-directed program
design is certainly not a magical recipe for solving-
numerical problems ; what the method does bring,
however, is a better control of the whole programming
process, a better relationship between mathematical
methods and their implementations, and, of course,
better programs, easier to code, debug, document and
modify.

REFERENCES

(1) Dijkstra, E. W. : A Discipline of Programming ;
Prentice-Hall, 1976.

(2) Hoare, C. A. R. : An Axiomatic Basis for Computer
Programming i CACM, 12, 10, 1969, pp. 576-583.

(3) Kron, G. : Diakopties, Piecewise Solution of Large
Systems ; London, McDonald, 1963.

(4] Wilson, E. L., and.Dovey, H. H. : Solution or
Reduction of Equilibrium Equations for Large
Complex Structural Systems ;3 Advances in Enginee-
ring Software, 1, 1, 1978, pp. 19-26.

;
|

RESE

I P9

A

APPENDIX

A FORTRAN Program for the Selective Factorization

i]]] 0 0 O o o 0 0 04 0 0 T O 1 05 0 D 1 1 0 % .0 O O 0 0 50, 0]
SURROUTINE
. SELCHOQ
. (N,A,E,S,FOSDEF , RANK)

c

[0wl o 0 401 o o o 01 O D L I DX 0 0) 0 O 0 03 0 0L L D01 0 06]

FUNCTION

SELECTIVE CHOLESKI FACTORIZATION (I.E. DEALING WITH “INTERMAI"
VARTAKLES UNLY, THOBE FOR WHTICH E(T) = .FALL3E.), WITH STMUL TANEOUS
DETERMINATION OF INTERNAL-EXTERNAL RELATIONS ANII OF THE ~CONDENSED
MATRIX® WHERE ONLY EXTERNAL VARTAELES ARE CONSTIERED.

S AND A MAY DE THE SAMII REAL ARGUMENT IN THE CALLING FROGRAM.

“SEQUENTIAL” VARIANT OF THE ALGORITHM, SUITAELE FOR AN OUT~OF—
CORE IMFLEMENTATION. THIS FROGRAM 18 NOT WRITTEM FOR ACTUAL USE,
BUT COULD SERVE. AS A TEMFLATE FOR AN OFERATIONAL VERSION.

FORMAL ARGUMENTS

£ 3 # & XK d *
TYFE NAME ARRAY ? MEANTNG
¢ ' ‘

L H *} x

SYMMETRIC FOSITIVE-DEFIMITE
MATRIX. 1~ ARRAY STORAGE =
ALI, 2 IS IN ALADRESSIL, D)

0 oo oooooooonaonoaooonnann

INTEGER N
i ORDER OF A.
LOGICAL E 1)
[tE(D) &==) I IS "EXTERNAL” .
c
C OUTPUT
c
REAL s (1)
C 1 OUTPUT OF THE SELECTIVE FACTO
< t RIZATION. STORED LIKE A.
LOGICAL FOSDEF
c \ TRUE IF A IS INDEEY FOSLTIVE
c ! DEFINITE.
INTEGER RANK
Cc i N IF POSLEF 5 ELSE, RANK OF
C | THE LINE WHERE A NEGATIVE
I DIAGONAL TERM AFFEARED.
X R WK X ¥ J

THIS UNITY MAKES CALLS TO #
REAL FUNCTION SCLFRLDCS,E,I,J)

LLLLLEPLLLIISLLLLL P ETIL 008702078770 7020070078070007702707772072777777777
THE FOLL.OWING IS TRUE AFTER EXECUTION OF SELCHO =

IF POSDEF, THEN
\ IF 1 <= J (= I (= N, THEN
IF NON-E(J), THEN
! SIGMAC SIRKSJIK § K <= 4, NON-E(K)) = AT
IF NON-E(D) & ECD, THEN
| SIGMAC SIR¥SIN | K
F (D B B, THEN
I SIJ = ALJ - SIGMAC SIKXSJK | K <= N, NON=E(K))

I, NON-E(K)) = AlJ

WITH SYMMETRY * $(I,J) = S(J,I) AND SAME FOR A .

L12I7IILLIIIIIIIIIIILIPIIIIIILILIILIIIP PP 10010001700 12070202000750777
LOCAL VARIABLES :
INTEGER ALl, I, J, L, R
REAL RADIC, Y
c ARITHHETICALLY I
INTEGER ADRESS
ADRESS(I,J) = (Ix(I-1))/2 + J

ocQgonoonoaoaonoanogogooonnn

NIED FUNCTION =

oo

POSDEF = .TRUE.
L=0
/WHILE L ¢ N (I.E. FOR EACH LINE OF A), REFEAT/
IF(L.GE.N) GOTO 11
L=L+
/RESTORE. THE VALIDITY OF THE LOOF-INVARIANT I¢L)/
R =0

»0

JWHILE R € L (I.E. FOR ALL LINES UF TO L) ,RER
IF(R.GE.L) GOTO & "REFEAT/
R=FR+1
ZCOMFUTE SLR IN THE INTERNAL-INTERNAL CASE, AND
SLL*SLR IN THE INTERNAL-EXTERNAL CASE/
AD = ATRESS (L, R
/IF R INTERNAL, THEN/
IF(ER)) GaTO 4
/IF R ¢ L., COMFUTE SLR/
IF(R.EQ.L) GOTO 3
S(AID = (ACAI~SCLFRD(S,E,L,R))/
S (ADRESS (R, R> 3
CONT INUE

/IF R = L, COMFUTE THE PIVOT/
RANIC = L
RADIC = ACAD) - SCLPRD(S,E,L,R)
POSDES RADTC.GT.0.
IF(.MOT.FOSDEF) GOTO 13
8(AID = SORT(RADIC)

GOTD S
ZELSE, IF L INTERNAL, THEN/
IF (.NOT.E(L)Y) SCAﬁsuﬁ(ﬁDJ—SDLFRn(S,E,L,R)

0O 0 00 BN oo

ow

GOTO 2
CONTINUE
IFCECLY) GOTO 13
/IF L INTERNGL/

/ADJUST THEE INTERNAL~EXTERNAL TERMS IN LINE L/

/(THE PIVOT IS NOW KNOWN) /

Y = Sam
R=0
/FOR EACH EXTERNAL R ¢ L, REPEAT/
IFCR.CELL) GOTO 9
R=R+ 1
TFCNOT.ECRY)Y GOTD 8
AD = ADRESS (L.,R)
SCALY = S(AID / Y
GaTo 7
CONTTNUE
/INCREMENT THE EXTERNAL-EXTERNAL ENTRIES/
D0 10 I = 1,L
00 10 U = §,I
c /FOR EACH EXTERNAL-EXTERNAL (I,.), REFEAT/
IFCECD) LANDLE ()) S(ADRESS (I,0)) =5 (AIRESS
(1,3)5 (ADRESS (L., 1)) %S (ADRESS (L,) >

N 00 sca>0

ovao

10 COMTINUE
11 CONTINUE
GOTO 1
12 CONTINUE
c
13 RETURN
END
L oo 10 0 0 01 4 0 0 00 o 00 0 0 0 0 6 € 0 1 e 4 4
REAL FUNCTION
- SCLPRD
. ¢S, Ey I, J)
[+4
5 o o o 1 9 11 10 0 0 I o 0 1 0 5 O I I M 4 I 1 1 1 9 0

REAL 8¢1)

LOGICAL. E(D)

INTEGER I, J
C SCALAR FRODUCT OF TWO LINES OF 8, SNIFFING EXTERNAL INLICES. SEE
C COMMENTS IN ~SELCHO".

INTEGER IAL, JOD

DOURLE FRECISION FS

C
FS = 0.
TAD = (I (I-1))/2 + 3
JAD = (e (I-103/2 + 4
K=t
c
c ZWHILE K ¢ J, REFEAT/
1 IFKLGE.J) GOTO 2
IF (NOT.ECN)) SCLPRD = SCLPRD + SUIAD + K) % SCJAD + K)
K=K+1
GOTO 1
2 RETURN

