
Eiffel*: A Language and Environment for Software
Engineering

Bertrand Meyer
Interactive Software Engineering Inc., Goleta, California

The Eiffel language and environment address the prob
lem of building quality software in practical develop-
ment environments.

Two software quality factors were deemed essential
in the design of the language: reusability and reliability.
They led to the following choices: language features
that support the underlying bottom-up software design
methodology; modular structures based on the object-
oriented approach, with support for both generic param-
eters and multiple inheritance (including a new exten-
sion, repeated inheritance); automatic storage
management; highly dynamic execution model; support
for polymorphism and dynamic binding; fully static
typing; information hiding facilities; assertions and
invariants that may be monitored at run-time.

The Eiffel programming environment, using C as an
intermediate language, supports separate compilation
of classes and achieves a good run-time performance in
both space and time. The environment takes care of
automatically recompiling classes as needed after a
change, ensuring that only up-to-date versions of
classes are used, but avoiding unnecessary recompila-
tions. A set of tools is provided to support the develop-
ment of sizable software systems.

An important part of the environment is the library of
reusable classes. Significant extracts of this library are
given in the appendix to this article, providing a set of
model reusable software components, carefully de-
signed for robustness and extendibility.

PART 1: OVERVIEW OF THE LANGUAGE AND
ENVIRONMENT

1 PRESENTATION

1 .l Background

Eiffel was initially an internal development at Interactive
Software Engineering. The language was designed in

Address correspondence to Bertrand Meyer, Interactive Soft-
ware Engineering Inc., 270 Storke Road, Suite 7, Goleta, CA
93117.

* Eiffel is a trademark of Interactive Software Engineering Inc.

late 1985 as a tool that would enable us to develop soft-
ware engineering tools in accordance with our overall
goal of promoting software quality. Most of Interac-
tive’s software is indeed now being produced with the
Eiffel language and environment described in this
report.

The decision to design and implement a new language
is a far-reaching one, and it is legitimate to ask why I
should have undertaken such a development. Yet an
examination of available languages and environments
quickly showed that none was up to the standards of
modem software engineering that our products-soft-
ware engineering tools-were meant to enforce. I felt
that our own developments ought to observe these
standards. Eiffel is the result of this decision.

The implementation of Eiffel (see Section 8) has been
available since early 1986 for use within Interactive. The
decision was made in December 1986 to release it as a
commercial product, which is now installed at a number
of industrial and academic installations in North Amer-
ica, Canada, Europe, and the Far East.

The system currently runs on Unix and is in the
process of being ported to other environments, notably
VAX-VMS. Several significant software products have
already been implemented successfully using Eiffel and
the basic library sketched in the appendix; applications
developed at Interactive include the visual document
constructor CCpage [24], the general-purpose window
management system Winpack, and others.

Eiffel is not just a programming language. As a
language, it can be fruitfully applied to the crucial early
stages of software development: specification and
global design. (Some features of the language that help
in this respect are described in Section 4.10.) Beyond the
language aspects, Eiffel is also a method of software
design and as a programming environment:

. The method emphasizes system construction by
combination of reusable and extendible modules,
conceived as implementations of abstract data types; it
is a bottom-up method, encouraging software devel-

The Joumd of Systems and Sofhvare 8, 199-246 (1988)
0 1988 Elsevier Science Publishing Co., Inc.

199

0164-1212/88/$3.50

200 B. Meyer

opment by building on previous efforts rather than by
starting every new effort from scratch.
l The tools of the environment, described in Section
8, support automatic recompilation, documentation,
debugging, graphical design and documentation and
other important tasks.

The rest of the article’s main body reviews the
language, method, and environment; it will enable the
reader to understand the appendix, a set of programming
examples from the basic Eiffel library. Section 1.2 gives
an overview of the design criteria for Eiffel. Section 2
introduces some of the basic concepts of object-oriented
design. Section 3 describes the fundamental Eiffel
structure (the class). Section 4 presents the multiple and
repeated inheritance techniques that constitute the key to
reusable programming in Eiffel. The typing rules are
described in Section 5, and the use of assertions for
expressing correctness arguments are described in Sec-
tion 6. Section 8 surveys the practical aspects of Eiffel
usage and the supporting environment tools. Section 9
summarizes the main results, mentions some related
efforts, and describes ongoing developments.

The appendix is a library of basic Eiffel classes
defining a set of reusable software components. Al-
though this is just a collection of Eiffel texts that may at
first appear rather boring, it has been found to be
invaluable to Eiffel programmers-novices and experts
alike-and indeed I hope that it will prove to be the main
contribution of this article in the long term. Beyond their
use as models, the classes presented play a fundamental
role in practical Eiffel programming. A complete
documentation on the library is given in the library
manual [14].

Although this article does not constitute a complete
reference on Eiffel, the examples and discussions
introduce all the essential features. Thus, if you under-
stand the article, you may still have a few things to learn
to become a real Eiffel designer or programmer, but not
many.

Since this discussion will introduce a number of
powerful language constructs, it is important to mention
at the outset that Eiffel is by no means a complex
language. Its size, as measured by such a criterion as the
number of keywords (53), is only slightly higher than
that of Pascal, for much more power. This is a result of a
somewhat minimalist design. For example, there is no
case instruction and only one form of loop. At a recent
user group meeting, a speaker called the language
“spartan” [29]; I have no quarrel with this characteriza-
tion, although it may be more trendy to express the same
idea by presenting Eiffel as a RISC language.

Other references on Eiffel include a brief overview
[23], a study of the Eiffel approach to reusability [22]
and a comparative analysis of Ada-like generic&y with

Eiffel-like inheritance [26]. Detailed technical documen-
tation may be found in the user’s manual [151. A recent
book [27] surveys object-oriented design and program-
ming with special emphasis on the Eiffel approach.

1.2 Design Criteria

The design of Eiffel was guided by the following
concerns.

l The aim is to produce software, not to do research
on languages. Efficiency of the implementation was
thus an important criterion.
l Reliability of the software that we produce was
another fundamental aim, promoting such features as
strict type checking, use of assertions, support for
automatic configuration management, etc.
l Current program construction techniques too often
lead to reinventing the wheel over and over again.
Reusability of software should be a prime emphasis.
Software development methods and languages should
emphasize the reusability of software components as
one of their primary goals.
l Extendibility of the resulting software (the ease of
taking into account changes in specifications) is
another essential goal if one is to take a comprehen-
sive view of the software lifecycle.
l Modular language constructs should make it possi-
ble to construct and compile systems piecewise and to
place strict controls on the flow of information
between modules.
l A more technical requirement is the ability to create
dynamic data structures and to rely on support tools
for reclamation of unused space; placing the burden of
space reclamation on application programmers (in the
PL/I-Pascal-Modula 2 tradition) is a dangerous pol-
icy, the presence of which is unexplainable in any
language whose designers have expressed concern for
program reliability. (We shall see, however, that safe
programmer-controlled deallocation may be provided
in cases when automatic reclamation is too expen-
sive.)
l Finally, portability is also a serious concern.

Of course, a solution to these issues must also involve
elements that are not strictly technical. For example, the
availability of good documentation and component
libraries is essential to achieve reusability. However, in
the current state of software technology, technical
aspects such as languages are paramount.

As a picture of the language emerges in the descrip-
tions given below, it will become clear that Eiffel is an
original design, not an object-oriented extension of a
classical language such as C (cf. C + + [31], Objective-
C [8]), Pascal (cf. Object Pascal [32]), or Lisp (cf.

Eiffel 201

Loops [2], Flavors [7], Ceyx [131). The use of a well-
known language as stem has obvious advantages in
terms of initial user acceptability, but it is more
important to preserve coherence and integrity. The
addition of object-oriented primitives to languages that
(irrespective of their other qualities) are built on non-
object-oriented principles can only, in my opinion,
impair the consistency and simplicity of the result; yet
these qualities are among the key criteria in language
design [121.

Although it is not an extension of another language,
Eiffel is not, of course, unrelated to previous efforts.
The clearest conscious influences have been those of
Simula, Alphard, and Ada (the latter for the the syntax).
Also, it will be seen in Section 8 that the implementa-
tion of Eiffel is based on C, generates stand-alone C
packages on option and that Eiffel software may be
interfaced with software written in other languages.

2 OBJECT-ORIENTED DESIGN

The general approach to software construction that best
addresses the above quality factors is the method
pioneered by Simula 67 and known as object-oriented
design and programming.

2.1 Overview

There are several ways to describe object-oriented
design and programming, depending on the presenter’s
background [3, 4, 10, 201. Because Smalltalk [lo] has
been so largely publicized, many current views of
object-oriented programming emphasize two aspects:
the concept of messages for communicating information
between objects, and the very dynamic nature of the
Smalltalk environment, which defers bindings between
names and their denotations until run-time. This ap-
proach, strongly influenced by Lisp, offers much free-
dom to programmers, and it is useful for such applica-
tion areas as artificial intelligence or rapid prototyping.

My interest in object-oriented languages comes from a
more traditional software engineering perspective. I
view these languages as providing key techniques for
ensuring reusability, extendibility, and compatibility.
However, in a software engineering context these
qualities must be balanced with other criteria mentioned
above, such as reliability, efficiency of the generated
code, and portability. Thus, static type checking, for
example, is an essential concern. In Eiffel, static typing
is combined with a powerful type system, based on
inheritance, and reconciled with dynamic binding.

My view was much influenced by Simula; I was
particularly fortunate in having for many years access to
an excellent compiler for that language, developed for

IBM/MVS systems by the Norwegian Computer Center.
This experience (summarized in a 1979 survey article
[20]) convinced me that object-oriented programming
was the right approach to produce extendible and
reusable software. Eiffel improves (I hope) on the
Simula concepts, but it is proper to mention my debt
here.

2.2 Modularizing for Extendibility

In this discussion, object-oriented design is viewed as a
system modularization method, relying on the idea
that the structure of any software system should best be
patterned, at the highest level, on the objects manipu-
lated by the system, rather than on the system’s function.

Arguments for this approach to software construction
may be found in the references cited above; an analysis
of its contribution to software reusability was given in
[22]. Without repeating these discussions, it is useful to
elaborate on another of the key criteria that justify this
method: extendibility.

Observation of durable programs shows that the
precise tasks performed by systems vary dramatically
over their life cycle. If you take a program at a certain
point of its evolution, you may well be able to describe
its function as some input-to-output transformation: each
run processes a batch of data and produces the corres-
ponding results. But as the program is used and adapted,
it will often evolve into a system that keeps some
information between successive runs, and it may end up
as an interactive system accessing a comprehensive data
base, with finer-grain inputs and outputs for each
individual transaction.

If they are studied from the standpoint of the tasks
they perform, the initial and final versions may be very
different. To realize that they are versions of the same
program, you must look closer and consider the objects
handled by the system. If they are viewed from a
sufficiently high level of abstraction, these objects will
in most cases turn out to be the same in both versions.
For example, a payroll processing program, regardless
of its precise functions, will act on data representing
entities such as employees, company regulations, work-
load information, etc.; or a plant monitoring system will
act on data representing sensors, devices, materials, and
the like. In both cases, the system’s identity is better
characterized in the long term by these objects than by
the more fluctuating functions that are applied to them.

2.3 Seven Steps Towards Object-Oriented
Happiness

Based on the preceding remarks, the basic motto of
object-oriented design may be formulated as follows:

B. Meyer

Principle 1 (object-oriented modular structure): Ask not
what the system does: ask what it does it to.

To get object-oriented design in its full sense,
however, further steps must be taken. The next step
takes into account the remark made above that object
descriptions should be abstract enough; indeed, basing
the structure of systems on the physical structure of data
would produce rather disastrous results with respect to
extendibility. A study of software maintenance costs by
Lientz and Swanson [173 shows that, out of the more
than 50% of software costs devoted to maintenance,
about 17.5% arise from the need to account for changes
in physical data formats. Thus, one would be ill-advised
to hard-wire physical data representations into the
physical structure of programs.

The answer lies in data abstraction. The theory of
abstract data types provides a way to describe classes of
objects by their external features rather than by their
physical representations. The features in question are the
operations applicable to objects of the class and the
abstract prbperties of these operations. Note that these
operations are what was called the “functions” above.

The complemen~rity between functions and objects is
an unescapable fact of programming; object-oriented
design does not contradict it, but introduces a dissymme-
try by using objects, not functions, to structure software
systems at the highest levels. With abstract data types,
however, functions reappear as the way objects (or
rather object classes) are characterized, so the loop is
closed. The essential difference with classical techniques
(based on procedural decomposition) is that functions
are attached to data structures rather than the reverse.

The second step of obj~t-orient~ness is reached,
then, through the application of the following principle:

Principie 2 (da@ a~stractjo~~~ Objects should be de-
scribed as implementations of abstract data types.

Most current progr~ing languages make it possi-
ble to reach this level, i.e., to say to design modules that
encapsulate the implementation of one or more abstract
data types. Ada [l], CLU [18], and Modula-2 1341 are
obvious examples of such languages. Even Fortran may
be used for this purpose by writing subroutines with
more than one entry (corresponding to the various
operations on an abstract data type); however, what is
provided in the Fortran case is the implemen~tion of a
fixed number of abstract objects, rather than of an
abstract data type. In languages such as Pascal, Cobol,
or Basic, on the other hand, it is not possible to devote a
module to the implementation of an abstract data type or
abstract data object.

The third step is of a less conceptual nature. It reflects
an important implementation concern: how to manage
space for objects. If programmers are to freely use

dynamically created objects, they should not have to
take care of where cells are found for newly created
objects and, even more importantly, how cells are
reclaimed when their objects are no longer needed.
Although this is in a strict sense a property of implemen-
tations rather than languages, the language design may
help or hinder the implementation of a garbage collector.
Pascal and Modula-2 systems do not normally include
garbage collection; the Ada standard [l] defines it as an
optional feature.

On the other hand, all Lisp systems provide garbage
collection, which is part of the reason why Lisp has
often been used to implement object-orien~d languages
and has itself been subjected to object-oriented exten-
sions.

Principle 3 (automatic memory management): It should
be possible to let the underlying language system take care
of automatically reclaiming unaccessible memory ele-
ments.

Automatic garbage collection is sometimes viewed
with suspicion because of its effect on performance. As
described in Section 8.8, this problem is addressed in
Eiffel by using an incremental garbage collector imple-
mented as a co-routine; also, the collector may be
disabled when it is not needed.

The next step truly distinguishes object-oriented
languages from the rest of the flock. It may be
understood by looking at languages that are not object-
oriented even though they provide facilities for data
abstraction and encaps~ation, such as Ada or Modula-2.
In such languages, the module (package in Ada) is
essentially a syntactic construct, used to group logically
related program elements; but it is not itself a meaning-
ful program element, such as a type, a variable, or a
procedure, with its own semantic deno~tion. In con-
trast, the approach pioneered by the designers of Simula
views modules as first-class citizens; more precisely, it
all but identifies the notion of module with the notion of
type. We may say that the defining equation of such
languages is the identity ~oduie = type.

This fusion of two apparently distinct notions is what
gives object-oriented design its distinctive flavor, so
disconcerting to programmers used to more classical
approaches. In its dogmatism, it has some drawbacks.
But it also gives considerable conceptual integrity to the
general approach.

Principle 4 ~c~~es~: Every nonbasic type is a module, and
every high-level module is a type.

A language construct combining the module and type
aspects is called a glass.

The qualifier “nonbasic” keeps open the possibility
of having simple types (such as INTEGER etc.) that are

Eiffel 203

not viewed as modules, and the word “high-level”
makes it possible to have program structuring units such
as procedures, which are not types.

The next step is a natural consequence of Principle 4.
If we identify types with modules, then it is tempting to
identify the reusability mechanisms provided by both
concepts: on the one hand, the possibility for a module
to directly rely on entities defined in another (provided
in modular languages by such visibility mechanisms as
the Ada “use” clause); on the other hand, the concept of
subtype or derived type, whereby a new type may be
defined by adding new properties to an existing type. In
object-oriented languages, this is known as the inheri-
tance mechanism, with which a new class may be
declared as an extension or restriction of a previously
defined one. Its realization in Eiffel is described in
section 4.

Principle 5 (inheritance): A class may be defined as an
extension or restriction of another.

We shall say in such a case that the new class is heir to
the other.

The above techniques open the possibility of an
advanced form of polymorphism, in which a given
program entity may at run time refer to objects
belonging to any of a set of different classes, all of which
offer an operation with the same external specification
but different implementations. The application of an
operation to the entity will result in the appropriate
implementation being selected, depending on the partic-
ular object associated with the entity at the time the
operation is executed. For example, an entity represent-
ing a device might become associated at run-time with
either a tape or a disk; the operation “read” applied to
the entity will be carried out differently in each case.

Principle 6 (polymorphism): Program entities should be
permitted to refer to objects of more than one class, and
operations should be permitted to have different realiza-
tions in different classes.

This principle is implemented in different ways
according to the philosophy underlying existing lan-
guages. In the design of Smalltalk, it is satisfied almost
automatically because of the dynamic binding policy:
Entities have no static types, so that they may at run-time
refer to objects of any class; when an operation is
requested on an entity, its dynamic state determines what
realization, if any, is available for the operation.

In contrast, every Eiffel entity has a static type that
(except for basic entities such as integers or booleans) is
defined by a class; the dynamic types it may take are
restricted to the descendants of that class (that is to say,
the class itself and its direct and indirect heirs). The
above principle is implemented in Eiffel by permitting

the redefinition of a class operation in a descendant and
by having deferred operations whose implementation is
only given in the descendants.

The next and last step extends the notion of inheri-
tance to enable reusing more than one context. This is
the notion of multiple inheritance, developed in Section
4 below. Eiffel adds to this notion the concept of
repeated inheritance (reusing the same structure more
than once); see 4.7 below.

Principle 7 (multiple and repeated inheritance): It should
be possible to declare a class as heir to more than one class,
and more than once to the same class.

The seven above principles have alternated between
high-level, design-related concepts and programming
language features. One particularly interesting benefit of
the object-oriented approach is indeed that the same
language may be used for design and implementation.
Some language traits, such as deferred features (4.10)
and assertions (6), are especially useful for the applica-
tion of Eiffel to system design.

2.4 Eiffel Versus Other Object-Oriented
Languages

It was mentioned in the introduction that no existing
language was deemed acceptable for our purposes. As
we are about to explore Eiffel in some detail, it is useful
to explain this claim by previewing the combination of
facilities that is unique to Eiffel and its implementation:

l Multiple and repeated inheritance. Commercially
available object-oriented languages, with the excep-
tion of AI-oriented languages such as LOOPS and
Flavors and recent versions of Smalltalk, support
single inheritance only, and no language we know of
supports repeated inheritance.
l The renaming techniques (apparently unique to
Eiffel) that are needed for a safe treatment of multiple
inheritance.
l Generically parameterized classes, necessary to
obtain truly flexible software components in the
presence of type checking. (The only other object-
oriented language supporting generic@ appears to be
Trellis-Owl [30], an internal DEC development.)
l Static type checking (not present in other languages
with the exception of Object Pascal, Trellis-Owl, and,
in a limited form in C + +).
l Primitives for systematic program construction (not
available in other object-oriented languages), consist-
ent with the inheritance mechanism.
l Automatic configuration management within the
context of object-oriented programming.
l Constant-time routine binding.

B. Meyer 204

. Incremental garbage collection.

. Class documentation facilities.

3 BASIC EIFFEL CONCEPTS

The basic elements of Eiffel programming will now be
introduced: run-time model, objects, classes, and export
controls.

3.1 Run-Time Model

The execution of Eiffel systems (a term that is preferred
to “programs” for this language) relies on a dynamic
execution model. The execution of a system may be
characterized at every instant by the presence of a
certain number of objects, each of which possesses
some attributes. Attributes are either simple values
(integers, booleans, reals, or characters) or references
to objects. Figure 1 gives a pictorial view of such a
collection of objects and their attributes.

3.2 Routines

Operations, or routines, may be applied to objects.
Routines are divided into procedures and functions.

You may think of procedures as commands and
functions as queries: A procedure may change the state
of the associated object but does not return a value,
whereas a function returns a value without normally
modifying the object. A related analogy would be to see
the objects as having action buttons, the procedures, and
display indicators, the functions. The features associ-
ated with an object comprise its attributes and the
routines that are applicable to it.

The execution of an Eiffel system is started by
creating an object and calling one of its procedures;
executing this procedure will usually trigger the creation
of other objects and more routine calls.

3.3 Classes and System Structure

Every object that may be created during the execution of
an Eiffel system is an instance of a class. An Eiffel
system is an assembly of classes.

A class describes a set of potential objects (the
instances of the class) through the features (attributes
and routines) that are applicable to all of these objects.

In other words, a class describes the i~plement&tion
of an abstract dats type.

As implied by the above principles, classes are not

Figure 1. Objects.

Eiffel

only types but also modules. In fact, they constitute the
only system structuring facility.

3.4 Entities

An Eiffel system contains entities, which may take
values at run-time. Although close to the usual notion of
variable, the notion of entity is more general since it
includes not only local variables of routines (including
the predefined variable Result denoting the result to be
returned by a function), but also references to object
attributes and routine arguments.

Eiffel is a strongly typed language: every entity is
declared with a single static type. Four types, called
“simple,” are predefined: BOOLEAN, CHARAC-
TER, INTEGER, and REAL. Any other type is
defined by a class.

3.5 States of an Entity

Let x be an entity and C its type, assumed to be a class
type. At any point during system execution, x may or
‘may not be associated with an object. If it is, we say that
x is “created,” if not, that it is “void. ” The boolean
expression x. Void has value true in the latter case only.

Instruction x.Create puts the entity x in the created
state by creating a new object of type C and associating
it with x; note that this must be done explicitly as all
entities are initially void (initialization rules will be seen
below).

Conversely, x.Forget plus x in the void state. It must
be emphasized that x. Forget does not by itself deallocate
the object associated with x, which would be a violation
of principle 3 above; this instruction merely suppresses
the relationship between the entity x and the object

205

associated with it, making this object a candidate for
automatic space reclamation if there was no other
associated entity.

Figure 2 shows the two states, the transitions between
them, and the allowable operations in each. As the figure
shows, there are other ways to alternate between states,
for example by assignment (see below).

Void, Create, and Forget are predefined features
applicable to all classes. The language includes another
predefined feature: x.Clone (y) creates a new copy of
the object referenced by y and assigns to x a reference to
the new object.

3.6 Initialization

Every entity has an initial value. The initialization rules
are part of the language definition: they are not
implementation-dependent.

By default, numbers will initially be 0, booleans will
be false, characters will be null, and object references
will be void.

If a different initialization is desired for the attributes
of objects of a class C, a procedure called Create, with
or without arguments, may be defined for that class; it
will then be applied to every object of the class upon
creation. This is what is done in section A.2 for the
ARRA Y class, for which a version of Create is defined
in such a way that a.Create (min, max) will associate
with a a newly allocated array with bounds min and
max.

3.7 Feature Declarations

A class declaration introduces a set of features associ-
ated with objects of the class: attributes and routines, the
latter comprising procedures and functions.

Figure 2. States of a reference, permissible
operations, and transitions.

Allowable operations:
aForget

or o .= o’where o’ia void

B. Meyer

Routines may have arguments. The arguments of a
routine, whether a procedure or a function, are protected
in its body: The routine may not include an assignment
to one of its formal arguments. However the attributes of
the object associated with a argument may be modified
in the procedure.

3.8 Expressions and Instructions

The construct expressing the application of feature f
to the object associated with entity x, called a remote
feature application, uses a dot notation. If f is an
attribute or a routine without arguments, the notation is

x.f

If f is a routine with arguments, actual arguments must
be provided:

Either form of remote feature application is only valid

if x is declared of a class type for which f is a valid
feature. Syntactically, the remote application is an
instruction if f is a procedure, or an expression if f is a
function or an attribute.

Assignment is written with the standard : = operator.
For class types, the semantics of assignment is by
reference, not copy: Entities of class types represent
references to objects, not the objects themselves. Thus,
for entities of class types the assignment x : = y results
in x and y being references to the same object (or x being
void if y was void before the assignment).

Control structures include the loop, the conditional,
and sequencing, represented by the semicolon.

3.9 A Simple Class

The example below shows the basic structure of a class.
It introduces an elementary notion of “point” that could
be used (with suitable extensions) in a graphics system.

Any part of a line beginning with two consecutive
dashes -- is a comment.

class POINT export
x, y, translate, scale, distance

feature
x, y: REAL ;
scale (factor: REAL) is

__ Scale by a ratio of factor.
do

x : = factor*x ;
y : = factor* y

end ; -- scale
translate (a, b: REAL) is

-- Translate by a horizontally, b vertically.
do

x:= x+a *
y := y+b’

end ; -- translate
distance (other: POINT): REAL is

__ Distance from current point to other.
require

not other. Void
do

Result : = sqrt ((x - other.x)^2 + (y - other.yj2)
end -- distance

end -- class POINT

The features of this class comprise two attributes, x possess “secrets.” Public features may be used by
and y, and three routines: two procedures, translate and clients of the class, i.e., to say classes that include one
scale, and one function, distance. or more entity declarations of the form

The export clause says which features are public. p: POINT
Here all features are public, but in general classes will and may thus execute operations such as

Eiffel 207

p. Create ;
p. translate (3.5, 2.2) ;
r:= p.x

-- Allocate POINT object and associate it with p
-- Translation
-- Get abscissa of x

In client classes, public attributes (here x and y) are
accessible in read-only mode: An assignment such as
p.x := . . . is not permitted; the corresponding effect
may only be obtained in a client class by calling a public
procedure that will modify the attributes itself, such as
translate in the POINT example.

It is also possible to export a featurefto a selected set
of classes C,, Cz, only, by listing it as f{ Ci, Cz,
. . . . } in the export clause.

The text of an Eiffel class always refers to a current
instance of the class. Most of the time this current
instance is anonymous; in a class (like POINT), a
feature name (like x) that appears unqualified (i.e., just
x, not p.x for some p of type POINT) denotes the
corresponding feature of the current instance. If you
need to refer explicitly to the current instance, the
predefined entity name Current is available. Thus you
may consider a name such as x, appearing unqualified in
class POINT, as a synonym for Current.x.

The special variable Result is used in functions: As
shown by the example of distance, it denotes the result
to be returned by the function in which it appears. It is
considered as implicitly declared of the appropriate type
(REAL in the case of function distance).

3.10 Generic Parameters

The basic class structure presented so far is made more
flexible by the provision for genericity. A class may
have one or more generic parameters that represent
types. For example, Section A.6 introduces a class
representing linked lists of objects of an arbitrary type
T; its declaration begins with:

class LINKED-LIST [Tj export.. . .

The presence of T as generic parameter allows the
class to contain declarations of entities of type T. A
client of the class will then declare entities of type

class C export
. . .

inherit

PI

LINKED- LIST [INTEGER 1, LINKED- LIST
[POINT], etc.

Genericity is particularly important in connection with
static type checking. Without this facility, it would be
impossible to define data structures such as LZNKED-
LIST whose constituents are statically guaranteed to be
all of the same type (INTEGER, or POINT, etc.).

The “horizontal” form of extendibility, as provided
by generic parameters, is a useful complement to the
more powerful “vertical” extendibility features offered
by inheritance and described below.

The power of such a combination is evidenced by the
examples of the appendix. A more detailed comparative
analysis of genericity and inheritance and a rationale for
the particular blend achieved in Eiffel may be found in
another article [26].

4 INHERITANCE: TREES ARE LISTS AND LIST
ELEMENTS

4.1 Definition

Inheritance is a key technique for reusability.
When a new class is declared as heir to a previously

defined one, it posseses by birth all the features of that
parent class and their associated formal properties. The
inherited features are not redeclared in the new class, but
new features may be added. Both the inherited features
and the new ones become an integral part of the class and
may be transmitted to further classes defined by inheri-
tance .

This mechanism has a significant influence on the
process of software design, as it allows software to be
constructed through progressive accumulation of fea-
tures rather than in a single setting. New features
acquired in this process are passed along to descendants.

Syntactically, inheritance is described through the
inherit clause in class declarations, as follows:

. . . Possible “rename” and/or “redefine” sub-clause (see 4.6-4.9 below)... ;
PZ

. . . Possible rename and/or redefine.. ;

. . . Other parents . . .
feature

. . . . Declaration of specific features of C . . .
end -- class C

B. Meyer

As the syntax shows, inheritance as offered by Eiffel
is multiple: a class may inherit from as many classes as
needed. The only constraint is that the inheritance graph
should be acyclic.

We rely on the following terminology, some of which
has already been used above. An heir of a class P is a
class C that lists P in its inherit clause. The descendants
of a class P are P itself and the descendants of its heirs.
The reverse notions are parent and ancestor.

4.2 An Example

The following example shows the power of multiple
inheritance. Perhaps, if the reader remembers just one
idea from this article, it should be this: a tree is a list
and a list element. Let’s explain.

The classes of the appendix describe lists of various
brands. One of these classes has already been men-
tioned: LINKED-LIST [T] (Section A.6), describing
one-way linked lists of elements; it itself inherits some
of its properties from a more general class, LIST [T]
(Section A.3), which introduces properties of arbitrary
lists without commitment to a particular representation.
As may be expected, the features declared in class
LINKED-LIST include routines for inserting ele-
ments at various places into a list, removing elements,
accessing elements, etc.

To manipulate linked lists of elements of type T, you
need a data structure for the individual components of a
linked list; such components are cells consisting of two
fields, a value of type T and a reference to another cell.
Let’s use the word “linkable” to refer to such cells.
Their description is given in class LINKABLE [T]
(Section A.5). Among the features of “linkables” are
two attributes: value, of type T, and right, of type
LINKABLE [T] . ’

Now assume you need to define the notion of tree, as
implemented in linked representation. You may cer-
tainly start from scratch; programming tradition, as well
as fifteen years of propaganda for top-down design,
indeed encourage you to do so. But the eventual result is
assured to look very much, at least in part, like what was
obtained for lists: insertions, deletions, access to sub-
trees, etc. The main difference is that here these
operations apply to subtrees rather than list elements.

But from this last remark comes the light: A tree is
indeed a list (since it is made of a number of subtrees),
and also a list element (since it may be used as subtree
for another tree). Hence the solution described in

’ Feature right is actually declared of type like Current for reasons
explained in 5.2.

Section A.8, whereby trees inherit from both lists and
list elements:

class TREE [T] export.. . inherit
LINKED-LIST [T];
LINKABLE [T]
feature . . .

Of course, this is not quite enough: you must add the
specific features of trees, and the little mutual compro-
mises that, as in any marriage, are necessary to ensure
that life together is harmonious and prolific. But it is
significant that the new data structure may essentially be
engendered as the legitimate fruit of the union between
lists and list elements.

This process is exactly that used in mathematics to
combine theories: a topological vector space, for
example, is a vector space that also is a topological
space; here too, some connecting axioms need to be
added to finish up the merger.

Multiple inheritance is a fundamental tool in our daily
practice of Eiffel. Many classes have four or five
parents. The following four examples of double inheri-
tance are typical:

l Our windowing system uses a class WIND0 W.
Windows have graphical features: A height, a width,
a position, etc., with associated routines to scale
windows, move them and so on. Our system permits
windows to be nested, so that a window also has
hierarchical features: subwindows, a parent window,
routines to add a subwindow, delete a subwindow,
attach to another parent and so on. Rather than writing
a complex class that would contain specific implemen-
tations for all of these features, it is much preferable
to inherit all hierarchical features from the above
TREE class, and all graphical features from a
RECTANGLE class.
l In the basic library, class FIXED-LIST [T]
(Section A.4) describes lists with a fixed number of
elements, implemented using arrays. It is simply
defined as heir to both LIST [T] (general lists,
without commitment as to a specific representation)
and ARRAY [T] (arrays). We call this form of
multiple inheritance the “marriage of convenience”:
One parent brings the functionality, the other brings
the implementation.
l Another class of the basic library, TEST, defines
an environment for software testing. To test a class X,
one may define a new class, say X- TEST, as heir to
X and TEST, gaining access to primitives from both
classes. Without multiple inheritance, this would be
impossible, as X-TEST would have to choose

between inheriting from test and from X’s own
ancestor.
l A basic problem in programming with complex
data structure is how to store such structures in long-
term memory (files). In object-oriented program-
ming, this is the problem of persistent objects. In the
Eiffel environment, a class STORABLE is defined,
with routines store and retrieve; a whole data
structure may be stored and retrieved using these
routines if the root of the structure is an object whose
type is a descendant of STORABLE.
Figure 3 gives the structure of the inheritance graph

for the classes in the Appendix. Arrows show the
inheritance relation.

4.3 Inheritance and Reusability

Why are inheritance techniques so crucial for the
production of reusable software? One of the reasons for
their superiority is that they make it possible to write
software modules that are both open and usable as they
stand, whereas these two aims are contradictory with
classical methods.

Consider the typical language structure used to
support these methods, the data types with “variant
parts” as offered by Pascal and Ada. Such constructs do
make it possible to write software elements that may

exist in several versions; but as soon as you need to
actually use such an element (by compiling it if it is a
program element), the list of possible variants must be
frozen; any later addition of new variants will imply that
existing software elements, which relied on the initial
version, have to be modified.

Similarly, any change in the list of formal arguments
to a routine, in the set of generic parameters to an Ada
package, or in the repertoire of operations available on
an abstract data type, will result in tricky problems of
software configuration.

In contrast, multiple inheritance makes it possible to
use a class-to store it, to compile it, to execute its
routines, etc.-and at the same time to leave open the
possibility that the class will eventually be used as parent
for an unlimited number of descendants, corresponding
to all the cases that you did not envision initially. This
may be stated as the principle of openness: Any
software element, even if it is in a directly usable form,
should remain amenable to future extensions.

A further example of the application of this principle
to Eiffel is the fact that the language does not include an
instruction (such as the inspect.. . when.. . instruction of
Simula 67) to discriminate between the various heirs of a
class. Were such an instruction to exist in Eiffel, class
LIST, for example, could contain an instruction that
chooses between several actions depending on whether

Figure 3. Inheritance graph for the examples.

B. Meyer 210

the current list is a FIXED-LIST, a LINKED-LIST
etc. But this would mean that LIST, as part of the
knowledge it embodies, has information on the set of its
possible heirs: thus it would no longer be open for
designing new heirs without modification. To achieve
the effect of inspect in Eiffel, you may use such
mechanisms as deferred and redefined features (pre-
sented below), which preserve openness.

4.4 Inheritance and Export Controls

The Eiffel inheritance mechanism is orthogonal to the
information hiding mechanism provided by export con-
trols. Notwi~s~n~ng its export clause, a class will
bequeath all its features to its descendants-the family
secrets as well as the public facade. To reject part of this
heritage, specific torques must be used, such as
feature renaming and redefinition, seen below; the
export restrictions apply to clients of the class (see
Section 3.9 above), not to its descendants. It is even
possible for a class to export a feature inherited from
another class in which that feature was secret.

I have found the orthogonality between the export and
inheritance mechanisms to be a shock to some people,
but a moment’s reflection should convince the reader
that this is indeed a correct decision.

The following example shows a case in which a
feature that is secret in a class needs to be reexported in a
descendant. Consider again the relationship between
linked lists and trees. The notion of LINmBLE cell
should be of no concern to clients of the class
LINKED-LIST [T], which only need to deal with
lists, of type LINKED-LIST [T], and values of list
elements, of type T. Internally, class LINKED-LIST
uses a feature called active, which represents the cell at
the current cursor position. (A list has an associated
cursor, which points to the currently active position; this
is discussed in A.3.) Feature active, of type LINKA-
BLE [T] , it naturally secret; it is used for the implemen-
tation of exported features such as value (the value of the
element at cursor position), insert-right (insert a new
cell of given value at the right of cursor position) etc.
The list cells themselves are none of the clients’
business.

For trees, however, the picture changes. As we saw,
trees are lists and list elements; the notion of cursor
position transposes to that of a currently active child of a
tree node. Here the child node itself is needed, not just
its T value as returned by feature value; to perform tree
traversal operations, you must be able to go from parent
to child, both considered as tree nodes. Feature active is
thus exported in class TREE [T], even though it is

inherited from a class where it was secret. (The
ren~ng m~hanism, described below, enables class
TREE to refer to this feature under the name child,
more appropriate for the occasion.)

Restricting descendants’ access to any of the features
defined in a class would be a direct violation of the
openness of classes, which has been presented above as
a fundamental aspect of inheritance. Long after a class
has been written, a software developer may reuse it
through inheritance, with any extensions and adaptations
that are needed for a new application. The power of
i~eri~nce comes from the ~ssibili~ of mooing
these extensions and adaptations without impacting the
original class or any of the other software elements that
depended on it. This means that the original designer has
no way of knowing what new uses will later be found for
the class. Accordingly, the designer does not know
which features a descendant may need to export and
which it will need to hide.

To understand the relationship between inheritance
and export controls, you may note that the two main
reusability mechanisms of Eiffel are complementary:
When class A is a client of class B, A only uses B’s
specification; on the other hand, by inheriting from B, A
may directly rely on B’s implemen~tion, and informa-
tion hiding does not apply to it. These two ways of
reusing existing a software component-through its
interface and through its implemen~tion-are equally
important in practice; care should be exercized to
determine which one is appropriate in any given case.

4.5 Types of Entities and Objects

The inheritance relation may be viewed as an “is-a”
relation [6], in the sense that a window “is-a” rectangle
and also “is-a” tree, From this remark comes the rule
that a language entity declared of a certain class type,
say C, may at run-time refer to an object of any
descendant type of C. For example, an entity declared

I: LIST [INTEGER]

may refer to a two-way list or to a tree of integers. The
reverse, however, is not true.

If we call the type with which an entity is declared its
“static” type and the type of the object to which the
entity (if not void) refers at some point during system
execution its “dynamic” type, the rule is that the
dynamic type must be one of the descendants of the static
type (which include the static type itself). Whenever we
talk about the type of an entity, without further
qualification, we always mean its static type.

Eiffel 211

4.6 Renaming

The availability of multiple inheritance raises the prob-
lem of name clashes: What happens when two or more
parent classes have a feature with the same name?

The basic rule is simple. Within a class, there may be
no name conflict (overloading): Any unqualified name
must denote one and only one feature. This is essential
for read
ability and safety. (In contrast, languages such as Loops
resolve conflicts on the basis of the order in which
parents are listed, a rather unsafe convention.)

Of course, it is inevitable that classes developed
separately will include features with the same names; but
it should still be possible to combine such classes
through multiple inheritance. Renaming solves the
dilemma by allowing the heir, at the point of inheritance,
to resolve any name conflict by renaming selected
features of the parent classes. The inherit clause will
appear as:

class C export inherit
A

rename ml as nl, m2 as 4,
B

feature

rename pI as ql, p2 as q2,
.

Within the rest of class C, the renamed features will be
known by their new names (nl, n2, ql, q2, . . . etc.).

The ban on overloading applies to the set of names
that are visible in the class after renaming has been
applied and may be expressed as the following renaming
principle:

If two parents of a class possess identically named features,
the inheritance clause of the class must remove any name
conflicts through renaming.

Renaming also has another important application: to
enhance clarity by providing more appropriate feature
names in a descendant. For example:

l Class WIND0 W inherits routine add-child from
TREE, but renames it add-subwindow to provide
consistent “window” terminology to its clients. The
writer of, say, a text editor (say) needs a good window
abstraction but has no business knowing that this
abstraction was implemented by inheriting from a
particular set of parents.
l The boolean function which tests whether a list is
empty is called empty for lists in the strict sense
(Sections A.4-A.7) and renamed is-leaf for trees

(section A.8) to conform to usual tree terminology.
Saying that a tree node is a leaf is the same as saying
that, viewed as the list of its subtrees, it is empty.

4.7 Repeated Inheritance

An interesting consequence of the renaming policy is an
Eiffel concept that extends multiple inheritance: re-
peated inheritance.

Repeated inheritance occurs whenever a class inherits
more than once from a given ancestor. The ancestor may
be a parent, or it may be a more remoteancestor (see
Fig. 4). Below is an example of the second case (indirect
repeated inheritance), which occurs whenever a class
has two parents with a common ancestor (see part (b) of
the figure).

Assume for example a class TAXPAYER with
attributes such as

age: INTEGER;
address: S TRING;2
bank-account: ACCOUNT;
taxpayer_ id: INTEGER;

and routines such as

birthday is do age : = age + I end;
pay- taxes is ;
deposit- to-account (sum: INTEGER) is ;

etc.
An heir of TAXPAYER, taking into account the

specific characteristics of U.S. tax rules, may be US-
TAXPA YER. Another may be FRENCH- TAX-
PAYER (with reference to places where taxes are
payed, not citizenship).

Now we may want to consider people who pay taxes
in both France and the United States, perhaps because
they reside in each country for some part of the year.
The natural way to express this is to use multiple
inheritance: class FRENCH- US- TAXPA YER will
be declared as heir to both US- TAXPAYER and
FRENCH- TAXPAYER . This is the scheme of
Figure 4 (b).

What happens with the features that are inherited
twice from the common ancestor TAXPA YER such as
address, age, taxpayer-id, etc.? Applied strictly, the
renaming principle of in the previous section would
force the programmer to rename these features in the
new class.

But the principle does not seem justified here, as there

2 Strings in Eiffel are instances of a predefined library class
STRING.

212 B. Meyer

A

:1 I

0

B

D

-I

B

?I3

c

/f

A

(a) (b)

is no real name clash: The apparently conflicting
features are in fact the same feature, coming from the
common ancestor TAXPAYER. The two versions of
age, for example, are really the same (unless you are
trying to hide something, you should declare the same
age to both the U.S. and French treasuries). On the other
hand, the taxpuyer_id attributes inherited from both
parents should remain distinct. This will be achieved
simply by renaming them at the inheritance point, as
us.__ tmpuyer-id and french-taxpuyer-id.

The Eiffel convention for repeated i~e~~~e follows
from this discussion:

In repeated inheritance, any feature from the common

Figure 4. Repeated inheritance-direct (a) or indirect (b).

parent is considered shared if it has not been renamed along
any of the inheritance paths. Any feature that has been
renamed at least once along any of the inheritance paths is
considered replicated.

This rule applies to attributes as well as routines; a
consequence is that it is a compile-time error for the
body of a nonrenamed routine (which would thus be
shared) to contain references to one or more renamed
attributes or routines (which would be duplicated,
leaving the meaning of the shared routine ambiguous).

This rule yields the desired flexibility in combining
classes. For example the inherit clause of class
FRENCH_ US_ TAXPA YER might look like:

inherit
FRENCH_ TAXPA YER

rename
address as french_address,
taxpayer-id as french_taxpayer_id,
pay- taxes as pay__french- taxes,
bank-account as french_bank_account,
deposit_to_account as deposit_tofrench_account,
.

US- TAXPA YER
rename

address as us_ address,
taxpayer-id as us- taxpayer_ id,
pay- taxes as pay- us- taxes,
bank-account as us-back-account,
deposit-to_accou~t 115 deposit- to_us_aecount,

Note that features age and birthday, which have not
been renamed along any of the inheritance paths, witi be
shared, which is indeed the desired effect.

With this rule, the renaming principle may be
qualified by adding that the presence of identically

named features in parents of a class is not considered a
name conflict if the features come from a colon
ancestor and neither has been renamed at any point in the
inheritance process.

The Eiffel implementation (see Section 8) achieves

Eiffel 213

sharing or duplication of attributes according to the
above rule; no space is lost (that is to say, no space needs
to be reserved in class instances for unaccessible
attributes). The same effect is achieved for routines. For
shared routines, no code is duplicated; for routines
which must be replicated according to the above rules,
code must be duplicated. This is the only case in the
Eiffel implementation in which code is ever duplicated.

4.8 Feature Redefinition

Another property of multiple and repeated inheritance is
the possibility to redefine a feature of a class C in a
descendant class, say D. The inheritance clause of class
D may list some of the C features as being redefined in
C, under the form

class D export . .
inherit

c
redefine f, g, h . .

In this case, the feature clause of D must include new
declarations for the features f, g, h . . . listed in the
redefine clause. These declarations override those of C:
a feature application of the form

xf

(possibly with arguments if f is a routine) will refer to
the D version if x is of dynamic type D. This applies
both when x is declared of type D and, more interest-
ingly, when x is declared of type C but happens at run-
time to be of dynamic type D (because of previous
assignments) when feature f is applied to it.

Some constraints, of which the most important are
described in Section 5.1, restrict the types that may be
given to redefined features and (in the case of routines)
to their arguments.

Feature redefinition is the basic mechanism for
achieving polymorphism in Eiffel. It adds yet another
element of flexibility to software design by permitting a
set of related classes to provide alternative implementa-
tions of the same operation.

As a simple example, consider a set of graphic
classes, including POLYGON, with RECTANGLE
among its heirs, itself with heir SQUARE. POLYGON
may have among its features a list of points, say
vertices, giving the vertices of a polygon, and a function
perimeter that returns its perimeter. The implementa-
tion of perimeter performs a traversal of the vertices list
to compute and sum the distances between adjacent
vertices. Class SQUARE, on the other hand, has a
feature side giving the length of a square’s side. It is
clearly appropriate to redefine feature perimeter in this
class to simplify the computation, which in this case just
returns 4 *side.

Assuming the declaration

p: POL YGON

entity p could at run-time, as we have seen, refer to an
object of type SQUARE. The function call p.perimeter
would then result in the SQUARE version of the
function being applied, whereas the same call executed
when p refers to an object of type POLYGON would
have triggered the execution of the POL YGON version.

A further degree of flexibility is provided by the
ability to redefine a function feature (without arguments)
as an attribute. From an information hiding viewpoint, it
is useful to provide clients with a feature under such a
form that it does not make any difference for them
whether the feature is implemented as an attribute (that
is to say, stored along with each object of the class) or a
function (computed when requested); the notation for
remote feature application is indeed the same in both
cases: x.f. With inheritance coming into the picture, the
idea is carried further by allowing descendants of a class
to redefine as an attribute a feature declared as a function
in the ancestor.

For example, one-way linked lists (class LINKED_
LIST, Section A.5) include a function feature fast,
returning the last value of a list; here you must traverse a
list to get to its last element, so a function is indeed
necessary. For two-way linked lists (TWO_ WA Y_
LIST, Section A.6), a reference to the last element will
be permanently kept by each list, so that last becomes an
attribute in this class.

Legitimate concerns may be voiced as to the power of
the redefinition mechanism: does it not allow dangerous
manipulations? A feature application

af(....),

where the type of a is a class type, say A, could have
totally unexpected results if a may be assigned values of
descendant types of A where f is redefined in a manner
inconsistent with the original intent of A’s author.

Nothing indeed prevents the author of SQUARE to
redefine perimeter so that it will compute, say, the area
rather than the perimeter.

Although Eiffel does not provide an absolute protec-
tion against such abuses of the redefinition mechanism,
it does address the problem. As will be explained in
Section 6.3, a partially formal specification may be
associated with a routine feature in terms of precondi-
tions and postconditions. If this is the case, any
redefinition of the routine must obey the initial spccitica-
tion (6.6).

4.9 Redefinition Versus Renaming

Redefinition and renaming serve different purposes and
should not be confused.

214 B. Meyer

Redefinition is applied to ensure that the Same feature
name refers to different actual features depending on
the type of the object to which it is applied (that is to say,
the dynamic type of the corresponding entity). It is thus
an important semantic mechanism for providing the
object-oriented brand of polymorphism.

Renaming, on the other hand, is more of a syntactic
mechanism, making it possible to refer to the same
feature under different names in different classes.

The two techniques are indeed orthogonal; either or
both may be applied (in a descendant D of a class C) to a
feature of C, say f. They address different questions:

l Redefinition corresponds to the question “can we
have a different implementation for f when it is
applied to entities of dynamic type If?“.
l Renaming corresponds to “can we change the name
under which the original (C) implementation off may
be applied to entities of static type D?”

The effect of combining these two mechanisms in
various ways, summarized in the table below (Table I),
follows from this discussion. Assume that entities c and
d are declared of types C and D respectively. It is
important to distinguish between the name of a feature, f
in the example, and the feature itself (represented for
example by the body of a routine), which we call $. By
renaming the feature in D we associate with d, a new
name f’ ; by r~e~ning it we associate with f a new
feature d, ’ .

When c is of dynamic type C, cfwill always refer to
feature f, and the notation c.f’ will always be illegal.
Thus there are only three nontrivial cases: cf for c of
dynamic type D; d.f; and d.f’. The table shows what
actual feature is associated with each of these notations
in each legal case. Note that combinations marked as
illegal may be caught statically by a compiler.

Cases 5 and 6 are a little more subtle than the others
and also less useful in common usage; they may be
skipped on first reading.

All cases, with the exception of case 6, occur in the
library of the Appendix. Note that case 4 is interesting in
particular when D provides a special implementation d, ’
of the feature, but the implementation of 4 ’ internally
relies on the more general #; thus D must be able to
refer to #, which is not available to it under any name in
case 3 (redefinition only).

For example, the basic insertion procedure pui-
between is inherited by class TREE (A.7) from LINK-
ABLE (A.4). To insert a new child into a tree, however,
you must not only do the pointer operations for inserting
an element into a list, but also set the “parent” field of
the new child so that it references the correct parent.
Thus, the implementation of the new put-between
consists of a call to the original procedure, renamed

Table 1. Combining Redefinition and Renaming

No. c.f d.f df

, f not redefined
f not renamed

2 f redefined 4
f not renamed

3 f not redefined
f renamedf’

4 fredetintxi$’
f renamed f
f not redefined

5 f renamedf
f’ redefined #”

f redefined 4 ‘
6 f renamedf

f’ redefined (b”

Note: IO column 3, c is assumed to be of dynamic type D.

linkable-put-between for the occasion, followed by
instructions to set the parent field.

4.10 Deferred Features-Eiffel as a Language for
Analysis and Global Design

With redefinition, programmers can provide alternate
implementations of a previously implemented feature. In
some cases, you may want to define a feature without
giving its implementation, passing on to the descendants
the task of providing such implementations. Deferred
feature declarations satisfy this need.

In such a declaration occurring in a class C, the type
and arguments of the feature, if any, must be specified in
C, but not its body if it is a routine. Syntactically, the
do.. . part is simply replaced by the keyword deferred.

Various versions will be given for the body in the
descendants of C. You may then apply the feature to an
entity of type C (under some consistency conditions),
with the understanding that the implementation used
depends on the dynamic type of the entity, which will
always be one of the descendants.

The syntax for deferred typed features without argu-
ments, that is to say (in its simplest form)

f: T is deferred end

does not commit the descendants to implement the
feature as an attribute rather than a function; different
descendants may take different decisions in this respect.

A class that contain one or more deferred features is
itself called a deferred class and must be declared as
deferred class rather than just class.

As with feature redefinition, it is important to enable
designers to specify properties of features even when
they are declared as deferred. The techniques for

215

specifying preconditions and postconditions of routines
(6.3 and 6.6) indeed apply to deferred features.

An interesting application of deferred classes is the
two-tier definition of modules (interface and implemen-
tation) as in Ada or Modula 2. You will declare an
abstract data type implementation as two classes, the
first of which contains deferred features (with their
types, those of their arguments, as well as preconditions
and postconditions), and the second, heir to the first,
provides implementations. An important advantage of
this technique over the method used in non-object-
oriented languages such as Ada or Modula 2 is that more
than one implementation may be provided for a given
interface within the same system.

Deferred classes are important in connection with one
of the uses for Eiffel: as a language and method for high-
level analysis and design of software systems, as
opposed to implementation only. The object-oriented
approach is indeed particularly fruitful at these stages,
where the results of classical functional methods often
suffer from insufficient flexibility and reusability.
Through the use of Eiffel, you may abstractly describe a
system as a set of deferred classes. Note that even
though implementations are not given, the routines’
effects may be specified by preconditions and postcondi-
tions, and the abstract semantic properties of classes
may be expressed by class invariants (see 6.2 below).

A deferred class describes not just one implementa-
tion of an abstract data type, but a set of implementa-
tions. In the extreme case where all features are
deferred, the class is in fact close to a pure abstract data
type specification.

A deferred class may not be instantiated (as the
corresponding objects would not have implementations
for some of their features), but it may be used as type of
entities, to be associated at run-time with instances of
descendant, nondeferred classes.

Furthermore, a deferred class is compilable, so that
the Eiffel compiler may perform a number of verifica-
tions on it. To go from such a set of nonexecutable
classes, viewed as a high- level system description, to an
executable version, you write descendant classes, con-
taining actual implementations of the previously de-
ferred routines. This approach yields a much smoother
development process than when a strict separation is
maintained between the formalisms used at successive
stages of the software development lifecycle.

5. TYPE COMPATIBILITY

5.1 Basic Constraints

Eiffel is a typed language that was designed to permit
completely static (compile-time) type checking. Because

of the inheritance mechanism, the type system is richer
than in a language with a simpler type system. There are
two basic constraints, governing assignment and feature
redefinition (the discussion only addresses class types;
the usual rules apply to simple types).

The first typing constraint is a direct consequence of
the rule governing association between entities and
objects (Section 4.5): in an assignment x : = y, the type
of y must be a descendant of the type of x (if these are
class types). In other words, you may assign a “more
specific” value (i.e., a value of a descendant type) to an
element declared as “more general. ” For example, an
element of type LIST may be assigned a value of type
TWO- WA Y-LIST. The reverse case is prohibited.

The second basic constraint applies to the redefinition
of a typed feature, i.e., an attribute or a function: If such
a feature, initially declared in a class C as being of a
certain type T, is redefined in a descendant of C as being
of another type T' , then T’ must be a descendant of T.
For example, the feature representing the first linked
element (“cell”) of a list, called first-element and
defined as LZNKABLE in class LINKED-LIST, is
redefined as BZ-LZNKABLE in TWO_ WAY_
LZST and as TREE in class TREE; such redefinitions
are correct since each new type is a descendant of the
previous one.

5.2 Declaration by Association

The second typing constraint is one of the language
properties that motivate declaration by association. A
declaration by association takes the form

x: like y

where y is an entity declared in the scope where this
declaration appears. If T is the type associated with y,
then the above declaration is equivalent to

x: T

with the difference that if y is redefined in a descendant
of the current class with a new type T' , then the
corresponding redeclaration of x is implied. We say that
y is an “anchor,” which may be used to drag along
other elements declared like y. The anchor itself must be
declared with a “fixed” type (not by association).

This form of declaration is often needed to guarantee
that a group of elements remain consistent with each
other in any descendant. It is used in particular to ensure
that the types of function results are properly declared,
as the following simple example shows.

Assume you want to define a class COMPLEX to
represent complex numbers. One of the features may be
a function conjugate yielding the conjugate of the
current instance, which you might declare as follows:

216 B. Meyer

conjugate: COMPLEX is

d0

-- Return a copy of the conjugate of the current complex

Result. Clone (Current) ; -- Assign to Result a copy of the current complex
Result.change_y (-y) ; -- Negate the y coordinate of Result

end -- conjugate

It has been assumed that another feature of COMPLEX
is the procedure change-y (new-y: REAL), which
does what the name implies.

The solution shown is correct as along as you consider
class COMPLEX just by itself. However, assume
COMPLEX has a descendant-say IMPEDANCE, in
an electrical engineering application whereby impe-
dances are considered a special case of complex num-
bers. Class IMPEDANCE will inherit the conjugate
feature; but with declarations such as

il, i2: IMPEDANCE

The problem goes away, however, if you use a
declaration by association whose anchor will be the
current element itself. In other words, you will declare
conjugate to be of type not COMPLEX but

the assignment il : = i2xonjugate is typewise incor-
rect, since the type of the right-hand side, COMPLEX,
is not a descendant of the type of the left-hand side,
IMPEDANCE; in fact, the reverse holds.

With this declaration, cxonjugate is of type COM-
PLEX if c is declared of type COMPLEX> but
ilxonjugafe will now have the type of il, namely
IMPEDANCE. In all cases these types may be deter-
mined statically.

Declarations by association play an im~~nt role in
the examples below. They ensure, among other proper-
ties, that list elements are consistent: for example, all
elements of a doubly linked 3ist (see class BI-.
LINKABLE, Section A-5) must include two references,
to their right and left neighbors; and all members of the
list of children of a tree node must themselves be tree
nodes (A.@.

It is essential to emphasize that, whether or not
declarations by association are used, the typing con-
straints are static and may be checked at compile time.

6. FEATURES FOR SYSTEMATIC
PROGRAMMING

Much of the emphasis in the design of Eiffel has been on
promoting such quality factors as reusability, extendibil-
ity, and compatibility. But these qualities are meaning-
less unless programs are also correct and robust. In fact,
as techniques for the production of truly reusable

software components become a reality, the concern for
correctness takes on a even greater importance than in a
“one-shot developments” environment, since the im-
pact of errors will be multiplied by the reuse factor.

Eiffel includes language constmcts that promote a
systematic approach to software construction. The regu-
lar use of these constructs, and the general attitude they
imply towards program const~ction, have proved ex-
tremely beneficial as to the correctness and robustness of
software built with Eiffel.

6.1 Assertions

Syntactically, an assertion is a boolean expression,
expressing some property that should be satisfied by
certain entities at designated stages during a the execu-
tion of a system. Examples of assertions are:

The Eiffel constructs aimed at enhancing a lucid
approach to software correctness are based on the notion
of assertion.

i/=j -- Note that I = is the “not equal” symbol

f&7 Y) = 0
notempty: nb_elts > 0

As the last example shows, an assertion may have an
associated label. An assertion may have more than one
clause, separated by semicolons; the semicolon is
semantic~ly ~uivalent to an and here, but it allows
individual identification of the components of the list,
especially if they are labelled.

Eiffel does not include a all-wedged assertion lan-
guage, so some properties that are not expressible as
simple boolean expressions may have to be given in part
as comments, as is frequently the case in the examples of
the appendix. (A effort in progress, the M specification
method [21], includes a specification language, LM,
which might be used in conjunction with Eiffel in a fully
formal approach.)

The various uses of assertions will now be described.

6.2 Class invariants and the Create Procedure

The need for class invariants arises from the already
voice remark that a class is in general an implemen~tion
of an abstract data type rather than the abstract data type
itself (except in the case of a class with deferred features
only). The implemen~tion contains components (attrib-

Eiffel 217

utes) that are often too general for the purpose of
representing the abstract type. As a trivial example, an
array representation of stacks might contain an integer
attributes, say high, which marks the topmost array
position used. Although an arbitrary integer may be
positive, negative or zero, an integer used as stack
pointer may only be nonnegative. Thus the condition
high 1 0 should be a class invariant.

The notion of data type invariant is discussed in [1 l]
and [16].

A class invariant must be satisfied after the execution
of the Create procedure of the class; any routine of the
class may be written under the assumption that the
invariant is satisfied on entry, and must ensure that it is
still satisfied upon exit.

For nontrivial classes invariants are strong semantic
properties; by stating them explicitly, you gain in-depth
insights into the fundamental properties of classes. The
appendix contains significant examples of class invari-
ants, for example the invariants for LIST and
LINKED- LZS T.

Syntactically, a class invariant is an assertion list,
appearing in an optional clause introduced by the
keyword invariant in a class declaration, as in

class ARRA Y-STACK [T] export.. . feature
high: INTEGER;
.

invariant
high > = 0

end -- class ARRAY-STACK

The reader will notice in the examples of the
Appendix the constant interplay between class invariants
and routine preconditions and postconditions. In princi-
ple, the following should be proved for each routine
body B, with precondition Q and postcondition R in a
class with Z as invariant:

where {Q} A {R) means that execution of A, starting
in a state where Q is satisfied, will terminate in a state
where R is satisfied). In other words, when assessing the
validity of a routine body, you may assume the class
invariant, and you must check that it is preserved by the
routine.

The notion of class invariant is the main justification
for the way object creation is handled in Eiffel through
the Create procedure.

The conventions regarding this procedure are slightly
different from those of other routines. Execution of
a.Create (....), where a is of type A, triggers the
allocation of storage for an object of type A, to be
associated with a, followed by the execution of the
Create procedure declared in class A if there is one

(which must be the case if the call includes arguments).
If A does not contain a Create procedure, A is still
considered to have declared it with an empty body. Thus
Create is never inherited, since every class redefines it
explicitly or implicitly.

Special conventions are always disturbing and one
may wonder why Eiffel does not separate object
allocation from object initialization, with a syntax such

as

-- Warning: this is not correct Eiffel!
allocate a;
a.init (x, y, . ..)

where allocate would be a universal allocation instruc-
tion and init some class-specific procedure (declared in
A in the case at hand).

The advantage of the solution actually retained is that
by tying initialization to allocation the designer of a class
may guarantee that all objects of the class will automati-
cally satisfy the class invariant upon creation. The
alternative solution would not enable designers to
prohibit clients from omitting to call a. init after allocate

a before any other feature is applied to a.
From a formal viewpoint, then, the purpose of Create

procedures is to ensure that every object of a class
initially satisfies the class invariant.

6.3 Preconditions and Postconditions

Assertion lists may be associated with routines: a routine
may begin with a require clause, stating the conditions
assumed to be satisfied on entry, and end with an ensure
clause, stating the conditions that must be enforced by
the routine implementation upon exit.

The following two notations are available in ensure
clauses: old x denotes the value of entity x upon routine
entry; Nochange is a boolean expression, true if and
only if no attribute of the current instance has been
modified since entry.

The precondition and postcondition of a routine may
be viewed as an explicit contract between the class
implementer and the authors of client classes. The
precondition binds the clients: a call that does not satisfy
it is not valid, and the class may do what it pleases with
it. The postcondition binds the class: If the precondition
is satisfied, the client is entitled to expect that the routine
will terminate in a state that satisfies the postcondition.
An approach to software construction based on this
notion of contract is developed [25].

6.4 Loop Notation

The syntax of loops includes room for loop initializa-
tion, a loop invariant (true after initialization and

B. Meyer

conserved by the loop body), and a variant (a nonnega-
tive integer expression that decreases on each iteration,
guaranteeing termination):

from initia&ation_instructions
invariant invariant
variant variant
until exit-condition
loop loop_instructions end

This no~tion (where the invariant... and variant
clauses are optional) enables the program reader to
check that the initiaIization_instructions ensure the
invariant, and that the combination of this invariant and
the exit-condition ensures the desired effect of the
loop. Note that this loop is similar to a classical “while”
loop, with the test reversed; it is not a repeaLuntil...
since the number of iterations will be zero if the exit_
condition is false on entry.

6.5 Check instruction

Assertions may also be used in a special instruction of
the form

check assertion_fist end

whose purpose is to express that the assertion-list is
satisfied whenever control reaches this instruction. This
construct (the equivalent of the Algol W ASSERT
inst~ction) is used in particular in connection with
routine calls, express that a condition stronger than or
equal to the routine precondition is satisfied before the
call, and that a condition weaker than or equal to the
~stcondition may be assumed upon return. The Appen-
dix contains numerous examples of such uses of check.

6.6 Assertions and Inheritance

You may use assertions to state the restrictions that
apply whenever features are added or redefined in
descendants of a class. As pointed out in Sections 4.8
and 4.10, class designers should have some way of
providing their clients with guarantees that each class
will perform according to the original contract, even if
some of its features are redefined.

Such a provision is the indispensable complement to
the principle of openness: Inasmuch as you strive to
produce software elements that are still open to exten-
sions and modifications, you also need a way to
prescribe limits within which these future changes
should remain.

The following constraints apply to the i~e~tance
mechanism in connection with the use of assertions:

l The invariant of a class applies to all descendants of
a class (thus it does not need to be repeated in their
invariant.. . clauses except for cIarity).

l Cons~uently, no two classes may be combined
through multiple inheritance if their invariants are not
compatible.
l If a routine is redefined in a descendant class (this
includes the case when the original routine was
deferred), the new precondition must be no stronger
and the new postcondition must be no weaker.

In the last rule, a condition is said to be stronger than
another one if it implies it. The rule expresses the
requirement that whenever the original routine was
applicable, the new one must also be (but it may well be
less restrictive in its precondition), and it must at least
ensure the original postcondition (but it may well ensure
a more restrictive one).

These consistency constraints are essential for a
proper use of inheritance and redefinition. They express
in particular that redefinition is not arbitrary, but must
instead be viewed as a semantics-prese~ing transforma-
tion. Further details are given in [27] and [25].

Note that these constraints could only be enforced by
a system that includes a fully formal assertion language
and a theorem prover. We will have to satisfy ourselves,
for some time to come, with informal human verification
and run-time checking.

In particular, the examples reproduced in the Appen-
dix have been tested extensively but not formally
verified and some mistakes may remain; I will be
grateful to any reader reporting an error.

6.7 Use of Assertions

The primary aim of assertions is to encourage a
systematic way of writing Eiffel classes and to help
reading them by requiring programmers to say explic-
itly what mental assumptions have been made. Asser-
tions may thus be viewed as comments of a special kind.
This possibility has been used abund~tly in the exam-
ples .

It is also possible, on option, to check at run-time that
assertions (at least those defined formally) are satisfied.
The Eiffel environment provides three compilation
options for each class:

(0) l No protection: The program text is assumed to
be correct and assertions have no influence at run-
time. Errors are likely to result (if apparent at all)
in aberrant behavior and abnormal te~ination
(arising for example from out-of-bounds memory
references).

(1) l Controlled mode: Only preconditions of routines
(require clauses) are checked.

(2) l Total protection: All assertions (and the effec-
tive decrease of loop variants through each itera-
tion) are checked.

Option 2 is adequate at checkout time. Option 1 is an

Eiffel

acceptable compromise in many situations; satisfaction
of the precondition is essential to the proper functioning
of routines (in fact, the presence of the require clause
allows a much simpler coding style in Eiffel than in
common languages, since internal consistency checks
may be factored out in routine preconditions rather than
scattered throughout routine texts), yet preconditions
often may be checked with reasonable efficiency. Thus,
option 1 is the default.

6.6 Exceptions

In its original form, Eiffel did not have any exception
handling mechanism. In particular, violation of an
assertion (monitored as described above) would produce
a message and halt the execution. The original version of
this article reflected this decision.

This policy was based on an analysis of the limitations
and dangers of exceptions as offered by such languages
as CLU and Ada. Ada exceptions, in particular, are
undisciplined interprocedural goto instructions. They
encourage an irresponsible, “buck-passing” approach
to the treatment of abnormal cases.

Recent research at Interactive Software Engineering
has led to the design of a simple and safe exception
mechanism which is currently (spring 1988) being
integrated with the rest of the implementation. The
following is a brief overview of this mechanism,
described further in [27] and [25].

The Eiffel exception mechanism is based on the
notion of “programming by contract,” mentioned
above. An exception is any event that prevents a routine
from fulfilling its contract. This includes assertion
violations when assertions are monitored, but also
externally triggered events such as arithmetic overflow,
memory exhaustion, or user interrupts.

When an exception occurs, only two responses make
sense:

l Resumption: Attempt to fix the reason for the
exception and retry the routine execution.
l “Organized panic”: Concede failure, put all con-
cerned objects back into a state satisfying the invari-
ant, and signal the failure to the routine’s caller by

219

triggering a new exception (which the caller will have
to handle in one of the same two ways).

The policy made possible by Ada of performing some
instructions and returning to the caller without signaling
that something wrong has happened is dangerous and
must be banned.

To handle exceptions, an Eiffel routine may have a
rescue clause that will be triggered whenever an
exception occurs during the execution of the routine.
The aim of the rescue clause is to bring the object back
to a stable state. Unless the clause terminates by
executing a retry instruction, the routine as a whole will
be considered to have failed, and an exception will be
triggered in the calling routine. (If there is no caller, that
is to say at the root level, the system execution as a
whole terminates with an appropriate message). The
rescue clause may, however, terminate with a retry, in
which case the routine execution is attempted again from
the beginning.

A routine without a rescue clause is considered to
have an empty one, so that any exception will make it
fail and signal an exception to the caller.

The language extension for exceptions is limited to the
mechanism just described, and to the two keywords
rescue and retry. In addition, a library class EXCEP-

TIONS defines some useful features for dealing with
exceptions, in particular the attribute exception, which
gives the code of the last exception that has occurred (to
enable treating various exceptions differently). Note that
a programmer who wishes to explicitly trigger an
exception does not need a special raise instruction; a
routine raise, with precondition false, will do the job.

As an example of the exception mechanism, consider
a routine attempt_ transmission that transmits a mes-
sage over a phone line. It is assumed that the actual
transmission is performed by a routine transmit; once
started, however, transmit may abruptly fail if the line
is disconnected, and will then trigger an exception.

Routine attempt_ transmission tries the transmis-
sion at most five times; before returning to its caller, it
sets a boolean attribute transmission-successful to
true or false depending on the outcome. Here is the text
of the routine:

attempt_transmission (message: STRING) is
__ Attempt transmission of message at most five times.
__ Set transmission-successful accordingly.

local
failures: INTEGER

d0

if failures < 5 then
transmit (message);
transmission_successful : = true

else
transmission_successful : = false

end

220 B. Meyer

rescue
failure : = failures + i;
retry

end; -- attempt_ transmission

Note that the integer local variable faff~re~ is initi~ized to zero on routine entry.
This example shows one of the key reasons for the simplicity of the mechanism: The rescue clause never attempts to

achieve the original intent of the routine; this is the sole responsibility of the normal body (the do clause). Its only role
is to “patch things up” and either fail or retry.

The above version never fails; it signals its inability to perform the transmission by setting an attribute. The
following slightly simpler version will fail if it is unable to perform the transmission, triggering an exception in the
caller, which is then charged with the responsibility of handling it in its own rescue clause:

attempt- transmission (message: STRING) is
-- Attempt transmission of message at most five times.
-- If impossible, signal failure by raising an exception.

local
failures: INTEGER

do
transmit (message);

rescue
faiiures : = failures + I;
if failures < 5 then

retry
end

-- If control reaches this point, the routine wili fail.
end; -- attempt-tra~mi~ion

7 OTHER CONSTRUCTS

Two more language notions are needed to understand the
details of the examples in the Appendix and to write
software in Eiffel.

Noncommutative boolean operators use the Ada
syntax: a and then B has value false if a has value false,
and otherwise has the value of b; a or else b has value
true if a has value true, and otherwise has the value of 6.
The advantage of these operators over the standard and
and or (which are of course also present) is that they
may be defined when the first operand gives enough
information to determine the result (false for and, true
for or), but the second is undefined. A simple example is
the boolean expression

i/= Oandthenj/i = k

which might yield an undefined value if it used a simple
and. The noncommu~tive operators are pa~icul~ly
useful in assertions.

Finally, constants are described as class attributes
with fixed values. The syntax is similar to that used for
routines, for example:

pi: REAL is 3.1415926524

It is common practice to encapsulate a group of

related constants in a class, which is then used as
ancestor by all classes needing these constants. In the
Eiffel implemen~tion, constant a~ributes do not occupy
any space at run-time, so programmers need not be
concerned about the number of such attributes.

The above notation applies to constants whose types
are simple. Constants of class types are expressed as
“once” functions, i.e., functions that are evaluated only
once in a given system; subsequent calls will always
return the same value. “Once” functions are distin-
guished by the keyword once appearing instead of do.
For example, a class COMPLEX might include a
declaration of the constant complex i (real part 0,
imagina~ part 1) as

i: COMPLEX is
__ Pure imaginary number of modulus 1

once
Result. Create (0, 1)

end -- i

assuming the proper Create procedure. “Once” proce-
dures, as well as functions, are also permitted; any call
to such a procedure beyond the first has no effect. (An
example might be an open_input procedure, which
every client might call to make sure the input has been

Eiffel 221

opened; however the open operation must be executed
only once during a given system’s execution.)

8 IMPLEMENTATION: THE EIFFEL
PROGRAMMING ENVIRONMENT

For the programmer, a programming language is no
better than its implementation. We thus finish this
introduction to Eiffel with a description of how the
language has been implemented. Rather than just an
implementation, it is appropriate to describe the set of
Eiffel-related facilities as a programming environment.

8.1 Classes and Systems

There is no exact notion of “program” in Eiffel. What
may be executed is a “system,” defined by the name of
a class, called the root, and a list of actual arguments.
Executing such a system consists of allocating an object
of the root class and executing its Create procedure,
with the arguments supplied. Usually this will trigger
new routine calls and the creation of other objects.

In keeping with the goals of reusability and extendibil-
ity, the primary focus of Eiffel programming is on
classes rather than systems. An Eiffel class is the
implementation of a useful data abstraction, but good
classes should not be tied to a specific system; rather,
systems should be constructed by combining existing
classes and, if necessary, complementing them with new
ones, again designed with generality and reusability in
mind.

This concept is reflected in the implementation:
Nothing binds a class to a particular system. The concept
of system does not in fact belong to the language proper,
but rather to the operating system level.

8.2 Implementation Policy

The current Eiffel implementation, running under the
Unix system, uses C as an intermediate language. This
technique enhances portability without sacrificing effi-
ciency. C is a portable assembly language, the closest-
ever realization of the old “Uncol” (Universal COm-
puter Language) idea.

It should be pointed out that the use of C as
intermediate language is just one possible implementa-
tion technique; nothing in the design of Eiffel ties it to C.

8.3 Compilation and Assembly

Two commands are provided.
The first command, ec, Lor Eiffel Class, compiles a

single class into C and then to object code. Separate
compilation is of course an essential requirement for a
language promoting reusability and extendibility. To

compile a class, you need its ancestors, if it has any; an
optional argument to ec lists the directories where they
are to be found.

The second command, es, for Eiffel System, con-
structs a complete system from its constituent classes
through a process called assembly and executes the
result. This command refers to a System Description
File of the following form:

ROOT: Classname
SOURCE: . . . list of directories . . .
EXTERNAL: . . . list of files . . .
NO_ ASSER TION_ CHECKING : , . . list of classes . . .
PRECONDITIONS: . . . list of classes . . .
ALL-ASSERTIONS: . . . list of classes . . .
DEBUG: . . . list of classes . .
TRACE: . . list of classes . . .
PAGING (YIN)
GARBAGE-COLLECTION (Yl N)

Such a tile describes how to assemble a system whose
root is an object of type Classname. The SOURCE
directories are used to locate all the necessary classes;
the EXTERNAL files contain any needed external
routines (see below).

The following lines give compilation options: list of
classes to be compiled with various levels of run-time
assertion checking (see Section 6.7); classes to be
compiled in debug mode; classes to be traced. The
keyword ALL may appear in lieu of a list of classes.

The last two lines of the System Description File
allow selection or deselection of the built-in virtual
memory and garbage collection facilities (see 8.8 be-
low).

The format of the System Description File is gener-
ated by the first call to es in a given directory, so that
programmers do not need to remember the details of the
above syntax.

8.4 External Routines and Openness

A programming environment emphasizing extendibility
and reusability should lend itself to communication with
the outside world. Eiffel was specifically designed as an
open environment, capable of interfacing with other
languages. In fact, this requirement has made the
language simpler, by allowing us to rely on external
facilities in areas where we had no specific contributions
to make, like physical implementation of input and
output facilities (although the packaging of such facili-
ties, by means of basic libraries of classes, using
inheritance and information hiding, falls definitely
within the province of Eiffel).

Thus routines of a class may rely on external
primitives written in a language other than Eiffel. More
precisely, an Eiffel routine may contain an external.. .
clause listing primitives written in other languages,

222

which may then be used within the routine’s body.
Examples of use of external primitives may be found in
class ARRA Y (Section A.2).

The design of this facility does not conflict with the
other principles of the language. In particular, an
external routine is not a class feature: Instead, it is local
to au Eiffel routine that uses it for its implemen~tion
only. Thus the facilities offered by non-Eiffel primitives
may be made available for use in Eiffel systems, but
only once they have been encapsulated in bona fide
Eiffel routines, used through the standard conventions of
the language. Eiffel techniques such as preconditions
and ~tconditions may then be applied to them.

8.5 C Package Gmmtion

An aspect of the environment that has proved useful to
many developers using Eiffel is the availability of a
package generator. By using further options in the
System Description File, a developer may produce a
complete C package from an Eiffel system. The package
contains the following elements:

l A set of C functions generated from their Eiffel
counterparts (routines). (In case of name clashes,
which may occur because in Eiffel, routines belong-
ing to different classes may have the same names, the
package generator chooses default names for the
duplicates; the programmer may, however, specify
any desired name for any generated C function.)
l A main program, generated automa~cally.
l A copy of the run-time system (including the
garbage collector), in C form.
l An automatically generated Make file, allowing
r~ompilation of the generated package in any envi-
ronment .

The resulting C package is thus entirely self-contained
and ~de~ndent of any Eiffel enviro~ent. This makes
Eiffel a powerful crass-development tool, useful for
software developers whose customers have not (yet)
access to an Eiffel compiler.

8.6 Efficiency

As I mentions in Section 1.2, we were pa~icul~ly
concerned about efficiency of the generated code. This
concern is reflected in the translation techniques used:

l As regards space for objects, each object only
carries its attributes and some control information; no
space is ever reserved for routines in the representa-
tion of an object (routines are associated with a class
as a whole, not with individual objects of a class). As I
mentioned in Section 7, constant attributes are also

“free” in terms of run-time space. Thus the occu-
panty of an object is little more than that of an
equivalent record in Pascal (without the loss that

B. Meyer

comes from reserving the largest possible space in a
record with variants). This is the only acceptable
solution; it means in particular that efficiency is not a
serious reason for restricting the number of routines
or symbolic constants in a class, or the number of
parents to a class.
l As regards space for classes, the code of routines
inherited directly or indirectly from ancestors is not
copied, but shared. This applies to multiple as well as
single i~eritance: Thus, there is no need to worry
about inheriting from many different worlds (net-
works of existing classes) when a new class is started,
as the overhead per inherited routine is ~gligible.
Neither does genericity imply any code replication;
the routines are shared between all generic instances.
These results should be contrasted with the Smalltalk
implementation of multiple inheritance, which (if [5]
is to be believed) duplicates routines on i~e~~n~
paths other than the principal path, and with the
implementation of genericity in most Ada environ-
ments, which replicate code for each generic instance,
As seen above, there is one exception to the “no
duplication’~ rufe in the case of repeated inheritance
with renaming (Section 4.7); however this is a special
and rather rare occurrence,
l As regards time, one of the serious pitfalls of
object-o~ented programming is the potential ineffi-
ciency of remote routine application: Since calls of the
form x&a, b, . ..) may result in the execution of
various versions off depending on the run-time value
of X, there is a danger of wasting time in looking for
the app~priate version to apply. Published descrip-
tions of object-oriented language implementation
seem to consider it inevitable that the deeper the
inheritance hierarchy, the longer routine search may
belong at run-time. ~though improvements are possi-
ble by the use of “caching” techniques [8], this is
unacceptable: Progr~~ers should not be forced to to
make tradeoffs between efficiency and the qualities
that are direct beneficiaries of inheritance-reusability
and exte~ibili~. Fu~h~rmore, any method based on
run-time search becomes all but unapplicable with
multiple i~e~tance, since a whole acyclic graph of
ancestors would have to be searched rather than just a
linear list. (The duplication of code in the Smalltalk
case is precisely aimed at keeping the search linear.)

This problem has been solved in the Eiffel implemen-
tation through the use of original data structures and
algorithms that ensure constant-time routine search,
Although the overhead of a call x.ffa9 6, . . .) is slightly
higher than the overhead for a procedure call f(x, a, b,

Eiffel 223

. ..) in a standard programming language such as C or
Pascal, it is bounded by a constant value. This, I believe,
is one of the fundamental contributions of the Eiffel
implementation.

Beyond the systematic application of the above
techniques, a postprocessor (integrated with the package
generator) performs a number of important optimiza-
tions, both in time and space. In particular:

l As I noted above, the overhead for routine calls is
constant; it is also reasonably small, typically amount-
ing to about 30% more than the overhead for function
calls in C, but even this may be to much in highly
time-sensitive applications. Conceptually, this over-
head is a consequence of the availability of dynamic
binding; this means it is only justified for routines that
are redefined at least once in a system. Usually,
however, a large percentage of the routines of a large
system are never redefined. The postprocessor will
detect them and implement all calls to such routines in
the same way they would be implemented in C,
removing any unjustified overhead.
l A problem that plagues many object-oriented lan-
guage implementations is the useless loading of the
code for all routines from ancestor classes, including
routines that are never actually used. Even in today’s
relatively memory-rich environments, this may be-
come a serious obstacle to the free use of inheritance.
{Advances in hardware technology should never be
used as an excuse for poor software performance;
extra MIPS and bytes are bought to be used, not
wasted.). This problem again introduces the risk that
programmers will have to choose between reusability/
extendibility and efficiency. The postprocessor solves
the problem by removing any unneeded code, ena-
bling programmers to use arbitrary inheritance depths
without having to worry about the effect of unused
routines on code size.

With these and other optimizations, we feel that the
Eiffel implementation techniques have achieved our
initial goal of providing the full power of object-oriented
programming within the efficiency constraints of soft-
ware production in ordinary programming environ-
ments.

8.7 Type Checking

Static typing was mentioned in Section 1.2 as an
important concern. Eiffel is indeed a statically typed
language. The language definition permits all checking
to be done at compile-time; no checks are necessary at
run-time. Thus if a system containing a feature applica-
tion of the form afis accepted by the compiler, thenfis
guaranteed to be applicable to all objects to which a may
refer at run-time.

This is to be contrasted with the solution taken by
most object-oriented languages, in which such checks
are deferred in whole or in part to run-time.

8.8 ~~figuration management

The power of the reusability techniques offered by Eiffel
and the emphasis on bottom-up system construction by
combination of separately developed software compo-
nents (classes) make it necessary to use a systematic
approach to change and configuration control.

A class may depend directly or indirectly on many
others. There are two direct dependency relations: A
class may be the client or the heir of another. The
interconn~tion network resulting from considering indi-
rect dependencies as well may be quite complex. A class
may depend on many others; the inheritance graph must
be acyclic, but the client graph may be cyclic, Further-
more, a class may be a client of one of its ancestors or
descendants.

In a development environment where classes are
frequently updated, there is a serious danger of inconsis-
tencies arising from the use of obsolete or inadequate
versions. A technique that would avoid this risk would
be to recompile everything every time; however, such a
solution is clearly unacceptable from an efficiency
viewpoint.

An automatic con~guration management system has
thus been integrated into the commands ec and es.
Whenever a class is compiled, the system ensures that
the classes on which it depends are up-to-date, triggering
the necessary recompilations.

Our initial implementation of these facilities relied on
the Unix Make tool [9]. However, Make soon turned out
to be too limited in its capabilities. In particular, Make
will not support cyclic dependencies. Even if this
problem were solved, however, a major liability of
Make is the necessity for the programmer to manually
describe the dependencies; this is a tedious process and
also a dangerous approach, since there is always the risk
that a dependency will be forgotten, causing Make to
generate an inconsistent or incomplete version of a
system. This is not acceptable; dependency analysis
should be completely automatic.

The algorithms used by ec and es will indeed perform
this analysis automatically for Eiffel, freeing the pro-
grammer from any need to worry about what classes
need to be recompiled after a series of changes to a
system. These algorithms look for a minimum set of
classes to recompile. In particular, they will detect that
changes to a class only affected its secret (nonexported)
features, and hence that its clients need not be recom-
piled.

A system that uses these facilities, even a large one,
can usually be brought back to a consistent state in just a

224

few minu~s after a number of changes have been made
to it.

8.9 Run-Time Support

The dynamic model described in Section 3.1 implies
adequate run-time support. The implementation relies on
a complete memory management system (Dunamem),
which provides both paging and garbage collection.

Both facilities are optional, being selected at compila-
tion time through entries in the System Description File.
Both are by default disabled.

Paging should usually not be selected on standard
operating systems providing their own virtual memory
m~agement .

In contrast with traditional garbage collectors that are
triggered when no memory is left and then stop all
execution for an often long time, the Eiffel collector is a
continuous process (implemented as a co-routine) which
collects unused space as the application is being exe-
cuted. It uses a self-adapting mechanism that will wake
up at periodic intervals, the intervals being automatically
increased if memory usage is low and decreased
otherwise. A form of “generation scavenging” 1331 is
also used by the algorithm.

When selected at compilation-time, garbage collec-
tion may be dynamically disabled and then reenabled. A
collector cycle may also be triggered at times when the
programmer knows that CPU time is available, for
example while awaiting user input.

Garbage collection may be replaced or supplemented
by programmer-controlled management; the language
indeed makes it possible to implement this safely,
without the well known dangers of the Pascal dispose,
by associating a specific policy with each class of known
behavior and implementing it within the language itself.

8.10 Debugging Aids

It is important to provide programmers with proper
debugging tools. Although C is used as an intermediate

- -

B. Meyer

language for Eiffel comp~ation, Eiffel programmers do
not need to ever look at intermediate C code. (In fact
they do not need to know C.) Thus, built-in C debuggers
are of no use here. The following facilities are provided:

l Optional run-time checking of ~se~ions (see the
options to es in Section 8.3), which has proved an
invaluable aid for finding logical errors if an effort is
made to spell out correctness arguments as assertions.
l A class and routine tracing facility (see line
TRACE . . . in the System Description File of Section
8.3).
l A debug .,. end instruction, executed only if the
class has been compiled in DE;BUG mode;
l An interactive object viewer, which makes it
possible to traverse interactively a system’s data
structure at run-time, observing the objects and
following the reference chains.

More debugging facilities are currently being added to
this basic framework.

8.11 Short-The Class Abstracter

Another tool is important to make reuse practical: short,
a class abstracter that produces a summarized version of
any class, enabling potential users to determine whether
the class provides the required capabilities, without
having to look at the whole implemen~tion of the class.
The summarized version contains the inherit and fea-
ture clauses only; the latter is abstracted so that only
exported features are shown and, for each exported
routine, the body is not shown: Only the header,
precondition, postcondition and the comment immedi-
ately following the header, if any, are reproduced.

The presence of assertions is fundamental in making
this approach work for Eiffel; well-chosen preconditions
and postconditions go a long way towards d~umenting
the purpose of a routine both precisely and concisely.

For example, the abstracted version of class ARRA Y
(Section A.2) is:

class interface ARRA Y [T] exported features
lower, upper, size, entry, enter

inherit
INDIRECT [T]

feature s~ifi~t~on
lower, upper: INTEGER
size: INTEGER

-- Array size
Create (min: INTEGER, max: INTEGER)

__ If min c = max, create array with bounds min and max;
__ otherwise create empty array.

entry(i: INTEGER): T
-- Entry of index i

Eiffel 225

require
Iower < = i;
i < = upper

enter(i: INTEGER, element: T)
-- Assign value element to i-th entry

require
lower < = i;
i < = upper

invariant
size = upper - lower + I;
size > = 0;

end interface -- class ARRA Y

The 4 option of short was used to produce this
example; this allows the use of short for generating a
client’s manual for a class.

Note that short will recognize a header comment at a
conventional place in a routine (after the keyword is} and
will keep it in the output, Other co~ents are lost.
Assertion clauses involving only public features are
kept, but not those involving one or more nonexported
features.

The official d~umen~tion for the Eiffel library [14]
is almost entirely produced by short.

I believe that short points towards the proper solution
of the documentation problem in software engineering.
Most textbooks urge programmers to write extensive
d~umen~tion that is, viewed as separate from the
software itself. But it is hard to make sure that this
advice is followed when the software is initially de-
signed, and this is almost impossible when it comes to
migrations and enhancements.

The only satisfactory approach is to make the software
contain its own documentation and to rely on computer
tools to extract the documentation when it is needed. In
this approach, there is no clearcut boundary between
implemen~tion and d~umen~tion; the d~umentation
for a software component is simply a more or less
abstract view of the component. Various levels of
abstraction are possible, from the most abstract (which
would only include the component’s name) to the most
concrete (which is simply the full text of the compo-
nent). Command short is in-between, yielding a class
interface with the formal properties of the operations and
associated comments, but no implementation details.

8.12 Graphical Tools

Beyond short, there remains a need for high-level
documentation of interclass relationships and system
structure. In this case, textual d~umen~tion must be
complemented by graphical output. Graphical tools (to
be made part of official releases of Eiffel in the spring of
1988, on environments supporting the X Windows

graphics package) make it possible to explore the class
structure in a visual form. They generalize the Smalltalk
notion of a class browser.

8.13 Flattening

It was previously noted (in the WINDOW example,
section) that the inheritance structure used for the
implementation of a particular class is usually of no
interest to the clients of that class; what is relevant for
the clients is the complete interface specification. Thus,
there is a need for a tool that will produce a functionally
equivalent class with no inheritance clause.

The flat command is such a tool. It produces a
“flattened” version of a class confining the actual text
of all inherited routines; the command takes into account
any renaming and redefinition that may have occurred
between the original declaration of a routine and the
current class. By applying short to the output of flat,
one obtains the same level of documentation for all
routines of a class, those that are declared in the class
itself as well as those which are inherited from ances-
tors.

9 CONCLUSION

9.1 Further Work

Several efforts are being pursued in connection with the
work described in this article:

l The language and its translator are being applied to
the development of several large software systems.
l The implementation is being refined and extended.
Implementations are in progress for systems other
than Unix.
l The Eiffel library sketched in this article is being
expanded, so as to eventually cover all the data
structures and algorithms that constitute the core of
programming.
l Work on new specific Eiffel tools continues; of

226 B. Meyer

particular importance is the development of databases
for storing and retrieving reusable software compo-
nents.
l An extension of Eiffei for handling concurrency
and real time is being investigated.
l Work also continues on the M formal specification
method [2 11, applying similar ideas at a more abstract
level.

REFERENCES

1.

2.

3.

9.2 Main Contributions 4.

I believe that the main contribution of the Eiffel
language and environment is to provide a consistent
combination of a range of features that, to my knowl-
edge, had never before been offered within a single
language: object-oriented program modules based on
data abstraction; multiple and repeated inheritance;
polymo~hism and dynamic binding; genericity; infor-
mation hiding; fully static typing; systematic use of
assertions and invariants; separate compilation; built-in
automatic configuration management; automatic docu-
mentation tools enabling the documentation to be treated
as part of the software itself; dynamic ~l~ation of
objects with automatic incremental garbage collection;
production of code that is efficient in both time and
space; portability, obtained through the use of a widely
available target language, C, but without compromising
the simplicity and elegance of object-oriented concepts
in the source language; support for cross-development
by the generation of stand-alone C packages; and, more
generally, an overall concern to make the great potential
of object-oriented programing available to practicing
programmers in production environments.

5.

ANSI and AJPO, Military Standard: Ada Programming
Language (American National Standards Institute and
US Government Department of Defense, Ada Joint
Program Office), ANSIIMIL-STD-18lSA- 1983, Febru-
ary 17, 1983.
D. G. Bobrow and M. J. Stefik, LOOPS: an Object-
Oriented Programming System for Interlisp, Xerox
PARC, 1982.
G. Booth, Software Engineering with Ada, Benjamin/
Cummings Publishing Co., Menlo Park, Calif., 1983.
G. Booth, Object-Oriented Development, IEEE Trans.
Software Engineering 12, 211-221 (1986).
A. H. Borning and D. H. H. Ingalls, Multiple Inheritance
in Smalltalk-80, in Proceedings of AAAZ-82, 1982, pp.
234-237.

6.

7.

8.

R. J. Brachman, What IS-A and isn’t: An analysis of
taxonomic links in semantic networks, Computer
(ZEEE), 16, 67-73 (1983).
H. I. Cannon, Flavors, Technical Report, MIT Artificial
intelligence Laboratory, Cambridge, Mass., 1980.
B. J. Cox, Object-Oriented Programming: An Evolu-
tionary Approach, Addison-Wesley, Reading, Mass.,
1986.

9.

10.

11.

12.

13.

Eiffel is a language and environment for professional
programmers: people who have come to appreciate the
difficulties of software design as well as the virtues of
reusability, m~~arity, data abstraction, and assertion-
guided programming; people who know that an appro-
priate design and programming language, supported by
appropriate tools, is a key ingredient in meeting these
challenging goals.

S. 1. Feldman, Make-a program for main~ning com-
puter programs, Software Practice and Experience 9,
255-265 (1979).
A. Goldberg and D. Robson, Smalltalk-80: The Lan-
guage and its Implementation, Addison-Wesley, Read-
ing, Mass., 1983.
C. A. R. Hoare, Proof of Correctness of Data Representa-
tions, Acta Znformatica 1, 271-281 (1972).
C. A. R. Hoare, Hints on Programming Language
Design, in ACM SZGACTBZGPLAN Symposium on
Principle of Programming Languages, October 1973.
Jean-Marie Hullot, Ceyx, Version 15: I-une Initiation,
Rapport Technique no. 44, INRIA, Rocquencourt, EtC
1984.

14. Interactive Software Engineering, Inc., Eiffe/ Library
Manual, Technical Report TR-EI-71L1, Goleta, Calif.,
1986.

15. Interactive Software Engineering, Inc., Eiffel User’s
Manual, Technical Report TR-EI-SKJM, Goleta, Calif.,
1986.

16.

17.

ACKNOWLEDGMENTS

This paper and the language design benefited from comments
from several colleagues at interactive Software Engineering,
particularly Jean-Marc Nerson and Reynald Bouy-the first
Eiffel programmers. I have a special debt to the first implemen-
tors of Eiffel: Denir Yuksel, who started the implementation;
Oliver Mallet, Fr&i&ic Lalanne, He& Templereau, and Pascal
Soosz., who took it to completion. I am also grateful to Jean-
Claude Derniame, Jean-Pierre Finance, Harlan D. Mills, and Jean
Mendelsohn for important comments.

18.

19.

20.

C. B. Jones, Systematic Software Development Using
VDM, Prentice-Hall, Englewood Cliffs, N.J., 1986.
B. P. Lientz and E. B. Swanson, Software Maintenance:
A User/Management Tug of War, Data Management,
April 1979, 26-30.
B, H. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C.
Schaffert, R. Scheifler, and A. Snyder, CLU Reference
Manual, Springer-Verlag, New York, 198 1.
B. Meyer, Applied Programming Methodology, course
notes, University of California, Santa Barbara, to appear
as a book.
B. Meyer, Quelques concepts importants des langages de
programmation modernes et leur expression en Simula 67,

Eiffel

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bulletin de la Direction des Etudes et Recherches
d’ElectricitP de France, Serie C (Informatique) 1, 89-
150, (1979) Clamart, France. Also in GROPLAN 9,

AFCET, 1979.
B. Meyer, M: A System Description Method, Technical
Report TRCS8515, University of California, Santa Bar-

bara, Computer Science Department, August 1986.
Bertrand Meyer, Reusability: the Case for Object-Ori-

ented Design, IEEE Software 4, 50-64 (1987).
B. Meyer, Eiffel: Programming for Reusability and

Extendibility, ACMSigplan Notices, 22, 85-94 (1987a).
B. Meyer, Cepage: Towards Computer-Aided Design of
Software, Journal of Systems and Software, 1988, in

press.
B. Meyer, Programming as Contracting, submitted for

publication, 1988.
B. Meyer, Genericity, static type checking, and inheri-
tance, The Journal of Pascal, Ada and Modula-2,
1988, in press (revised version of paper in OOPSLA

conference, Portland, Oregon, ACM SIGPLAN Notices,
September 1986, pp. 391-405).

B. Meyer, Object-Oriented Software Construction,
Prentice-Hall, Englewood Cliffs, N.J., 1988.

H. D. Mills and R. C. Linger, Data Structured Program-
ming: Program Design without Arrays and Pointers,

IEEE Trans. Software Engineering, 12 2, (1986).
R. Rousseau, Teaching software engineering with Eiffel
(in French), in Eiffel User Group Meeting, Paris,
January 1988.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C.

Wilpolt, An Introduction to Trellis-Owl, in OOPSLA ‘86
Conference Proceedings, Portland (Or.), Sept. 29-Oct.

2, 1986, pp. 9-16, 1986 (published as SIGPLAN Notices,
21, 11, Nov. 1986.)

B. Stroustrup, The C+ + Programming Language,
Addison-Wesley, Menlo Park, Calif., 1986.
L. Tesler, Object Pascal Report, Structured Language
World 9, 1985.
D. Ungar, Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm, in
Proceedings of ACM SIGSOFTISIGPLAN Software
Engineering Symposium on Practical Software Devel-
opment Environments (Pittsburgh, Penn., April 23-25,
1984), pp. 157-167, ACM Software Engineering Notes,
9, 3, and SIGPLAN Notices, 19, 5, May 1984.
N. Wirth, Programming in Modula-2, Springer-Verlag,
New York, 1982.

PART 2: APPENDIX-BASIC EIFFEL LIBRARY

A.1 OVERVIEW

The classes given below are extracted from the basic
library that constitutes one of the fundamental assets of
designing software in Eiffel. They have been somewhat
simplified and some features have been omitted in the

227

interest of space (and of providing the reader with some

incentive to try his hand at Eiffel programming), but

they remain faithful to the original, which serves as a

basis for all of our software developments. (Applications
that have been built on top of this library include
Cepage, a language-oriented editor and document con-

structor, and Winpack, a multi-windowing display

management system.)
Missing elements that the reader is invited to complete

are marked ***.....***.
These classes illustrate the bottom-up, modular,

reusable programming style encouraged by Eiffel.
As the examples show, the details of data structure

implementation may be rather difficult, in particular
when pointer manipulations are involved. This, we

think, is an important argument for taking care of these

details in reusable and flexible general-purpose mod-
ules, which can be thoroughly checked and optimized

once and for all; the checking and optimization are better

done there than in application programs. Such profes-
sional implementations of data abstractions may be used

as the basis for “data structure programming” as

advocated by Mills and Linger [28], enabling program-
mers to write and think in terms of lists, stacks, trees and

the like rather than pointers, flags, offsets, indexes, etc.

Anybody who has written software involving nontri-
vial data structures in languages such as Pascal or C and

found himself constantly fighting to avoid being swal-

lowed in thick pointer soup will appreciate the availabil-
ity of a library of extendible, reusable implementations

for the most common data structures and associated

operations.
The experience of writing this library has taught us

that bottom-up design, if highly promising from the
reusability standpoint, is also difficult. Coming up with

correct and efficient tools that will satisfy many different

needs is an exacting iterative process. Much work
remains to be done to capture the core of software

engineering applications. The challenge-factoring out

into truly reusable software components as much as
possible of the tedious and repetitive side of program-
ming-is well worth the effort.

A.2 ARRAYS

One-dimensional arrays in Eiffel are not a primitive
notion but a generic class, of which an implementation is
given below. The main reason for including it here is

that it is used by class FIXED-LIST below, one of the
implementations of lists. Similar classes exist for two-
and three-dimensional arrays.

An array may be allocated with arbitrary bounds

228 B. Meyer

through the procedure Create; to access or modify array
elements, one uses the features entry and enter of the
class ARRA Y.

The implementation shown here relies on low-level,
machine-dependent primitives for dynamic memory
management: allocate for dynamically allocating mem-
ory areas, dynget to access data from such areas,
d’nput to change these data. We have assumed that
these primitives are written in C, as is the case with our
current Unix implementation. The low-level primitives

class ARRA Y [T] export
lower, size, upper, -- (read-only)
entry, enter

directly manipulate addresses; since “address” is not,
of course, a valid Eiffel type, addresses are encoded as
positive integers. The encoding and decoding are the
responsibility of the low-level routines; the Eiffel level
only sees “abstract” integers.

The example contains little actual Eiffel code, but
shows how an Eiffel class may be used to encapsulate a
group of related low-level primitives and present it to the
outside world as a coherent abstraction, complete with
its preconditions, postconditions, and class invariant.

feature

-- The elements of an array are called “entries”

lower: INTEGER ; upper: INTEGER ;
size: INTEGER ;
area: INTEGER; -- Secret

Create (min: INTEGER, max: INTEGER) is
-- Allocate current array with bounds min and max;
__ no physical allocation if min > max.

external
allocate (length: INTEGER) : INTEGER name “allocate” language “C”;

-- Allocate should allocate an area for length integers
-- and return its address (0 if impossible)

do
lower : = min ; upper : = max;
size:= max - min + 1;
if max > = min then area : = allocate (size) end

end; -- Create

entry (i: INTEGER): T is
-- Entry of index i

require
lower < = i; i < = upper; area > 0

external
dynget (address: INTEGER; index: INTEGER) : T name “dynget” language “C”;

-_ Value of index-th element in the area of address address
do

Result : = dynget (area, i)
end; -- entry

enter (i: INTEGER, t: T) is
-- Assign the value of t to the entry of index i

require
lower < = i; i < = upper; area > 0

external
dynpu t (address: INTEGER ; index: INTEGER ;

-- Replace with val the value of the index&
__ element in the area of address address

do
dynput (area, i, t)

end; -- enter
invariant

size = upper - lower + 1
__ area > 0 if and only if the array has been allocated

end -- class ARRA Y [T)

val: T) name “dynput” language “C”;

Eiffel

A.3 GENERAL LISTS

This section and those that follow introduce classes corresponding to lists of various brands:

LIST [?-I
(General notion of list)

FIXED-LIST [T]
(lists represented by arrays: no insertion or deletion)

LINKED-LIST [T]
(lists in linked representation; insertions and deletions are possible)

TWO_ WA Y-LIST [T]
(like LINKED-LIST but providing more efficient primitives for
right-to-left traversal thanks to a doubly linked representation).

229

These classes have undergone a fairly substantial
change from a previous version of the library and the
present paper. A description of what happened may be
of interest to readers concerned with the methodological
principles of object-oriented software specification and
design and, more specifically, with finding guidelines
for the specification of systems.

Our initial approach was a strictly “static” one, in
which we viewed lists as sequentially ordered reposito-
ries of information (of T type). Features available on a
list 1 were of the form I.get_value-by-index (i),
(value of the i-th element of 1), l.get_index-by-
value (u, j) (index of the j-th element of value u), etc. ;
and, for lists in linked representation, l.insert_by_
position (v, i) (insert value v at position i), Ldelete-
by-position (i) (delete i-th element), etc.

As we started actually using the library, however, we
were confronted with a disquieting increase in the
number of primitives. For example, it sometimes hap-
pens that one wants to insert an element after the j-th
occurrence of a given value. We could in principle use
get-index- by- value followed by insert_ by-no-
sition, but both features entail a sequential traversal of
the list, which is unacceptable in practice since the first
routine internally finds the adequate inserting position.

We were thus led little by little to add features such as
insert- by- value, delete_ by- value, etc. But even
that did not end our predicament. It turned out that in
practical uses of list, there are occasions in which clients
need to keep a handle on a list element, so as to use it
later without having to traverse the list again. It was not
clear how to specify, let alone implement such a feature
at the LIST level. In fact, the handle does not even have
the same type in all cases: for a list represented as array,
it should be an integer, the index; in linked representa-
tion, the only useful handle is a reference to a LINKA-
BLE element. There is no way of factoring out these
cases into a deferred procedure at the LIST level.

To implement the handle concept in the LINKED_
LIST case, it seemed necessary to return to clients the

--

supposedly secrete references to “linkable” elements.
So we compromised by having some functions return
LZNKABLE entities; this was still relatively safe from
the information hiding viewpoint since class LZNKA-
BLE had all its features protected (in a fashion some-
what similar to an Ada private type). But this decision
led to yet another increase in the number of features:
get_index_by_linkable, get_linkable_by_
value, and so on.

The prospect of getting a reasonably universal yet
concise enough implementation of lists was fading away
as new features came creeping in.

At that point we realized our mistake, which was to
treat lists as passive objects. A list is better modelled as
an abstract machine whose instantaneous state includes
not only the sequence of values constituting the list, but
also the indication of a currently active position or
“cursor” (see Figure 5).

With this approach, the primitives becomes much
simpler:

l l.value is the value of the currently active element
of list 1;
l Lposition is the index of this element (that is to
say, the cursor position);
l Lforth moves the cursor to the next position;
l I.go (i) moves the cursor to the i-th position;
l lsearch (u, j) moves the cursor to the j-th
occurrence of v;
l the cursor may move at most one position off the
leftmost or rightmost elements of the list;
l to save a position and return to it later (in a last-in,
first-out fashion), one will use I.mark and Lreturn.

And so on. For a linked list, feature active, of type
LZNKABLE [T], provides access to the active element
(see Section AS); this feature does not transpose to
other representations (such as by arrays), but this poses
no problem since the feature is now, as it should be, a
secret one. As an added benefit of the new approach,
many features that initially seemed representation-spe-

B. Meyer

next t

Figure 5, A list as a machine.

first_element

cific may now be lifted (sometimes in deferred form) to
the generic class LIST.

This experience seems to lead to two conclusions, at
the borderline between specification and design.

The first conclusion is the fact, mentioned above. that
bottom-up construction of reusable software is a diff&
cult, iterative process.

The second conclusion is that although the abstract
data type approach may seem to imply a highly static and
functional specification style, it should not preclude,

looking at object classes in an operational way, empha-
sizing the notion of state and the functions that act on the
state. Some specification languages (such as LM)
enforce a similar method by distinguishing between
“access” and “transform” functions. Note that this
does not entail any departure from a classical mathemati-
cal model based on unctions.

With this background, we now introduce the LIST
class.

-- General lists, without committment as to the representation

deferred class LIS7’ [TJ export
~~_eIe~e~~~, emp!y,
position, offright, offleft, isfirst, islast,
value, i-th, first, last,
change- value, change-i- th, swap,
start, finish, forth, back, go, search,
mark* return,
index-of, present,
duplicate

feature

-- Number of Iist elements

nb_elements: INTEGER ;

empty: BOOLEAN is
-- Is the list empty?

do
Result := (nb_elements = 0)

end; -- empty
-- Secret attributes for marking and retrieving

backup: Ii ke Current ;
no-change-since-mark: BOOLEAN,

-- Inquiring about the active position
position: INTEGER ;

offright: B001;EAN Is
-- Is active position off right limit?

do
Result : = empty or (position = nb_elements + I)

end; -- offright

Eiffel 231

offleft: BOOLEAN is
-- Is active position off left limit?

do
Result : = empty or (position = 0)

-- This formulation is for symmetry with offright: empty implies (position = 0),
__ so the second condition is equivalent to the entire “or” expression

end; -- offleft
isfirst: BOOLEAN is

-- Is active position first in the list?
-- (If so, the list is not empty)

do
Result : = (position = I)

ensure

not Result or else not empty
end; -- isfirst

islast: BOOLEAN is

-- Is active position last in the list?
-- (If so, the list is not empty)

Left to the reader

-- Accessing list values

value: T is
-- Value of active element

require
not offleft; not offright -- These conditions imply not empty

deferred
end; -- value

i_ th (i: INTEGER): T is
-- Value of i-th element of the list
-- (Applicable only if i is a valid position for the list)

require

i > = 1; i < = nb_elements; -- These conditions imply not empty

do
mark ;
go (i); Result : = value;
return

ensure
-- Result = value of i-th element of the list

end; --i_ th

first: T is
-- Value of first element in the list

require
not empty

do
Result := i_th (I)

end; --first
last: T is

-- Value of last element in the list

Left to the reader

-- Changing list values

change-value (u: T) is
-- Assign u to value of active element

require
not offleft; not offright -- These conditions imply not empty

deferred

232 B. Meyer

ensure
value = u

end; -- change- value

change-i_ th (i: INTEGER, v: T) is
-- Assign v to value of i-th element
-- (Applicable only if i is a valid position for the list)

Left to the reader

swap (i: INTEGER) is
-- Exchange value of active element with value of element at position i.
-- Active position is not changed.
-- Not applicable if offleft, offright, or position i is not valid for the list.

require
not offleft; not offright;
i > = I; i < = nb_elements

-- These conditions imply not empty
local

thisvalue: T, thatvalue: T
d0

thisvalue : = value; mark;
go (i); thatvalue : = value; change-value (thisvalue);
return;
change-value (thatvalue)

end; -- swap

-- Moving along the list

start is
-- Make first element active (no effect if list is empty)

deferred
ensure

(empty and Nochange) or else isfirst
end; -- start

forth is
-- Make next position to the right active
-- (Applicable only if not offright).

require
not offright -- This implies not empty

deferred
ensure

position = old position + 1
end; --forth

go (i: INTEGER) is
-- Make i-th position active
-- (Applicable only if 0 < = i < = nb_elements + I)

require
i > = 0; i < = nb-elements + I

do
if empty or i = 0 then

go-offleft
else

from
if position > i then start end

invariant
position > 0; position < = i

variant i - position until position = i loop
check not offright end;
forth

Eiffel 233

end -- loop
end -- if

ensure
(i = 0 and offleft) or
(i = nb-elements + I and offright) or
(1 < = i and i < = nb_elements and position = i)

end; -- go

back is
-- Make next position to the left active
-- (Applicable only if not offleft).
-- Warning: this version of back may be overly costly in implementations
__ that only provide for efficient left-to-right traversal

require
not offleft

do
check position > = I end; go (position - I)

end; -- back

finish is
-- Make last element active (no effect if list is empty)

do
go (nb_elements)

ensure
(empty and Nochange) or else isiast

end; --finish

go-offleft is
-- Put the list in position offleft
(Secret procedure; use go (0) in clients)

deferred
ensure

offleft
end; -- go_offleft

search (u: T. i: INTEGER) is
-- Go to i-th element of value u in the list if there are at least i such elements;
-- else go offright.

require
i>O

local
k: INTEGER

do
from

start; k := I

invariant
position > = 0;
-- k - 1 elements to the left of active position have a value equal to v

variant
nb-elements - position

until
offright or else (value = v and k = i)

loop
if value = v then k : = k+ I end;
forth

end -- loop
ensure

offright or else value = v
-_ offright or else active element is the i-th element of value u

end; -- search

-- Marking and retrieving list positions.

234 B. Meyer

-- More than one position may be saved successively;
__ retrieval will be done in a last-in, first-out order.

mark is
-- Save active position

do
backup. Clone (Current);

end; -- mark

return is
-- Make currently saved position active again

require
not backup. Void; no-change-since-mark

do
Extract (backup);

end; -- return

-- Finding information about occurrences of given elements.

index-of (v: T, i: INTEGER): INTEGER is
-- Index of the i-th element of value u
-- (0 if fewer than i)

require
i>O

do
mark;
search (u, i);
if not offright then Result : = position end;
return

ensure
-- (Result > 0 and then Result is the index of the i-th element of value u in the list)
__ or else (Result = 0 and there are fewer than i elements of value u in the list)

end; -- index-of

present (v: T): BOOLEAN is
-- Does u appear in the list?

do
Result := index-of (u, I) > 0

ensure
-- Result = (u appears in the list)

end; -- present

-- Duplicating a list

duplicate: like Current is
-- Complete clone of the list

deferred
end; -- duplicate

-- Invariant for class LIST

invariant

position > = 0; position < = nb-elements + 1;
not empty or else (position = 0);
empty = (offleft and offright);
offright = (empty or (position = nb_elements + I));
offleft = (empty or (position = 0));

-- Note that empty implies (position = 0), so that also:
offreft = (position = 0);

isfirst = (position = 1);
islast = (not empty and (position = nb_elements));
not empty or else (not isfirst and not islast);

end -- class LIST

Eiffel 235

A.4 LISTS IMPLEMENTED BY ARRAYS

Class FIXED-LIST [T] provides an array implementation of lists; only limited operations are available (no
insertions or deletions). The array is created with fixed bounds, given as parameters to the version of procedure Create
redefined for this class.

-- Lists with a fixed number of elements

class FIXED-LIST [r] export
Same exported features as in class LIST

inherit
ARRA Y [T]

rename Create as array-Create;
LIST [T]

redefine i-th, change-i- th, swap, go;

feature

Create (n: INTEGER) is
-- Allocate fixed list with n elements

do
array-Create (I, n);

check n = size end;
nb_elements : = n;

end; -- Create

value: T is
-- Value of active element

do
Result : = entry (position)

end; -- value

change-value (u: T) is
-- Assign u to value of current element

do
enter (position, u)

ensure
value = V; entry (position) = u

end; -- change- value

i_th (i: INTEGER): T is
-- Value of i-th element of the list
-- (Applicable only if i is a valid position for the list)

Left to the reader

change_i_th (i: INTEGER, v: T) is
-- Assign II to value of i-th element
-- (Applicable only if i is a valid position for the list)

Left to the reader

swap (i: INTEGER) is
-- Exchange value of active element with value of element at position i.
-- Active position is not changed.
__ Not applicable if offleft, offright, or position i is not valid for the list.

***Left to the reader ***

start is
-- Make first element active (no effect if list is empty)

do position : = min (nb-elements, 1) end; -- start

forth is
-- Make next position to the right active
-- (Applicable only if not offright).

require
not offright

236 B. Meyer

d0

position : = position + f
ensure

position = old position + I
end; --forth

go (i: INTEGER) is
-- Make i-th position active
-- (Applicable only if 0 c = i < = nb _ elements + 1)

Left to the reader

go_offieft is
-- Put the list in position offleft
(Secret procedure; use go (0) in clients)

Left to the reader
duplicate: like Current is

-- Complete clone of the list
d0

Result. Create (nb_elements);
-- Result.Clone would be inappropriate here

mark ;
from

start; Result&art
invariant

-- position - I values have been copied
variant

d-elements - position
until

offright -- tlws Result.offright too
loop

Result. change_ value (value) ;
forth; Result.forth

end; -- ioop
return; ResuN.go (position)

end; -- duplicate
invariant

-- The class invariant adds nothing to the invariant of class LIST
end -- class FIXED-LIST

A.5 LINKED LIST ELEMENTS

This section introduces classes LINKABLE [TJ and BI,LINKABLE [TJ co~es~nding to “linkab~e” fist
components of two different brands: right-linked only and doubly-linked. Objects of such types have two fields: a value
and a “right” pointer to another similar object. Bi-linkable objects also have a “left” field. Such component structures
are designed for use in connection with classes representing linked lists: LINKED_LJST [T] and TWO_ WA Y_
LIST [T].

-- Linked list elements
-- (for use in connection with LANKER-LIST [T] and TWO- WA Y-LIST [T])

class LINKABLE T]
export

value, change- linkable-value (LINKED-LIST),
right, change-right (LICKED-LISTS, put-between (LINKED-LIST)

feature
Create (initial: T) is

do
-- Initialize with value initial

value : = t
end; -- Create

237

value: T,
change_linkable-value (new: T) is

-- Assign value new to current list element
do

value : = t
end; -- change_linkable_ value

right: like Current;

change-right (other: like Current) is
-- Put other to the right of the Current element

do
right : = other

end; -- change-right

put-between (before: like Current; after: like Current) is
__ Insert current element between before and after (if it makes sense)
-- This procedure is used in LINKED-LIST every time an insertion is performed.

do
if not before. Void then before.change_right (Current) end;
change-right (after);

end; -- put-between
end; -- class LINKABLE [T]

class BI_LINKABLE [T]

-- Same as LZNKABLE [T], plus “left” field

export

value, change- bilinkable- value { TWO- WA Y-LIST},
right, change-right { BI_LINKABLE, TWO_ WA Y-LIST},
left, change-left (BI-LINKABLE, TWO- WA Y-LIST)

inherit
LINKABLE [r]

rename change-linkage- value as change- bilinkable- value,
-- Renaming is only to ensure consistent terminology.

feature
redefine right, change-right

left: like Current;
right: like Current;

change-right (other: like Current) is
-- Put other to the right of current element

do
right : = other;
if not other. Void then

other.change_left (Current)
end

end -- change-right;

change-left (other: like Current) is
-- Put other to the left of the current element

do
left : = other;
if not other. Void

-- Avoid infinite recursion with change-right!
and then other.right /= Current
then

end
other.change_right (Current)

end -- change-left
invariant

right. Void or else right.left = Current;

238 B. Meyer

left. Void or else left.right = Current;
end -- class BI__LINKABLE IT]

A.6 LlNKfED LISTS

Class LINKED-LIST /Tj introduces singly linked lists. All operations of insertion and deletion are possible;
however, since the lists are chained one way only, operations such as back, implying a complete traversal, will be
inefficient. They are provided, however, for completeness.

The representation keeps references not only to the active element but also to its left and right neighbors (active, left,
right). This allows, for example, efficient insertions both just before and just after the active element.

A note to the courageous reader: an excellent test of your unders~nding of the present set of basic classes and the
general principles of Eiffel design is to write two procedures patterned after insert-right and insert-left below,
namely

merge-after (I: like Current)
merge-before (I: like Current)

which insert a linked list I to the right and left (respectively) of the currently active position. The precise conditions
@q&e. ..) under which they are applicable should be spelled out. The guiding criteria should be simplicity (no
auxiliary procedure is necessary), preservation of the class invariant, perfect symmetry between left and right, and
elegance. It will be even better if the procedures also apply to two-way lists (next section) without redefinition.

-- One-way linked lists
class LINKED-LIST [T] export

--Featnres from LIST:
nb_elements, empty,
position, offright, offleft, isfirst, islast,
value, i- th, first, last,
change_ Pa&e, change_ i- th, swap,
start, finish, forth, back, go, search,
mark, retrieve,
index-of, present,
duplicate,

-- Plus new features permitted by linked list representation:
insert-right, insert-left,
delete, delete-right, delete-left*
deiete_Qli_occurrences, wipe-out

inherit
LIST [T]

redefine first

first: T, -- Value of tirst element (redefined here as an~bu~)

-- Secret attributes specific to linked list representation
first-element: LINKABLE IT];
active:, previous, next: like first-element;

-- Linked list implementations of features deferred in LIST

value: T is
_I Value of active element

require
not offleft; not offright -- These conditions imply not empty

do
Result : = active. value

end; -- value

change_ value (u: T) is
-- Assign v to value of current element

Eiffel 239

require

not offleft; not offright -- These conditions imply not empty
do

active.change_linkable_value (v)

ensure
value = v

end; -- change-value
start is

-- Make first element active (no effect if list is empty)
do

if not empty then
previousForget; active : = first-element;
check not active. Void end;
next : = active.right; position : = : = I

end
ensure

empty or else isfirst
end; -- start

forth is
-- Make next position to the right active
-- (Applicable only if not offright).

require
not offright

do
if offreft then

check not empty end; start
else

check not active. Void end;
previous : = active. active : = next;
if not active. Void ben next : = active.right end;
position : = position + 1

end
ensure

position = old position + I
end; --forth

go_offleft is
-- Put the list in position offleft
(Secret procedure; use go (0) in clients)

do
active.Forget; previous.Forget; next : = first-element;
position : = 0

ensure

offleft
end; -- go-offleft

duplicate: like Current is
-- Complete clone of the list

***Left to the reader (go through the list, duplicating every list element) ***
(See the corresponding procedure for FIXED-LIST)

-- Deletion and insertion procedures specific to linked lists
insert-right (v: T) is

-- Insert au element of value u to the right of active position if there is one;
-- Active position is unchanged.
-- Applicable only if list is empty or not offright

require
empty or else not offright

local
new: like first-element

240 B. Meyer

do
new. Create (u); insert_linkable_right (new)

ensure
nb-elements = old nb-elements + 1;
active = old active; position = old position;
not next. Void; next.value = u

end; -- insert-right

insert-left (v: T) is
-- Insert an element of value u to the left of active position if there is one.
-- Active position is unchanged.
-- Applicable only if list is empty or not offleft

Left to the reader

delete is
-- Delete active element and make its right neighbor, if any, active
-- (List becomes offright if no right neighbor)
-- Not applicable if offleft or offright

require
not offleft; not offright

do
active : = next;
if not previous. Void then previous.change_right (active) end;
if not active. Void then next : = active.right end;

__ else next is void already
nb_elements : = nb-elements - I;
no-change-since-mark : = false;
check

position - I > = 0; position - I < = nb-elements;
empty or else position - I > 0 or else not active. Void;

end;
update-after-deletion (previous, active, position - 1);

ensure
nb-elements = old nb-elements - I;
empty or else (position = old position)

end; -- delete

delete-right is
-- Delete element immediately to the right of active position; active position is unchanged.
-- (No effect if active position is last in list).
-- Not applicable if offright

***Left to the reader (imitate delete) ***
delete-left is

-- Delete element immediately to the left of active position;
-- active position is unchanged (but its index is decremented by 1).
-- (No effect if active position is first in list)
-- Not applicable if offleft
-- Inefficient for one-way lists: included for completeness

***Left to the reader (use back and delete) ***

delete-all-occurrences (u: T) is
-- Delete all occurrences of u from the list

do
from start until offright loop

if value = v then delete else forth end
end;
no-change-since-mark : = false

end; -- delete_all_occurrences

wipe-out is
-- Empty the list

Eiffel 241

do
nb-elements : = 0; position : = 0;
active.Forget; first_element.Forget; previousForget; next.Forget;
no_change_since_mark : = false

ensure

ew0
end -- wipe-out

-- Secret routines for implementing insertion and deletion

insert_ linkable-right (new: like first-element) is
-- Insert new to the right of active position if there is one;
-- Active position is unchanged.
-- Secret procedure.
--Applicable only if list is empty or not offright

require
not new. Void; empty or else not offright

do
new.put_between (active, next); next : = new;
nb_elements : = nb-elements + 1;
no_change_since_mark : = false;
check

position + I > = I; position + I < = nb-elements
end ;
update-after-insertion (new, position + 1)

ensure
nb_elements = old nb_elements + I; position = old position
previous = new

end; -- insert_linkable-right
insert_linkable_left (new: like first-element) is

-- Insert new to the left of active position if there is one;
-- Active position is unchanged (but its index is increased by one).
-- Secret procedure.
-- Applicable only if list is empty or not offleft

require
not new. Void; empty or else not offleft

do
if empty then position : = I end;
new.put_between (previous, active); previous : = new;
nb_elements : = nb_elements + I; position : = position + I;
no_change_since_mark : = false
check

position - I > = I; position - I < = nb_elements
end;
update-after-insertion (new, position - I);

ensure
nb_elements = old nb_elements + I; position = old position +
previous = new

end; -- insert_linkable-left

update-after-insertion (new: like first-element; index: INTEGER) is
-- Check consequences of insertion of element new at position index:
-- does it become the first element?

require
not new. Void; index > = I; index < = nb-elements

do
if index = 1 then

first-element : = new; first : = new. value
end

end; -- update-after-insertion

242 B. Meyer

update_after_deletion (one: like first-element; other: like first-element; index: INTEGER) is
-- Check consequences of deletion of element between one and other,
__ where index is the position of one.
-- Update first_element if necessary.

require
index > = 0; index c = nb_elements;
empty or else index > 0 or else not other. Void;
-- the element deleted was between one and other

do
if empty then

first-element.Forget; position : = 0
elsif index = 0 then

check not other. Void end; -- See pr~onditiou
first-element : = other; first : = other.vaiue

-- else do nothing special
end

end; -- update-after-deletion
-- Invariant for class LINKED-LIST

invariant

__ The invariant of class LIST plus the following:
empty = first-element. Void;
empty of else first-element. value = first;
active. Void = ~of~eft or offrighi);
previous. Void = (offieft or &first);
next. Void = (offleft or islast);
previous. Void or else @revious.right = active);
uctive. Void or eke ~active.r~ght = next);
-- (offleft or offright) or else active is the position-th element

end -- class LINKED-LIST

A.7 TWO-WAY LISTS

Class TWO- WA Y_LIST IT] introduces doubfy linked lists. Features back and forth now have the same
efficiency; in fact the whole class is almost entirely symmetric with respect to “left” and “right.”

-- Two-way linked lists
class TWO_ WA Y-LIST [T] expert

Same exported features as in LINKED_LZST
-- Some features, however, are redefined more efficiently

inherit
LINKED-LIST [T]

rename go as reach-from-left, wipe-out as simple_ wipe-out,

redefine

feature

first-element, last, back, go, wipe-out, last
update-after-deletion, update-after-insertion

first-element: BI-LINKABLE [T]; -- Redefined from LINKED-LIST

-- For two-way lists, we also keep a reference
__ to the last element and its value:

last-element: like first-element;
last: T;

back is

-- Redefined here as an attribute
-_ (It was a function in LINKED-LIST).

-- Make next position to the left active
-- (Appli~ble only if not offleft).

Eiffel 243

require
not offreft

do
if offright then

check not empty end; finish
else

cheek Rot active. Void end;
next : = active; active : = previous;
if nut active. Void then previous : = active.left end;
position : = position - I

end
ensure

position = old position - I
ead; -- back

go (i: INTEGER) is
-- Make i-th position active
-- (Applicabie only if 0 c = i < = nb_elemenrs+ I)

require
i > = 0; i < = nb-elements + I

do
if i = nb_efements+ 1 then

-- Go offright
active. Forget ; next. Forget; previous : = last-element ;
positron : = no-eiements + I

elsif i -c = position/2 or (i > = position and i < = (position + nb_elements)i2) then
reach__$rom_lefr (i)

else
-- Reach from the right

from
if position < i then

-- Finish (revised for two-way-lists)
active : = last-element; previous : = active.left; next.Forget

end
invariant

position < = nh_elements; position > = i
variant position - i until position = i loop

check not offleft end;
back

end -- loop
end -- if

ensure
position = i

end; -- go
update-after-insertion (new: like first-element; index: INTEGER) is

-- Check consequences of insertion of element new at position index:
-- does it become the first element?

Redefinition left to the reader
***Hints: make the routine sy~etric with respect to right and left; ***
fast-element and last may need to be updated as well as first-element and first

update-after-deletion (one: like first-element; other: like first-element; index: INTEGER) is
-- Check consequences of deletion of element between one and other,
__ where index is the position of one.
-- Update first-element if necessary.

Redefinition left to the reader
***Hints: see u~ate-after_i~ertion ***

wipe-out is
-- Empty the list

244 B. Meyer

d0

simple_ wipe-out; last_element.Forget
ensure

empty
end -- wipe-out

-- Invariant for class TWO_ WAY-LIST
invariant

-- The invariant of class LINKED-LIST, plus the following:
empty = last-element. Void;
empty or else last_element.value = last;
active. Void or else (active. left = previous);
next. Void or else (next.left = active);
-- (offleft or offright) or else active is the position4 element

end -- class TWO_ WA Y-LIST

A.8 TREES AND THEIR NODES

The following class is an implementation of trees, using linked representation. Note that no distinction is made between
trees and tree nodes.

As explained in Section 4.2 of the main text, tree nodes are implemented as a combination of lists and list elements.
The list features make it possible to obtain the children of a node; the list element features make it possible to access the
value associated with each node and its right sibling (the class may be redefined using two-way lists and “bi-1inkable”
elements to allow access to the left sibling as well). The added feature parent makes it possible to access the parent of
each node.

Since each node of the tree is-among other things-a list in the sense defined above; so it keeps a record of which of
its children is the “active” one. To change the active child of a node, procedures inherited from LIST (through
LINKED-LIST) are available: back, forth, go, etc.

class TREE [T] export
position, offright, offleft, isfirst, &last, start, finish, forth, back, go, mark, return,
k-leaf, arity,
node_ value, child_ value, change-node- value, change-child- value,
child, change-child, right-sibling, first-child,
insert-child-right, insert-child-left,
delete-child, delete-child-left, delete-child-right
parent, is-root

inherit
LINKABLE [T]

rename
right as sibling,
value as node_ value, change_ value as change-node- value,
put-between as linkable-put-between;

redefine put-between;
LINKED-LIST [T]

rename
empty as is-leaf, nb_elements as arity,
value as child-value, change-value as change_child_value,
active as child, first-element as first-child,
insert_linkable-right as insert-child-right, insert_linkable-left as insert_child_left,
delete as delete-child, delete-left as delete_child_left, delete-right as delete-child-right,
update-titer_ insertion as linked_ update-after- insertion ;

redefine first-child, update-after-insertion

feature

first-child: like Current;
parent: like Current ;

245

attach_to_parent (n: like Current) is
-- Make n the parent of current node.
-- Secret procedure.

do
parent : = n

ensure
parent = n

end; -- attach-to-parent

update-after-insertion (new: like first-element; index: INTEGER) is
-- Check consequences of insertion of element new at position index:
-- does it become the first element?
-- Secret procedure redefined from LINKED-LIST

require
not new. Void; index > = I; index < = nb-elements

do
linked-update-after-insertion (new, index);
if index = I then

new.attach_to_parent (Current)
end

end; -- update-after-insertion
change-child (n: like Current) is

-- Replace by n the active child
require

not offleft; not offright; -- Thus not child. Void
not n. Void

do
insert-child-right (n);
check

n.parent = Current
-- Because of the redefinition of put-between

end;
delete-child
check

child = n

end
-- Because of the convention for the new active element after delete

-- A direct implementation (not using insert and delete) is also possible
ensure

child = n;
n.parent = Current

end; -- change-child

is-root: BOOLEAN is
-- Is current node a root?

do
Result : = parent. Void

end; -- is-root

put-between (before: like Current; after: like Current) is
-- Insert current element between before and after (if it makes sense)
-- Redefined from class LINKED-LIST
-- to ensure that Current will have the same parent as its new siblings.

require
(before. Void or after. Void) or else (before.parent = after.parent)

do
linkable-put-between;
if not before. Void then attach-to-parent (before.parent) end;
if not after. Void then attach-to-parent (after.parent) end;

end; -- put- between

B. Meyer

invariant
-- The invariants of the parent classes, plus the following:

is-root = parent. Void;
sibling. Void or else sibling.parent = parent;
child. Void or else child.parent = Current;
previous. Void or else previous.parent = Current;
next. Void or else next.parent = Current;
first-child. Void or else first_child.parent = Current;

end -- TREE [T]

