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The Eilfel language addresses the problem of designing quality software in practical development
environments.

Two software quality factors were deemed essential in the design of Eilfcl: reusability and
reliability. Consideration of the technical implications of these factors led to the following
choices: language features that encourage bottom-up software design; modular structures based
on the object-based approach pioneered by Simula 67, but including both generic parameters
and multiple inheritance (with a new extension. repetitive inheritance); highly dynamic
execution model; information hiding facilities; assertions and invariants that may be monitored
at run-time.

The current Eilfcl system runs under Unix and uses C as an intermediate language; it also takes
care of configuration management aspects, automatically performing tasks similar to those of
the Unix Make tool.
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Our main interest is in designing software, not programming languages. But whcn wc
looked for a language allowing the development of production-quality software according t,o the
modern principles of software engineering, we realized that no existing language providcd the
needed facilities; this simple realization led to the design of f:iffel. .

f:iffcl is int.ended for use at both the design and implement.ation stages of softwue
development. The language has been implemented and currently runs on Unix; the basic library
described in Part 2 is used as support for what constitutes our real aim: producing advanced
software tools such as Ccpage, a structural and visual editor [17, 19], Winpaek (a general-
purpose screen handling package) and other products.

This article is a general presentation of the language and the underlying design method.
Part 1 covers the fundamental coneept.s of the language and will allow the reader to understand
Part 2, a set of programming examples from the basie Eiffel library. The emphasis on this
library reflects the fact that a mere presentation of individual language characteristics would
not suffice to show what may be the most important aspect of the Eiffel approach: a method of
software design and implementation which views software systems as structured networks of
extendible and reusable abstract data type implementations.

The rest of Part 1 reviews the language. In section 1.2, we give an overview of the design
criteria for Eiffel. Section 1.3 introduces some of the basic concepts of object-based design.
Section 1.4 describes the fundamental Ei ffel structure (the class). Section 1.5 presen ts the
multiple and repeated inheritance techniques that constitute the key to reusable programming
in EiffeI. We describe the typing rules in section 1.6 and the use of assertions for expressing
correctness arguments in section 1.7. Section 1.8 briefly surveys the practical aspects of Eiffel
usage and our current implementation techniques.

Part 2 is a library of Eiffel classes defining reusable software components that play an
essential role in our current developments.

Part 3 summarizes the main results and mentions some related efforts.

Although a few details may remain hazy, we hope that the reader will form a good idea of
Eiffel programming. The examples use the essential features of Eiffcl, and thus provide a good
view of the language: if you understand this article, you may still have a few things to learn to
become a real Eiffel programmer, but not many.

The design of Eiffcl was guided by the following concerns.

• The aim is to produce software, not t.o do research on languages; efficiency is thus an
important criterion, precluding the use of functional or interpreted languages.

• Reliability of the software we produce is another fundamcntal aim, promoting such
features as strict type checking, limitations on side-effects, etc.

• Current program construction techniques, which amount to re-inventing the wheel over
and over again, seem unacceptable to us. Software development methods and languages



should cmphasize the reusability of softwarc componcnts as one of their primary goals.

• Extendibility (the ease of adapting software to changes and specifications) and
compatibility (the ease of combining separately produced software elements) are also
essential in the long term.

• A particularly important requirement of the main type 'of software we develop (software
engineering tools) is the need to manipulate complex, highly dynamic data structures. It
should be possible to create as many of thcse objects as needed and to rely on support
tools for automatic memory management and reclamation of unused space; programmcr-

~., _ controllcd. d~allo~ation (in the PLfI-Pascal-Modula 2 tradition) is an awkward and
dangerous feature whose presence is uncxplainable in any language whose designers have
expressed any concern for program reliability. . ,

• Modular language co~structs should make it possiblc to construct and compile systems
pieccwise and to place strict controls on the flow of information between modules.

,. • Finally, portability is also a serious concern.

Of course, a solution to these issues must involve element.s other than programming
langllages; for example, rellsability raises questions of specification (to be r('usable on a large
scale, soft,ware components should b(' formally specified), design (all(' needs to reuse designs, not
just codes), documental,ion (to reuse elements, on(' mllst. lind Ollt about t.hem) and tools (to
retrieve and combine component.s). Reusabilit.y also raises non-technical questions: training,
economic incentives and others.

However the role of technical a.spcct.s, and more precisely of language features. should not
be underestimated: all software designs Inust eventually be expressed in terms or progr:nTlS, and
it is well known that programming languages exert a strong inlltH'IH'e on the way software
developers think. Thus we felt t.hat ehoosing a proper language was a key st.Pp towards mcet.ing
the above criteria. But it docs not take a very long analysis to realize that no widely available
language satisfies all of t.hem.

In our experience, the genera.l approa.ch to software eonstruction that best answers the
above concerns is the method known as objed-based design, which may carried over to the
implementation stage through object-based (or "objecl.-oriented") programming languages
applying the ideas introduced by Simula 67.

There arc several ways to describe object-based design, depending on the individual
present.er's background. Because Smallt.alk has been so largely publicized, many current views of
object-based programming emphasize two aspects: the concept of messa,ges for. cOlllmunicating
information between objects, and the very dynamic nature of the Smalltalk environment, which
makes it· possible to defer bindings between names and their denotations until run-time and, as
in Lisp, provides programmers with great rreedom. Such features arc part.ieularly useful from
the perspective of Artificial Int,elligence applications, for example, or for rapid prototyping.

Our interest in object-based languages comes froma more traditional software enginel'ring
perspective. W'c view these langua.ges as providing key techniques for ensuring reusability,
extendibility and compatibility. However in a software engineering context these qualities must
be balanced with other criteria mentioned a.bove, such as reliability, efficiency of the generated
code and portability. Thus static type checking, for ('xamplc, and more generally static binding,
arc essentia.l concerns.

In this respect, the author's view was much infiuenced by Simula 67; I was particularly
fortunate in having for many years access to an excellent compiler for that langua.ge, developed



for IBMfMVS systems by the Norwegian Computer Center. This experience convinced me that
object-based programming was the right approach to produce extendible and reusable software.
EilTcI improves (I hope) on the Simula concepts, but it is proper to mention my debt here.

With this' background,'we may'present the definition of object-based design which
underlies EilTel. Object-based design is viewed as a system modularization technique, relying
on the idea that the structure of software systems should best be patterned, at the highest level,
on the objeds inanipillated by the system, rather than on the system's function.

Several argument,s may be used to support this approach. Here we shall only elaborate on
one: extendibility.

Observation of durable programs shows that the precise tasks performed by systems vary
dramatically ovcr their Iifecycle. For example, a program may simply perform, at a certain
stage of its evolut,ion, an input-to-output transformation, each run processing a batch of data
and producing corresponding results; as such programs are used and adapt,ed, they often evolve
into systems that keep some information bctween successive runs, and may end up as interactive
systems accessing a comprehensive data base, with finer-grain inputs and Olltputs for each
individual transact.ion.

Studied from the standpoint of the tasks they perform, the initial and the final versions
may be very dilTerent. To realize that they are versions of the same program, one has to look
closer and consider the objects handled by the system. If viewed from a sufficiently high level of
abstraction, these objects will in most cases turn out to be the same in both versions. For
example, a payroll processing program, regardless of its precise functions, will act on dat.a
represcnting entities such as employees, company regulations, workload information, etc.; or a
plant monitoring system will act on dat,a representing sensors, devices, materials and the like. In
both cases the system's identity is better characterized in the long term by these objects than
by the more fiuctuating functions which are applied to them.

Th above remark is one of the main reasons for basing the module structure of the systcm,
at the highest level, on the data rat.her than the act.'lons. The basic moUo of objeet.-based
design could thus be formulated as follows:

Principle 1 (object-based modular structure): do not ask what. the systPlIl docs: ask
what it dol'S it to.

To get object-baspd design in its full scns(', howpver, flirt h('r skI'S must be t.aken. The next
one takes into account the r('mark Illade above that, obj('('( d('script.ions should b(' abstract
en'ollgh; ind('ed, basing the struct.ure of sys(..('ms on the physic:11 strul'lure of dat.a would produce
rat.herdisastro'us results with respecllo extendibility. In fact" a study of soft.ware maiiltellanee
costs by Lientz and Swanson [Iill shows t.hat., Ollt. of t.he approximat.(')y ,,)0";, of soft.ware cost.s
devot.ed to maint,enanee, more t.han_ 1j"1; aris(' from (,he need t.o aceounl for changcs in physical
data formaLs. Thus oncwollld he ill-advised to' wire physical dat.a r('pr('s('ntat.ions int.o the
physical st.ructure of 'program~.

The a nswer lies in da ta a hst.rae\.ion. The t.heory of ab;.;(,ra<'t dat,a types provides a way' to
(kscribc classes of obj('ets by t.heir ('xt.ernal f('at.ures rat.her t.han t.h('ir physic:d represcntat,ions.
The fraturrs in quest.ion 'are t.he op('rations aPrilieabl<; to objects of t.he class :tnd t.he abst.ract
properti('s of t!iese op(,ratio'ns. Note that th('se operat.ions 'arc what. was ca Ibl thf' "functions"
above.

TIll' dualit.y between fundions and obj('cts is an unescapable fact of programming; object-
b:tsed design docs not contradict it" but introduces a dissymmdry by using object.s, not
functions, to structure software SySt.(,lllS at the highest levels, With abstract. dat.a types,



however, functions reappear as the way objects (or rather object classes) are characterized, so
the loop is closed. The essential difference with classical techniques (based on procedural
deeomposition) is that functions are attached to data structures rather than the reverse.

We thus reach our second step towards object-based happiness:

Principle 2 (data ~bstraetion): Objects should be described as implementations of
abstract data types.
\1 • .,'

M~st current progra~~ning lang~ages make it possibie'to' reach this level, that is to ~ay to
design modules that encapsulate the implement'ationof 'one6r more ab~tract data types. Ada
and Modula-2 are obvious examples of such langu~g~s. Even Fortran' may be used for this
p~rpose by w~iting subroutines' with more than one entry (corresponding to the various
operations on an abstract data type); however what is provided in the Fortran case is the
implementat.ion of a fixed number of abstract objects, rather than of an abstract data type. On
the other hand, languages which do not provide any such possibility are Pascal, Cobol and
Basic.

The third step is of a less conceptual nature. It reflects an important implementation
concern: how objects are created. To be able to freely use objects, programmers should not have
to take care of their physical allocation and deallocation. Here most of our language friends
leave us; although this is in a strict sense a property of language systems rather than languages,
the language design may help or hinder the implementation of a garbage collect.or. Pascal and
Modula-2 systems do not normally include garbage collection; the Ada standard ( [I], section
4.8) defines it as an optional feature.

On t.he other hand, all Lisp systems provide garbage collection, which is part of the reason
why Lisp has oft.en been used to implement object-based languages, and has itself been suhjected
to object-based extensions.

Principle 3 (automatic memory management): Objects should be created and
deallocated by the underlying language system, without programmer intervention.

The next step is the one which, in our opinion, t.ruly distinguishes object-based languages
from t.hc rest of the world. It may be understood by looking at languages which are not object-
based even t.hough they provide facilities for dat.a abstraction and encapsulation, such as Ada
or 1\.1odula-2. In such languagl's, the module (package in Ada) is a purely syntactic const.ruet,
used to group logically related program elements; but it is not itself a meaningful program
element., sHch as a t.ype, a variable or a procedure, with its own semantic denotation. In
contrast, the approach pioneered by the designers of Simula views modules as first.-c1ass citizens;
more precisely, it all but. ident.ifies the notion of module with the notion of type. We may say
that the defining equation of such languages is the identity module == type.

This fusion of t.wo apparently dist.inct notion:; is what. gives object.-bas('d design its
dist.inctive navor, so disconcerting to programmers used to lllOrl' classical appro:lches. In its
dogmatism, it has som(' drawbacks. But it also gives considerable conc('ptual integrity to the
general approaeh.

Principle 4 (classes): Every non-basic t.ype is a module, and l'very high-level module
is a type.

The qlHdifier "non-basic'" ke(':p:; open t.he possibility of having simpll' pr('(kfined typ('s
(such as INTEGER, ek.) which are not. viewl'd as modules, and t.hl' word "high-kvel" makes it
possible t.o have program struct.uring units such as pro('('dures whieh arl' not t.ypes.

A Ianguagl' const.ruct (:ombining Ihe module and t.ype asp('d,s is called a class.

Thl' n('xt. step is a natural eons('<]Iwnce from principle ·1: if we id('ntify tsP<'s with modules,
th('n it. is tempt ing to id('ntify I.he reusability mechanisllls provided by both ('O!W('pts: on l.!H' all('

hand, tlH' possibi'lit.y ror a modulI' to directly rdy on l'nl.il.i('s d('lincd in llnot.lll'r (provid('d in
modular langu:lges hy such visibility ml'chanisms as t.he Ada "us(''' dlluse); on th(' ot.h('f hand.
thl' eO!H·l'pt. of subt.ype, wherl'by a n('w type may. b(' definl'd by adding IH'W prop,~rt.ies t.o an
(~xist.ing t.ype (as a Pascal int.eger range, whose 1'1(~ml'lIls arc int.q;('rs subj(,(·t to some



restrictions). In object-based languages, this is known as the inheritance mechanism, with which
a new class may be declared as an extension or restriction of a previously defined one. Its
realization in Eiffel is described in section 1.5.

Principle 6 (inheritance): A class may be defined as an extension or restriction of
another.
We shall say in such a case that the new class is heir to the other.

The above techniques open the possibility of an advanced form of polymorphism, in which
a given program entity may at run time refer to objects belonging to any of a' set of different
classes, all of which, offer an 'operation with the same'external specification but different
implementations. Applying an operation to the entity will result in the appropriate
implementation being selected, depending on the particular object associated with t.he entity at
the time the operation is executed. For example, an entity representing a device might become
associated at run-time with either a tape or a disk; the operation "read" applied to the entity
will be carried out differently in each case.

Principle 6 (polymorphism): Program entities should be permitted to refer to objects
of more than one class, and operations should be permitted to have different
realizations in different classes.

This principle is implemented in different ways according to the philosophy underlying
existing langua~es. In the design of Smalltalk, it is satisfied almost automatically because of the
dynamic binding policy: entities have no static "types" in the ordinary sense, so that they may
at run-time refer to objects of any class; when an operation is requested on an entity, its
dynamic state determines what realization, if any, is available for the operation.

In contrast, every Eiffcl entity has a static type (class) and thc dynamic typf'S it may take
are restricted to the descendants of that class (that is to say, the class itself and its direct and
indircct hcirs). The above principlc is implcmf'nted in Eiffel by permitting thc redefinition of a
class operation in a descendant, and by having deferred operations whose implementation is
only given in the descendant.s.

Existing languages that (in ollr opinion) are wort.hy of the name "object-based" satisfy all
principles above; they include Simula [10, 3, 161, C++ [24], Object Pascal [2;>], Objf'ctive-C [8]
and Small talk [12].

The next and last step extends the notion of inheritance to enable reuse of more than one
context. This is the notion of multiple inheritance, developed in section 1.5 below. Of the
languages mentioned above, only Small talk, t.o our knowledge, offers it in its recent versions
(although the basic reference on SmaJltalk, cited above, excludes this feature). EifTel adds t.o this
notion the concept of repeated inherit.ance (reusing the same structure more than once); see
1.5.5 below.

Principle 7 (multiple and repeated inheritance): It should be possible t.o decla.re a
class as heir to more t.han one class, and more than once to the same class.

The reader may have not,ed that. in our seven "principles" we have alternat.ed between
high-level, design-related conf'epts and programming language features. One part.icubrly
interesting benefit of the object.-based approach is indeed that the same language may be IIsed
for design and implementat.ion. Some language traits, such as deferred featurf's (1.5.8) are
especially useful for the applicat,ion of Eiffcl t.o system design.

We now in[.rodllC'f' the basic ('lements of Eiff\'1 programming: run-t.ime model, objects,
classes, ('xport cont.rols.



Before introducing the syntax of the language, it is best to first present the model that
underlies its dynamic semantics.

EifTeI relics on an ent.irely dynamic execution model: the execution of a system (a term
which is preferred to "progra.m" for this language) may be characterized at each instant by the
presence of a certain number of objects, each of which possesses some attributes. Attributes
are either simple values (integers, booleans, real numbers or character strings) or relerencestQ
objects. 'Figure 1 gives a pictorial view of such a collection of objects apd their attributes. .

Operations, or routines, may be applied to objeds. Routines are divided into
procedures and functions. One may think of procedures as commands and functions as
questions: a procedure may change the state of the associated object hut docs not return a
value, whereas a funct.ion returns a value without. normally modifying the ohject. A related
analogy would be to see the objects as having action buttons, the procedures, and display
indicators, the functions. The features associated with an object comprise its attribut('s and



the routincs that, arc applicable to iL

The execution of an EifTel system is started by creating an objeet, and calling one of its
procedure fea.tures; executing this procedure will usually trigger the creation of other objects
and more routine calls.

An EifTcI system consists of one or more classes, each describing a set of potential objects
with the same features (aLtributes'androuti'nesk that'is' to say, with the same structure a.nd
operations.

In other words, a class describes the implementation of an abstract data type.

As implied by the above principles, Classes are not only types but also modules. In fact,
they constitute the only system structuring facility.

The program elements that may take on values at run-time are called entities. The
notion of entity is more general than that of variable, since it includes (in EilTcI) local variables
of routines (including the predefined variable Result denoting the result to be returned by a
function), routine parameters, and constructs denoting object attributes.

EifTcI is a strongly typed language: every entity is declared with a single static type. Four
types, called "simple", arc predefined: BOOLEAN, CHARACTER, INTEGER and REAL. All
other types arc class types.

Let x be an entity of a class type C. At any point during system execution, x mayor
may not be associated with an object. If it is, we say that x is "created", if not, that it is
"void". The boolean expression x. Void has value true in the latter case only.

The following two instructions change the state of an entity: x.Forget puts x in the void
state; x. Create puts x in the created state by creating a new object of type C and associating it
with x. Figure 2 shows the two states, the transitions between them and the allowable
operations in each. AB the figure shows, there are other ways to 301 temate between states, for
example by assignment (see below).



o.Forget
or a := oj where oj is void

o.Create
or a := a I where 0' is allocated

\' ,I!.

Allowable operations:

o.Create

o. Clone (0')

o. Void

I(returns true)

o.Forget (no effect)

0:= 0'
0':= a

P ( .... J OJ ••• .)

no other
I features
I

o. Create
(re-allocates 0)

o.Clone (0')
(re-allocatc$ 0)

o. Void
(rct IIrns false)

o.Forget

0:= 0'
0':= a

P ( .... J OJ ••• .)

o.Extract (0 ')

all other
features

Void, Create and Forget are predefined features applicable to all cla~;ses. The language
includes two other predefined features: x.Clone (y) creates a new copy of the object referenced
by y and assigns to x a reference to the new object; proccdure Extract performs conversions
between objects of diffcrent classes and will be described in section 1.6.1.

Every entity has an initial value. The initialization rules are part of the langllage
definition: they arc not implementation-dependent.

By defalllt, numbers will initially be 0, booleans will be true, character sl,rings will be
blank and objcet. references will be void.

If a different initialization is desired for the attributes of objects of a elass C, a procedure
called Create, with or without parameters, may be defined for that class; it will then be applied
to every object of the class upon creation. This is what is done in section 2.2 for the ARRA Y

: :.' \ .'.

. ,

• ~.~, J;.}:J {5~ ~~ ;-1", . .,,;l~'-~ ~



cla~s, for which a version of Create is defined in such a way that t.Create (min, max) will
associate with t a new array with bounds min and max.

A class declaration introduces a set of features associated with objects of the class:
attributes and routines, the latter comprising procedures and' functions.

All parameters to a routine are protected: more precisely, a routine, whether a procedure
or a function, may not include an assignment whose target is a formal parameter of the routine.
However, aprocedure'may, by'applying procedures to its parameters, change the attrihutes of
the associated object,s.

The construet IIsed to express the application of feature f to the object associated with
cnt,ity x, called a remol,e feature application, IIses a dot notation. If f is an attrihute or a
routine wit.hout parameters, the notal.ion is

x.f

If f is a routine with paramcLers, adual parameters IlIw'it be provided:

x.f(PI! P~""',PII)
~ither form of remote feature appli('ation is only va,lid if x is declared of a class t.ypc for

which f is a valid feature.

Either form is syntactically an in~t,ruction if f is a procedure, or an expression if f is a
fundion or an atlribute.

!\ssignlTH'nt is written with the standard := operator. For class typ<'s, the s<'llwnt.i('s of
assignlTH'nt is by r<'fercnce, not copy: ent.ities of <:lass types represent references to obje<:f.s, not.
t.he objects themselves. Thus for entity of class types the assignment x := y results in x and y
being a reference to t.he sallie obj<,et (or x being void if y was).

Control stnJ<:tures inelude the loop, the condit.ional, and selluencing, representcd hy the
semicolon.

The example below shows the basic structure of a class. It introduces an elementary
notion of "point" which could be used (with suitable eXI,ensions) in a graphics system.

Following the Ada convent.ion, any part of a line beginning with two cOllsecutive dashes --
is a comment.



class POINT export
x, y, translate, scale, distance

feature
x: REAL j

y: REAL j

'scale {factor: REAL} is·
- - Scale by a ratio of factor.

x := factor*x j

y := factor*Y
end; - - scale

translate {a: REAL j b : REAL} is
- - Translate by a horizontally, b vertically.

x := x+a j

y := y+b
end j - - translate

distance {other: POINT}: REAL is
- - Distance from current point to other.

require
not other. Void

Result := sqrt {{x - other.x} • 2 + {y - other.y} • 2}
end - - distance

end -- class POINT

The features of this class comprise two attributes, x and y, and three routines: two
procedures, translate and scale, and one function, distance.

The' export claus(~ says which features arc puhlic. Here all feat.ures arc public, but in
general classes will possess "secrets". Public features may he used by clients of the e1ass, tha.L is
to say classes that include one or more entity declarations of the form

p.Create j - - Dynamic alloeal,ion of p

p.translate {3.5, 2.2} j - - Transbtl,ion

In e1ient classes, public aLtribuf,{'s (here x and y) are accessible in read-only mode: an
assignment such as p.x := ... is not permitted; the corrcsllonding dIect may only be obta.incd in
adient e1ass by calling a public proceduJ'(' which will modify the attribuks itself, such as
translate in the POINT example.

It is also possihle to export a feature f to a sdectcd set of classes CI, C~,.... only, by
listing it as f {C1, C~,.... } in tlH' export, clause.

As in other true objeet.-based languages, the text of an EilTd e1ass always refers to a
current object of the class. Most of the time this current object is ~tl1onymous; in a class (like
POINT), a feature nlime (Iikp x) which appears unqualified (i.e. just, X, not p.x for some p of
type POINT) denotes the corre'sponding feature of the current object. If one ne('ds to refe'r
e'xplicit.ly to the current objcc·t, the predefine'd entity name Current is available. Thus We' may
consider a name such as x, appearing unqualified in Plass POINT, as a synonym for Current.x.



The special variable Result is used in functions: as shown by the example of distance, it
dcnot.es the result to be returned by the function in which it appears. It is considered as
implicitly declared of the right type (REAL in the case of function distance).

'C',' " .'" •• /,'; , ,

One more basic proper.ty of classes belongs in this overview: a class may have one or more
generic parameters that represent types. For example, section 2.6 introduces a class
representing linked 'tists of objects of an arbitrary type Tj its declaration begins with:, .

The presence of T as generic parameter allows the class to contain declaration of entities
of type T. Adient of the class will then declare entities of type LINKED_LIST [INTEGER],
LINKED_LIST [POINT], etc.

The "horizontal" form of genericity, as provided by class parameters, is a useful
complement to the more powerful "vertical" reusability features oITered by inheritance and
described below. Another language that combines these two approaches is LPG (Language for
Generic Programming), developed in Grenoble [2].

The power of such a combination is evidenced by the examples of Part 2, A more detailed
comparative analysis of genericity and inheritance and a rationale for their use in EiITci may be
found in reference [18].

Inheritance, introduced hy Simula 67, is one of the key techniques for rem;ability. It
makes it possible to entrust a new class with the features of previously defined classes.

Inh<'ritance as oITered by EiITcl is multiple: a class may inherit from as many classes as
needed. The only constraint is t.hat the inheritance graph should be acyclic.

The following example shows the whole power of this notion. If the reader remembers just
one idea from this artiele, we would like it to be this: a tree is a list and a list element. Let's
explain.

In the classes of Part 2, we define lists of various brands, One of these classes has already
been ment.ioned: LINKED_LIST [T] (section 2,6), describing one-way linked lists of elementsj it
itself inherits some of its prop<'rties from a more general class, LIST [T] (seetion 2.3), which
introduces properties of arbitrary lists without commitment t.o a particular representation, As
lTlay be expected, t.he features declared in class LINKED_LIST include routines for inserting
element.s at various places into a list., removing clement.s, accessing c1emcnts, etc.

In order to manipulate linked list.s of clelTlents of type T, one needs :t data st.ructure for
the individual (~omporients of a linked list; sueh componcnts arc cell~ consist.ing of two fields, a
,;:tll;e of t.ype T and a referencc t.o' ;~.nother ('ell. We u~e the word "linkable" to refer to such
('('lis. Class LINKABLE [T] (scet.ion 2,,'» describes their features, part.i(~ularly two attributes:
value, of type T, and right, of t.ype LINKABLE [Tjl.

Now assumc we nccd t.odcfine !.II(' notion of tree, as impl('TTIenl('d in linke'd fe'pr('sent.at.ion,
We mflY ('('rtairdy st.a.!'t. fro'm scralc'h; programming tradit.ion, as well as fift·('('n ye'ar" of
propaganda for l.op-down design, inl]Ped cricourage' us to do so. Hut the; event u:!!' fe'sldt. is
a"su!'('d 1.0 look very much, at least. in part., like what was obl,airl('d for li:-ls: insert.ions,
dC'lcl.iolls, :!c(:ess t.o subt.rees, ('t.e. Th(' main dilTerencc is t.hat here t.hes(' operat.ions apply to



subtrccs rather than list elements.

Rut from this last remark comes the light: a tree is indeed a list (since it is made of a
number of subtrees), and also a list element (since it may be used as subtree for another tree).
Hencc the solution described in section 2.8, whereby trees inherit from both lists and list
elements:

class TREE [71 export ... inherit
.. ~INKED_LIST [71; "

LINKABLE [11
feature .

Of course, this is not quite enough: one must add the specific features of trees, and the
little mutual compromises which, as in any marriage, are necessary to ensure that life together
is harmonious and prolific. But it is significant that the new data structure may essentially be
engendered as the legitimate fruit of the union between lists and list elements.



This process is exactly that used in mathematics to combine theories: a topological vector
space, for example, is a vector space that also is a topological space; here too, some connecting
axioms. need to be added to finish up .the m,crger.

Such is the power of multiple inheritance. Few languages have permitted it so far; it is
available in Xerox's experimental Traits system [9] and, as mentioned above, in recent versions
of Small talk.

-."I ~. -: . . ~ j"

Figure 3 gives the structure of the inheritance graph for the classes in Part 2.

We use the following terminology. An heir of a class C is a class which lists C in its
inherit clause ... On· figure 3, this is shown by an arrow from A to B; for example, the heirs of
LINKABLE are BLLINKABLE and TREE. The descendants of a class Care C itself and
the descendants of its heirs; for example, the descendants of LIST are FIXED_LIST,
LINKED_LIST, TWO_ WA Y_LIST and TREE. The reverse notions are parent and ancestor.

One aspect of inheritance worth noting here is that this mechanism is independent from
export controls. Notwithstanding its export clause, a class will bequeath all its features to its
desccndants -. lock, stock and barrel or, if you wish, the family secrets as well as the public
facade. To reject part of this heritage, specific techniques must be used, such as feature
renaming and redefinition, seen below; the export restrictions apply to clients of the class (see
section 1.4.9 above), not to its descendants. It is even possible for a class to export a fcature
inheritcd from another class in which that feature was secret.

We have found the orthogonality between the export and inheritance mechanisms to be a.
shock to some pcople, but a moment's reflection should convince the reader that this is indeed
the right decision.

As an example, consider again the relationship between linked lisLs and trces. The notion
of LINKABLE cell should be of no concern to clients of the class LINKED_LIST [T], who are
only interested in dealing with lists, of type LINKED_LIST [T], and values of list elemcnts, of
type T. Internally, class LINKED_LIST uses a feature called active which r('presents the ccll at
the currently activc list position. This feature, of type LINKABLE [T] , is naturally secret; it is
used for thc implcmentation of exported features such as value (the value at the currcntly
active position), inserCright (insert a new cell of given value at the right of currently active
position), etc. The list cells themselves are none of the clients' business.

For trees, however, the picture changes. As we saw, trees are lists and list elements; the
not.ion of currcntly active list position transposes to "currently active child" of a tree node.
Here th(' child node itself is nceded, not just its T value as returned by feature value; to
perform tree travcrsal operations, we must be able t.o go from parent to child, both considered
as tree nodes. Feature active is thus exported in class TREE [T] even though it is inherited
from a class where it was secret. (The renaming mecha.nism, described below, enables class
TREE to refer to this feature undcr t.he name child, more appropriate for the occasion).

Why are inheritance techniques so crucial for- thc production of reusable software? In ollr
opinion, what explains their superiority is that they make it possible to write software modules
that. arc both open and usable as they stand, whereas these two aims are contradictory with
classical methods.

L('t. liS look for example at. a typical language structure IIsed to support these methods, the
<LILa types with "variant parts" as offered by Pascal and Ada. Sure enough, such constructs
make it possible to write software elements that may exist in several versions; but as soon as
one needs to actually use such an element (by compiling it if it is a program c1cmcnt, or having
it, approved by management and hasclined if it is some part of the design documcntation), the



li~t or po~~ihle variants mu~t, he rrozen; any later addition or new variants will imply tha,t
exist.ing :"ortwarc clements (which relied on the initial version) have to be modified.

Simila.r1y, any change in the list or formal parameters to a procedure, in the set or gcneric
parameters to an Ada package, or in the repertoire of operations availahle on an ahstract data
type, will result in tricky problems or sortware configuration.

In contrast, multiple inheritance as olTered by EilTci makes it possible to use a class - to
store it, to compile it, to execute its routines, eLe. - and at the same time to leave open the
possibility that the class will eventually be used as parent for an unlimited numher of
dcscendflnts, corresponding to all the cases that one did not envision initially. This may be
stater! as dIe principle of openness, which we view as one of the essential laws of sort.ware
design: whatever you design, keep it open for future extensions.

A further example of the application of this principle to EilTel is the fact that the language
docs not include a construct (such as the inspect ... when ... instruction of Simula 67) which acts
as a case instruction to discriminate between the various heirs of a class. Were such an
instruction to exist in Ei lTel, class LIST, for example, could contain an instruction that chooses
between several actions depending on whether the current list is a FIXED_LIST, a
LINKED_LIST etc. But this would mean that LIST, as part of the knowledge it emhodies, has
inrormation on the set of its possible heirs: thus it would no longer be open for designing ncw
heirs without modification. To achieve the effect of inspect in EilTci. one may use such
mechanisms as dcl'erred and redefined reatures, which preserve openness.

The inheritance relation may be viewed as an "is-a" relation [41, in the sense that an
elephant "is-a" mammal and also "is-a" gray thing. From this remark comes the rule that a
language entity declared of a certain class type, say C, may at run-time refer to an object of
any descendant type of C. For example, an entity declared

l: LIST [INTEGER]

.may refer to a two-way list or to a tree of integers. The reverse, however, is not true.

If we call the type with which an entity is declared its "static" type and the type or the
object to which the entity (if not void) refers at some point during system execution its
"dynamic" type, the rule is that the dynamic type must be a descendant or the static type.
Remember that 3. class is induded in its own descendants, so the two mayor course be the
same. Whenever we talk about the type of an entity, without further qualification, we always
mean its static (dcclared) type.

The basic EilTel rule for resolving name clashes is simple. Within a class, there may be no
name conflict. (overloading): any unqualified name must denote one and only one feature. This,
in om view, is essential ror readability and sarety.

• .> With th'e .emphasis on reusabIlity and bottom-u p construction, however, it is inevitable
that classes developed separately will include features with the same names; hut it should still
be possihle to ('ombine such ('lasses through the mult.iple inheritance mech;\lIism. Renaming
solves the dilemma by allowing the heir, at the point of inheritallee, to resolve any name conflict
hy renaming selected features or the parent classes. The inherit clause will thus in its most
gencral rorm appl'ar as:

~
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class C export ..... inherit
A

Class C will refer to the renamed features under their new names (9\, 9~, ... , nil n~, ... ,
de.). "The ban 'onoverloading applies to the set of names that arc visible in the class aftr'r
renaming has heen applied.

An interesting consequence of the renaming policy is an EifTel c:oncept tha.!. exl.PIHls
multiple inhcritance: repeat.ed inheritance:!. Repeated inheritance makes it possible to inherit
more tha.n once from the same class, sharing some features and duplicating others.

Assump for example that a class SORTABLE_LIST [T) has heen dc!inpd as a descendant
of LINKED_LIST [T]; among the features we single out t.he following two:

nLelements: INTEGER;
-- The numher of clements in the list
-- (this feature comes from LINKED_LIST

-- Sort the list
do '" end;

We may want to use this class to define, say, a stock inventory list of materials, kept
sorted in two different ways: from each element in the list, one may accpss its successors by
either unit price or available stock quantity. This is achieved simply by inheriting twice from
the sorted list class, and removing name clashes through renaming clauses, as in

class INVENTORY_LIST export ..... inherit

: SORTABLE_LIST [MATERIAL]
rename sort as sorCby_price;

SORTABLE~IST [MATERIAL]
rename sort as sorCby_quantity

feature ....

Here feature sort is inherited twice under different names, so sorCby_price and
sorCby_quantity are really two different features for class INVENTOR Y_LIST; their effect,
corresponding to their names, should indeed be different (for this to work properly, of course,
other features necessary fQr the execution of sort, such as the attributes representing the
clement keys used in the comparisons and the procedure for swapping elements, should also be
renamed separat.ely).

~ Rl'pl'atl'd inhl'ritance exi~ls in thl' L~l spl'rilicati'on language a""oriatl'd with thl' ~I nll'fhod [:''01. which in
nUlllY rl"l'l'ch ma~'hl' "il'w"o a" the formal 'pl'cification methoo a",,,,,riatl'd wilh the u~e of F.ilfrl for dl',ign and
programming. On thl' other hand. the sl'mantics giHn by Sannl'lIa [2:3) as wl'li as Bur"tall ano Goguen [:'l] for
anothcr spl'cification langunge. Clear [6. iJ. \l.-e tl'chniqul's designl'd to merge Ihl' in5tances of a single fl'atllfe
II hl'n it ha" hel'n inhl'ritl'o more than once; thus it seems that t he designer" of t his language oH'r1ooked t hI' po-
t enl ial int crest of rl'pl'at ed inheritance.



On the other hand, feature nLelements is inherited from both sides without being
renamed. This is not a violation of the "no overloading" rule, however, since no conflict is
involved: nb_elements comes in both cases from the same class (LINKED_LIST). Such a feature
inherit.ed more than once, directly or indirectly, from the same class, is shared. Thus, as fits the
example, attribute nb_elements is unique at the INVENTORY_LIST level.

This example is representative of the power of the mechanisms associated with
inherit.anee. Achieving the same effect. (that of a list kept sorted according to two different
criteria) without these techniques involves declaring complex data structures and performing
tedious and tricky pointer manipulations.

This discussion shows the two main applications of renaming:

• to remove potential name conflicts in normal multiple inheritance, when combining
classes with identically named features;

• to replicate a common feature in repeated inheritance, as' with the sort procedure above.

A third, more "cosmetic" use of renaming is to enhance clarity by providing more
appropriate feature names in a descendant: for example, the boolean function which tests
whether a list is empty is called empty for lists in the strict sense (sections 2.1 to 2.7) and
renamed is_leaf for trees (section 2.8) to conform to usual tree terminology.

Another property of multiple and repeated inheritance is the possibilit.y t.o redefine a
f('at.ure of a class C in a descendant class, say D. The inheritance clause of e1ass D may list the
C features r('defined in C, under the form

inherit C
redefine f, g, h ...

allowing it. to int.rodu('e new declarat.ions of features I, g, h, ... which, for an object. of type D,
will override the corresponding deelarations given in C. Some const.raints, of which thc most
important. arc described in section 1.6.1, restrict the types that may be given to sueh reddined
features and (in the case of routines) to their arguments.

Feat.ure redefinition adds yet another element of flexibility to software design by
permitting a set of rclate~ classes t.o provide alternative implementations of t.he same operation.. . .

As a simple example, consider a set of graphic classes, including POLYGON, with
RECTANGLE among its heirs, itself with heir SQUARE. POLYGON may have among its
features a list or points, say vertices, giving the vertices of a polygon, and a function perimeter
which returns its perimeter. The implementation of perimeter performs a traversal of the
vertices list to compute and sum the distances between adjacent vertices. Class SQUARE, on
the other hand, has a feature side giving the length of a square's side. ft is clcarly appropriate
to redefine reature perimeter in this class to simplify the computation, which in t.his case just
ret.u rns 4 *side.

t ~ ; •

Assuming thedeclara!Uon

: p: POLYGON

ent.ity p could at run-time, as we have seen, refer to an object' of type SQUARE. The fun<:tion
call p.perimeter would then result in the SQUARE version of the function being applied,
whereas t.he same call executed when p refers to an object of t,ype POLYGON would have
t.riggercd the execution of the POL YGON version.

A' further degree of flexibility is provided by the ability to redefine a function feature
(without parameters) as an attribute. From an information hiding viewpoint, it is useful to
provide c1ient.s wiLh a feature under such a form that it docs not make any difference for Lhem
whct.her Lhe feature is implemented as an attribute (that is to say, stored along with each object
of the class) or a runction (computed when requested); the notation for remote reature



a ppli('ation is indeed the same in both cases: x.f. With inheritance coming into the picture, the
idea is carried further by allowing descendants of a class to redefine as an attribute a feature
declared as a fun'ction in the ancestor.

For example,'on'e-way linked lists (class LINKED_LIST, section 2.5) include a function
feature last, returning the last value of a list; here one must traverse a list to get to its last
element, so a function is indeed necessary. For two-way linked lists (TWO_ WA Y_LIST,section
2.6),' areferen-cc' to the last element will be permanently: kept by each list, so that last be'comes
an at.tribute ·in this class.

Legitimate co'ncerns may be voiced as to the power of the redefinition mechanisms: docs it
not allow dangerous manipulations? A feature application

where a is of a class type A, could have totally unexpected results if a may be assigned values
of descendant types of A where! is redefined in a manner inconsi:;;tent with the original intent
of A's 'author.'

Not.hing indeed preven'ts the author of SQUARE to redefine perimeter so that it will
compute, say, the area rather than the perimeter.

Alt.hough F:itTcl does not provide an absolute protection against such abuses of the
redefinition mechanism, it docs address the problem. As will be explained in sedion 1.7.:~, a
partially formal specification may be associated with a routine feature in terms of preconditions
and postcondition. If this is the case, any redc!inition of the routine must obey the initial
specification (1.7.6).

Redefinition and renaming serve ditTerent purposes and should not be confused.

R.edefinition is applied to ensure that the same feature name refers to different actual
features depending on the type of t,he object to which it is applied (that is to say, the dynamic
type of the corresponding entity). It is thus an important semantic mechanism for providing
the object-oriented brand of polymorphism.

Renaming, on the other hand, is more of a syntactic mechanism, making it possible to
refer to the same feature under different names in dilTcrent classes.

The two techniques are indeed orthogonal; either or both may be applied (in a descendant
D of a class C) to a feature ofC,say !. They address different questions: for redefinition,
"Can we have a ditTerent implementation for! when it is applied to entities of dynamic type
D?";, for renaming, "Can we change I,he name under which the original (C) implcmentation of f
may be applied to entities of static type D?".

The effect of 'combining tiH~se two mechanisms in various ways, sUlllmarized in the table
bdow (figure 1), follows from I,his discussion. We assume that entities c and d. an' d('clared of
types C and D respectively. It is important to distinguish bdwcen (,he nallle of a feature, f in
our eX;J,mple" and the feature it,self (represented for exampi<' by the body of a routine), which we
call ¢>. By rcnaming the feature in- D we associate with ¢> a new name f'; by redefining it we
as;;oeiat(; with j a new featllre ¢>'.

Whl'n c is of dynamic type C, c.f will always refer to feature f, and the notation c.!'
will always be ill(;gal. Thu~ lhe only inl.'eresting cases arc t,hb i'nterpretations of c.f when the
dyna.mic type of c is D, d.f and d.f'. The table shows what actual feature is assoeiat,ed with
each of t.lH'se notal,ions in each legal ease. Note that "illegal" combinations are stal,ically so and
may he c:1:ught by a compiler.

Cascs 5 and 6 are a little more subtle than the others and also less useful in common
usage; they may be skipped on lirst rr:tding. '

,li



# c.f d·1 d.f '

1
I not redefined <P <P illegalf not renamed

2 I redefined <p' <p,' <P' illegalf not renamed ' .

I not redefined
! •. . . .

3 f renamed f' <P illegal <P

f redefined <p' ¢'
,

4 f renamed f' <P' <P

f not redefined
5 f renamed f ' <p" illegal <p"

f 'redefined <p"
f redefined <p'

6 f renamed f' <p" <P' <p"
f 'redefined <p"

Figure 4: Combining redefinition and renaming

(Note: in column 3, c is assumed to be of dynamic type D).

All cases, with the exception of case 6, occur in the library of part 2. Not,e that case 4 is
interesting in particular when D provides a special implementation <P' of the feature, but the
implementation of <p' internally relics on the more general <p; thus D must be able to refer to <P,
which is not available to it under any name in case 3 (redefinition only).

For example, the basic insertion procedure puCbetween is inherited by class TREE (2.7)
from LINKABLE (2.4). To insert a new child into a tree, however, one must not only do the
pointer operations for inserting an element into a list, but also set the "parent" field of the new
child so that it references the correct parent. Thus the implementation of the new puCbetween
consists of a call to the original procedure, renamed linkable_puCbetween for the occasion,
follow,ed by code to set the parent field.

The redefinition mechanism allows providing alternate implementations of a previously
implemented feature. In some cases, one wants to ,deline a feature without. giving its
implementation, relying on descendants to provide implPment.ations. DcI'erred feature
declarations satisfy this need.

In,slIch a declaration occurring. in a class C, the type and parameters of tll<' feature, if
any, mllst be specified in C, but not it,s body if it is a routine. Syntactieally,the do ... part IS

simply replaced by the keyword deferred.

Versions of the body, IISU<1.l\ydistinct from one another, will be given in the des(:cndants of
C. One may then apply the feature to an object of type C (under some com,istency condit.ions),
with the under!'ita.nding that the implcnH'ntation used depends on the descenda.nt. to which the
object belongs at. execution t,iIlH'.

In keeping with the remark made ·in the present.ation of the reddinition mechanism, the
synt.ax for dC'ferred typed features without parameters, that is to say (in it,s simplest form)

I: T is deferred end

c10es not. commit the descendants to implement the feal.ure as an attribute rat her t.han a
function; c1ifT('rent desl:<:ndants lTIay t.ake dilTnent decisions in t.his f('sp(,e(,.



As with feature redefinition, it is important to enable de:;;igners to specify properties of
features even when they are declared as deferred. The techniques for specifying preconditions
and posLcondit,ions of routines (f,7.3 and 1.7.6) indeed apply to deferred features.

An interesting application of deferred features is to provide for two-tier definition of
modules (interface and implementation) as in Ada or Modula 2. One will declare an abstract
data type implementation as two classes, the first of which contain~ only deferred features (with
their types, those'-~(their arg-u-mcnts";'aswcli as preconditi-o"ns-and postconditions), and the
:;;econd, heir to the first, provides implementations. An important advantage of the inheritance
mechanism over'tr1e techn,i,ques of n(;fn objeCt~based languages such as Ada or Modula 2 is that
more than one implementation may be provided for a given interface within the same system.

Such a use of deferredfea'tures is- particularly interesting when ErtTcI is used as a de:;;ign
language ("POL"). The global design of the system may be expressed as a :;;et of classes where
all non-trivial features are deferred; preconditions and postconditions should be stated whenever
possible. At the implementation 'stage, deferred features will be, expanded into actual code.
Such an approach makes the development process smoother and more continuous than when
different languages are used for design and implementation.

Eiff('1 was designed to permit strict type checking. Because of the inheritance mechanism,
the type rules are more flexible than in a language with a simpler type system. There are two
basie con:;;tmints, governing assignment and feature redefinition (the di:;;eussion only addresses
class type:;;; t.he usual rules apply to simple types).

The fir:;;t typing constraint is a direct consequence of the rule governing association
between entit.ie:;; and objects (section 1.5.4): in an assignment x := y, the class of y must be a
dcsc('ndant of t.h(' da:;;s of x. In other words, one may as:;;ign a "more :;;pecific" value (i.e. a value
of a desc('ndant type) 'to an clement. declared as "mon~ general". For example, an element of
t.ype LIST may he assigned a value of type TWO_ WA Y_LIST.

_ The reverse case is prohibited. However, if the class of x is a de:;;cendant of the clas:;; of y,
then x.Extract (y) will assign the values of the attributes of y common to both c1a:;;se:;;to t,he
cor,re:;;ponding attributes of x, leaving other at.tributes of x untouched. This operation is only
permitted if both x and yare created. (Extract is the last of the predefined features of the
language, common to all class types, the others being Create, Void, Forget and Clone).

The second basic constraint applies to the red('fillition of a typed featur(', that is to sayan
~ti:ribute or a function: if such a feature, initially declared in a class C as being of a certain
type T, is redefined in a descendant of C as being of another type T', then T' must be a
descendant of T. For example, the feat,ure repre:;;enting the Iir:;;t linked elemr.nt ("cell") of a list,
called firsLelement and definr.d 'a:;; LINKABLE in class LINKED_LIST. j:;; redefined a's
BLLINKABLE in TWO_WA LLIST and as TREE in class TREE; such redefinition:;; arC'
correct since each new type is a descendant of the previous one.

1., -

The :;;r.eolld typing (:on:;;traint is one of the language properties that motiva.te declaration
by association. A d('c1arat.ion by as:;;ociation takes the form

x: like y

whr.rc y is n.n entity dr.clared in thr. scope when' t.his decl:tration app<'ar:;;. If T IS t!l<' t.ype
associated with y, then the above dr.clarat.ion is equivalent to



x: T
with the dilTerence that, if y is redefined in a descendant of the current class with a new type
T', then the corresponding redeclaration of x is implied. We say that y is an "anchor", which
may be used to drag along other clements declared like y. The anchor itself must be declared
with a "fixed" type (not by association).

This form of declaration is often needed to guarantee that a group of clements remain
consistent with each' other in any descendant. It is used in particular to 'ensure that the types ;of
function results are properly declared, as the following simple example shows.

. AS~II~C>.vC defi~e a class COMPLEX to' '~~pres~~t complex ·n~~bers. One of the features
may be a function conjugate yielding the conjugate of the current object, which might be
declared as follows:

conjugate: COMPLEX is
-- Return a copy of the conjugate of the c~rrent complex

Result. Clone (Current) ;
Result.change_y (- y);

end -- conjugate

-- A..'isign to Result a copy of the current complex
-- Negate the y coordinate of Result

We have assumed that another feature of COMPLEX IS the procedure
changcy (new_y: REAL), which does what the name implies.

The solution shown is correct as long as we consider class COMPLEX just by itself.
However, assume COMPLEX has a descendant - say IMPEDANCE, in an electrical
engineering application whereby impedances are considered a special case of complex numbers.
Class IMPEDANCE will inherit the conjugate feature; but with declarations such as

il: IMPEDANCE; i2: IMPEDANCE

the assignment il := i2.conjugate is typewise incorrect, since the type of the right-hand side,
COMPLEX, is not a descendant of the type of the left-hand side, IMPEDANCE; in fact, the
reverse holds.

The problem goes away, however, if we use a deelaration by association whose anchor will
be the current clement itself. In other words, we will declare conjugate and temp to be of type
not COMPLEX but

like Current

With this declaration, c.conjugate is of type COMPLEX if c is declared of type
COMPLEX, but il.conjugate will now have the type of il, namely IMPEDANCE. In all cases
these types may be determined statically.

Declarations by association play an important role in the examples below. They ensure,
among other properties, that list elements are eonsist.ent: for example, all elements of a doubly
linke~ list must include two references, to their right and left neighbors; and all members of the
list of children of a tree node must themselves be tree nodes.

It is essential to emphasize that, whether or not declarations by association are used, the
typing constraints are static and may be checked at compile time.

One more constraint is worth discussing here. In seetion 1.4.2, we introduced procedures
as "commands" and funeLions as "qucstions·'. In kreping with this definition, it would seem
wise to forbid functions from performing any operation ("sidc-elTect") that could alter the state
of the current object; such a rcstricLion excludes procedure calls as well as assignment to
attribllk8 of the current object.



This constraint is not, however, a language rule. The reason is that a class is th('
implementation of an abstra.ct data type, not the abstract data type if,selr. The state of an
objc('f, of the. dass ~hould be. seen as one particlJlar representation of a more abstract state.
What is required of functions is that they do not alter the abstract state; however, the mappin~
I"rom concrete t.o abstract states is not necessarily injective; there may be more than one
concrete represent.ation of a given abstract state. There are indeed cases when, for efficiency
reasons; it fun~tiori will ha\T~ to change'the concrete state 'without changing the abstract stat~.

As an example, assume we. have a class represcnting complex numbers (or point.s).
Depending on the operations requestcd on a given number, we might want to alternate between
representations: multiplication~ for example, is best done in polar coordinates, whereas addit.ion
demands that the cartesian representation be available. If we adopt such an implementation,
which has three kinds of possible states ("cartesian representation available only", "polar only"
and "both"), a function such as x, which returns the current abscissa, might trigger a state
change to make the cartesian representation available if it is not. From a methodological point
of view, such a change of the concrete state is acceptable, since a function call of the form z.x
will not change the underlying abstract state: even though some attributes of z may be
changed, the representation of z still corresponds to the same complex number.

Thus the prohibition of concrete side-eITects in functions, which is an easy check for a
compiler, is not part of the language definition. The theoretical rule is that functions are
barred from any change to the abstract state. Such a constraint., however, cannot be enforced
mechanically in the absence of the proper tools for formal specification. It is a methodological
guideline, not an a language rule.

In practice, compilers may be expected to check for side-eITects anyway and produce
warning messages.

Much of the emphasis in the dcsign of EiITcI has been on promoting such quality factors as
reusability, extendibility and compatibility. Of course, these qualities are meaningless unless
programs arc also correct. and reliable. In fact, as techniques for the production of truly
reusable software components become a reality, the concern for correctness takes on a even
great'er importance as in a "one-shot developments" environment, since the impact of errors will
be multiplied by the reuse factor.

EiITel provides no revolutionary solution to the issue of program correctness but includes
language constructs that promote a systematic approach to software construction.

These constructs are based on the notion of assertion.

An assertion is a list of boolean expressions, separated by semicolons; a semicolon is
semantically equivalent to an and here, but it allows individual identificatio~ of the components
of th~ ass~rtion. The following, is an assertion: ,

i /= j;
f (x, y) = 0;
nb_elts> 0

We shall see below (I. 7.7) that other elements may be assoriatcd with assertion
component.s (labels, messages, actions).

EifTeI docs not include a full-fledged assertion language, so some properties which are not
cxpressible as simple boolean expressions may have to be given in part as comments, as is
rrequcnt.ly the case in the examples of part 2 {a related eITort, the M specification method [20],
includes a specification language, LM, whieh may be used in conjunction with EiITcl in a fully



formal approach).
The various uses of a.ssertions will now be described.

, Thl: need for class ,invariants arises from the alref~dy voiced remark tha,l. a class is an
iml;'ementation' of an ab~'tract dat.a type rather than the abstr~~t data type it.self. The
implementation contains component~(at.tributcs) which arc often too general for the purpose of
reprcsenfing the abstract type. As a triviarcxamplc,' an array representation of ~tacks may
co'n't,ain an integer'attribute, say high, which marks the topmost array position useo. Although
an arbitrary integer may be positive, negative or zero, an integer used as stack pointer may
only be non-negative. Thus the condition high ~ 0 should be a class inva.riant.

The notion of dat.a type invariant is discussed in [Ia] and [11]. From the viewpoint of
seet.ion 1.6.a, the class invariant characterizes the domain of the mapping from concrete to
abst'rllct. stat.es.

A class inva.riant must be· satisfied after the execution of t.he Create procedllre of the elass;
any routine of t.he class may be written under the assumption that t.he invarif-l,nt. is satisfied on
entry, and must ensure that it is st.ill satisfied upon exit.

What t.he simplistic example of high in STACK docs not show is that for int.erest.ing
classes invariants are strong semantic properties; by stating them explicit.ly, one gains in-dept.h
insight.s into the fundamental properties of classes. Part 2 contains significant examples of class
invariants, for example the invariants for LIST and LINKED_LIST.

Synt.aetically, a class invariant is an assertion, appearing in an optional clause introduced
by the keyword keep in a class declaration, as in

class STACK [T) export ... feature
high: INTEGER;

keep
high> = 0

end -- class STACK

The reader will notice in the examples of Part 2 the constant interplay between class
invariants and routine preconditions and postconditions. In principle, the following should be
proved for each routine body B, with precondition Q and postcondition R in a class with I as
invariant:

(where {Q} A {R} means that execution of A, starting in a state where Q is satisfied, will
terminate in a state where R is satistied). In other words, when assessing the validity of a
routine body,' one may assume the class invariant, and one must check that it is preserved by
the routine.'

, .
The notion of class invariant is the main justification for the way objeet creation is

handled in Eiffcl through the Create procedure.

The conventions regarding this procedure are slightly different from those of other
routines. Execution of a.Create ( .... ), where a is of type A, triggers the allocation of storage for
an object t.o be associated with a, followed by the execut.ion of the Create procedure declared in
class A if thcre is one (which must be the case if the call includes paramet.ers). If A docs not
contain a Create procedure, A is still considered to have redefined it with an empty body. Thus
Create is never inherited, since every class redefines it explicitly or implicitly.

Special conventions are always disturbing and one may wonder why Eiffcl docs not
separate object allocation from object initialization, with a syntax such as



-- Warning: this is not. correct Eiffe!!
allocate a;
a.init (x, y, .. .)

\"here allocate would be a universal allocation instruction and init some elass-specil1e
procerlure (declared in A in the case at hand).

The ~dvantage ~f the sorl;tio;~ "act~~lIy 'retai;le(f is that, by tying init.ialintion to
a,lIocation, the designer of a class .may guarantee that all object.s or th(' ('lass will automatically
sat.isfy the cfassinvari,ant upon creation. The alternative solution would not enahle rlesigners to
prohibit clients from omitting to call a.init arter allocate a before any other reature is applied
to a.

From this discussion stems an important principle or ~iffcl design: the purpose of Create
procedures is to ensure that every object or a class initially satisftcs the class invariant,.

Assertions may be associated with routines: a routine may b('gin with a require clause,
st.ating the conditions assumed be satisfied on entry, and end with an ensure elause, stat.ing t.he
condit.ions that must be enrorced by the routine implemcntation upon exit,.

The following two notations arc available in ensure ('Iauses: old x denotes the value of
entity x upon routine ent.ry; Nochange is a boolean expression, true if and only ir no attribute of
the current object has been modified since entry.

The synt.ax of loops (taken rrom [21], chapter ;~) inellld('s roolTl ror loop initialil:lltion, a
loop invariant ((,rue arter initialil:ation and conserved by the loop body), and a variant (a non-
negative int.eger expression which decreases on each iteration, guaranteeing termination):

from initialization_instructions
keep invariant
decrease variant
until exiCcondition
loop loop_instructions end

This notation (where the keep ... and decrease clauses are optional) enables the program
reader to check that the initialization_instructions ensure the invariant, and that the
combination of this invariant and the exiCcoridition ensures t.he desired effect or t.he loop. Note
that this loop is similar to a Pascal "while" loop, with the test reversed; it is not a Pascal
repeat ...until.. ..

;,

,An assertion may also be used in a special instruction or the form

check ass,ertion end

whose purpose is to express that the assertion is satisfied whenever control reaches this
inst.ruction. This eonst.ruct {the equivalent or the Algol W; ASSERT inst.ruction) is uscd in
particular in connection wit.h routine calls, to express that. a condition stronger th~tn or equal to
the routine precondition is satisfied berore the call, and that a condition weaker than or <'qual
to the postcondition may be assumed upon return. Part 2 contains numerous examples of such
uses or check.



Using assert.ions, one may state the restrictions that. apply whenever features are added or
redefined in descendants of a class. As pointed out in sections 1.5.6 and 1.5.8, class designers
should have some way of providing their clients with guarantees that each class will perform
according to the original contract, even if some of its features are redefined.

Such 3."provision is the indispensable complement to the principle of openness: inasmuch as
one strives to produce software elements which are still open to extensions and modifications,
one also needs a 'way to prescribe limits within which these future changes should remain.

, , .

, , The following constraints apply 'to the inheritance mechanism in connection with the use
of assertions:

• The invariant of a class' applies to all descendants of a class (thus it docs not need to be
repeated in their keep ... clauses except for clarity).

• Consequently, no two classes may be combined through 'multiple inheritance if their
invariants are not compatible (note that they could only be incompatible if the two classes
share some features and are thus themselves descendants of the same class).

• If a routine is redefined in a descendant class (this includes the case when the original
rout.ine was deferred), the new precondition must be no st,ronger and the new
post.condit,ion must be no weaker.

In the last rule, a condition is said to be stronger than another one if it implies it. The
rule expresses the requirement that whenever the original routine was applicable, I.he new one
must. also be (but it may well bf! less restrictive in its precondition), and it must at. least ensure
the original postcondition (but it may well ensure a more restrictive one).

The primary aim of assertions is to encourage a systematic way of writing Eiffel c1a.sses
and t.o help reading them by requiring programmers to say explicit.ly what mental assumptions
ha.ve been made. Assertions may t.hus be viewcd as comments of a specia.l kind. This possibility
has been used abundantly in t.he examples.

It 11, also possible, on option, to check at run-time that assertions {at Icast. those defined
formally} arc satisfied. Eiffc1 syst.ems should provide at least three cO[I\pilatinn opl.ions:

• no protection: the progr'l.lTI text is assum('d to 1)(' corre('t and assertions have no
in n uence at run-time. Errors arc Iikcly to resul t (if apparen t at all) in aberra nt. b('h:l vior
and abnormal termination (arising for examplc frolll olll-of-bounds memory rcfl~rerH:es).

3 • tot.al prot.ection: all assertions (and t.he effect.ive dccrease of loop variant.s 1hrollgh I';\('h
iteration) are checked.

2 • controlled mode: only pre(~ondit.ions of routines (require c1au.·ws) are dwcked .

. Option :lis adequate at. dl('('kouI, time. Option 2 is an 'lce<'[)I.:1.ble (,olllprol11isl~ in many
si I.uat.ions; satisfaction of the precondi t.ion is cssent.i:t1 10 the proper function ing of rnuti n('s (in
fact, t.he presence of the require clause allows a much simpler ('oding st.yle in I':iffel than in
common languages, si nCf! in 1ernal consist.ency chl'l~ks' may be fac!,or('d ou t. in rou tine
preconditions rat.her than scat.ter('d t.hroughout rout.ine text.s), yet pr('condit,ions oft.en Illay 1)('
dwcked wit.h reasonable efficiency. Thus in the current. Eifkl compikr option 2 is t.ll<' r!efflltlt..

Wi1.h opt.ions 2 and 3, when an assertion is found t.o be viola!.<'di the I':ill'el sysl.ern should
n'act as follows, In all ('asp-s, t.he current rout.ine will t.l'rminate and ('ontrol will bl' transrl'rred
b:lck t.o its calling routine. (Not.e that since function results. like all olher cntit.ies, arc init.iali7.ed
by defa.ult, a. fundion will return a .well-specified result even if no progra.mlTIer-ddined
inst.ruction has h('l~n executed). Before passing cont.rol back to till' calling rout.irll', the sysl,('m
may produce an ('rror message and/or perform an action; this will be th(' case in part.icular if



the programmer has taken advantage of the possibility to associate a label, a message and an
action to components of the assertion. The syntax of assert.ion components, with all option
present, is_illustrated by the following example from a hypothetical function:

positive: x > 0 message "Argument must be positive" do Result := 0 end;

In,this form, ,t,he label (positive)'and the message will be used to produce an error report
should th,e asser,t,ion qeviolatedat run-qme; note tha,t the mess,age written by the programmer
does n,ot mention the class and routine names, since it is the responsibility of the EifTel svstem
tQ identify them p'roperly,i'n the report actually gener,at~cl. The i[ls.tructions between d~ and
~~d ~ill b~ executed before control is returned' to thc calling routine. Note that the do ... end
part was probably not necessary here since the result of the function, which the assignment
shows to be of a numerical type, is initialized to zero anyway.

This facility is, in our opinion, simpler and safer than a ge'neral exception handling
mechanism as offered, for example, by Ada, with its potential for remote transfer of control.
The facility docs not disrupt the normal inter-routine flow of control; it allows catching errors,
dcaling with them locally and producing appropriate error messages.

Assertions and the associated language constructs should not be misused. Clauses such as
require ... and check ... are in no way appropriate for dealing with run-time situations that fall
outside the "normal" cases but arc nevertheless possible and, as such, part of the specification.
Examples of such situations include expected errors in the input to a program: if a certain kind
of input cannot be processed normally, but the program is prepared to deal with it in some
fashion, for example by outputting a messagc and requesting new input, then the erroneous case
belongs to the specification; such cases should be dealt with through standard language
constructs such as conditional instructions. This is not what assertions are for. Assertions
express properties that should always be satisfied when the program is executed; thus violation
of an assertion signifies a program error, not a spccial run-time condition. The error may have
been made by the programmer who wrote the class containing the assertion; or it may be the
responsibility of thc writer of a client class, resulting in a rout.ine call that failed to observe the
advertised precondi tion.

Thus by writing assertions, the programmer is documenting hili dcsign and defending his
belief in its correP.Ln<,'IiS;by choosing to have these assert.ions monitorf'd at rlln-time, he is
showing his distrust not of the system's users, but of his clients and, jllst as importantly, of
himself.

This view of assertions explains why we have not incillded any message ... or do ... clause
in the library examples of part 2; such clauses are not meant to aIred the official semanl.ies of
library classes, and consequently do not belong in a pllblished version.

One more note is in order wit.h respect to assertions. The consistency (~onstraint,s on
feature redefinition, mentioned in the preceding seetion, cOllld only be enrorced by a system
ineillding a fully formal assertion languagc and a theorem prover. We will have to satisry
ourselveli, for some time to come, with informal hllman checking.

In pa.rticular, the examples or part 2 have been tested but not formally verified and we
expect t.hat some mistakes remain; we will bc grateful to any reader reporting an error.

Two more explanat.ions will twlp l,lle readerulHh:rstand the ('xa.mpl('s and write his own
I·:iIkl pro~rams.

Non-c()ll1ll1\lta_tive ~()c:>I~aI1operators Ilse tlH' Ada, svnl,ax: a and then b has value r;dse
iI' a hrls valu(' 1';1 [se, ;Ind ot,herwisp has t.he \';t1u(~or b; a or ~Ise b has valuc true ir a 11:1 s v;dlle
I rue, rind otherwise has t.lw va,IIH' of b. Thc advant.age of t.hc~e op<~ra,lors over the standard
and and or (whir'h :If(' of (,~)lIrse also pn'sent.) is t.hat. th<'y may be d<'fincd whcll Ilw first
operand hali enough Informal,lOn t.o d(,terllline the result (false ror and, I,rlle for or), hilI the



which might yield an undefined value if it used a simple and. The non-commutative operators
are particularly useful in assertions.

Finally, constants are described as class attributes with fixed· values. The syntax IS

similar to' that used: for routines, for example:

It is common practice to encapsulat.e a group of related constants in a class, which is then
used as ancest.or by all classes needing thcse constants. In our implcmentation, constant
attributes do not occupy any space at run-time, so programmers need not be coneerncd about
the number of such attributes.

The above notation applies to constants of .simple types. Constants of class typcs arc
object refercnccs of which a single copy exists in any systcm (as opposcd to normal attributes, of
which thcre is an instance for every object of a class). Such constants are treated as normal
attributes but included in the only clause of classes not yet presented, the freeze ... clause,
ensuring that the corresponding object is shared over a whole system. This possibility is useful
in some application programs but less frequently in libraries and thus does not occur in the
examplcs of part 2.

Wc finish this introduction to EiITel with a bricf overview of how t.he language has been
implementcd.

Therc is no exact notion of "program" in EiITe!. What may be executcd is a "system",
which is defined by a class name and a list of actual parameters. Executing such a system
consists in allocating an object of thc class and executing its Create procedure, with the
paranietcrs supplied. Usually this will trigger new routine calls and the creation of other objects.

Thc current EiITe! implcmentation, running under the Unix system, uses C as an
intermcdiate language. This t.echnique enhances portability without sacrificing effieicncy. We
view C as a portable asscmbly language, t.he closcst ever realizat.ion of the old "Uncol"
(Universal COmputer Languagc) idea.

, . ~ ,

Two commands arc provided.

The first command, ec, for EiITcI Class, compiles a single class into C and thcn object
codc. Separatc compilation is of course an essential requircment for a language promoting
r,eusability, and extcndibility. To compile a class, one needs it.s ancest.ors, if it. has any; an
optional argument to ec lists the dircetories where they are to be found.

The second comma.nd, ea, for EiITcl System, const.ructs a completc system from its
constit.uent c1a.sses through a proccss called assembly and cxecutes the result. This command
rders to a Systcm Description File of the following form:

ROOT: Classname (paraml, param2, ... )
SOURCES: dirl dir2 .
LIBRARIES: dirlJ dirl2 .

.. -
,,';<. -

~.! ",

~~~~> '-"'~



Such a file describes how to assemble a system whose root is an object of type Classname,
created with the actual parameters givcn (these parameters must be of simple types); the
SOURCES directories are used to locate all the necessary classes; the LIBRARIES contain any
needed external rout.ines.{External routines arc routines written in a language other t.han
EilTel; examples of use of such routines may be found in class ARRAY, section 2.2).

It should ·be pointed out that the use of C as intermediate language is just one possible
implementation technique; nothing in the design of Eiffel ties it to C.

Binding is the association of names to their denotations -- for example, the association of
attribute names. to memory offsets and of routine names to actual code. A related task in a
typed language is type-checking: verifying that every entity is only used in accordance with the
constraints imposed by its declared type.

As mentioned in sections 1.2 and 1.6, one of the major design criteria of EilTci was to allow
static binding and type-checking; this is crucial for efficiency as well as safety reasons.

Almost all binding is indeed done at translation time: intra-class binding in ec. inter-class
in es. The only binding that remains to be done at execution time is the binding of names of
deferred or redefined features to the appropriate code. The techniques used make it possible to
limit the corresponding loss in efficiency to a minimal amount.

With respect to type-checking, the language definition permits all checking to be done at
compile-time; no checks are necessary at run-time (in contrast, other object-based languages
either take a lax attitude towards typing or, as in the Simula case, leave some checking to be
done at execution time). However our system currently performs only intra-class checking.
Inter-class type-checking (to be done during assembly, byes) is under way.

The power of the reusability techniques offered by EilTei and the emphasis on bottom-up
system construction by combination of separately developed software components (classes) make

. it necessary to use a systematic approach to change and configuration control.

Classes are interconnected by two dependency relations: "descendant" and "elient", with
inverses "ancestor" and "supplier". Since a given class may be connccted directly or indirectly
to many others, there is a serious. danger that obsolete or inadequate versions might be
inadver(.ently used. Some aut.omated support should be provided to avoid this risk. Commands
ec and especially es address this concern by enforcing time consistency of the dependency
relations.

The optional argument to command ec specifics where to look for an(~cstors of a class to
be' compiled separately; the SOURCES line in the System Description File used by command es
specifics' where (.0 look for direct and indirect ancestors and suppliers of a system's root. In
both cases, the commands check that every needed class has been re-(~ompiled after any
modification of the. Glasses to which -it is related; if not, they automatically I.rigger the necessary
rc-compilations. In particular, comman4es will itself call ec. for classes that h,1Ve been modified
but not. re-compiled. .

Our initial implementation of tlH'sefacilities relied on the Unix Ma·ke. tool [II]. However
Make turned out to be too limited in its capabilities and we substitued specific tools.



The dynamic model described in section 1.1.1 implies adequate run-time support. Our
EifTcI implementat.ion 'relies on a complete memory managenlent. system (Dynamem), which
provides bot.h paging and garbage collection; the latter is done in parallel ("on-l,he-rIy") if the
operating syst.em supports multiple user processes, and is otherwise called'as a coroutine. '

.• ·It IS regri'ltable to have to re~olv'e such issli~; just rodhe implementation of a design ami
programming language; the state of the art in commonly available programming environments
did no"t leave us ri:riy'other e'h6\ce:

This art.ie1e covers the language and the associated method rather than programming
tools. However two categories of tools are important in practice and should be mentioned brierIy
here.

The first. tool is a class abstracter that produces a summarized version of any class. A
summarized version contains the inherit and feature clauses only; the latt.er is abstracted so
that only exported reatures are shown and, for each export.ed routine, the body is not shown:
only the header, precondition and postcondition and the comment immediately following the
header, if any, are reproduced. For example, the abstracted version of runetion index_of in lists
(section 2.3 below) is:

index_of (v: Tj i: INTEGER): INTEGER is
-- Index or the -l:'th element or value v
-- (0 if rewer than t)

require i> 0
deferred
ensure

-- (Result> 0 and then Result is the index
or the t:'th element or value v in the list)

-- or else (Result = 0 and there are rewer
than i elements or value v in the list)

The rorm shown is that produced by our current EifTeI class abstracter, which generates
deferred routine bodies, so that the result of running the abstracter on a class is still a
syn tactically correct class.

The other necessary tool, on which we shall not elaborate any rurther, is a database
system ror keeping track of available classes and their features, and enabling EifTeI programmers
to find the classes adapted to their needs.



The cla~ses given below arc extracted from the basic library of classes used in our
development.s. They.have been somcwhat simplified and some f-eatures have been omittrd in thr
int.erest of space (and of providing t,he reader with somc.incentive to try his own hand at EifTel
programming), but they remain faithful to the original, which sfCrves as a basis ror such
applications as structural . (language-based) editing and multiple-windowing display
ma nagrmrn t..

Missing elemrnt.s t.hat the reader is invited to complete arc marked ****** ..... ******.
These classes illustrate the bottom-up, modular, reusable programming st,yle (d. [21],

chapter 6) encouraged by Eiffel.

As the examples show, the details of data struct.ure implement.ation may be rather
dimcult., in part,ieular when pointrr manipulations are involvrd. This, we t.hink, is an important.
argumrnt for taking care of these details in reusable and flexible general-purpose modulrs su(,h
as the ones below, which can be t.horoughly cherked and optimized on('c anel for all; the
chrcking and optimintion arc better done here than in application programs. Sur'lt prorcssional
implementations of data abstractions may I,e used as the basis for "data st.ructure
programming", free from tricky pointer manipulat.ions, as advocated by Mill~ [22].

Anybody who has writ.Len software involving non-trivial data structures in l~lIlguag('s su(·h
as Pascal or C, and found himsdf constantly fighting to avoid being swallowed in thick point.er
soup, will appreciate the availability of a library of extcndible, reusable implell\cnt,ations for the
most common data structures and associated operations.

The experience of writing this library has taught liS that bottom-up design, if higldy
promising from the reusability standpoint, is also very dimcult.. Corning up wit.h correct. and
emcient tools that will satisfy many different needs is an exacting iterative proceS1i; we makp no
pretense that the classes below are in their final st.ate. Much work remains to !JP. done to
eapt,ure the core of software engineering applications. The challenge -- factoring out into truly
reusable software components as much as possible of the tedious and repetitive side of
programming - is well worth the effort.

- Arra.ys in Eiffcl are not a primitive notion but a generie class of which an implement,ation
is given below. The main reason for including it here is that it is used by class FIXED_LIST
below, one of the implementat.ionsof list,s.

An array may be allocated with arbitrary bounds through the procedure Create; to aecpss
or modify array clements. one uses the features entry and enter of the class ARRA Y.

The implement,ation shown here relics on primitives for dynamic memory management:
allocate for dynamically allocating memory areas, dynget to access data from such areas, dynput
to change these data. We have assllnH'd that. these primitives have been writ.t.en in C, an easy
t.a1ik indred on Unix.

Similar classes exist for two- and three-dimensional arra.ys. Other implement.ations are
also possi hie.



class ARRA Y [71 export

lower, size, upper, -- (read-only)
entry, enter

__ The clements of an array arc eallcd "cntrics"

feature
,,: lower:INTEGEfl; upper; I!VT~GER;,

size: INTEGER;

area: INTEGER; -- Secret

Create (min: INTEGER, max: INTEGER) is
__Allocate current array with bounds min and maxi
__ no physical allocation if min > max.

external
allocate (length: INTEGER) : INTEGER name" allocate" language" C' ;

__Allocate should allocatc an area for length integers
__and return its addrcss (0 if impossible)

lower := min ; upper := max ;
size := max - min + I ;
if max >= min then area := allocate (size) end

end; -- allocate

entry (i: INTEGER): Tis
-- Ent.ry of index i

require
lower <= i; i <= upper; area> 0 .

external
dynget (address: INTEGER; index: INTEGER) : T name" dynget" language" C' ;

__Value of index-th c1cment in t.he area of address address

Result := dynget (area, i)
end ; -- entry

enter (i: INTEGER, t: T) is
-- Assign the value of t t.o t,hc ent.ry of indcx i

require
lower <= i; i<= upper; area> 0

external
dynput (address: INTEGER; index: INTEGER; val: T) name" dynput" language" C' ;

__ Hcplace with val thc valuc of the index-th
-- element in the arca of address address

dynput (area, i, t)
end; -- enter

keep
size = upper - lower + 1
-- area> 0 if and only if the array has been allocated

end -- class ARRA Y [71

.
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This section and those that follow introduce classes corresponding to lists of various
brands:

LIST [71
.. ,- . (General notion 'of list)
FIXED_LIST 171

, (l,i.~tsrepresented by arrays; no insertion or deletion)
LINKED~LIST [71

(lists in linked representation; insertions and deletions are possible)
TWO_WALLIST [71

(like LINKED_UST but providing more efficient primitives for
right-to-Ieft traversal thanks to a doubly linked representation).

These classes have undergone a fairly substantial change from a previous version of the
library and the present paper. A description of what happened may be of interest to readers
concerned with the methodological principles of object-based software specification and design
and, more specifically, with finding guidelines for the specification of systems.

Our initial approach was a strictly "static" one, in which we viewed lists as sequentially
ordered repositories of information (of T type). Features available on a list I were of the form
l,geCvalue_by_index (i), (value of the t:'t.h clement of I), l.geCindex_by_value (v, j) (index of the
j-th clement of value v), etc.; and, for lists in linked representation, l.inserCby_position (v, i)
(insert val ue v at position i), l.delete_by_position (i) (delete i-th elemen t), etc.

As we st.arted actually using the library, however, we were confronted with a disquiet.ing
increase in the number of primitives. For example, it sometimes happens that one wants to
insert. an clement aft.cr the j-th clement of a given value. We could in principle use
geCindex_by_value followed by inserCby_position, but both features entail a sequent.ial
t.rav('rsal of the lisl" which is unaeecpl,able in praet.ice since the first routine int,ernally finds the
adequate inserLing posi tion.

We were th us led Iiu.le by IiHIe to add features such as inserCby_value, delete_by_value,
etc. But even that. did not end our predicament.. It turned out that in practical uses of list
there are occasions in whieh client,s need to keep a handle on a list clement, so as to use it htl<'r
wit.hout, having to traverse the lisl, again. It was not. clear how to specify, let a.lone implement
such a feature at the LIST level. In faet, the handle does not even have t,he same type in all
cases: for a list repref;cnl.ed as array, it should be an int.eger, thc index; in link('d r<'presentat.ion,
thc only useful handlp is a reference to a LINKABLE clement.. There is no way of factoring out
these cases into a deferred pro('edure at the LIST level.

To implement the handle eonc'cpt in the LINKED_LIST (~ase, it. seemed !H'e('ssary to
return to clients the supposedly s('<:ret references to "linkable" c1elTH'nt.s. So we compromised by
ha.ving some functions return LINKABLE cnt.ities; l,his W;tS still relatively saf(~ from the
inforrnnt.ion hiding viewpoint since class LINKABLE had all its featurcs prot.ected (in a fashion
somewha.t, similar to an Ada private t.ypc). But this decision led to yet anot.her innease in the
number of features: geC!:ndex_by_linka.ble, get_linkable_by_value, and so on.

The prospcct. of gl'l,ting a reasonably universal yet. concise enough impl('lTH'nt,ation of lists
stn.rl<'d 1.0 r~t<lcaway as new fcn.t.ures carne creeping in .

. Fort.unat.ely we rea.lized our mist.ake, which was to treat lists as passiv(' object.s. As others
would. pcrhaps have known right awn,y, a list is bet.ter mo(klled as an abstract machine whose
instant.:lII<'OIlS st.ate includes not only t.he sequence of values constituting t.he list, but also the
indication of a currently aetiv(' position or "cursor" (see figure 5).
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With this approach, the primitives becomes much simpler:

• l.value is the value of the currently active element of list l;

• l.pasition is the index of this element (that is to say, the cursor position);

• l.forth moves the cursor to the next position;

• l.go (i) moves the cursor to the i-th position;

• l.search (v, j) moves the cursor to the j-th occurrence of v;

• the cursor may move at most one position off the leftmost or rightmost elements of the
list;

• to save a position and retrieve it later (in a last-in, first-out fashion), one will use l.mark
and l.retrieve.

And so on. For a linked list, feature active, of type LINKABLE [T], provides access to the
active element (see section 2.5); this feature docs not transpose to other representations (such as
by arrays), but this poses no problem since the feature is now, as it should be, a secret one. AB
an added benefit of the new approach, many features that initially seemed representation-
specific may now be lifted (sometimes in deferred form) to the generic class LIST.

Apart from the author's personal shortcomings, this experience seems to lead to two
conclusions, at the borderline between specification and dt~sign.

The first conclusion is the fact, mcntioned above, that bottom-up construction of reusable
software is a difTicult, iterative process.

The sccond rcmark is that although the abstract data type approach may seem to imply a
highly st.at.ic and functional spceification style, it should not preclude looking at object c1asscs in
an operat.ional way, cmphasi7:ing the notion of state and the functions that ad on the st.ate.
Some specilication languages (such as LM) enforce a similar method by dist.inguishing hetwccn
"aceess" and "transform" funetions. Note that this does not ent.ail any depa.rture from a
classical rn:i.thematieal model based on functions.

With this background, we now int.roduce t.he LIST class.



class LIST [71 export
nLelements, empty,
position, offright"olfieft, isfirst, islast,
value, i_th, first, last,
change_value, changci_th, swap,
start, finish, forth, back, go, search,
mark, retrieve,
index_of, present,
duplicate

empty: BOOLEAN is
-- Is the list empty?

Result:= (nb_elements = 0)
ensure

Result = (nb_elements = 0)
end ; -- empty

backup: like Current -- (SECRET: for marking and retrieving)
no_change_since_mark: BOOLEAN -- (SECRET: for marking and retrieving)

offright: BOOLEAN is
-- Is active posit.ion off right limit?

Result := empty or (position = nb_elements+ I)
end; -- 0ffright

offleft: BOOLEAN is
-- Is active position off left. limit?

Result := empty or (position = 0)
-- This rormulation is for symmetry with offright: empty irnpli<'5 (position = 0),
-- 50 the second condition is equivalent to the cntire "or" expression

end; -- offlefl



isfirst: BOOLEAN is
-- Is active position first in the list?
-- (If so, the list is not empty)

Result := position = 1
ensure

Result =.(position = 1);
_ not Result or else not empty

end; -- isfirst

islast: BOOLEAN is
-- Is active position last in the list?
-- (If so, the list is not empty)

Result := not empty and (position = nb_elements) -
ensure

Result = (not empty and (position = nb_elements));
not Result or not empty

end; -- islast

-- CompleLe symmetry between isfirst and islast would be achieved
-- by writing the result of isfirst as

-- not empty and (position = nb_elements);
-- however the first operand is redundant since it is implied by the first
-- (see second clause of the class invariant).

value: T,is
-- Value of active clement

require
not offleft; not offright

deferred
end; -- value

Uh (i: INTEGER): Tis
-- Value of i,th element of the list
-- (Applicable only if i is a valid position for the list)

require
i >= 1; i <= nb_elements; -- These conditions imply not empty

mark;
go (i); Result :=value;
retrieve

ensur,e
-- Result = vallie of !:'1.helement of- the list

end; ---i_th

..
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-- Value of first eiPmcnt in thc list
require

not empty

Result := Uh (I)
end; -- ·first

-- Value of last element in the list
require

not empty

Result := Uh (nLelements)
end; -- last

change_value (v: T) is
-- Assign v to value of current e1cmcnt

require
not offleft; not offright -- Thcse conditions imply not empty

deferred
ensure

value = v
end; -- change_value

changcUh (i: INTEGER, v: T) is
-- Assign v to value of i-th clement
-- (Applicable only if i is a valid position for the list)

require
i >= 1; i<= nb_elements; -- These conditions imply not empty

****** Left to the readcr (see function Lth above and proccdurc swap below) ******
ensure

Uh (I) = v
end; -- change_i_th



swap (i: INTEGER) is
-- Exchange value of activc clement with value of c1cment at position i.
-- Active position is not changed.
-- Not applicable if omert, on'right, or position i is not nlid for the list.

require
:·r;· not oifleft; not offright; i >= I; i<= nLelements

-- These conditions imply not empty
local

thisvalue: T; thatvalue: T

thisvalue := value; mark;
go (i); thatvalue := value; changcvalue (thisvalue);
retrieve;
change value (thatvalue)

end; -- swap

-- Make first element active (no effect if list is empty)
deferred
ensure

(empty and Nochange) or else isfirst
end; -- start

-- Make next position to the right active
-- (Applicable only if not olTright).

require
not offright -- This implies not empty

deferred
ensure

position = old position + 1
end; -- forth

-----~ -



go (i: INTEGER) is
-- Make t~th position active

. -- (Applicable only if 0 <= i <= nb_elements+l)
require

i >= 0; i <= nb_elements+l

if i = 0 then'" .,
go_offieft

from
if position> i then start end

keep
position> 0 ; position <= i

decrease i-position until position = i loop
check not offright end;
forth

end -- loop
end -- if

ensure
position = i

end; -- go

-- Make next position to the left adive
-- (Applicable only if not orllcfl.).
-- Warning: this version of back llUty be overly eostly in implellH'nt.:It.ions
-- that only provide for efficient left-to-right traversal

require
not offleft

check position >= I end; go (position - I)
end; -- back

go (nb_elements)
ensure

(empty and Nochange) or else is last
end; -- finish

go_offieft is
-- Put the list in position offieft
(Secret procedure; -use go (0) in client.s)

deferred
ensure

offieft
end; -- go_offieft



search (v: T; i: INTEGER) is
-- Go to t:'th element of value v in the list if there are at least i such elements;
-- else go offright.

require
i> 0

local
1c~INTEGER

from
start; k := I

keep
position >= 0;
-- k - I elements to the left of active position have a value equal to v

decrease
nLelements - position

until
offright or else (value = v and k = i)

if value = v then k := k+ I end;
forth

end -- loop
ensure

offright or else value = v
-- ofTright or else active element is the t:'th clement of vallie v

end; -- search

-- Marking and retrieving list positions.
-- More than one position may be saved successively;
-- retrieval will be done in a last-in, first-out order.

backup. Clone (Current);
end; -- mark

retrieve is
<. , -- Makr currcnt.ly savrd position active again

require
not backup. Void; no_change_sinccmark := Itrue

Extract (backup);
end; -- retrieve

.' .
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index_of (v: T; i: INTEGER): INTEGER is
~- Index of the i-th element of value v
-- (0 if fewer than i)

require
i> 0 ','qr

mark;
search (v, i);
if not offright then Result := position end;
retrieve

ensure
-- (Result> 0 and then Result is the index of the .i-th element of vallie v in the list)
-- or else, (Result = 0 and there are fewer than i clements of vallie v in the list)

end; -- index_of

present (v: 1'): BOOLE.4N is
-- Does v appear in t.he list?

Result := index_of (v, 1) > 0
ensure

Result = (v a.ppcars in the list)
end; -- present

duplicate: like Current is
-- Complete clone of. the list

deferred
end; -- duplicate

keep
position >= 0; position <= nb_elements + I;
not empty or else (position = 0);
empty = (offieft and offright);
offright = (empty or (position = nLelem.ents + I));
offieft. = (empty or (position = 0));

-- Note that. empty implies (position = 0), so that. al:,;o:
offieft = (position = 0);

isfirst = (position = 1);
islast = (not em.pty and (position = nb_elements));
not empty or else (not isfirst and not islast);

end -- class LIST



Class FIXED_LIST [1l provides an array implementation of lists; only limited operations
are available (no insertions or deletions). The array is created with fixed bounds, given as
parameters to the version of procedure Create redefined for this class.

~- Lists with a fixed number of elements
class FIXED_LIST [1l export

****** Same exported features as in class LIST ******
inherit

ARRAY [1l
rename Create as array_Create;

LIST [1l
redefine Lth, changci_th, swap;

Create (n: INTEGER) is
-- Allocate fixed list with n elemen ts

array_Create (I, n) ;
check n = size end;
nb_elements := n ;

end; -- Create

value: Tis
-- Value of active element

Result := entry (position)
end; -- value

change_value (v: 1) is
-- Assign v to vallie of current element

enter (position, v)
ensure

value = v; entry (position) = v
end; ~- change_value

Uh (i: INTEGER): Tis
-- Vallie of t~th element of the list
-- (Applieable only if i is a valid position for the list)

require
i >= I; i <= nb_elements; -- These conditions imply not empty

Result := entry (i)
ensure

-- Result = value of i-t.h clement of the list
end; --Uh

-~- - ~-- ---- -
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change_l"-th (i: INTEGER, v: T) is
-- Assign v to value of i-th element
-- (Applicable only if i is a valid' position for the list)

require
i >= I; i <= nLelements; -- These conditions imply not empty

enter (iJ v)
ensure

Uh (£) = v
end; -- change_i_th

swap (i: INTEGER) is :,
-- Exchange value of active element with value of element at position i.
-- Active positio-nis not changed,
-- Not applicable if ornert, offright, or position i is not valid for thc list.

require
not offieft; not offright; i >= 1; i <= nb_elements
-- These conditions imply not empty

local
thisvalue: T; thatvalue: T

thisvalue := entry (position) ; enter (position, entry (i))j enter (iJ thisvalue)
end; -- swap

-- Make first element active (no effect if list is empty)
do position := min (nb_elements, 1) end; -- start

-- Make next position to the right active
-- (Applicable only if not affright),

require
not offright

position := position + 1
ensure

position = old position + 1
end; -- forth

go (i: INTEGER) is
-- Make !:'th position active
-- (Applicable only if 0 <= i <= nb_elements+l)

require
i >= 0; i <= nb_elements+ 1

po;ition := i
ensure

position = i
end; -- go



go_off/eft is
-- Put the list in position omcft
(Secret procedure; use go (O) in clients)

position := 0
ensure

offleft .
end; -- go_offleft

duplicate: like Current is
-- Complete clone of the list

local" .'
new: like Current

new. Create (nb_elements);
-- new. Clone would be inappropriate here

mark;
from

start; new. start
keep

-- position - 1 values have been copied
decrease

nb_elements - pOl!ition
until

offright -- thus new.offright too

new. change_value (value);
forth; new.forth

end; -- loop
retrieve; new.go (position)

end; -- duplicate

-- The class invariant adds nothing to the invariant of class LIST
end -- class FIXED_LIST

This section introduces classes LINKABLE [T] and BLLINKABLE [T] corresponding to
"linkable" list components of two different brands: right-linked only and doubly-linked. Objects
of such ,types have, two fields: a value and a "right" pointer to another similar object. Bi-
linkable objects also have a "left" field. Such component structures are deslgnrd for use in
connection with classes representing linked lists: LINKED_LIST [T] and TWO_ WA LLIST [T].



-- Linkcd list eiC'rncnts
-- (for use in connection with LINKED_LIST [71 and TWO_ WAY_LIST [71)

class LINKABLE [71

export

valu e,change_linkable_value {LINKED_LIST},
right, change...:.right {LINKED_ LIST}, puCbetween {LINKED_LIST}

feature
Create (t: T) is

. value := t
end; -- Create

value: T;

change...:.linkable...:.value(t: T) is

-- Assign value of t to current list element

value := t
end; -- change_linkable...:.value

change...:.right (other: like Current) is

-- Put other to the right of the Current element

right := other
end ; -- change_right

puCbetween (before: like Current; after: like Current) is
-- Insert current clement between before and after (if it makes sense)
-- This procedure is used in LINKED_LIST every time an insertion is performed.

if not before. Void then before.change...:.right (Current) end;
change_right (after);

end; -- puCbetween
end; -- class LINKABLE [71

class BLLINKABLE [71
_.:Same as LINKABLE [n plus "left" field

export

value, change_bilinkable...:.value {TWO_ WA Y_LIST},
right, change_right {BI_LINKABLE, TWO_ WAY_LIST},
left, change_left {BLLINKABLE, TWO_ WAY_LIST}

inherit

LINKABLE [71
rename change_linkable...:.t'alue as change_bilinkable_value,

-- Renaming is to ensure consistent terminology;
-- the procedure doC's not need redefinition.

redefine right, change_right



left: like Current;
right: like Current;

changeright (other: like Current) is
-- Put other to the right of current clement

right := other;
if not other. Void then

other. change_left ( Current)
end

end -- change_right;

changeleft (other: like Current) is
-- Put other to the left of the current element

left := other;
if not other. Void

-- Avoid infinite r('cur~ion wil,h changeright!
and then other. right /= Current
then

other.changeright (Current)
end

end -- changeleft
keep

right. Void or else right.left = Current;
left. Void or else left. r~'ght= Current;

end; -- class BLLINKABLE [71

Cla~s LINKED_LIST IT] introduces singly linked li~t.s. All o!H'rations of insNtion and
deletion arc possible; however, since the lists are chaincd one way only, operat.ions such a.s back,
implying a complete traversal, will be in(·!TIcicnt. They are provided, however, for c()rnpl('t.('ness.

The representation keeps references not only 10 th(' activf' ekmcnt but al;;o t.o its Idt and
right neighbors (active, left, right); This allows, for cxamplc, efficienl, insertions both just bdore
and just after the active elemcnt.

, A note to t.he ~ourageous readf'r: an excellent t.cst of your undNstanding of Ill" present set
of basic classes and the general prineiples of EifTci (ksign is to writ.c I,wo proccdures patt,erned
itftcr inserCright and inserCleft helow, namcly

'me~gcafter (i: like Current)
merge_before (I: like Current)

, - .

which' insert a linked list ,Lto 1,1i(~ right a"Ud Idt (rc'spective\y) of the clIrrcnt.ly active position.
The pr0cisc condi'tions (requir~~ ..) und~r which- thcy arc a!lplicablp shoukl h0 sp01kd out.. The
guiding criteria should be simplicity (no a'uxiliary procedure is necessary), preservation of the
dass in\'ariant., pcrf0ct symmdry bel ween left and right, and elegance. It will he even better if
the proccdurcs also apply to two-way lists (next section) without rcddinition.



-- One-way linked lists
class LINKED_LIST [1']export

-- Features rrom LIST:
nb_elements, empty,
position, affright, olfieft, isfirst, islast,
value, i_th, first, last,'
change_value, change_i_th, swap,
start, finish, forth, back, go, search,
mark, retrieve,'
index_of, present,
duplicate,

- Plus new reatures permitted by linked list representation:
inserCright, inserCleft,
delete, deletcright, delete_left,
delete_aICoccurrences, wipe_out

inherit
LIST [1']

redefine first

-- Secret attribut.es specific to linked list representation
firsCelement: LINKABLE [71;
active: like firsCelement;
previous: like firsCelement;
next: like firsCelement;

,; . value: Tis
-- Valu(~ or act.ive c!ellwnt

require
not offieft; not affright

Result := active. value
end: -- value

changcvalue (v: T) is
-- Assign v to value of currcnt. e1clIH'nt.

require
not olfieft; not affright -- These condit.ions imply not empty

active.changcvalue (u)
. ensure

value = v
'end; -- change_value
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if not empty then
previous.Forget; active := firsCelement;
check not active. Void end;
next := active. right; position := 1

ensure " ,.-.'
empty or else isfirst

end; -- start

- Ma.ke next position to the right active
-- (Applicable only if not offright).

require
not offright

if offleft then
check not empty end; start

check not active. Void end;
previous := active; active := next;
if not active, Void then next := active. right end;
position := position + I

end
ensure

position = old position + I
end; -- forth

go_offleft is
-- Put the list in position omcft
(Secret procedure; u::;ego (0) in clients)

active.Forget; previous.Forget; next := firsCelement;
position := 0

ensure
offleft

end; -- go_offleft

duplicate: like Current is
-- Complete done of t.he list

****** Left to the f('ader (go through t.he li"t, dupli('at.ing ('very li"t. element) ******
****** (See thl' ('orn':-;po!Hling procedure for FIXED_LIST) ******

end; -- duplicate

" ..;.

", • <" ~ ~.:;~ -

'~~'~A: ,~]f-"



-- Deletion and insertion procedures specific to linked lists
inserCright (v: T) is

-- Insert an element of value v to the right of active position if there is one;
-- Active position is unchanged.
-- Applicable only if list is empty or not offright

require
emptyor else riotoffright"

local
,~, ;flew: like firsCelement

do
new. Create (v); inserClinkable_right (new)

ensure
nb_elements = old nb_elements + 1;
active = old active; position = old position;
not next. Void; next. value == v

end; -- inserCright

inserUeft (v: T) is
-- Insert an element of value v to the left of active position if there is onc.
-- Active position is unchanged.
-- Applieablc only if list is empty or not o{Ilcft

require
empty or else not offleft

local
new: like firsCelement

new. Create (v); inserClinkable_left (new)
ensure

nb_elements = old nb_elements + 1;
active = old active; position = old position + 1;
not next. Void; next. value = v

end; -- inserCleft

, ·".l """ ~~
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-- Delete active clement and make its right neighbor, if any, active
-- (List becomes oITright ir no right neighbor)
- Not applicable if offieft or oITright

require
not offieltj not offright

active := next;'
if not' previous. Void then previous. change_right (active) end;
if not active. Void then next := active.right end;

-- else next is void already
nb_elements := nLelements - 1;
no_change_since_mark := false
check

position- I >= 0; position - I <= nLelements;
empty or else position - 1 > 0 or else not active. Void;

end;
update_alter_deletion (previous, active, position - 1);

ensure
nb_elements := nb_elements - I;
empty or else (position = old position)

end; -- delete

deletcright is
-- Delete element immediately to the right of active position; active position is unchanged.
-- (No eITect if active position is last in list).
-- Not applicable if oITright

require
not offright

******* Left to the reader (imitate delete) ******
ensure

(old islast and Nochange) or else (nb_elements := nb_elements - I);
active = old active;
position = old position

end; -- delete_right



deletf._left is
-- Delete clement immediately to the left of active position;
-- act,ive position is unchanged (but its index is decremented by I).
-- (No eITect if active position is first in list)
,- Not applicable if orndt
~=-.rnefficien t.for one~way lists: incl uded for completeness

require
not offieft

******* Left to the reader (use back and delete) ******
ensure

active = old active;
(old isfirst and Nochange) or else _

((nLelements := nb_elements - I) and (position = old position - I))
end; -- delete_left

delete_all_occurrences (v: 1') is
--Dclct.e all occurrences of v from the list

from start until offright loop
if value = v then delete else forth end

end;
no_change_since_mGrk := false

end; -- deletcalLoccurrences

wipe_out is
-- Empty the list

nb_elements := 0; position := 0;
active.Forget; firsCelement.Forgetj previous.Forget; next.Forget;
no_change_since_mark := false

ensure
empty

end -- wipe_out



inserClinkable_right (new: like firsCelement) is
-- Insert. new to t.he right of active position if there is one;
-- Activeposit.ion is unchanged.
-- Secret procedure.
"-- Applicable only if list. is empty or not. ofTright.

require
not new. Void; empty or else not offright

new.puCbetween (active, next); next := new;
nb_elements := nb_elements + I;
no_change_since_mark := false;
check

position + 1 >= I; position + 1 <= nLelements
end;
update_after _insertion (new, position + 1)

ensure
nb_elements = old nLelements + I; pos£tion = old position
previous = new

end; -- inserClinkable_right

inserUinkable_left (new: like firsCelement) is
-- Insert new to the left of active posi tion if there is one;
-- Act.ive position is unchanged (but its index is increased by one).
-- Secret procedure.
-- Applicable only if list is empty or not olllert

require
not new. Void; empty or else not offleft

if empty then position := 1 end;
new.puCbetween (previous, active); previous := new;
nb_elements := nb_elements + 1; position := position + 1;
no_change_since_mark := false
check

position - 1>= 1; position - 1 <= nb_elements
end;
update_after_insertion (new, position - 1);

ensure
nb_elements = old nb_elements + 1; position = old position + 1;
prevIous = new

end; -- inserClinkable_left

update_after _insertion (new; like firsCelement; index; INTEGER) is
-- Check consequences of insNtion of clement new at. posit.ion index:
-- docs it become the first, element'?-

require
not new. Void; index >= 1; index <= nb_elements

if index = 1then
firsCelement := new; first ;= new. value

end
end; -- update_after_insertion

-
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update_after_deletion (one: like firsCelement; other: like firsCelement; index: INTEGER) is
-- Check consequences of deletion of element between one and other,
-- where index is the position of one.
-- Update firsCelement if necessary.

require
index >=0; index <= nb_elements;
empty or else index> 0 or else not other. Void;
~- the element deleted was between one and other

if empty then
firsCelement.Forget; position := 0

elsif index = 0 then
check not other. Void end; -- See precondition
firsCelement := other; first := other. value

-- else do nothing special
end

end; -- update_after_deletion

-- Invariant for class LINKED_LIST
keep

-- The invariant of <:lass LIST plu~ the following:
empty = firsCelement. Void;
empty or else firsCelement. value = first;
active. Void = (offieft or offright);
previous. Void = (offieft or isfirst);
next. Void = (offieft or islast);
previous. Void or else (previous. right = active);
active. Void or else (active.right = next);
-- (offieft or offright) or else active iiSthe position-th clemen t

end; -- class LINKED_LIST

Class TWO_ WAY_LIST [11 introduces doubly linked lists. Features back and forth now
have the same elficieneYi in fad the whole clasiS is almost entirely symmetric with resped to
"left," and "right".

-- Two-way linked lists
class TWO_ WA LLIST [71 export

****** Same export clause as in LINKED_LIST ******
-- Soni'e features, however', are redefined

inherit
LINKED_LIST [71

rename go as reachJrom_lcft, wipe_out as simple_wipeout,

redefine
firsCelement, last, back, go, wipe_out,
update_after _deletion, updateafter _insertion

~,".~::S _./ ~~t:'
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-- For two-way lists, we also keep a reference
. -- to the last element and its value:

lasCelement: like firSCelement;· ,.

last: T;

-- Make next position to the left active
-- (Applicable only if not offieft).

require
not offieft

if offright then
check not empty end; finish

check not active. Void end;
next := active; active := previous;
if not active. Void then previous := active. left end;
position := position - 1

end
ensure

position = old position - 1
end; -- back



go (i: INTEGER) is
-- Make i-t,h posi tion active
-- (Applicable only if 0 <= i<= nb_elements+l)

require
i>= 0; i<= nLelements+l

if i = nb_elements+ 1 then
-- Go affright
active.Forget; next.Forget; previous := lasCelement;
position := nb_elements+ 1

elsif i <= position/2 or (i >= position and i <= (position+nb_elements)/2) then
reachJrom_left (l)

-- Reach from the right
from

if position < i then
-- Firiish (revised for two-way_lists)
active := lasCelement; previous := active. left; next.Forget

end
keep

position <= nLelements ; position >= i
decrease position - i until position = i loop

check not offieft end;
back

end -- loop
end -- if

ensure
position = i

end; -- go

update_after_insertion (new: like firsCelement; index: INTEGER) is
-- Check consequences of insertion of element new at position index:
~- does it become the first element,?

require
not new. Void

****** Redefinition left, to th(' reader ******
****** Hints: make the routine symmetric with resp('e!. t.o right and left; ******
****** lasCelement and last may need to be updated as w<'ll as firsCelement and first ******

end; -- update_after_insertion



update_after_deletion (one: like firsCelement; other: like firsCelement; index: INTEGER) is
-- Check consequences of deletion of element between one and other,
~- where index is the position of one.
-- Update firsCelement if necessary.

require
index >= 0; index <= nLelements;
empty or else index> 0 or else not other. Void;
-- the element deleted was between one and other

****** Redefinition left to the reader ******
****** Hints: see update_after_insertion ******
end

end; _. update_after_deletion

wipe_out is
-- Empty the list

simple_wipe_out; lasCelement.Forget
ensure

empty
end .• wipe_out

-- Invariant for class TWO_ WA LLIST
keep

-- The invariant of class LINKED_LIST, plus the following:
empty = lasCelement. Void;
empty or else lasCelement.value = last;
active. Void or else (active.left = previous);
next. Void or else (next. left = active);
-. (offleft or offright) or else active is the position-th element.

end ; -- class TWO_ WA Y_LIST

The following class is an implementation of trees, using linked representation. Note that
no distinction is made between trees and tree nodes.

As explained in section 1..').1, trel' nodl's arc implementl'd as a combination of lists and list
clements. The list features make it possible to obtain t he children of a node; the list clement
features make it possible to aceess thl' value assoriatl'd with each nodl' and its right sibling (the
class may be redelined using two-way lists and "bi-linkable" clements to allow aecess to the left
sibling as well). The addl'd fcat,url' parent makes it possibll' t.o access the parl'nt of each node.

Since each node of the tree is - among other things - a list in thl' sense defined above, so
it keeps a record of which of its ehildrl'n is the "active" one. To change the activl' child of a
nnck, proccc!ur<'s inherited from LIST (t.hrough LINKED_LlST) are available: back, forth, go,
etc.



class TREE [71 export
position, offright, offieft, isfirst, islast, start, finish, forth, back, go, mark, retrieve,
is_leaf, arity,
node_value, child_value, change_node_value, change_child_value,
child, change_child, righCsibling, firsCchild,
inserCchild_right, inserCchild..:..left,
delete_child, llelete.:.chiid:..left, delete'..'t:hild_ri!Jht
parent, is_root

inherit
LINKABLE [71

rename
right as sibling,
value as node_value, change_value as change_node_value,
puCbetween as linkable_puCbetween; -

redefine put_between;

LINKED_LIST [71
rename

empty as is_leaf, nb_elements as arity,
value as chiid_value, change_value as change_child_value,
active as child, firsCelement as firsCchild,
inserClinkable_right as inserCchild_right, inserClinkable_Ieft as inserCchiltLleft,
delete as delete_child, delete_left as delete_child_left, delete_right as delete_chiltLright;

redefine firsCchild

feature
firsCchild: like Current;

parent: like Current;

attach_to_parent (n: like Current) is
-- Make n the parent of current /lode.
-- Secret proced ureo

parent := n
ensure

parent = n
end ; -- attach_to_parent



change_child (n: like Current) is
-- Replace hy n the active ehild

require
not offieft; not offright;
not n. Void

..inserCchild..;;.right (n);
check

n.parent = Current
-- Recause of the redefinition of puCbetween

end;
delete_child
check

child = n
-- Reca use of the convention for the new active clement after delete

ensure
child = n;
n.parent = Current

end ; -- change_child

is_root: BOOLEAN is
-- Is current node a root?

Result := parent. Void
end; -- is_root

puCbetween (before: like Current; after: like Current) is
-- Insert current clement between before and after (if it makes sense)
-- Redefined from class LINKED_LIST
-- to ensure that Current will have the same parent as its new siblings.

require
(before. Void or after. Void) or else (before.parent = after.parent)

linkable_put_between;
if not before. Void then attach_to_parent (before.parent) end;
if not after. Void then attach_to_parent (after.parent) end;

end; -- puCbetween

- The invariants of the parent classes, plus the following:

is_root = parent. Void;
sibling. Void or else sibling. parent = parent;
child. Void or else child.parent = Current;
previous. Void or else previous.parent = Current;
next. Void or else next. parent = Current;
firsCchild. Void or else firsCchild.parent = Current;

end -- TREE [Tl



We would like to emphasize that Eiffel is a small language (which is not the same as
"easy"); we feel that its size, to the extent that such a measure exists, is about equivalent to
that of Pascal, for much more power, !I('xibility and safety.

The comparison is', not entirdy fair, since the design of Eifkl con('('ntrat('d on
"progrll,mrning-in-the-Iarge" featur('s and we are quite happy, at least in the curr('nt vC'rsion of
the language, to rely on ext.ernal C or Fortran routin('s (encapsulated in a few standardized
basic dass('s) for sud. r('latively mundane tasks as input, and output. But in genNal pauc'ity is
one of t.he main properties of the d('sign, and the language in('ludes little redundancy and few, if
any, of the "bell and whistles" found in many languages.

Non-indispensable features have been avoided: for example, we do not see any use for a
"repeaL.until. .. " loop, for a "for" loop ('xcept when programming an SIMD ma('hine) or for
enumerated t.yp('s (in a language that includes the not.ions of class and inherit.arwe); arrays arc
not part of the language proper hut may he defined (see section 2.2) as a hasie class, relying on
external proeedures for memory allo(·ation.

Several efforts arc being pursued in conne(·tion with t.he work descrihed in this a rtiele:

• The language and its translator (ETC) are h<'ing applied to the development of several
software products.

• The implementation is being refined and extended.

• The basic lihrary sket.rhed in this article is being expanded and its scope put to test.

• Work on specific Eiffel tools (heyond the translator and the associated conl1guration
management facilities) has not yet hegun, but the document constructor Cepage [19) will
have an Eiffel version.

• A separate paper [18] explores in more detail the rclationship of inheritance to Ada-like
genericit,y; work on the formal specifieation of Eilfcl, in particular the inheritance
mechanism, is also in progress.

• A formal specil1cation method, M [20], relying on similar ideas at a more abst'ract level,
is being further investigated.

Many'(although not all) of the individual language traits present in Eiffd have appeared in
other languages. We believe that the main contribution of Eiffcl and the associatcd syst.em is
that they provide a consistent combination of a range of features which, to our knowledge, had
never before been offered wit.hin a single language: object-oriented program modulcs based on
dat.a abstraction, mult.iple and repeat.ed inheritance, gcnericit.y, information hiding, fully static
typing, systematic use of assertions and invariants, separate compilation, dynamic allocation of
objects with automatic garbagc (~ollect.ion, efficient compiled code, portabilit.y through the use of
II widely availahle intermediate target language, built.-in automatic conl1guration management
:..:.·a:nd, more generally, an overall concern to cater to the needs of serious software practitioners
in production environments.

We view F.iffcl as a language for profpssional programlllers: people who have come to
appreciat.e the difficulties involved in software design as well as the virtues of reusahilit.y,
modularit.y, data abstraetion, gcnerieit.y and a.ssertion-guidcd progrn.rnming; people who know
t.hat an appropriate design and programming language is a key ingredipnt in nH'eting t.hese
eha lIengi ng goals.
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