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1 - Introduction 

Eiffel is an object-oriented language and 
environment combining the advances in reusable, 
flexible programming brought by object-oriented 
techniques with the concerns introduced by modem 
software engineering, particularly correcmess, 
reliability and efficiency. 

As a language, Eiffel offers an extensive 
combination of facilities: multiple and repeated 
inheritance, polymorphism and dynamic binding, 
deferred features, export controls, generically 
parameterized classes, assertions and invariants 
expressing correcmess arguments, full static type 
checking. 

The implementation, currently available on Unix 
(System V and BSD), provides automatic configuration 
management, efficient resolution of dynamic binding 
(in constant time), and a set of tools for automatic 
documentation and debugging. It is complemented by 
a library of carefully designed software components. 

Eiffel is designed as a portable and open system. 
Eiffel classes may be combined with code written in 
other languages, and portable C packages may be 
produced from Eiffel text. Care has been taken, 
however, to preserve the integrity of the language; the 
interfaces between Eiffel classes and external code are 
strictly delimited. 

Eiffel is not an experimental tool but a production 
system which has been installed at a number of user 

sites in Europe, Japan and North America, both in 
companies and universities, and has been applied to a 
number of significant developments since it was made 
commercially available in September of 1986. 

Beyond the language and environment aspects, 
Eiffel promotes a method of software construction by 
combination of reusable and flexible modules. 

2 - Object-oriented design 

The design of Eiffel was an attempt to provide 
quality-conscious software developers - including 
ourselves, since Eiffel was an internal tool before it 
was made publicly available - with a environment to 
produce high-quality software. The software qualities 
factors that were particularly sought in this endeavor 
were correctness, reliability, reusability, extendibility 
and reusability. 

In oar opinion, the principles of object-oriented 
design provide the best known techniques for attaining 
these qualities. The definition of object-oriented 
design which serves as the basis for this discussion is 
the following: object-orientexl design is the 
construction of software systems as structured 
collections of abstract data type implementations. 

Eiffel classes are abstract data type implementations 
not only in principle, but more concretely through the 
use of explicit assertions (preconditions, 
postconditions, invariants) which reflect the axioms of 
the abstract data type specifications. 

The word structured, as used in the definition, refers 
to the mechanisms used for combining modules. The 
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Eiffel structuring mechanisms are multiple and 
repeated inheritance, direct use (the client relation) 
and genericity (type parameterization). 

Eiffel shares the basic properties of object-oriented 
languages such as Simula 67 [1, 10], SmaUtalk [6], 
C++ [19] Objective C, [4], Object Pascal [20], 
Trellis/Owl [17], Loops [2], Flavors [3] and Ceyx [7]. 
But we think that Eiffel goes further than any existing 
tool by the combination of features it offers, and by its 
emphasis on correctness and reliability as well as 
reusability and flexibility. Many concepts are original: 
the particular combination of genericity and 
inheritance, the approach to type checking, the use of 
assertions in an object-oriented world, the renaming 
policy applied to multiple inheritance, the provisions 
for constant and shared objects, the notion of repeated 
inheritance, etc. Another distinctive feature of Eiffel, 
beyond the language aspects, is the set of supporting 
tools which make it a powerful development 
environment. 

In spite of its advanced features, the language is 
small; although obviously not a complete description, 
this article introduces its essential constructs. Great 
care has been taken to keep any non-essential features 
out in the interest of simplicity, ease of use, and ease 
of learning. 

Other references on Eiffel include an informal 
overview [16], a detailed description of the language 
and library [12], a study of the relationship between 
genericity and inheritance [13] and an Eiffel-based 
analysis of software reusability issues [14]. A book 
on object-oriented design and the Eiffel approach is in 
preparation [15]. 

3 - An  example  class: stack 

We will introduce the language through a set of 
example classes providing different implementations 
of stacks. These classes are given verbatim from the 
basic Eiffel library [8]. 

The general notion of stack is given by the 
following class. 

capsule class STACK [T] 
-- Stacks defined independently of 
-- any specific representation. 

export  
nb eIements, empty, full, 
top, push, pop, changetop 
wipe_out 

feature 

nb_elements: INTEGER is 
-- Number of elements inserted. 

deferred 
end; -- nb_elements 

empty: BOOLEAN is 
-- ts slack empty? 

do 
Result := (nb_elements = O) 

ensure 
Result = (nb_elements = O) 

end; -- empty 

full: BOOLEAN is 
-- Is stack full? 

deferred 
end; -- full 

top: T is 
-- Last element pushed. 

require 
not empty 

deferred 
end; -- top 

push (x: T) is 
-- Push x onto stack. 

require 
not fuU 

deferred 
ensure 

not  empty; top = x; 
nb__elements = old nb_etements + t 

end; -- push 

pop is 
-- Remove top element. 

require 
not empty 

deferred 
ensure 

not full; 
nb_elements = old nb elements - 1 

end; -- pop 

changetop (x: I) is 
-- Replace top element by x 

require 
not empty 

do 
pop; push (x) 

ensure 
not empty; top = x 
nb_elements = old nb_elements 

end; -- change_top 

wipe out is 
-- Remove all elements. 

deferred 
ensure 

empty 
end; -- wipe_out 

invariant  
nb elements >= 0 

end -- class STACK 

This class describes the behavior of a certain 
category of data structures: stacks. It has a generic 
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parameter, T, representing the type of elements 
pushed onto a stack; genericity provides flexibility in a 
manner compatible with strict typing. 

Any class is characterized by a number of features, 
describing properties of stacks: the number of 
elements, the ability to push an element, etc. Features 
include attributes, or data fields of instances of the 
class (stacks), and routines, or operations. Routines 
are further divided into procedures and functions. 

As we shall see below, other classes, called clients 
of this class, may use it to manipulate stacks. Clients 
will access stacks through the given features; only 
those features which are listed in the "export" clause 
are available to clients. A class may thus keep for 
itself its implementation secrets. 

This particular class describes rather abstract stacks, 
independent of any particular representation. This is 
why the body of many routines (see push, pop etc.) is 
given not by actual code but by the keyword 
deferred, which means: "I  am telling you that this 
routine must eventually be somehow implemented, but 
I can't give you the details of its implementation(s) 
here". (This is a generalization of the Simula 
"virtual" concept.) As we shall see, specific 
implementations may be given in other classes, called 
descendants of this class. A descendant provides a 
specialized or extended version of a previously defined 
class. 

Any class which has at least one deferred routine is 
called a "capsule" class and marked accordingly. 
Not all routines of a capsule class need to be deferred. 
Some routines are expressed in terms of deferred 
procedures but are not themselves deferred (see empty 
and change_top). 

A very important component of the Eiffel approach 
is the ability to characterize a routine, whether 
deferred or not, by a precondition (require), or a 
postcondition (ensure), or both. Such assertions 
(generalized boolean expressions) enable precise 
characterization of the routine's effect; they are useful 
for correct program writing, for documentation and for 
debugging (as assertions may be checked, on option, 
at run-time). The same holds of class iuvariauts, 
which must be satisfied after the creation of each 
instance of the class and maintained by every routine. 
The reader is invited to verify that the assertions given 
in the above class do reflect the intuitive properties of 
classes. 

Thanks to assertions, the above capsule class almost 
gives a full absu'act data type specification (although 
certain axioms may not be easily expressed in this 
framework). This use of capsule classes, where the 
abslract properties of routines are specified by 
assertions even though no implementation is given, is 
a key technique in using Eiffel as a design language. 
Eiffel is in fact of a higher-level than most existing 
PDLs (Program Design Languages). A considerable 
advantage over a standard PDL is that Eiffel is also a 
programming language: a capsule class may be refined 
smoothly, through inheritance (see below), into an 

executable class. This makes it possible to go from 
design to implementation in a continuous process, 
avoiding the gap that characterizes lraditional 
methods. 

What can we do with a class such as STACK? 
Among other things, a class may be used as a type. 
Other classes (the clients of STACK) may declare and 
manipulate entities of that type, representing stacks. 
The operations available on such entities are given by 
the features of the class. Thus a client might contain 
code like 

sl: STACK [INTEGER]; s2: STACK [FIGURE]; 
f: FIGURE; 

sl.push (3)," if sl.empty then ... 
s2.push (f); s2.push (f); s2.pop; 

Note how actual stack entities use specific types 
(INTEGER and FIGURE) for the generic parameter 
T; INTEGER is one of the predefined language types, 
and we assume that a class FIGURE has been defined, 
representing geometrical figures. 

Type checking is total here and allows maintaining 
the integrity of each structure; in other words, an 
attempt to push a figure onto a stack of integers would 
be rejected at compile-time. Note that the 
implementation of genericity nevers entails any code 
duplication. 

The reader may have been surprised, when reading 
the text of STACK, by the absence of a STACK 
parameter to routines such as push, pop, top etc. 
Where is the stack to which these operations apply? 
The answer is in the client code given above: dot 
notation, as in sl.push (3), shows that any of the 
routines in class STACK is always applied to a 
distinguished stack argument written before the dot. 
This is one of the key aspects of object-oriented 
programming: every operation applies to a special 
target object. Within the class, this object (the 
"typical instance" of the class) remains implicit most 
of the time; this is why top, for example, has no 
parameter (it returns a property of the typical stack), 
and push has only one (the value being pushed). 

4 - Multiple inheritance: fixed stacks 

Using inheritance, a class may be defined on the 
basis of one or more previously defined classes, called 
its parents. The new class, called an heir, will possess 
all the features of its parents, to which it can add its 
own; some of the parents features may also be 
overridden, as we shall see below. The following 
example, an heir of STACK called FIXEDSTACK, 
will serve to evidence many of the properties of this 
remarkable technique. 
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class FIXED_STACK IT] 
-- Stacks with a fixed physical size, 
-- implemented as arrays 

export  
max size, 
nb elements, empty, full, 
top, push, pop, changetop, 
wipe out 

inherit  

STACK [I] 
redefine changetop; 

ARRAY [T] 
rename 

Create as  array_Create, size as max_size 
feature 

nb_elements: INTEGER; 
-- Note redefinition as attribute 

Create (n: INTEGER) is 
-- Allocate stack with maximum size n 

do 
array_Create (1, n) 

ensure 
max_size = n 

end; -- Create 

full: BOOLEAN is 
-- Is stack full? 

do 
Result := (nb_elements = max_size) 

ensure 
Result = (nb_elements = maxsize) 

end; -- full ° 

top: T is 
-- Last element pushed. 

require 
not empty 

do 
Result := entry (nb_elements) 

end; -- top 

push (x: T) is 
-- Push x onto sta~k 

require 
not full 

do 
nb_elements := nb_elements + 1; 
enter (rib elements, x) 

ensure 
not  empty; top ~ x; 
entry (nb_elements) = x; 
nb elements = old nb_elements + 1 

end; -- push 

pop is 
-- Remove top element. 

require 
not empty 

do 
nb_elements := nb_elements + 1 

ensure 
not full; 
nb_.elements := old nb_elements - 1 

end; -- pop 

change_top (x: T) is 
-- Replace top element by x 

require  
not empty 

do 
enter (nb_elements, x) 

ensure 
not empty; top = x 
nb._elements = old nb elements 

end; -- change_top 

wipe_out is 
-- Remove all elements. 

do 
nbelements := 0 

ensure 
empty 

end; -- wipe_out 
invariant 

nb elements >= O; nb_elements < max_size 
end -- class FIXED_h~ACK 

Fixed stacks are stacks of fixed size; they are 
simply obtained by inheriting from the basic class 
ARRAY as well as STACK. Class ARRAY describe 
arrays of a given type, characterized by the following 
routine.s: 

* enter (i, x) to assign value x to the i- th element 
of an array; 

• entry (i): the value of the i -th element. 

• Create: array allocation. 

The mechanism of multiple inheritance is one of the 
keys to the power of  Eiffel programming. Inheritance 
makes it possible to design systems by successive 
extension and specialization, starting from simple 
classes. Many available object-oriented environments 
permit only single inheritance (every class may inherit 
from at most one parent); this is in our view an 
unacceptable limitation to the power of the method. 
Our own software developments make a considerable 
use of multiple inheritance; inheriting from five or six 
parent classes is a common occurrence. 

This style of program design is a radical departure 
from traditional approaches. Instead of building every 
new system from scratch (a method also known as 
top-down design), the designer works by reuse, 
combination, extension and specialization. 

In the above example, the marriage is one between 
a "nob le"  family (STACK, offering the functionality) 
and a " 'r ich" family (ARRAY, offering the 
implementation). This is a common occurrence in 
practical uses of multiple inheritance. 
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A class may, of course, have an arbitrary number of 
direct or indirect heirs (or "descendants"; the reverse 
notion is "ancestor"). The Eiffel library, for 
example, includes another implementation of stacks: 
class LINKEDSTACK which, as the reader will have 
guessed, is obtained by multiple inheritance from 
STACK and the library class LINKEDLIST. This 
class is similar in form to FIXEDSTACK, with 
appropriate routine implementations, using linked list 
operations, substituted for the array implementations. 

5 - Renaming, redefinition and dynamic binding 

The power of inheritance is domesticated in Eiffel 
through explicit renaming and redefinition. 

The problem of renaming arises because of multiple 
inheritance, which carries a serious risk of confusion if 
two parent classes happen to include features with 
identical names. Such name clashes are prohibited. 
They must be removed in the inheritance clause, using 
the rename construct, which will make inherited 
features available locally under a different name. In 
the above example, renaming is in fact applied for 
other purposes: making features from a parent class 
available in their original form even though they are 
redefined for the new class (see Create from arrays); 
or simply to using a locally more appropriate name 
(see max_s&e ). 

Another key property of inheritance is the ability to 
override a routine implementation in a descendant. At 
the STACK level, for example, since the 
representation is not known, routine changetop is 
implemented as a pop followed by a push. For fixed 
stacks, a more efficient implementation is possible; 
hence the new version of change top in class 
FIXED_STACK, which simply changes the value of 
an array element. For stacks of type FIXEDSTACK, 
this version will be used instead of the general 
STACK implementation. 

A special form of redefinition is the introduction of 
an actual definition for a routine which was deferred 
in an ancestor. Eiffel permits a routine to be 
implemented as an attribute: for example, 
nb..elements, which was a deferred function at the 
STACK level, is implemented as an attribute in 
FIXED_STACK. This possibility is important for 
information hiding: when a client requests the number 
of elements of a stack s through the notation 
s.nbelements, whether rib_elements is an attribute or 
a function (that is to say, stored or computed) is 
irrelevant for the ctionL 

The redefinition mechanism allows full 
polymorphism and dynamic binding. Polymorphism 
is the ability for an entity to refer at run-dine to 
objects of various types; for example, the following is 
permitted: 

s: STACK IX]; 
f: FIXED_STACK IX]; l: LINKEDSTACK IX]; 

; ; : ) )  ... . . . . .  : , := l 

in other words, a STACK entity may at ran-time refer 
to a FIXED_STACK or a LINKED_STACK object. 
Eiffel is, however, strictly typed: here, typing means 
that the type of the source (here FIXED__STACK or 
LINKEDSTACK) can only be a descendant class of 
the type of the target (STACK). The reverse 
assignment would not be permitted. The motivation is 
clear: a stack is a more general concept than a fixed 
stack; so a stack entity may be assigned a fixed stack 
value, but not conversely. 

Dynamic binding, in this context, means that if 
different descendants of a class provide alternative 
versions of a routine such as push, the version to be 
applied in a call of the form 

s.push 
depends on the run-time form of s.  This dynamic 
adaptation of operations to the form of the objects to 
which they apply is one of the keys to the modular, 
decentralized programming style permitted by object- 
oriented languages. Instead of one push routine which 
must know about every variety of stack in the world, 
we have autonomous variants of the STACK notion, 
each of which comes with its own version of push 
and other operations. The binding between the 
operation name and the appropriate variant is done 
only at run-time. (As we shall see below, the Eiffel 
implementation techniques achieve this result with 
very little run-time overhead.) 

The very power of the mechanisms for multiple 
inheritance, redefinition, polymorphism and dynamic 
binding implies risks to the consistency and 
correctness of programs. How do we make sure that a 
call to push does not trigger a completely different 
routine because of dynamic binding? Eiffel offers a 
series of safeguards: 

1 * As we have seen, polymorphism is limited by the 
type rules. As a result, a run-time type error may 
never occur: the type system is such that any 
incorrect routine application entity.routine is 
rejected by the compiler. In a correctly compiled 
program, routine is guaranteed to be defined for 
entity whenever the application is executed, even 
though entity may refer to instances of widely 
different classes. 

2 * Redefinition may not occur by accident: to 
override a routine from a parent class, the class 
author must list the routine in the redefine clause, 
as with change_top in FIXED_STACK. 
Inadvertanfly reusing an ancestor's routine name for 
a new routine will result in a compile-time error, 
not in unwanted redefinition. 

3 ,, Finally, the redefinition mechanism is controlled 
by assertions. The language rule is that a 
redefinition of a routine must obey its initial 
specification: the precondition may he kept or 
weakened, and the postcondition may be kept or 
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strengthened. Although in the absence of a built-in 
theorem prover this rule can only be enforced at 
run-time, it is a powerful methodological guideline. 

The last remark is worth some more explanations. 
Although assertions have been associated with 
programming languages before [9, 18], we have found 
their systematic use in conjunction with object- 
oriented techniques to bring a completely new 
perspective to program design. Underlying their use in 
Eiffel is the notion of programming as a contractual 
activity: assertions spell out the terms of the contract 
between a client and a supplier. Inheritance and 
dynamic binding, in this context, are subcontracting 
mechanisms; the above rules, governing adaptation of 
assertions in redefined routines, guarantee that the 
subcontractor does not violate the terms of the original 
contract. These ideas have been thoroughly applied to 
the design and validation of the components of the 
basic Eiffel library. They are explained in detail in the 
forthcoming book [15]. 

6 • The implementation 

The current implementation of Eiffel runs on 
various versions of Unix. It is based on translation 
from Eiffel to C, then C to machine code using the 
resident C compiler. It may potentially be ported to 
any environment including a C compiler and some 
basic operating system capabilities. 

Eiffel is in no way an extension of C; C is only 
used as a vehicle for implementation and has had no 
influence on the language design. Other compilation 
techniques would be possible, but the use of a portable 
assembly language such as C as intermediate code has 
obvious advantages for transferability of the 
implementation. 

We feel very strongly about the independence of 
Eiffel from C. The addition of some object-oriented 
concepts to a language stem which (independently of 
any value judgment on C) is not object-oriented by 
any reasonable definition can only result in 
inconsistent constructions, difficult to teach and to use. 
The complex hybrid scope system of C++ [5] is a case 
in point. In oar view, simplicity and consistency are 
princely qualities in the design o f ' a  programming 
language. 

Although Eiffel is not an extension of an existing 
language, this does not mean that Eiffel programmers 
are isolated from the rest of the world. To the 
contrary, the implementation is highly open. Eiffel 
classes are meant to be interfaced with code written in 
other languages. This concern is reflected in the 
language by the optional external clause which, in a 
routine declaration, lists external subprograms used by 
the routine. 

This mechanism makes it possible to use external 
routines without impacting the conceptual consistency 
of the Eiffel classes. In particular, the external 
routines are used by clients not directly but through 

Eiffel routines, which may include a precondition and 
postconditiou. 

A good external facility was essential in view of the 
design objectives listed in section 2: when you 
introduce an environment which claims to promote 
reusability, you can hardly tell prospective users to 
throw away all the software they have written so far. 

One application of the "external" construct is for 
using Eiffel as an integrating mechanism for 
components written in other languages. Eiffel is in fact 
a useful tool for combining software written in various 
languages, and as a tool for package writers who want 
to distribute their software in C form. 

Great care has been taken to provide efficient 
compilation and execution. In particular, the 
resolution of dynamic binding takes constant time: in 
entity.routine, the time to find the appropriate version 
of routine, which depends on the ran-time form of 
entity, is bounded by a small constant. In many 
object-oriented systems, the resolution implies a 
potentially costly ran-time search; the problem is 
particularly acute with multiple inheritance. 

Other features of the implementation are worth 
noting: 

* There is never any duplication of code (except in 
a rather rare and special occurrence, "repeated" 
inheritance with feature duplication, not described 
in this paper, where duplication of some features is 
conceptually necessary). 

o Memory management is handled by a run-time 
system that takes care of object creation and 
(system-conlroUed) de-allocation. 

* A systemwide optimizer deans up the generated 
code, removes all unneeded routines (a potentially 
serious problem for very large applications in an 
approach encouraging the reuse of powerful 
software components) and substitutes direct calls for 
routines that are never redefined (thus removing any 
dynamic binding overhead in this case). 

,, Compilation is performed on a class-by-class 
basis, so that large systems can be changed and 
extended incrementally. The translation time from 
Eiffel to C is typically about 50% of the time for 
the next step, translation from C to machine code. 

7 - The environment 

The construction of systems in Eiffel is supported 
by a set of development tools. 

Most important are the facilities for automatic 
configuration management integrated into the 
compilation commands. When a class C is compiled, 
the system automatically looks for all classes on 
which C depends directly or indirectly (as client or 
heir), and re-compiles those whose compiled versions 
have become obsolete. Unix programmers will 
recognize this facility as giving the power of Make 
without programmer-written makefiles. 
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This is far from being a trivial problem, as the 
dependency relations are complex (a class may be, 
say, a client of one of its descendants) and, in the case 
of the client relation, may involve cycles. The problem 
is made even more difficult by the presence of remote 
feature calls of the form a.b.cA .... We felt it 
essential, however, to find a solution, as this 
completely frees programmers from having to keep 
track of changed modules to maintain the consistency 
of their systems. Note that the algorithm used is able 
to avoid many unneeded recompilations by detecting 
that a modification made to a class has not impacted 
its interface; this has proved very important in 
practice, as it avoids triggering a chain reaction of re- 
compilations in a large system when the 
implementation of a feature is changed in a low-level 
class. 

Thanks to these facilities, the environment gives 
Eiffel programmers all the safety and run-time 
efficiency of a compiler-oriented system, while 
achieving a try-change-retry cycle time almost as short 
as in interpretive systems. 

The environment also contains debugging tools: 
tools for run-time checking of assertions; a tracer and 
symbolic debugger; and a viewer for visual, interactive 
exploration of the object structure at run-time. 

A documentation tool, short, produces a summary 
version of a class showing only its official 
information: the exported features only and, in the 
case of routines, only the header, precondition and 
posteondition. An option of short produces formated 
output in -troff -ms form for typesetting; for example, 
the following is the result of applying short to one of 
the above classes: 

class interface FIXED STACK [1] exported features 

maxsize, nb_elements, empty, full, top, push, pop, 
change_top, wipe out 

inherit 

STACK IT] 
redefine 

change_top; 
ARRAY [I] 

rename 
size as maxsize, 

feature specification 

Create (n: INTEGER) 
-- Allocate stack with maximum size n 

ensure 
m a x s i z e  = n 

nb elements: 1NTEGER 

full: BOOLEAN 
-- Is stack full? 

ensure 
Result = (nb_elements = max_size) 

top: T 
-- Last element pushed. 

require 
not empty 

push (x: 13 
-- Push x onto stack 

require 
not full 

ensure 
not empty; 
top = x; 
nb_elements = old nb_elements + 1 

pop 
-- Remove top element. 

require 
not empty 

e n s u r e  

not full; 
nb_elements := old nb_elements - 1 

change_top (x: T) 
-- Replace top element by x 

require 
not empty 

ensure 
not empty; 
top = x 
nb elements = old nb elements 

wipe_out 
-- Remove all elements. 

ensure 
empty 

invariant 

nb_elements >= O; 
nb elements < max_size 

end interface -- class FIXED_STACK 

The ability to automatically produce such high- 
quality documentation - concise, high-level (thanks to 
the assertions) and, most importantly, guaranteed to be 
consistent with the software being documented - has 
proved to be a key benefit of the Eiffel environment. 
Consistency is almost impossible to achieve if 
documentation, design and code are considered as 
separate products. 

The Eiffel library manual [8] is a/most entirely 
produced by short. 

A postprocessor performs various optional 
modifications on the generated C code: removal of 
unneeded routines, simplification of calls to non- 
potymorphic routines, packaging of the entire 
generating code as a library of routines callable from 
other programs. The Iast option is particularly 
interesting for software implementors who use Eiffel 
for the development of packages that will be delivered 
to their customers in standard C form, or who must do 
cross-development (program writing on one machine, 
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execution on another which does not necessarily 
support Eiffel,) 

Finally the environment includes a library of 
robust, efficient, carefully crafted basic classes, 
covering some of the most important data structure 
implementations, Use of this library is one of the 
elements that give Eiffel programming its distinctive 
flavor, enabling programmers to think and write in 
terms of lists, trees, stacks etc. rather than arrays, 
pointers, flags and the like. The library is being 
further refined so as to cover all the common patterns 
of everyday programming. 

8 - Status and further work 

Eiffel has been available internally within 
Interactive Software Engineering since the Spring of 
1986, and commercially since September of that year. 
The system has been ported to various versions of 
Unix, on such machines as Sun-2 and 3, Apollo 
workstations, Sumitomo Electric U-station, NCR 
Power 32, Perkin-Elmer, VAX, Ridge/Bull SPS 9, 
AT&T 3B2-3B5, Eunice, and others. Porting to 
VAX-VMS and other non-Unix environments is in 
progress. A number of systems have been installed in 
Europe, Japan and North America, both in industrial 
companies and in universities, and have been applied 
to the development of various applications. 

Based on this experience, we do not plan any 
significant changes to the language. However more 
work is being pursued in the area of support for 
concurrency and event-driven computation. Although 
some support for persistent objects is already offered 
by the present system, more advanced facilities are 
needed in this area. As regards the implementation, 
the tools for configuration management and 
documentation, which have proved invaluable in 
practice, must be complemented by "browsing" 
facilities to enable exploration and retrieval of existing 
classes and features, Some primitive exploration tools 
are available; rather than a Smalltalk-like browser, 
however, which we feel would not scale up to real 
reusability on an industrial basis, we are investigating 
the use of repositories of software components, 
organized around a data base management system. 
Finally, we would like to better integrate Eiffel with 
the formal specification method M [11], based on 
many of the same principles. This would give us a 
method covering most of the software lifecycle 
activities. 

9 - Conclusion 

A number of individual concepts embodied in Eiffel 
were present in previous languages, notably Simula 
67, Ada and Alphar& However the design has 
brought in many new contributions. 

From the language standpoint, one may quote the 
safe treatment of multiple inheritance through 
renaming, the combination between genericity and 
inheritance, disciplined polymorphism by explicit 
redefinition, the integration of the assertion/invariant 
mechanism with inheritance, a clean interface with 
external routines, and the introduction of full static 
typing into an object-oriented langnage with multiple 
inheritance. 

From the implementation standpoint, a number of 
our solutions are original: constant-time routine access, 
separate compilation with automatic configuration 
management in an object-oriented world, support for 
debugging and automatic interface documentation, 
support for the preparation of deliverable software 
packages. 

More generally, we believe quite frankly that Eiffel 
is the first full-scale effort enabling developers of 
practical software systems to take advantage of 
object-oriented techniques in a manner consistent with 
the newest concepts of software engineering. 

We first designed Eiffel for our own needs as 
software developers and, now that we have used it 
extensively for small and large developments alike, we 
wouldn't trade it for anything else. We hope that this 
article will have inoculated the reader with at least 
some of our enthusiasm, 
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