
E I F F E L :

O B J E C T - O R I E N T E D D E S I G N

F O R S O F T W A R E E N G I N E E R I N G

B e r t r a n d M e y e r

J e a n - M a r c N e r s o n

Interactive Software Engineering, Inc.

270 Storke Road, Suite 7, Goleta, California 93117 - (805) 685-1006

and Socidtd des Outils du Logiciel

3 bis Cit6 d 'Hautevi l le , 75010 Paris

M a s a n o b u M a t s u o

Sumitomo Electric Industries, Ltd.

Osaka, Japan and Los Angeles , California

1 - Introduction

Eiffel is an object-oriented language and
environment combining the advances in reusable,
flexible programming brought by object-oriented
techniques with the concerns introduced by modem
software engineering, particularly correcmess,
reliability and efficiency.

As a language, Eiffel offers an extensive
combination of facilities: multiple and repeated
inheritance, polymorphism and dynamic binding,
deferred features, export controls, generically
parameterized classes, assertions and invariants
expressing correcmess arguments, full static type
checking.

The implementation, currently available on Unix
(System V and BSD), provides automatic configuration
management, efficient resolution of dynamic binding
(in constant time), and a set of tools for automatic
documentation and debugging. It is complemented by
a library of carefully designed software components.

Eiffel is designed as a portable and open system.
Eiffel classes may be combined with code written in
other languages, and portable C packages may be
produced from Eiffel text. Care has been taken,
however, to preserve the integrity of the language; the
interfaces between Eiffel classes and external code are
strictly delimited.

Eiffel is not an experimental tool but a production
system which has been installed at a number of user

sites in Europe, Japan and North America, both in
companies and universities, and has been applied to a
number of significant developments since it was made
commercially available in September of 1986.

Beyond the language and environment aspects,
Eiffel promotes a method of software construction by
combination of reusable and flexible modules.

2 - Object-oriented design

The design of Eiffel was an attempt to provide
quality-conscious software developers - including
ourselves, since Eiffel was an internal tool before it
was made publicly available - with a environment to
produce high-quality software. The software qualities
factors that were particularly sought in this endeavor
were correctness, reliability, reusability, extendibility
and reusability.

In oar opinion, the principles of object-oriented
design provide the best known techniques for attaining
these qualities. The definition of object-oriented
design which serves as the basis for this discussion is
the following: object-orientexl design is the
construction of software systems as structured
collections of abstract data type implementations.

Eiffel classes are abstract data type implementations
not only in principle, but more concretely through the
use of explicit assertions (preconditions,
postconditions, invariants) which reflect the axioms of
the abstract data type specifications.

The word structured, as used in the definition, refers
to the mechanisms used for combining modules. The

222

Eiffel structuring mechanisms are multiple and
repeated inheritance, direct use (the client relation)
and genericity (type parameterization).

Eiffel shares the basic properties of object-oriented
languages such as Simula 67 [1, 10], SmaUtalk [6],
C++ [19] Objective C, [4], Object Pascal [20],
Trellis/Owl [17], Loops [2], Flavors [3] and Ceyx [7].
But we think that Eiffel goes further than any existing
tool by the combination of features it offers, and by its
emphasis on correctness and reliability as well as
reusability and flexibility. Many concepts are original:
the particular combination of genericity and
inheritance, the approach to type checking, the use of
assertions in an object-oriented world, the renaming
policy applied to multiple inheritance, the provisions
for constant and shared objects, the notion of repeated
inheritance, etc. Another distinctive feature of Eiffel,
beyond the language aspects, is the set of supporting
tools which make it a powerful development
environment.

In spite of its advanced features, the language is
small; although obviously not a complete description,
this article introduces its essential constructs. Great
care has been taken to keep any non-essential features
out in the interest of simplicity, ease of use, and ease
of learning.

Other references on Eiffel include an informal
overview [16], a detailed description of the language
and library [12], a study of the relationship between
genericity and inheritance [13] and an Eiffel-based
analysis of software reusability issues [14]. A book
on object-oriented design and the Eiffel approach is in
preparation [15].

3 - An example class: stack

We will introduce the language through a set of
example classes providing different implementations
of stacks. These classes are given verbatim from the
basic Eiffel library [8].

The general notion of stack is given by the
following class.

capsule class STACK [T]
-- Stacks defined independently of
-- any specific representation.

export
nb eIements, empty, full,
top, push, pop, changetop
wipe_out

feature

nb_elements: INTEGER is
-- Number of elements inserted.

deferred
end; -- nb_elements

empty: BOOLEAN is
-- ts slack empty?

do
Result := (nb_elements = O)

ensure
Result = (nb_elements = O)

end; -- empty

full: BOOLEAN is
-- Is stack full?

deferred
end; -- full

top: T is
-- Last element pushed.

require
not empty

deferred
end; -- top

push (x: T) is
-- Push x onto stack.

require
not fuU

deferred
ensure

not empty; top = x;
nb__elements = old nb_etements + t

end; -- push

pop is
-- Remove top element.

require
not empty

deferred
ensure

not full;
nb_elements = old nb elements - 1

end; -- pop

changetop (x: I) is
-- Replace top element by x

require
not empty

do
pop; push (x)

ensure
not empty; top = x
nb_elements = old nb_elements

end; -- change_top

wipe out is
-- Remove all elements.

deferred
ensure

empty
end; -- wipe_out

invariant
nb elements >= 0

end -- class STACK

This class describes the behavior of a certain
category of data structures: stacks. It has a generic

223

parameter, T, representing the type of elements
pushed onto a stack; genericity provides flexibility in a
manner compatible with strict typing.

Any class is characterized by a number of features,
describing properties of stacks: the number of
elements, the ability to push an element, etc. Features
include attributes, or data fields of instances of the
class (stacks), and routines, or operations. Routines
are further divided into procedures and functions.

As we shall see below, other classes, called clients
of this class, may use it to manipulate stacks. Clients
will access stacks through the given features; only
those features which are listed in the "export" clause
are available to clients. A class may thus keep for
itself its implementation secrets.

This particular class describes rather abstract stacks,
independent of any particular representation. This is
why the body of many routines (see push, pop etc.) is
given not by actual code but by the keyword
deferred, which means: "I am telling you that this
routine must eventually be somehow implemented, but
I can't give you the details of its implementation(s)
here". (This is a generalization of the Simula
"virtual" concept.) As we shall see, specific
implementations may be given in other classes, called
descendants of this class. A descendant provides a
specialized or extended version of a previously defined
class.

Any class which has at least one deferred routine is
called a "capsule" class and marked accordingly.
Not all routines of a capsule class need to be deferred.
Some routines are expressed in terms of deferred
procedures but are not themselves deferred (see empty
and change_top).

A very important component of the Eiffel approach
is the ability to characterize a routine, whether
deferred or not, by a precondition (require), or a
postcondition (ensure), or both. Such assertions
(generalized boolean expressions) enable precise
characterization of the routine's effect; they are useful
for correct program writing, for documentation and for
debugging (as assertions may be checked, on option,
at run-time). The same holds of class iuvariauts,
which must be satisfied after the creation of each
instance of the class and maintained by every routine.
The reader is invited to verify that the assertions given
in the above class do reflect the intuitive properties of
classes.

Thanks to assertions, the above capsule class almost
gives a full absu'act data type specification (although
certain axioms may not be easily expressed in this
framework). This use of capsule classes, where the
abslract properties of routines are specified by
assertions even though no implementation is given, is
a key technique in using Eiffel as a design language.
Eiffel is in fact of a higher-level than most existing
PDLs (Program Design Languages). A considerable
advantage over a standard PDL is that Eiffel is also a
programming language: a capsule class may be refined
smoothly, through inheritance (see below), into an

executable class. This makes it possible to go from
design to implementation in a continuous process,
avoiding the gap that characterizes lraditional
methods.

What can we do with a class such as STACK?
Among other things, a class may be used as a type.
Other classes (the clients of STACK) may declare and
manipulate entities of that type, representing stacks.
The operations available on such entities are given by
the features of the class. Thus a client might contain
code like

sl: STACK [INTEGER]; s2: STACK [FIGURE];
f: FIGURE;

sl.push (3)," if sl.empty then ...
s2.push (f); s2.push (f); s2.pop;

Note how actual stack entities use specific types
(INTEGER and FIGURE) for the generic parameter
T; INTEGER is one of the predefined language types,
and we assume that a class FIGURE has been defined,
representing geometrical figures.

Type checking is total here and allows maintaining
the integrity of each structure; in other words, an
attempt to push a figure onto a stack of integers would
be rejected at compile-time. Note that the
implementation of genericity nevers entails any code
duplication.

The reader may have been surprised, when reading
the text of STACK, by the absence of a STACK
parameter to routines such as push, pop, top etc.
Where is the stack to which these operations apply?
The answer is in the client code given above: dot
notation, as in sl.push (3), shows that any of the
routines in class STACK is always applied to a
distinguished stack argument written before the dot.
This is one of the key aspects of object-oriented
programming: every operation applies to a special
target object. Within the class, this object (the
"typical instance" of the class) remains implicit most
of the time; this is why top, for example, has no
parameter (it returns a property of the typical stack),
and push has only one (the value being pushed).

4 - Multiple inheritance: fixed stacks

Using inheritance, a class may be defined on the
basis of one or more previously defined classes, called
its parents. The new class, called an heir, will possess
all the features of its parents, to which it can add its
own; some of the parents features may also be
overridden, as we shall see below. The following
example, an heir of STACK called FIXEDSTACK,
will serve to evidence many of the properties of this
remarkable technique.

224

class FIXED_STACK IT]
-- Stacks with a fixed physical size,
-- implemented as arrays

export
max size,
nb elements, empty, full,
top, push, pop, changetop,
wipe out

inherit

STACK [I]
redefine changetop;

ARRAY [T]
rename

Create as array_Create, size as max_size
feature

nb_elements: INTEGER;
-- Note redefinition as attribute

Create (n: INTEGER) is
-- Allocate stack with maximum size n

do
array_Create (1, n)

ensure
max_size = n

end; -- Create

full: BOOLEAN is
-- Is stack full?

do
Result := (nb_elements = max_size)

ensure
Result = (nb_elements = maxsize)

end; -- full °

top: T is
-- Last element pushed.

require
not empty

do
Result := entry (nb_elements)

end; -- top

push (x: T) is
-- Push x onto sta~k

require
not full

do
nb_elements := nb_elements + 1;
enter (rib elements, x)

ensure
not empty; top ~ x;
entry (nb_elements) = x;
nb elements = old nb_elements + 1

end; -- push

pop is
-- Remove top element.

require
not empty

do
nb_elements := nb_elements + 1

ensure
not full;
nb_.elements := old nb_elements - 1

end; -- pop

change_top (x: T) is
-- Replace top element by x

require
not empty

do
enter (nb_elements, x)

ensure
not empty; top = x
nb._elements = old nb elements

end; -- change_top

wipe_out is
-- Remove all elements.

do
nbelements := 0

ensure
empty

end; -- wipe_out
invariant

nb elements >= O; nb_elements < max_size
end -- class FIXED_h~ACK

Fixed stacks are stacks of fixed size; they are
simply obtained by inheriting from the basic class
ARRAY as well as STACK. Class ARRAY describe
arrays of a given type, characterized by the following
routine.s:

* enter (i, x) to assign value x to the i- th element
of an array;

• entry (i): the value of the i -th element.

• Create: array allocation.

The mechanism of multiple inheritance is one of the
keys to the power of Eiffel programming. Inheritance
makes it possible to design systems by successive
extension and specialization, starting from simple
classes. Many available object-oriented environments
permit only single inheritance (every class may inherit
from at most one parent); this is in our view an
unacceptable limitation to the power of the method.
Our own software developments make a considerable
use of multiple inheritance; inheriting from five or six
parent classes is a common occurrence.

This style of program design is a radical departure
from traditional approaches. Instead of building every
new system from scratch (a method also known as
top-down design), the designer works by reuse,
combination, extension and specialization.

In the above example, the marriage is one between
a "nob le" family (STACK, offering the functionality)
and a " 'r ich" family (ARRAY, offering the
implementation). This is a common occurrence in
practical uses of multiple inheritance.

225

A class may, of course, have an arbitrary number of
direct or indirect heirs (or "descendants"; the reverse
notion is "ancestor"). The Eiffel library, for
example, includes another implementation of stacks:
class LINKEDSTACK which, as the reader will have
guessed, is obtained by multiple inheritance from
STACK and the library class LINKEDLIST. This
class is similar in form to FIXEDSTACK, with
appropriate routine implementations, using linked list
operations, substituted for the array implementations.

5 - Renaming, redefinition and dynamic binding

The power of inheritance is domesticated in Eiffel
through explicit renaming and redefinition.

The problem of renaming arises because of multiple
inheritance, which carries a serious risk of confusion if
two parent classes happen to include features with
identical names. Such name clashes are prohibited.
They must be removed in the inheritance clause, using
the rename construct, which will make inherited
features available locally under a different name. In
the above example, renaming is in fact applied for
other purposes: making features from a parent class
available in their original form even though they are
redefined for the new class (see Create from arrays);
or simply to using a locally more appropriate name
(see max_s&e).

Another key property of inheritance is the ability to
override a routine implementation in a descendant. At
the STACK level, for example, since the
representation is not known, routine changetop is
implemented as a pop followed by a push. For fixed
stacks, a more efficient implementation is possible;
hence the new version of change top in class
FIXED_STACK, which simply changes the value of
an array element. For stacks of type FIXEDSTACK,
this version will be used instead of the general
STACK implementation.

A special form of redefinition is the introduction of
an actual definition for a routine which was deferred
in an ancestor. Eiffel permits a routine to be
implemented as an attribute: for example,
nb..elements, which was a deferred function at the
STACK level, is implemented as an attribute in
FIXED_STACK. This possibility is important for
information hiding: when a client requests the number
of elements of a stack s through the notation
s.nbelements, whether rib_elements is an attribute or
a function (that is to say, stored or computed) is
irrelevant for the ctionL

The redefinition mechanism allows full
polymorphism and dynamic binding. Polymorphism
is the ability for an entity to refer at run-dine to
objects of various types; for example, the following is
permitted:

s: STACK IX];
f: FIXED_STACK IX]; l: LINKEDSTACK IX];

; ; :)) : , := l

in other words, a STACK entity may at ran-time refer
to a FIXED_STACK or a LINKED_STACK object.
Eiffel is, however, strictly typed: here, typing means
that the type of the source (here FIXED__STACK or
LINKEDSTACK) can only be a descendant class of
the type of the target (STACK). The reverse
assignment would not be permitted. The motivation is
clear: a stack is a more general concept than a fixed
stack; so a stack entity may be assigned a fixed stack
value, but not conversely.

Dynamic binding, in this context, means that if
different descendants of a class provide alternative
versions of a routine such as push, the version to be
applied in a call of the form

s.push
depends on the run-time form of s. This dynamic
adaptation of operations to the form of the objects to
which they apply is one of the keys to the modular,
decentralized programming style permitted by object-
oriented languages. Instead of one push routine which
must know about every variety of stack in the world,
we have autonomous variants of the STACK notion,
each of which comes with its own version of push
and other operations. The binding between the
operation name and the appropriate variant is done
only at run-time. (As we shall see below, the Eiffel
implementation techniques achieve this result with
very little run-time overhead.)

The very power of the mechanisms for multiple
inheritance, redefinition, polymorphism and dynamic
binding implies risks to the consistency and
correctness of programs. How do we make sure that a
call to push does not trigger a completely different
routine because of dynamic binding? Eiffel offers a
series of safeguards:

1 * As we have seen, polymorphism is limited by the
type rules. As a result, a run-time type error may
never occur: the type system is such that any
incorrect routine application entity.routine is
rejected by the compiler. In a correctly compiled
program, routine is guaranteed to be defined for
entity whenever the application is executed, even
though entity may refer to instances of widely
different classes.

2 * Redefinition may not occur by accident: to
override a routine from a parent class, the class
author must list the routine in the redefine clause,
as with change_top in FIXED_STACK.
Inadvertanfly reusing an ancestor's routine name for
a new routine will result in a compile-time error,
not in unwanted redefinition.

3 ,, Finally, the redefinition mechanism is controlled
by assertions. The language rule is that a
redefinition of a routine must obey its initial
specification: the precondition may he kept or
weakened, and the postcondition may be kept or

226

strengthened. Although in the absence of a built-in
theorem prover this rule can only be enforced at
run-time, it is a powerful methodological guideline.

The last remark is worth some more explanations.
Although assertions have been associated with
programming languages before [9, 18], we have found
their systematic use in conjunction with object-
oriented techniques to bring a completely new
perspective to program design. Underlying their use in
Eiffel is the notion of programming as a contractual
activity: assertions spell out the terms of the contract
between a client and a supplier. Inheritance and
dynamic binding, in this context, are subcontracting
mechanisms; the above rules, governing adaptation of
assertions in redefined routines, guarantee that the
subcontractor does not violate the terms of the original
contract. These ideas have been thoroughly applied to
the design and validation of the components of the
basic Eiffel library. They are explained in detail in the
forthcoming book [15].

6 • The implementation

The current implementation of Eiffel runs on
various versions of Unix. It is based on translation
from Eiffel to C, then C to machine code using the
resident C compiler. It may potentially be ported to
any environment including a C compiler and some
basic operating system capabilities.

Eiffel is in no way an extension of C; C is only
used as a vehicle for implementation and has had no
influence on the language design. Other compilation
techniques would be possible, but the use of a portable
assembly language such as C as intermediate code has
obvious advantages for transferability of the
implementation.

We feel very strongly about the independence of
Eiffel from C. The addition of some object-oriented
concepts to a language stem which (independently of
any value judgment on C) is not object-oriented by
any reasonable definition can only result in
inconsistent constructions, difficult to teach and to use.
The complex hybrid scope system of C++ [5] is a case
in point. In oar view, simplicity and consistency are
princely qualities in the design o f ' a programming
language.

Although Eiffel is not an extension of an existing
language, this does not mean that Eiffel programmers
are isolated from the rest of the world. To the
contrary, the implementation is highly open. Eiffel
classes are meant to be interfaced with code written in
other languages. This concern is reflected in the
language by the optional external clause which, in a
routine declaration, lists external subprograms used by
the routine.

This mechanism makes it possible to use external
routines without impacting the conceptual consistency
of the Eiffel classes. In particular, the external
routines are used by clients not directly but through

Eiffel routines, which may include a precondition and
postconditiou.

A good external facility was essential in view of the
design objectives listed in section 2: when you
introduce an environment which claims to promote
reusability, you can hardly tell prospective users to
throw away all the software they have written so far.

One application of the "external" construct is for
using Eiffel as an integrating mechanism for
components written in other languages. Eiffel is in fact
a useful tool for combining software written in various
languages, and as a tool for package writers who want
to distribute their software in C form.

Great care has been taken to provide efficient
compilation and execution. In particular, the
resolution of dynamic binding takes constant time: in
entity.routine, the time to find the appropriate version
of routine, which depends on the ran-time form of
entity, is bounded by a small constant. In many
object-oriented systems, the resolution implies a
potentially costly ran-time search; the problem is
particularly acute with multiple inheritance.

Other features of the implementation are worth
noting:

* There is never any duplication of code (except in
a rather rare and special occurrence, "repeated"
inheritance with feature duplication, not described
in this paper, where duplication of some features is
conceptually necessary).

o Memory management is handled by a run-time
system that takes care of object creation and
(system-conlroUed) de-allocation.

* A systemwide optimizer deans up the generated
code, removes all unneeded routines (a potentially
serious problem for very large applications in an
approach encouraging the reuse of powerful
software components) and substitutes direct calls for
routines that are never redefined (thus removing any
dynamic binding overhead in this case).

,, Compilation is performed on a class-by-class
basis, so that large systems can be changed and
extended incrementally. The translation time from
Eiffel to C is typically about 50% of the time for
the next step, translation from C to machine code.

7 - The environment

The construction of systems in Eiffel is supported
by a set of development tools.

Most important are the facilities for automatic
configuration management integrated into the
compilation commands. When a class C is compiled,
the system automatically looks for all classes on
which C depends directly or indirectly (as client or
heir), and re-compiles those whose compiled versions
have become obsolete. Unix programmers will
recognize this facility as giving the power of Make
without programmer-written makefiles.

227

This is far from being a trivial problem, as the
dependency relations are complex (a class may be,
say, a client of one of its descendants) and, in the case
of the client relation, may involve cycles. The problem
is made even more difficult by the presence of remote
feature calls of the form a.b.cA We felt it
essential, however, to find a solution, as this
completely frees programmers from having to keep
track of changed modules to maintain the consistency
of their systems. Note that the algorithm used is able
to avoid many unneeded recompilations by detecting
that a modification made to a class has not impacted
its interface; this has proved very important in
practice, as it avoids triggering a chain reaction of re-
compilations in a large system when the
implementation of a feature is changed in a low-level
class.

Thanks to these facilities, the environment gives
Eiffel programmers all the safety and run-time
efficiency of a compiler-oriented system, while
achieving a try-change-retry cycle time almost as short
as in interpretive systems.

The environment also contains debugging tools:
tools for run-time checking of assertions; a tracer and
symbolic debugger; and a viewer for visual, interactive
exploration of the object structure at run-time.

A documentation tool, short, produces a summary
version of a class showing only its official
information: the exported features only and, in the
case of routines, only the header, precondition and
posteondition. An option of short produces formated
output in -troff -ms form for typesetting; for example,
the following is the result of applying short to one of
the above classes:

class interface FIXED STACK [1] exported features

maxsize, nb_elements, empty, full, top, push, pop,
change_top, wipe out

inherit

STACK IT]
redefine

change_top;
ARRAY [I]

rename
size as maxsize,

feature specification

Create (n: INTEGER)
-- Allocate stack with maximum size n

ensure
m a x s i z e = n

nb elements: 1NTEGER

full: BOOLEAN
-- Is stack full?

ensure
Result = (nb_elements = max_size)

top: T
-- Last element pushed.

require
not empty

push (x: 13
-- Push x onto stack

require
not full

ensure
not empty;
top = x;
nb_elements = old nb_elements + 1

pop
-- Remove top element.

require
not empty

e n s u r e

not full;
nb_elements := old nb_elements - 1

change_top (x: T)
-- Replace top element by x

require
not empty

ensure
not empty;
top = x
nb elements = old nb elements

wipe_out
-- Remove all elements.

ensure
empty

invariant

nb_elements >= O;
nb elements < max_size

end interface -- class FIXED_STACK

The ability to automatically produce such high-
quality documentation - concise, high-level (thanks to
the assertions) and, most importantly, guaranteed to be
consistent with the software being documented - has
proved to be a key benefit of the Eiffel environment.
Consistency is almost impossible to achieve if
documentation, design and code are considered as
separate products.

The Eiffel library manual [8] is a/most entirely
produced by short.

A postprocessor performs various optional
modifications on the generated C code: removal of
unneeded routines, simplification of calls to non-
potymorphic routines, packaging of the entire
generating code as a library of routines callable from
other programs. The Iast option is particularly
interesting for software implementors who use Eiffel
for the development of packages that will be delivered
to their customers in standard C form, or who must do
cross-development (program writing on one machine,

228

execution on another which does not necessarily
support Eiffel,)

Finally the environment includes a library of
robust, efficient, carefully crafted basic classes,
covering some of the most important data structure
implementations, Use of this library is one of the
elements that give Eiffel programming its distinctive
flavor, enabling programmers to think and write in
terms of lists, trees, stacks etc. rather than arrays,
pointers, flags and the like. The library is being
further refined so as to cover all the common patterns
of everyday programming.

8 - Status and further work

Eiffel has been available internally within
Interactive Software Engineering since the Spring of
1986, and commercially since September of that year.
The system has been ported to various versions of
Unix, on such machines as Sun-2 and 3, Apollo
workstations, Sumitomo Electric U-station, NCR
Power 32, Perkin-Elmer, VAX, Ridge/Bull SPS 9,
AT&T 3B2-3B5, Eunice, and others. Porting to
VAX-VMS and other non-Unix environments is in
progress. A number of systems have been installed in
Europe, Japan and North America, both in industrial
companies and in universities, and have been applied
to the development of various applications.

Based on this experience, we do not plan any
significant changes to the language. However more
work is being pursued in the area of support for
concurrency and event-driven computation. Although
some support for persistent objects is already offered
by the present system, more advanced facilities are
needed in this area. As regards the implementation,
the tools for configuration management and
documentation, which have proved invaluable in
practice, must be complemented by "browsing"
facilities to enable exploration and retrieval of existing
classes and features, Some primitive exploration tools
are available; rather than a Smalltalk-like browser,
however, which we feel would not scale up to real
reusability on an industrial basis, we are investigating
the use of repositories of software components,
organized around a data base management system.
Finally, we would like to better integrate Eiffel with
the formal specification method M [11], based on
many of the same principles. This would give us a
method covering most of the software lifecycle
activities.

9 - Conclusion

A number of individual concepts embodied in Eiffel
were present in previous languages, notably Simula
67, Ada and Alphar& However the design has
brought in many new contributions.

From the language standpoint, one may quote the
safe treatment of multiple inheritance through
renaming, the combination between genericity and
inheritance, disciplined polymorphism by explicit
redefinition, the integration of the assertion/invariant
mechanism with inheritance, a clean interface with
external routines, and the introduction of full static
typing into an object-oriented langnage with multiple
inheritance.

From the implementation standpoint, a number of
our solutions are original: constant-time routine access,
separate compilation with automatic configuration
management in an object-oriented world, support for
debugging and automatic interface documentation,
support for the preparation of deliverable software
packages.

More generally, we believe quite frankly that Eiffel
is the first full-scale effort enabling developers of
practical software systems to take advantage of
object-oriented techniques in a manner consistent with
the newest concepts of software engineering.

We first designed Eiffel for our own needs as
software developers and, now that we have used it
extensively for small and large developments alike, we
wouldn't trade it for anything else. We hope that this
article will have inoculated the reader with at least
some of our enthusiasm,

References

1. Graham Birtwistle, Ole-Johan Dahl, Bjorn Myrhaug,
and Kristen Nygaard, Simula Begin, Studentliteratur
and Auerbach Publishers, 1973.

2. Daniel G. Bobrow and MJ. Stefik, LOOPS: an
Object-Oriented Programming System for Interlisp,
Xerox PARC, 1982.

3. H.I. Cannon, "Flavors," Technical Report, MIT
Artificial Intelligence Laboratory, Cambridge
(Massachussets), 1980.

4. Brad J. Cox, Object-Oriented Programming: An
Evolutionary Approach, Addison-Wesley, Reading
(Massachusetts), 1986.

5. S.C. Dewhurst, "Object Representation of Scope
during Translation," in ECOOP 87: European
Conference on Object-Oriented Programming, Paris,
June 1987.

6. Adele Goldberg and David Robson, Smatltalk-80:
The Language and its Implementation, Addison-
Wesley, Reading (Massachusets), 1983.

7. Jean-Marie Hullot, "Ceyx, Version 15: I - ane
Initiation," Rapport Technique no. 44, INRIA,
Rocquencourt, Et6 1984.

8. Interactive Software Engineering, Inc., "Eiffel
Library Manual," Technical Report TR-EI-7/LI,
1986.

9. Bruce W. Lampson, Jim J. Homing, Ralph L.
London, L G. Mitchell, and Gerard L. Popek,
"Report on the Programming Language Euclid,"
SIGPLAN Notices, voL 12, no. 2, pp. 1-79, February

229

1977.
10.Bertrand Meyer, "Quelques concepts ~mnpo.~ants

des tangages de programmation modernes et leur
expression en Simula 67," Bulletin de la Direction
des Etudes et Recherches d'Electricit~ de France,
S~rie C (Informatique), no. 1, pp. 89-150, Clamart
(France), 1979. Also in GROPLAN 9, AFCET,
1979.

11.Bertrand Meyer, "M: A System De~cription
Method," Technical Report TRCS85-15, University
of California, Santa Barbara, Computer Science
Department, August 1986 . Submitted for
publication.

12.Bertrand Meyer. "Eiffel: A Language and
Environment for Software Engineering," The
Journal of Systems and Software, 1987. To appear.

13.Bertrand Meyer, "Genericity, static type checking,
and inheritance," The Journal of Pascal, Ada and
Modula-2, 1987. To appear Devised version of
paper in ACM OOPSLA conference proceedings,
Portland, Oregon, September 1986, pp. 391-405).

14.Bertrand Meyer, Reusability: the Case for Object-
Oriented Design, 4, pp. 50-64, IEEE Software,
March 1987.

15.Bertrand Meyer, Object-oriented Software
Construction, 1987. To appear

16.Bertrmad Meyer, "Eiffel: Programming for
Reusability and Extendibility," ACM Sigplan
Notices,February 1987, voL 22, no. 2, pp. 85-94,
1987a,

I7.Craig Schaffert, Topher Cooper, Bruce Ballis, Mike
Kilian, and Carrie Wilpolt, "An Introduction to
Trellis-Owl," in OOPSLA '86 Conference
Proceedings, Portland Oregon, Sept. 29-0ct. 2,
1986, pp. 9-16, 1986. (Published as SIGPLAN
Notices, 21, 11, Nov, 1986.)

18.Mary Shaw (Ed.), in Alphard: Form and Content,
St~inger-Verlag, New York, Heidelberg, Berlin,
1981.

19.Bjame Stroustrup, The C++ Programming
Language, Addison-Wesley, Menlo Park
(California), t986.

20.Larry Tesler, "Object Pascal Report," Structured
Language World, vol. 9, no. 3, 1985,

Trademarks: Unix (AT&T Bell Laboratories); Ada
(AJPO); Objective C (Productivity Products
International); VAX (Digital Equipment Corporation);
Smalltalk (Xerox); Eiffel (Interactive Software
Engineering, Inc.).

