
ComputerPhysicsCommunications37 (1985) 27 38 27
North-Holland,Amsterdam

AN APPLICATION OF PROGRAM TRANSFORMATION TO SUPERCOMPUTER
PROGRAMMING

Alain BOSSAVIT

Electricite de France, Direction desEtudeset Recherches,ServiceIMA, 1 Avenuedu GEnEral de Gaulle, 92141 Claniart, France

and

BertrandMEYER *

Departmentof ComputerScience,Universityof California, SantaBarbara, CA 93106, USA

We show howa sequenceof systematicprogramtransformationscanbeusedto deriveanefficient, vectorizableprogram(to
beusedon vectorcomputerssuchastheCraymachines)from aninitial versionwhich is mathematicallysimplebut recursive
andvery inefficient.

Theexamplechosenis that of cyclic reduction.We startwith a descriptionof the algorithmwhich follows directly from a
mathematicalanalysisof theproblemandis expressedin termsof operationsof the“vector machine”,specifiedasanabstract
datatype; we endup with anAda package.

We discusstheadvantagesand limitationsof Adawith respectto vectorprogrammingand raisesomeissuesconcerningthe
useof programtransformationsin softwaredesignmethodology.

1. Background studying the application of anotherwell-known
program constructionmethod,programtransfor-

In previouswork, we haveinvestigatedtheap- mation, to the developmentof an efficient vector
plication of modern software engineering tech- programcorrespondingto an importantalgorith-
niquesto the designof vectorprograms(e.g. refs. mic concept,cyclic reduction. We start from a
[15,5,6,7],etc). Our generalapproachhasbeento correctbut veryinefficient program,obtainedasa
investigatesupercomputerprogrammingnot as a straightforward implementation of the basic
set of recipesdesignedto yield maximumperfor- mathematicalideaandexpressedin termsof high-
manceon someor otherspecific machinearchitec- level operationsof the abstract“vector machine”;
ture, but ratheras a systematicdesignactivity, in we thenperforma seriesof transformations,each
which the concernfor efficiency must not offset aimed at removing someof the inefficiency while
other important software qualities such as cor- preservingthe semanticsof the program.The final
rectness,reliability, extensibility, portability and version,for which we offer an Ada implementa-
others. tion, is an efficient, readily vectorizableprogram.

Techniqueswhich can be appliedtowards this
goal include assertion-guidedstepwiseprogram
development[10] and the use of abstract data 2. The total reductionproblem
typesfor the specificationof “virtual vector ma-
chines” as models of actual vector processing 2.1. Statementof theproblem
hardware.

This papercontinuesour previous efforts by Considera set S with a binaryoperation,writ-
ten ~, which gives S the structureof a monoid,

* On leavefrom EDF, Clamart,France. i.e. ~ is associativeand hasa zeroelement,writ-

0010-4655/85/$03.30© ElsevierSciencePublishersB.V.
(North-HollandPhysicsPublishingDivision)

28 A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation

ten 0. Note that ® is not requiredto becommuta- into the samemodel;a straightforwardgeneraliza-
tive. Elementsof S will be calledscalars ‘. tion is

We define V= VECTOR[S], the set of finite
sequencesof elementsof S. An element v of V, a, * X

1 1 + b,xi =

calleda vector, is of the form C, * X1 1 + d,

v — (v1, ~ v,,~, which can be put into the form of (1) by again
taking for ~ the productof 2 x 2 matricesand

where v, e S for i = 1, 2, ..., n. The number of writing the equationas
elementsof a vector v is written v

We definethe shift operation X, u,/1),,

T:V—~V where

suchthat Iu,~Ia, b, lu,
I~I L

v2, ..., v~))= K0, v1, v2, ..., va). v, ~c, d,~ Vi 1

The total reductionproblem is, given a vector A usefulparticularcasewherethis is applicable
a E V, to find anothervectorx E V suchthat is Cholesky factorization: considera symmetric

matrix with diagonal
x=a~rx (1)

<cIi, d2, ..., dn)
which canalso bewritten, in scalarterms:

andsubdiagonalx1=a1, x,=a,~x, 1’

(s1, ~2, s~i)•

or equivalently:
The recurrenceto be solvedfor Choleskyfactori-

x,=a~a, 1~a,2~...ea1
zation is

fori=1,2,..., al.
b~.1+a~=d~, b,*a,=s,,

i.e. by eliminating b,:
2.2. Applications

a~=d,—s7 1/a
2‘I

The total reductionproblem,as definedby (1)
above,hasseveralapplication’s.The mostobvious which is a problemof the aboveform if we take
onesare the sumof the elementsof a, obtainedby ~ —

taking ordinary additionfor ~, andlinear recur-
rences,whichmay be written as

3. The vectormachine
lxjIa, b~I~Ix,

1
1 0 1 1 3.1. Vectoroperations

which is aninstanceof the totalreductionproblem
obtained by taking for ~ the product of 2>< 2 Eq. (1) doesnot seemto lend itself naturally to

efficient solution on vectormatrices, processorssuchas the
But some classesof non-linearrecurrencesfall Cray-i or Cray-XMP, which favor the execution

of “extension” operations[15,5]. Roughly speak-
ing, extensionoperationsare thosewhich can be
executedin parallelon all the elementsof a vector* This useof the word “scalar” does not quite conform to

standardmathematicalusage,but is commonin discussions (or more generally,in the caseof the Cray ma-
of vectorprogramming. chines,on whole vectorslices).A typical extension

A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation 29

vectormodemay be characterizedby two parame-
execution alar mode __,~~~_—“ ters [13]:
time the asymptoticvector speedupp = S/V;

(microseconds)

: ~tor the “half-performancelength” n 1/2 = U/ V, de-fined as the valueof n for which the per-ele-mode ment performanceis half the asymptoticone,i.e. (U+ n * V)/n = 2* V; this parametergives

an idea of the minimum length for which the
benefits of vector mode offset the penalty in-

64 curredfor short vectorsbecauseof the startup
time.

Fig. 1. Performanceof vector addition in scalarand vector
On aCray-i, dependingon the operation,p varies

modeon theCray-i.
between7 and iO and n1,,2 between20 and30.

Only thoseparts of a programwhich conform
operationis the addition of two vectors, element to certain rules may be executedin vector mode
by element*~ and thus achieve high performance.For Fortran

Suchoperationson vectorsmay beexecutedby programson the Cray-i, the rules are the follow-
vector hardwaremuch more efficiently than by ing [15]:
just applying repetitively their non-vector, or i. only “DO” loopsare “vectorizable”;
“scalar” counterparts.More precisely,a scalarop- 2. these ioops may only contain “primitive”
eration which takes time S when applied to one
elementwill taketime operationssuch as assignmentand arithmetic or

booleanoperations(nojumps,etc.);
c,,1(n) = n * S 3. the dataelementsaccessedduring successive

loop iterationsmust be regularly spacedin mem-
when applied to a vector of n elements.A true ory, i.e. array indexesmustbe linear functionsofvectoroperation,whenappliedto this vector,will theloop index;

take a time approximatelyequal to 4. no “backward dependency”, in which a

t~~~(n)= U+ n * V, statementupdatesan arrayvalue a(i) and usesa
previous value of the samearray, a(i — p) (for

where U is the start-uptime and V is the asymp- somep > 0), is permitted;
totic unit vector time. On a vector machine,of 5. no “cross dependency”,in which an array
course,V must be significantly less thanS. value may be updatedby one statementof the

The performanceof vector addition in both ioop andusedby another,is permitted.
scalarandvectormodeon the Cray-i is illustrated
in fig. 1. Vector modebecomesbetter thanscalar In the last two cases,vectorizationis inhibited
mode for vector lengths n> U/(S — V). The by the compiler not becausethe hardwarecould
non-linearity of actual vector processing time, notcarry out the computationin vectormode,but
which is apparenton the figure, is dueto the fact becausethe vectorsemanticsof the programmay
that the Cray processesvectorsby slicesof maxi- be different from the standard (sequential)
mum length 64, hencethe discontinuity at ~ = 64 semanticsimplied by Fortranand othercommon
(andalso 128, 192, etc.). languages.If, on the otherhand,one feelscertain

The performanceof an operationexecutedin that the dependencyis only apparent,for instance
if the elementupdatedin a loop with index i is
a(2* i + 1) and the value used is that of a(2* i)

* It shouldbenotedthaton theCraymachinesoron theCDC (so that the arrayslices updatedandusedare in
Cyber 205 vectoroperationsarenot actually performedon
all elementsin parallel,but ratherusepipeining. For most fact disjoint), then one may force vectorization;
practicalpurposes,however,pipeiningmaybeconsideredas the Cray Fortran compiler will accepta special
a form of parallelism, directive, IVDEP, to that effect.

30 A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation

The above rather stringent rules seem to pre- to variousapplications.We thustailor our specifi-
dudethevectorizationof many simplealgorithms; cation to the problemat hand.Ratherthangiving
for example,the formula whichwe havegiven for a completeformal descriptionof the abstractdata
total reduction, i.e. (i) above, clearly implies re- type “vector”, we concentrateon some useful
peatedbackwarddependencies. operationsandtheir essentialproperties.

In order to obtain vectorizableversionsof this On a vector computersuch as the Cray-i, all
and otheralgorithms,more perspectiveis needed theoperationsin table i (exceptfor “length” and
on the “vector machine” and the operationsit “accessto element” which require constanttime)
may perform. are “extensionoperations”whichcanbe executed

in vectormode.It shouldbe noted,however,that
3.2. An abstractmodel somevectorcomputerarchitecturesmay be more

restrictive: the CDC Cyber 205, for instance,re-

Ratherthanstudyingat the scalar(e.g.Fortran) quires array elementsto be contiguousnot just
level what canbevectorizedandwhatcannot,it is equally spaced,so that operationssuch as “odd
preferableto provide a formal model of the ma- part”, “evenpart” and“merge” do not qualify.
chineat theappropriatelevel of abstraction.Here The above list of operationsis by no means
we considera vector computeras a virtual ma- exhaustive;more completelists may be found in
chine associatedwith an abstractdata type, type e.g. refs. [6,7]. It should also be noted that for
V = VECTOR[S], and capableof performing a some applicationsit may be useful to introduce
certainnumberof operations. operationsextractingother “slices” than just the

Thereis in fact probablyno such thing as the odd andevenparts.Theoperationsgivenherewill
vectormachine,butrathervariousmodelsadapted suffice,however,for our purposes.

Table1
Operationsand their properties

Operation Type Notation Properties

zero all elements
vector V 0 zero

length V—*Integer ui

accessto
elements V x Integer—‘ S

extension let z = vOw:
ofascalar izI — min(IvJ,Iwr):
operation V X V—~V vOw z,= v,Ow,
0 (1E1... zI)

ITVI = IvI+i;
(TV), =

shift V—. V TV V, —1 for i >1,
0 for i = 1

oddpart V— V Ov Ov, v
2,

evenpart V— V Lv Lv, v2,

mergeinto let z =

oddand V X V—’ V alternate(v, w) alternate(v, w):
evenparts Oz— U; Ez w

A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation 31

Among the abstractpropertiesof theseoper- efficient recursivealgorithm, known as cyclic re-
ations which are particularly interesting are the duction:
following (for any vectorsv, w ~ V): for vectorslength 0 or i, the result x will he

just a;
ETV = Ov, (~) for larger vectors,we apply the algorithmrecur-
OTv = TEV, (ii) sively, usingformula (4), to obtainOx; formula

O(v ~ w) = Ov ~ Ow, (iii) (3) thenyields Ex;

E(v ~ w) = Ev ~ Ew, (iv) we obtain x by mergingthesetwo vectors(al-
ternateoperator).

T(V~W) TV~TW. (v)

5. Program development
4. Cyclic reduction

5.1. First procedural version

The above properties,expressedat the vector
rather than scalar level, provide the key to an The first version of the procedureis a direct
efficient solution of the total reductionproblem translationof the basic mathematicaldefinition.
(1) by a vectoralgorithm.The idea to be applied We usean Ada-like notation.
hereis a very fruitful heuristics,usingthe concept procedure total_reduction1
of recursion and close to techniquessuch as (a: in VECTOR;x: out VECTOR)
“red black ordering”which canbe appliedto the var oddpart, evenpart:VECTOR
developmentof severalefficient vector algorithms. begin

In the “total reduction”equation ~f I a I ~ 1 then

x=a~Tx, (i) x:=a
else-- lal>1

let us try to reducetheproblemsize by a factor of total_reduction1(Oa~ TEa, oddpart);
2 by applying operators0 and E (odd andeven evenpart:= Ea ~ oddpart;
parts)to bothsides,yielding: x = alternate(oddpart,evenpart)

Ox=O(a~Tx), endif
end procedure - - total_reduction1

Ex = E(a ~ TX),

Theaboveversionis correctbut grosslyinefficient
i.e. by applying properties(i) to (iv):

for severalreasons:
Ox = Oa~ TEX, (2) the procedureis recursive;
Ex = Ea ~ Ox, (3) — it has local vectorvariables(oddpart and even-

part) which must be allocated anew for each
The interestingfact hereis that by substituting recursiveinstanceof the procedure;

thevalueof Ex, as obtainedfrom (3), into (2), and — it uses two parameters,an input a and an
usingthe associativityof ~ combinedwith prop- output x, whereasin practiceone usually pre-
erty (v) above,we obtain anewequality: fersto work on a singlevector,whichis initially

Ox = (Oa ® TEa) ~ TOX (4) the input andwill graduallybe “transformed”
so as to becomethe output (the initial value

which is a new instance of the total reduction being savedif necessary).
problem.appliedto the newvectorvariable Ox. a We shall get rid of thesesourcesof inefficiency
being replacedby Oa ~ TEa. This new instance througha stepwiseprocess.To makethe successive
usesvectorsof approximatelyhalf the size of the programtransformationsclearer,we underlinein
original ones. eachversiontheelementswhich havebeenchanged

We thus have the essentialingredientsfor an from the previousversion.

32 A. Bossavit,B. Meyer/ Supercomputerprogrammingand program transformation

5.2. Removing extra variables the procedureresulting from such a transforma-
tion, the samevectorx will be usedasbothan in

Our first transformationis a straighforward and out actualparameterof the recursivecall. It
one, which gets us a little closer to our aim of should be noted that Hoare’s specificationof the
working on a singleobject (x): we note that it is semanticsof recursiveprocedures[i2] specifically
harmlessto begin the procedureby theassignment excludesthiscase.
x: = a in all cases,not just when I a I ~ 1 (in the Thereplacementwill be correct,however,if for
othercase, this assignmentwill be overriddenby the time being we assumea copy mechanismfor
the assignmentsto the odd and evenpartsof x). parameterpassing.In other words we take in to

procedure total_reduction2 mean “parameterpassedby value”, i.e. copied
(a: in VECTOR;x: out VECTOR) upon eachprocedurecall into a variable local to
var oddpart, evenpart:VECTOR the procedureinstance;and we takeout to mean

begin “parameter passedby result”, i.e. copiedbackon
procedurereturn, from the local vanable.To avoid

x a:
if I a > i then any confusionresulting from the fact that we are

total_reduction2(Oa~ Ea, oddpart); usinganAda-like notation,it shouldbenoted that
evenpart:= Ea ~ oddpart; this modeof parameterpassingis not the normal

Adamechanismfor in andout parameters.
x := alternate (oddpart, evenpart)

end if procedure total reduction4
endprocedure - - total_reduction2 (a: in VECTOR;x: out VECTOR)

beginThe next simplification is to get rid of the local
:_ a;

variables oddpart and evenpart by extendingthe
notation a little: we now allow assigningvector if I x I > 1 then

total_reduction4 (Ox ~ TEX, Ox);valuesdirectly to the slicesOx and Ex of a vector
Ex :~ Ex e Ox;

x. For example,to changethe evenpart of x to y,
end ifwe shalljust write

end procedure - - total_reduction4
Ex :=y

insteadof 5.3. Isolatingthe recursion

x := alternate (Ox,y). It is useful now to separatethe procedureinto

two parts: onewhich usesthe initial vector a andWith this new notation, the procedurecan be onewhich doesnot. To this effect, we transform
simplified as follows: the procedureinto a set of two mutually recursive

procedure total_reduction3 procedures,only the first of which dependson a;
(a: in VECTOR;x: out VECTOR) the secondone,called internal_part5,has only x

begin as a parameter,of mode in out. Again, this is
x := a; correctonly if we assumea copy mechanismfor
if I a > 1 then parameter passing, i.e. an in out parameter is

total_reduction3(Oa ~ TEa, Ox); copiedto (atcall time) andfrom (at returntime) a
Ex := Ea ~ Ox; variablelocal to theprocedureinstance.

endif — procedure total_reduction5
end procedure - - total_reduction3 (a: in VECTOR;x: out VECTOR)

The next obvious step towards the goalof work- begin
ing with only onevectorvariable is to replaceall x := a;
occurrencesof a with x after the initial assign- internal_part5 (x)
ment x :_ a. We haveto be very careful here: in endprocedure - - total_reduction5

A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation 33

procedureinternal_part5 (x: in out VECTOR) (hereandin the sequel,logarithmsarein basetwo;
begin for anyrealnumberx, [xJ denotesthe floor 0! x,

if I x > 1 then i.e. the greatestintegern suchthat n ~ x).
total_reduction5(Ox~ ‘rEx, Ox); This remarksuggestsa newversionin which the
Ex := Ex~ Ox; explicit parameterto the recursivepart is not x

end if itself any more, but k, the numberof timesoper-
end procedure - - internal_part5 ator 0 mustbe iterated.Of courseall instancesof

the recursiveproceduremust be able to work onWe cannow isolatethe recursionby expanding
x; thus,we makex a variable global to the recur-

the call to total_reduction in internal_part. The
effect of thiscall is to assignthe valueof the first sive procedure.To this end we make procedure

internal_part local to the non-recursiveprocedureparameterto the secondandto call internal part
total_reduction.

recursively.By carryingout this expansion,we get
rid of the mutual recursionintroducedin the pre- procedure total_reduction7
vious step: in the new version,only internal_part (a: in VECTOR;x: out VECTOR)
will be (directly) recursive; total_reduction re- var m: NATURAL - - i.e. non-negativeinteger;
mainsuseful for initializationonly. procedure internal_part7(k: in NATURAL)

- - local to total_reduction7
procedure total_reduction6

begin
(a: in VECTOR;x: out VECTOR) if k ~ m thenbegin OAx:=OkX~’rEOA

tx:

x:=a; -‘ —

internal_part
7 (k + 1);

internal_part6 (x);
EOh 1x.=Eö~Yx;

endprocedure - - total_reduction6
endif

procedure internal_part6 (x: in out VECTOR) endprocedure - - internal_part7
begin begin - - total_reduction7

if IxI>lthen x:=a;
Ox := Ox~TEx; m:=i+[log(IaI_1)J
internal_part6 (Ox); internal_part7(1); - - initialparameteris one
Ex := Ex~ Ox; endprocedure - - total_reduction7

end if
endprocedure - - internal part6

5.5. Removingtherecursion

5.4. Introducingan integerparameter Theseprocedurescanbe furthersimplified. The

body of procedureinternaL..part7 is of theform
The remarkable feature of the recursive scheme

if k ~ m then
which we have obtained is that the recursive call

Uk;
now hasa singleand simpleactual parameter, Ox,

internal_part7 (k + 1);where the formal parameterwas x. Thus the Se-
D,,

quenceof actualparametersin successiverecursive
end if

calls, startingwith the initial call from total_re-
duction6will be where UA is the statement

x = a, Ox, 0
2x Omx, OAx = Okx~ T EO~1x

where Okx (k ~ 0) is the kth iterate of 0. The and Dk is thestatement
valueof the exponentfor the innermostcall is EOA ~x := EOA I x ~ Okx.

m = I + [log(a 1)], Thus, the execution of the successiverecursive

34 A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation

(themnemonicsused for the loopsreflect the fact
that the index k goesup in the first loop and

~e~a1~O) I downin the secondone).It is particularly interesting to note that, al-
thoughthe recursioninitially seemedquite neces-
sary, it has beencompletely removed.The above
version is truly non-recursivein that it does not

~1,,i,dzrirt (2)

seem to containany hidden recursivefeature, for

examplea stacklur~ngin the guiseof anintegerrepresentingan arrayof binaryvaluesas in someU~

I iterativeimplementations(seee.g. ref. [14]) of the
I Tower of Hanoi, Quicksort, the Deutsch

(rn.i) Schorre Waite treetraversalalgorithm, etc.

6. A scalarvectorizableversion

6.1. The program
is closer to how they would be expressedin an

~J It is useful to write Uk and Dk in a form which
_______________________ ordinary(scalar)programminglanguage,but still

easily amenableto automatic vectorization. We
Fig. 2. Procedureiniernal part

7. define

calls amountsto a traversalof the above tree in slice (low, high, step),
the order indicatedby the dotted line (seefig. 2), where low, high and step are integerssuch that
i.e. the successiveexecutionof

low ~ high and step > 0, as the set of all integersof
U1, U2,..., LJ~,, i,L~,,,,Dm 1,...,D2,D1. theform

where m [1 + log(I a 1)]. Note that there is low + k * step
onemoreinstanceof Dk thanof Uk since Urn is a which fall into the range low. . high. Then Uk and
null statement. Dk canbe written as follows:

Thus,no recursionis neededafter all: the body
of proceduretotal reduction7 may be readilyrep- - - Uk (i.e. Okx := O”x ~ TEOk

1x):
resentedby forall i in slice (1 +

2k, lal, 2k) do
x[i] x[i] ~ x[i — 2k 1]

up; down end forall

where up and down are two simpleloops: - - Dk (i.e. EOk ~ := EOk ‘x ~ Okx):

forall i in slice (i+2k
1,IaI, 2”~)do-- up:

fork—i tom—i do x[i]:_x[i]~x[t_2’< I~

Uk end forall
end for;

We have used the notation forall.. . in... to
- - down: emphasizethe fact that the above are parallel

for k := m downto 1 do loops: on a vector processor,all the vector oper-
Dk ationscorrespondingto an instanceof Uk or Dk

end for; canbe performedsimultaneously.

A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformation 35

Note that the backwarddependenciesin these 6.2. A timingdiagram
ioops are only “apparent” in the senseof section
3.1: sinceboth ioops are low-level translationsof Thediagramin fig. 4 may behelpful in visualiz-
vector operations(Uk and Dk, kept as comments ing the operationsperformed on x during an
in the abovecode), the expectedinterpretationis executionof the procedure.It applies to the case
the vector one (which anyway turns out to be I a I = 9. The elementsare representedhorizon-
identical to the sequentialloop semanticsin this tally; the vertical axis representstime. Execution
case).Thus,if aconservativevectorizersuchasthe of the operation
Cray Fortran Translatorinhibits vectorizationof x[~ ~= ~[i] ~ ~ [J]
theseioopsbecauseof the apparentdependencies,
the programmershouldoverride the inhibition, at time t is picturedas fig. 3.

Below is a non-recursiveversionof total_reduc- The two main ioops (“up” and “down “) appear
tion which integratesthe various improvements clearly on the diagram:the first oneis executedin
achieved so far. This version would be readily steps1 to 3, the secondonein steps4 to 7.
vectorizableby anysimplevectorizer(suchasCFT, It is interesting to note that this diagramfol-
The Cray Fortran Translator,on the Cray-i). A lowsdirectly from the non-recursiveversionof the
further simplification is obtainedby using varia- procedure;it can also bededucedfrom the initial
bles step and half_step,correspondingto 2” and recursiveversion (by expandingthe call graph),
2” respectively,in lieu of k. but the deductionis muchmoredifficult.

Note that thereis a minor possibility for extraprocedure total_reduction8
(a: in VECTOR;x: out VECTOR) parallelism,betweensteps4 and5, that our devel-
var step, half_step: NATURAL; opmentmethodhasnot captured.

The time neededfor total reduction of a vector
size: NATURAL; - - sizewill standfor I a I

begin a using cyclic reductionon the Cray is approxi-
mately

size:=
forall i in slice (1, size, 1) do tCYCL = 2 * (r — 1) * U + (2 * (n 1) — r) * V.

x[i] = a[i];
end forall; where r = [log(I a I)J. This time should be corn-
step =2; half_step:=

- - This correspondsto k := 1
EIem,t,, ___

while step<size do - - Uk
forall i in slice (1 + step,size,step)do __________________________________
x[i] x[i] ~ x[i half_step]

Fig. 3.
end forall;
half_step step; step := 2 * step

EI~,o2~1 2 3 5 5 6 7 9 1
end while;

- - here{ 1 ~ half_step size step= _________________

--2* half_step)
forall i in slice (1 + half step, size, step) do t ~

while step> 1 do - - Dk
x[i] := x[i] ~ x[i —half_step]

end forall; 1 5

end while = 6step:= half_step; half_step:= half_step/2 ~ ______________________

end procedure - - total_reduction8 = 7

Fig. 4.

36 A. Bossavit,B. Meyer/ Supercomputerprogrammingand program transformation

pared to tSCAL = (n i)* S for the trivial a!- piler would still have to provide some kind of
gorithm (constantsU, V andS were introducedin “vectorize at any risk” directive similar to Cray
section 3.1). For the Cray, the cutoff point at Fortran’sIVDEP.
which cyclic reductionbecomesmore efficient is The fact that vector programmersshouldstill
approximatelyI a I = 40. resortto suchlow-level anderror-pronetechniques

in Ada is all the more disappointingthat Ada
comes close to providing adequatenotationsfor
true vectorprogramming: it hasvectoroperations7. An Ada version
such as vector assignment(used below in the
initializing statement x a of function

Below is an implementationof the algonthmas TOTAL REDUCTION)and the notion of slice;
an Ada function, embeddedin a genericpackage. however,an Ada slice must be a contiguoussub-
The following pointsare worth nothing:

array, whereasthe slices which we need hereare
the genericmechanismof Ada provides a way not contiguous,which is why we mustuseloops.

to write the packageso that it can be applied to On the other hand,a languagesuch as Actus
variouscases;the samegenericpackagecan have [16], explicitly designedfor use on vector corn-
many instances depending on what the type puters, readily allows for non-contiguousslices,
SCALAR and the “+“ operation,which corre- but lacksthe genericfacility of Ada.
sponds to the operationwritten ~ above, are
chosento be: for instancethe type INTEGER and generic
integeraddition, a matrix type and matrix multi- type SCALAR is private;
plication, etc. with function “+“ (X, Y: SCALAR)

The Ada generic mechanismis flexible but returnSCALAR is ~);
strictly syntactical:the languageprovidesno way packageCYCLIC_REDUCTION is
to specifythat the actualgenericparametersmust type VECTOR is
havepredefinedsemanticproperties,for instance array(NATURAL range~))of SCALAR;
that “+“ mustbe associative.A languagesuch as function TOTAL_ REDUCTION (a: VEC-
LPG (Languagefor Generic Programming [4]) TOR)
makes it possible to impose such conditions on return VECTOR;
genericparameters. private

Procedure ADD_TO_ VECTOR is the one type SLICEis
whichperforms the vectoroperations(correspond- recordlow, high, step:NATURAL end;
ing to UA and DA as definedabove).Theseoper- endCYCLIC REDUCTION;
ations must be expressedin scalar form, using
loops (for. . . in. . loop. . . end loop). Thus, on a packagebody CYCLIC REDUCTION is
vectorcomputeran Adaprogramsuchas this one procedureADD TO VECTOR
will requirethe interventionof a vectorizer,similar (x: in out VECTOR;
to thosewhich exist for Fortran(e.g. CFT on the s: in SLICE;
Cray-i), in order to take advantageof the vector offset: in NATURAL)
computationfacilitiesof the hardware. - - x(s):= x(s)+ x(s — offset)

The loop in procedureADD TO_VECTOR is
seemsto involve a backwardsdependency.How- bottom: constantNATURAL :— s.low;
ever, this is only an apparentdependency,as de- top: constantNATURAL := s.high;
fined in section 3.1, sincethe loop updatess and stride: constantNATURAL := s.step;
uses s — offset, but these two slices are disjoint last: constantNATURAL :=

wheneveroffset* s.step,which is the casefor the (top bottom)/stride;
two calls to ADD TO VECTORin thepackage. begin
This implies,however,that a vectorizingAdacorn- for i in 0..lastdo

A. Bossavit,B. Meyer/ Supercomputerprogrammingandprogram transformai,on 37

x(bottom+ i * stride):= neededto producethe final program may seem
x(bottom+ i * stride) overly long andcomplex,we do not know of any
+ x(bottom+ i * stride— offset) other rigorous way to derive that program. We

end for; would be interestedto learn of a more direct
end ADD_TO_VECTOR; argument,if thereis one.

On the otherhand,it is not clear to us whether
function TOTAL_REDUCTION (a: VECTOR) any of the existingprogram transformationssys-
return VECTOR is tems(where the term “system” is taken to denote

initial: constantNATURAL := a’ FIRST; coherentsets of tools and/or methods)may in-
final: constant NATURAL := a’ LAST; deedsupportthe transformationsdescribedhere.
size: constant NATURAL := initial— final + 1; In any case, we feel that the developmentpre-
x: VECTOR := a; sentedhere is anotherexampleof the need for
step:NATURAL := ~ applying systematic techniquesto the design of
half_step:NATURAL := 1; vector programs. Effective supercomputerpro-

begin grammingrequiresa wide rangeof modernsoft-
UP: wareengineeringtechniques;programtransforma-

while step< size loop tion maybe oneof them.
ADD_TO_VECTOR (x,

(initial + step,final, step),
half_step); Acknowledgement

half_step:= step;step 2 * step;
end loop UP; We are grateful to Alan Wilson for the useful

- - here (1 ~ half_step< size ~ commentshe madeas a refereefor this paper.
-- step= 2*half_step}

DOWN:
while step> 1 loop References

ADD_TO VECTOR (x,
(initial + half step, final, step), [11J. Arsac, Commun.ACM 22 (1979)43.

half_step); [2] R. Baizer, N. Goldman and D. Wile, in: Proc. Second

ste := half ste Intern. Conf. on SoftwareEngineering(1976)P. 223.p — p’ [3] FL. Bauer, M. Broy, W. Dosch, R. Gnatz, F.
half_step:= half_step/2; Geiselbrechtinger,W. Hesse,B. Krieg-Bruckner,A. Laut,

end loop DOWN; T. Matzner,B. Moller, F. Nickl, H. Partsch,P. Pepper,K.
return x; Samelson,M. Wirsing and H. Wossner,The Munich Pro-

endTOTAL_REDUCTION; ject CIP. TechnischeUniversität MUnchen.Munich (De-

end CYCLIC_REDUCTION’ cember1983).
[4] D. Bert, RapportR-408, IFIAG, IMAG Institute(Greno-

ble University). Grenoble(December1983).
[5] A. BossavitandB. Meyer,in: Algorithmic Languages.eds.

8. Conclusion J. de Bakkerand R.P. van Vliet (North-Holland.Amster-
dam, 1981) p. 99.

Transformationalprogramminghas been ad- [6] A. Bossavit, in: Proc. IFIP TC2 WG 2.5 (Numerical
Software) Working Conf. on PDE Software: Modules.

vocated by several authors (e.g. refs. [1,2 9 3,8])
Interfaces and Systems, Soderkoping,Sweden (August

whereasotherresearchersin softwaredesign meth- 1983).

odology prefer a more direct approachto the [7] A. Bossavit, in: Proc. Conf. on The Use of Supercom-
synthesisof programsfrom specifications[10,11]. puters in Theoretical Science, Aniwerpen, Belgium (30

Although wedo not wish to enterthis debatehere July—I August 1984).
[8] J.M. Boyle and M.N. Muralidharan, IEEE Trans. on

the derivations obtainedin this papermay bring SoftwareEng. SE-lO (1984)574.

someinterestingelements. [91J. Darlington andR.M. Burstall, Acta Informatica (1976)
Even thoughthe sequenceof transformations 41.

38 A. Bossavit,B. Meyer/ Supercomputerprogrammingand program transformation

[101 E.W. Dijkstra, A Discipline of Programming(Prentice- [141B. Meyer and C. Baudoin, Méthodesde Programmation
Hall, EnglewoodCliffs, New-Jersey,1976). (Eyrolles, Paris, 1978).

[II] D. Gries. The Scienceof Programming(Springer-Verlag. [15] B. Meyer,Atelier Logiciel no. 24, HI-34552/01,Electricité
Berlin, 1981). deFrance~4June1980).

[12] CAR. Hoare, in: Symp. on the Semanticsof Program- [16] R. Perrott, ACM Trans.on ProgrammingLanguagesand
ming Languages.Lecture Notes in Mathematics,vol. 188 Systems(1979)177.
ed. Erwin Engeler(Springer-Verlag,Berlin, 1971)p. 103.

[13] C.W. Hockney and CR. Jesshope.Parallel Computers
(Adam Hilger, Bristol, GreatBritain, 1981).

