Computer Physics Communications 37 (1985) 27-38
North-Holland, Amsterdam

27

AN APPLICATION OF PROGRAM TRANSFORMATION TO SUPERCOMPUTER

PROGRAMMING

Alain BOSSAVIT

Electricité de France, Direction des Etudes et Recherches, Service IMA, 1 Avenue du Général de Gaulle, 92141 Clamart, France

and

Bertrand MEYER *

Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

We show how a sequence of systematic program transformations can be used to derive an efficient, vectorizable program (to
be used on vector computers such as the Cray machines) from an initial version which is mathematically simple but recursive

and very inefficient.

The example chosen is that of cyclic reduction. We start with a description of the algorithm which follows directly from a
mathematical analysis of the problem and is expressed in terms of operations of the “ vector machine”, specified as an abstract

data type; we end up with an Ada package.

We discuss the advantages and limitations of Ada with respect to vector programming and raise some issues concerning the
use of program transformations in software design methodology.

1. Background

In previous work, we have investigated the ap-
plication of modern software engineering tech-
niques to the design of vector programs (e.g. refs.
[15,5,6,7], etc). Our general approach has been to
investigate supercomputer programming not as a
set of recipes designed to yield maximum perfor-
mance on some or other specific machine architec-
ture, but rather as a systematic design activity, in
which the concern for efficiency must not offset
other important software qualities such as cor-
rectness, reliability, extensibility, portability and
others.

Techniques which can be applied towards this
goal include assertion-guided stepwise program
development [10] and the use of abstract data
types for the specification of “virtual vector ma-
chines” as models of actual vector processing
hardware.

This paper continues our previous efforts by

* On leave from EDF, Clamart, France.

studying the application of another well-known
program construction method, program transfor-
mation, to the development of an efficient vector
program corresponding to an important algorith-
mic concept, cyclic reduction. We start from a
correct but very inefficient program, obtained as a
straightforward implementation of the basic
mathematical idea and expressed in terms of high-
level operations of the abstract ““ vector machine”;
we then perform a series of transformations, each
aimed at removing some of the inefficiency while
preserving the semantics of the program. The final
version, for which we offer an Ada implementa-
tion, is an efficient, readily vectorizable program.

2. The total reduction problem
2.1. Statement of the problem
Consider a set S with a binary operation, writ-

ten &, which gives S the structure of a monoid,
i.e. ® is associative and has a zero element, writ-

0010-4655 /85 /$03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

28 A. Bossavit, B. Meyer / Supercomputer programming and program transformation

ten 0. Note that & is not required to be commuta-
tive. Elements of S will be called scalars *.

We define V= VECTOR[S], the set of finite
sequences of elements of S. An element v of V,
called a vector, is of the form

0={0y, Uy .., U,),

where v, €S for i=1,2, .., n. The number of
elements of a vector v is written |v|.
We define the shift operation

V-V
such that
({01, gy vy 1,)) =0, vy, Uy, ..., U,).

The total reduction problem is, given a vector
a € V, to find another vector x € V such that
X=a®rx (1)
which can also be written, in scalar terms:

Xy =a;, X;=a,®x,_q,

or equivalently:
x,=a;®a,_ ®a;, ,®...0a,

fori=1,2, .. la|

2.2. Applications

The total reduction problem, as defined by (1)
above, has several applications. The most obvious
ones are the sum of the elements of a, obtained by
taking ordinary addition for @, and linear recur-
rences, which may be written as
X; a; b ‘ ®
1 0 1

Xi-1
1

which is an instance of the total reduction problem
obtained by taking for @ the product of 2 X2
matrices.

But some classes of non-linear recurrences fall

* This use of the word “scalar” does not quite conform to
standard mathematical usage, but is common in discussions
of vector programming.

into the same model; a straightforward generaliza-
tion is
a;*x;_; +b;
X, =
c;*x;_,1d,;
which can be put into the form of (1) by again

taking for @ the product of 2 X 2 matrices and
writing the equation as

X; = u;/v;,
where
U; a;, b U;_
= ®
U; ¢ 4, D1

A useful particular case where this is applicable
is Cholesky factorization: consider a symmetric
matrix with diagonal

<d17 d2’ i dn>

and subdiagonal
{81, 83y ey Sy_1)-

The recurrence to be solved for Cholesky factori-
zation is

2 2 _ _
biytai=d;,, b*xa=s,

i.e. by eliminating b,
2 2 2
a; =d;—si_ /a4

which is a problem of the above form if we take

x;=a}

3. The vector machine
3.1. Vector operations

Eg. (1) does not seem to lend itself naturally to
efficient solution on vector processors such as the
Cray-1 or Cray-XMP, which favor the execution
of “extension” operations [15,5]. Roughly speak-
ing, extension operations are those which can be
executed in parallel on all the elements of a vector
(or more generally, in the case of the Cray ma-
chines, on whole vector slices). A typical extension

A. Bossavit, B. Meyer / Supercomputer programming and program transformation 29

execution
time
(microseconds)

scalar mode /

vector mode

21

']-

A

v

64

Fig. 1. Performance of vector addition in scalar and vector
mode on the Cray-1.

operation is the addition of two vectors, element
by element *. .

Such operations on vectors may be executed by
vector hardware much more efficiently than by
just applying repetitively their non-vector, or
“scalar” counterparts. More precisely, a scalar op-
eration which takes time S when applied to one
element will take time

tscal(n)=n*s

when applied to a vector of »n elements. A true
vector operation, when applied to this vector, will
take a time approximately equal to

Leeet(R)=U+n*V,

where U is the start-up time and V is the asymp-
totic unit vector time. On a vector machine, of
course, V' must be significantly less than S.

The performance of vector addition in both
scalar and vector mode on the Cray-1 is illustrated
in fig. 1. Vector mode becomes better than scalar
mode for vector lengths n> U/(S— V). The
non-linearity of actual vector processing time,
which is apparent on the figure, is due to the fact
that the Cray processes vectors by slices of maxi-
mum length 64, hence the discontinuity at n = 64
(and also 128, 192, etc.).

The performance of an operation executed in

* It should be noted that on the Cray machines or on the CDC
Cyber 205 vector operations are not actually performed on
all elements in parallel, but rather use pipelining. For most
practical purposes, however, pipelining may be considered as
a form of parallelism.

vector mode may be characterized by two parame-

ters {13]:

— the asymptotic vector speedup p=S/V;

— the “half-performance length” n, , = U/V, de-
fined as the value of n for which the per-ele-
ment performance is half the asymptotic one,
ie. (U+n=*V)/n=2*V; this parameter gives
an idea of the minimum length for which the
benefits of vector mode offset the penalty in-
curred for short vectors because of the startup
time.

On a Cray-1, depending on the operation, p varies

between 7 and 10 and n, ,, between 20 and 30.
Only those parts of a program which conform

to certain rules may be executed in vector mode

and thus achieve high performance. For Fortran
programs on the Cray-1, the rules are the follow-

ing [15]:

1. only “DO” loops are “ vectorizable”;

2. these loops may only contain “primitive”
operations such as assignment and arithmetic or
boolean operations (no jumps, etc.);

3. the data elements accessed during successive
loop iterations must be regularly spaced in mem-
ory, i.e. array indexes must be linear functions of
the loop index;

4. no “backward dependency”, in which a
statement updates an array value a(i) and uses a
previous value of the same array, a(i —p) (for
some p > 0), is permitted;

5. no “cross dependency”, in which an array
value may be updated by one statement of the
loop and used by another, is permitted.

In the last two cases, vectorization is inhibited
by the compiler not because the hardware could
not carry out the computation in vector mode, but
because the vector semantics of the program may
be different from the standard (sequential)
semantics implied by Fortran and other common
languages. If, on the other hand, one feels certain
that the dependency is only apparent, for instance
if the element updated in a loop with index i is
a(2*i+ 1) and the value used is that of a(2*i)
(so that the array slices updated and used are in
fact disjoint), then one may force vectorization;
the Cray Fortran compiler will accept a special
directive, IVDEP, to that effect.

30 A. Bossavit, B. Meyer / Supercomputer programming and program transformation

The above rather stringent rules seem to pre-
clude the vectorization of many simple algorithms;
for example, the formula which we have given for
total reduction, i.e. (1) above, clearly implies re-
peated backward dependencies.

In order to obtain vectorizable versions of this
and other algorithms, more perspective is needed
on the “vector machine” and the operations it
may perform.

3.2. An abstract model

Rather than studying at the scalar (e.g. Fortran)
level what can be vectorized and what cannot, it is
preferable to provide a formal model of the ma-
chine at the appropriate level of abstraction. Here
we consider a vector computer as a virtual ma-
chine associated with an abstract data type, type
V= VECTOR[S], and capable of performing a
certain number of operations.

There is in fact probably no such thing as the
vector machine, but rather various models adapted

to various applications. We thus tailor our specifi-
cation to the problem at hand. Rather than giving
a complete formal description of the abstract data
type “vector”, we concentrate on some useful
operations and their essential properties.

On a vector computer such as the Cray-1, all
the operations in table 1 (except for “length” and
“access to element” which require constant time)
are “extension operations” which can be executed
in vector mode. It should be noted, however, that
some vector computer architectures may be more
restrictive: the CDC Cyber 205, for instance, re-
quires array elements to be contiguous not just
equally spaced, so that operations such as “odd
part”, “even part” and “merge” do not qualify.

The above list of operations is by no ‘means
exhaustive; more complete lists may be found in
e.g. refs. [6,7]. It should also be noted that for
some applications it may be useful to introduce
operations extracting other “slices” than just the
odd and even parts. The operations given here will
suffice, however, for our purposes.

Table 1

Operations and their properties

Operation Type Notation Properties

Zero all elements

vector V 0 zero

length V — Integer |v]

access to

elements V X Integer > S v;

extension let z=vow:

of a scalar {z| =min(|v],|w[):

operation VXV-V vOw z;=0;®w,

<) (i€l...jz))

jTo| = |v|+1;
(tv);=

shift V-V TV v;—-1fori>1,
0fori=1

odd part VoV Ov Ov; = vy;_,

even part V-oVv Ev Ev, = v,;

merge into let z=

odd and VXV->V alternate (v, w) alternate (v, w):

even parts Oz=v;, Ez=w

A. Bossavit, B. Meyer / Supercomputer programming and program transformation 31

Among the abstract properties of these oper-
ations which are particularly interesting are the
following (for any vectors v, w € V'):

Erv = Ov, (i)
Orv = 1Ev, (i)
O(vew) =O0veOow, (iii)
E(vew) =FEv®Ew, (iv)
r(ve&w) =1&7Tw. (v)

4. Cyclic reduction

The above properties, expressed at the vector
rather than scalar level, provide the key to an
efficient solution of the total reduction problem
(1) by a vector algorithm. The idea to be applied
here is a very fruitful heuristics, using the concept
of recursion and close to techniques such as
“red—black ordering” which can be applied to the
development of several efficient vector algorithms.

In the “total reduction” equation

x=a®rx, (1)

let us try to reduce the problem size by a factor of
2 by applying operators O and E (odd and even
parts) to both sides, yielding:

Ox=0(a®x),

Ex=E(a®1x),

i.e. by applying properties (i) to (iv):

Ox=0a® 7Ex, (2)

Ex=Ea® Ox, (3)
The interesting fact here is that by substituting

the value of Ex, as obtained from (3), into (2), and

using the associativity of & combined with prop-
erty (v) above, we obtain a new equality:

Ox=(0a® 1Ea) ® 70x 4)

which is a new instance of the total reduction
problem, applied to the new vector variable Ox, a
being replaced by Oa @ rEa. This new instance
uses vectors of approximately half the size of the
original ones.

We thus have the essential ingredients for an

efficient recursive algorithm, known as cyclic re-

duction:

— for vectors length 0 or 1, the result x will be
just a;

— for larger vectors, we apply the algorithm recur-
sively, using formula (4), to obtain Ox; formula
(3) then yields Ex;

— we obtain x by merging these two vectors (al-
ternate operator).

5. Program development
5.1. First procedural version

The first version of the procedure is a direct
translation of the basic mathematical definition.
We use an Ada-like notation.

procedure total__reduction,
(a: in VECTOR; x: out VECTOR)
var oddpart, evenpart: VECTOR
begin
if |a| <1 then
X =a
else -- |a|>1
total_reduction, (Oa & tEa, oddpart);
evenpart == Ea ® oddpart;
x = alternate(oddpart, evenpart)
end if
end procedure - - rotal__reduction,

The above version is correct but grossly inefficient

for several reasons:

— the procedure is recursive;

— it has local vector variables (oddpart and even-
part) which must be allocated anew for each
recursive instance of the procedure;

— it uses two parameters, an input g and an
output x, whereas in practice one usually pre-
fers to work on a single vector, which is initially
the input and will gradually be “transformed”
so as to become the output (the initial value
being saved if necessary).

We shall get rid of these sources of inefficiency
through a stepwise process. To make the successive
program transformations clearer, we underline in
each version the elements which have been changed
from the previous version.

32 A. Bossavit, B. Meyer / Supercomputer programming and program transformation

5.2. Removing extra variables

Our first transformation is a straighforward
one, which gets us a little closer to our aim of
working on a single object (x): we note that it is
harmless to begin the procedure by the assignment
x:=a in all cases, not just when [a] <1 (in the
other case, this assignment will be overridden by
the assignments to the odd and even parts of x).

procedure total__reduction,
(a: in VECTOR; x: out VECTOR)
var oddpart, evenpart: VECTOR
begin
=q:
if |a] > 1 then
total _reduction, (Oa ® Ea, oddpart);
evenpart '= Ea ® oddpart;
x := alternate(oddpart, evenpart)
end if
end procedure - - fotal_reduction,

The next simplification is to get rid of the local
variables oddpart and evenpart by extending the
notation a little: we now allow assigning vector
values directly to the slices Ox and Ex of a vector
x. For example, to change the even part of x to y,
we shall just write

Ex = y
instead of
x := alternate (Ox,y).

With this new notation, the procedure can be
simplified as follows:

procedure fotal_reduction
(a: in VECTOR; x: out VECTOR)
begin
X = a;
if |a|>1 then
total _reduction, (Oa ® TEa, Ox);
Ex:=Ea® Ox; o
end if o
end procedure - - total_reduction,

The next obvious step towards the goal of work-
ing with only one vector variable is to replace all
occurrences of a with x after the initial assign-
ment x:=a. We have to be very careful here: in

the procedure resulting from such a transforma-
tion, the same vector x will be used as both an in
and out actual parameter of the recursive call. It
should be noted that Hoare’s specification of the
semantics of recursive procedures [12] specifically
excludes this case.

The replacement will be correct, however, if for
the time being we assume a copy mechanism for
parameter passing. In other words we take in to
mean “parameter passed by value”, i.e. copied
upon each procedure call into a variable local to
the procedure instance; and we take out to mean
“parameter passed by result”, i.e. copied back on
procedure return, from the local variable. To avoid
any confusion resulting from the fact that we are
using an Ada-like notation, it should be noted that
this mode of parameter passing is not the normal
Ada mechanism for in and out parameters.

procedure total_reduction ,
(a: in VECTOR; x: out VECTOR)
begin
x=a
if | x| >1 then
total _reduction, (Ox ® T1Ex, Ox);
Ex:= Ex & Ox;
end if
end procedure -- fotal _reduction,

5.3. Isolating the recursion

It is useful now to separate the procedure into
two parts: one which uses the initial vector @ and
one which does not. To this effect, we transform
the procedure into a set of two mutually recursive
procedures, only the first of which depends on q;
the second one, called internal_part;, has only x
as a parameter, of mode in out. Again, this is
correct only if we assume a copy mechanism for
parameter passing, i.e. an in out parameter is
copied to (at call time) and from (at return time) a
variable local to the procedure instance.

procedure rotal_reduction

(a: in VECTOR,; x: out VECTOR)
begin

x = a;

internal_parts (x)
end procedure -- fotal_reduction s

A. Bossavit, B. Meyer / Supercomputer programming and program transformation 33

procedure internal_part (x: in out VECTOR)
begin
if |x| > 1 then
total _reductions (Ox & tEx, Ox);
Ex:=Ex ® Ox;
end if
end procedure - - internal_part;

We can now isolate the recursion by expanding
the call to roral _reduction in internal_part. The
effect of this call is to assign the value of the first
parameter to the second and to call internal_part
recursively. By carrying out this expansion, we get
rid of the mutual recursion introduced in the pre-
vious step: in the new version, only internal _part
will be (directly) recursive; total_.reduction re-
mains useful for initialization only.

procedure rotal_reduction

(a: in VECTOR,; x: out VECTOR)
begin

X = a;

internal_part, (x);
end procedure - - total_reduction

procedure internal_part, (x: in out VECTOR)
begin
if |x|>1 then
Ox:= Ox @ TEX;
internal_party (Ox);
Ex = Ex & Ox;
end if
end procedure -- internal_part,

5.4. Introducing an integer parameter

The remarkable feature of the recursive scheme
which we have obtained is that the recursive call
now has a single and simple actual parameter, Ox,
where the formal parameter was x. Thus the se-
quence of actual parameters in successive recursive
calls, starting with the initial call from total_re-
duction ¢ will be

x=a, Ox, 0%, .., O™x,

where O%x (k> 0) is the kth iterate of O. The
value of the exponent for the innermost call is

m=1+|log(la|-1)],

(here and in the sequel, logarithms are in base two;
for any real number x, | x| denotes the floor ot x,
i.e. the greatest integer n such that n < x).

This remark suggests a new version in which the
explicit parameter to the recursive part is not x
itself any more, but k, the number of times oper-
ator O must be iterated. Of course all instances of
the recursive procedure must be able to work on
x; thus, we make x a variable global to the recur-
sive procedure. To this end we make procedure
internal _part local to the non-recursive procedure
total __reduction.

procedure total_.reduction,
(a: in VECTOR; x: out VECTOR)
var m: NATURAL -- i.e. non-negative integer;
procedure internal_part, (k:in NATURAL)
-- local to total _reduction,
begin
if kK < m then
OFfx = 0*x ® tEQ* " x:
internal _part, (k+ 1);
EO* 'x=E 0" Tx
end if
end procedure - - internal __part.
begin - - total__reduction,
x = a;
mi=1+]log(la| —1)|;
internal _part, (1) ; - - initial parameter is one
end procedure -- rotal_reduction,

5.5. Removing the recursion
These procedures can be further simplified. The
body of procedure internal _part, is of the form

if kK < m then
U
internal _part, (k + 1);
D,
end if
where U, is the statement
O*x=0*x® 1 EO* 'x
and D, is the statement
EO*~ ! x:=EO* ! x ® O*x.

Thus, the execution of the successive recursive

34 A. Bossavit, B. Meyer / Supercomputer programming and program transformation

A

Fig. 2. Procedure internal__part,.

calls amounts to a traversal of the above tree in
the order indicated by the dotted line (see fig. 2),
i.e. the successive execution of

U, U, .,U,_i, D, D, \ ... Dy, D,.

o

where m = |1+ log(|a|—1)|. Note that there is
one more instance of D, than of U, since U, is a
null statement.

Thus, no recursion is needed after all: the body
of procedure fotal_reduction, may be readily rep-
resented by

up ; down
where up and down are two simple loops:
--up:
for k:=1to m—1do
Ux
end for;

-- down:
for k= m downto 1 do
D,
end for;

(the mnemonics used for the loops reflect the fact
that the index k& goes up in the first loop and
down in the second one).

It is particularly interesting to note that, al-
though the recursion initially seemed quite neces-
sary, it has been completely removed. The above
version is truly non-recursive in that it does not
seem to contain any hidden recursive feature, for
example a.stack lurking in the guise of an integer
representing an array of binary values as in some
iterative implementations (see e.g. ref. [14]) of the
Tower of Hanoi, Quicksort, the Deutsch—
Schorre-Waite tree traversal algorithm, etc.

6. A scalar vectorizable version
6.1. The program

It is useful to write U, and D, in a form which
is closer to how they would be expressed in an
ordinary (scalar) programming language, but still
easily amenable to automatic vectorization. We
define

slice (low, high, step),

where low, high and step are integers such that
low < high and step > 0, as the set of all integers of
the form

low + k * step

which fall into the range low..high. Then U, and
D, can be written as follows:

-- U, (i.e. Ofx = O*x ® TEO* 'x):
forall i in slice (1 +2%,|a|, 2%) do
x[i]=x[i]® x[i — 2]
end forall

-- D, (i.e. EO* 'x==EO* 'x ® O*x):
forall i in slice (1+ 271 |a|, 2¥) do
x[i]:= x[i]® x[i — 2]
end forall

We have used the notation forall...in... to
emphasize the fact that the above are paraliel
loops: on a vector processor, all the vector oper-
ations corresponding to an instance of U, or D,
can be performed simultaneously.

A. Bossavit, B. Meyer / Supercomputer programming and program transformation 35

Note that the backward dependencies in these
loops are only “apparent” in the sense of section
3.1: since both loops are low-level translations of
vector operations (U, and D,, kept as comments
in the above code), the expected interpretation is
the vector one (which anyway turns out to be
identical to the sequential loop semantics in this
case). Thus, if a conservative vectorizer such as the
Cray Fortran Translator inhibits vectorization of
these loops because of the apparent dependencies,
the programmer should override the inhibition.

Below is a non-recursive version of total_reduc-
tion which integrates the various improvements
achieved so far. This version would be readily
vectorizable by any simple vectorizer (such as CFT,
The Cray Fortran Translator, on the Cray-1). A
further simplification is obtained by using varia-
bles step and half_step, corresponding to 2* and
2*=1 respectively, in lieu of k.

procedure fotal__reductiong
(a: in VECTOR,; x: out VECTOR)
var step, half_step: NATURAL;
size: NATURAL; - - size will stand for |a|
begin
size:=|al;
forall i in slice (1, size, 1) do
x[i]=a[i];
end forall;
step == 2; half_step:=1;
-~ This corresponds to k =1
while step < size do -- U,
forall i in slice (1 + step, size, step) do
x[i]= x[i]1® x[i — half_step]
end forall;
half _step = step; step = 2 * step
end while;
-- here {1 < half _step —size —step =
-- 2% half _step }
while step > 1do -- D,
forall i in slice (1 + half _step, size, step) do
x[i]=x[i] ® x[i — half _step]
end forall;
step = half _step; half_step == half_step/2
end while
end procedure -- rotal_ reductiong

6.2. A timing diagram

The diagram in fig. 4 may be helpful in visualiz-
ing the operations performed on x during an
execution of the procedure. It applies to the case
[a] =9. The elements are represented horizon-
tally; the vertical axis represents time. Execution
of the operation

x[i]=x[i}®x[/]

at time ¢ is pictured as fig. 3.

The two main loops (“up” and “down’) appear
clearly on the diagram: the first one is executed in
steps 1 to 3, the second one in steps 4 to 7.

It is interesting to note that this diagram fol-
lows directly from the non-recursive version of the
procedure; it can also be deduced from the initial
recursive version (by expanding the call graph),
but the deduction is much more difficult.

Note that there is a minor possibility for extra
parallelism, between steps 4 and 5, that our devel-
opment method has not captured.

The time needed for total reduction of a vector
a using cyclic reduction on the Cray is approxi-
mately

teyeL =2*%(r—1)*U+(2*(n—1)—r)xV,

where r= |log(|a|)]. This time should be com-

Elernents 7 i

Fig. 3.

Elerents: 1 2 3 4 5

t=1 \X : \l >
t=2 i 1 |

t=3 I ‘ \\
t=5 [— “

e [

t=7 |

t

Fig. 4.

36 A. Bossavit, B. Meyer / Supercomputer programming and program transformation

pared to fgca. =(n—1)*S for the trivial al-
gorithm (constants U, V and S were introduced in
section 3.1). For the Cray, the cutoff point at
which cyclic reduction becomes more efficient is
approximately |a| = 40.

7. An Ada version

Below is an implementation of the algorithm as
an Ada function, embedded in a generic package.
The following points are worth nothing:

— the generic mechanism of Ada provides a way
to write the package so that it can be applied to
various cases; the same generic package can have
many instances depending on what the type
SCALAR and the “+” operation, which corre-
sponds to the operation written © above, are
chosen to be: for instance the type INTEGER and
integer addition, a matrix type and matrix multi-
plication, etc. _

— The Ada generic mechanism is flexible but
strictly syntactical: the language provides no way
to specify that the actual generic parameters must
have predefined semantic properties, for instance
that “+” must be associative. A language such as
LPG (Language for Generic Programming [4])
makes it possible to impose such conditions on
generic parameters.

~ Procedure ADD_TO_VECTOR is the one
which performs the vector operations (correspond-
ing to U, and D, as defined above). These oper-
ations must be expressed in scalar form, using
loops (for...in...loop...end loop). Thus, on a
vector computer an Ada program such as this one
will require the intervention of a vectorizer, similar
to those which exist for Fortran (e.g. CFT on the
Cray-1), in order to take advantage of the vector
computation facilities of the hardware.

— The loop in procedure ADD_TO_VECTOR
seems to involve a backwards dependency. How-
ever, this is only an apparent dependency, as de-
fined in section 3.1, since the loop updates s and
uses s — offset, but these two slices are disjoint
whenever offser # s.step, which is the case for the
two calls to ADD_TO_VECTOR in the package.
This implies, however, that a vectorizing Ada com-

piler would still have to provide some kind of
“vectorize at any risk” directive similar to Cray
Fortran’s IVDEP.

The fact that vector programmers should still
resort to such low-level and error-prone techniques
in Ada is all the more disappointing that Ada
comes close to providing adequate notations for
true vector programming: it has vector operations
such as vector assignment (used below in the
initializing statement x := a of function
TOTAL_REDUCTION) and the notion of slice;
however, an Ada slice must be a contiguous sub-
array, whereas the slices which we need here are
not contiguous, which is why we must use loops.

On the other hand, a language such as Actus
[16], explicitly designed for use on vector com-
puters, readily allows for non-contiguous slices,
but lacks the generic facility of Ada.

generic
type SCALAR is private;
with function “+” (X, Y: SCALAR)
return SCALAR is (};
package CYCLIC _REDUCTION is
type VECTOR is
array (NATURAL range {)) of SCALAR;
function TOTAL_REDUCTION (a: VEC-
TOR)
return VECTOR;
private
type SLICE is
record low, high, step: NATURAL end;
end CYCLIC_REDUCTION;

package body CYCLIC_REDUCTION is
procedure ADD_TO_VECTOR
(x: in out VECTOR;
s: in SLICE;
offset: in NATURAL)
-- x(s) = x(s) + x(s — offset)
is
bottom: constant NATURAL := s.low;
top: constant NATURAL := s.high;
stride: constant NATURAL = s.step;
last: constant NATURAL :=
(top — bottom) /stride;
begin
for i in 0..last do

A. Bossavit, B. Meyer / Supercomputer programming and program transformaiion 37

x(bottom + 1 *stride):=
x(bottom + 1 *stride)
+ x(bottom + 1 * stride — offset)
end for;
end ADD_TO_VECTOR;

function TOTAL_REDUCTION (a: VECTOR)
return VECTOR is
initial: constant NATURAL := a’ FIRST;
final: constant NATURAL := a’ LAST;

size: constant NATURAL := initial — final + 1;

x: VECTOR := a;
step: NATURAL := 2;
half _step: NATURAL :=1;
begin
UP:
while step < size loop
ADD_TO_VECTOR (x,
(initial + step, final, step),
half _step);
half__step = step; step := 2 *step;
end loop UP;
-- here {1 < half_step < size <
-- step = 2xhalf_step}
DOWN:
while step > 1 loop
ADD_TO_VECTOR (x,
(initial + half _step, final, step),
“half _step);
step = half_step;
half __step := half__step/2;
end loop DOWN;
return x;
end TOTAL_REDUCTION;
end CYCLIC_REDUCTION;

8. Conclusion

Transformational programming has been ad-
vocated by several authors (e.g. refs. [1,2,9,3,8])
whereas other researchers in software design meth-
odology prefer a more direct approach to the
synthesis of programs from specifications [10,11].
Although we do not wish to enter this debate here,
the derivations obtained in this paper may bring
some interesting elements.

Even though the sequence of transformations

needed to produce the final program may seem
overly long and complex, we do not know of any
other rigorous way to derive that program. We
would be interested to learn of a more direct
argument, if there is one.

On the other hand, it is not clear to us whether
any of the existing program transformations sys-
tems (where the term “system” is taken to denote
coherent sets of tools and/or methods) may in-
deed support the transformations described here.

In any case, we feel that the development pre-
sented here is another example of the need for
applying systematic techniques to the design of
vector programs. Effective supercomputer pro-
gramming requires a wide range of modern soft-
ware engineering techniques; program transforma-
tion may be one of them.

Acknowledgement

We are grateful to Alan Wilson for the useful
comments he made as a referee for this paper.

References

[1] J. Arsac, Commun. ACM 22 (1979) 43.

[2] R. Balzer, N. Goldman and D. Wile, in: Proc. Second
Intern. Conf. on Software Engineering (1976) p. 223.

{3] F.L. Bauer, M. Broy, W. Dosch, R. Gnatz, F.
Geiselbrechtinger, W. Hesse, B. Krieg-Bruckner, A. Laut,
T. Matzner, B. Moller, F. Nickl, H. Partsch, P. Pepper, K.
Samelson, M. Wirsing and H. Wossner, The Munich Pro-
ject CIP, Technische Universitat Munchen, Munich (De-
cember 1983).

[4] D. Bert, Rapport R-408, IFIAG, IMAG Institute (Greno-
ble University), Grenoble (December 1983).

[5] A. Bossavit and B. Meyer, in: Algorithmic Languages, eds.
J. de Bakker and R.P. van Vliet (North-Holland, Amster-
dam, 1981) p. 99.

[6] A. Bossavit, in: Proc. IFIP TC2 WG 2.5 (Numerical
Software) Working Conf. on PDE Software: Modules,
Interfaces and Systems, Soderkoping, Sweden (August
1983).

[7] A. Bossavit, in: Proc. Conf. on The Use of Supercom-
puters in Theoretical Science, Antwerpen, Belgium (30
July-1 August 1984). :

[8] JJM. Boyle and M.N. Muralidharan, IEEE Trans. on
Software Eng. SE-10 (1984) 574.

[9] J. Darlington and R.M. Burstall, Acta Informatica (1976)
41.

38 A. Bossavit, B. Meyer / Supercomputer programming and program iransformation

[10] E.W. Dijkstra, A Discipline of Programming (Prentice- [14] B. Meyer and C. Baudoin, Méthodes de Programmation
Hall, Englewood Cliffs, New-Jersey, 1976). (Eyrolles, Paris, 1978).

[11] D. Gries. The Science of Programming (Springer-Verlag, [15] B. Meyer, Atelier Logiciel no. 24, HI-34552 /01, Electricité
Berlin, 1981). de France (4 June 1980).

[12] C.A.R. Hoare, in: Symp. on the Semantics of Program- [16] R. Perrott, ACM Trans. on Programming Languages and
ming Languages, Lecture Notes in Mathematics, vol. 188 Systems (1979) 177.

ed. Erwin Engeler (Springer-Verlag, Berlin, 1971) p. 103.
[13] C.W. Hockney and C.R. Jesshope, Parallel Computers
(Adam Hilger, Bristol, Great Britain, 1981).

