

THE EIFFEL
ENVIRONMENT

Because interpreters offer flexibility, most object-oriented environments

have been interpreter-implemented. For software development purposes, however,

efficiency and reliability are imperatives, and compilation is almost invariably a requirement.

This account tells of an attempt to have the best of both of these worlds.

BY BE R T RAN D ME Y E R

Object-oriented programming
has been hailed as an effec-
tive technique for experi-

menting and prototyping. But an-
other view is also possible-a
software engineering view, where
efficiency and reliability count for
just as much as reusability and
extensibility. This article explores
the implications of this perspective
by reviewing issues that arose in
the design of Eiffel [1], an object-
oriented environment for the de-
velopment of high-quality produc-
tion software.

The traditional freestyle ap-
proach to object oriented environ-

. ments, as exemplified by Small-
talk, is usually implemented by
way of interpreters, which yield

. cClnsiderable advantages in terms
of flexibility, accessibility to source

Q; code, debugging capabilities, and
:l modification ease. By contrast, the
c: goals of software engineering al-
£ most invariably require compiling.f But ia this to say that a com-

piled approach necessarily implies
an inflexible, hard-to-use environ-
ment? This article attempts to
show it doesn't have to. To demon-
strate this, I'll revisit some of the
design choices we made while
building the Eiffel environment in
an attempt to reconcile some of the
best aspects of both the compiler-
oriented and the interpreter-im-
plemented worlds. Of course, no
compiled environment can hope to
give the user the same degree of
freedom and direct interaction
possible with an interpreter. But
certainly it can come close to
providing as much comfort, and
not sacrifice either reliability or
efficiency in the process.

The Importance of Being Com-
piled. Reliability and efficiency, of
course, are watchwords for those
who favor compilers.

Added reliability follows from
the numerous checks a compiler
makes possible. Eiffel, in particu-

lar, is a fully typed language which
ensures type consistency through
its compiler. This is extremely
important since, in an object-
oriented context, "type consisten-
cy" means that whenever a routine
is called on an object (or, in
Small talk terms, whenever a mes-
sage is sent to an object), the object
must be prepared to deal with the
routine. In a dynamically typed,
interpreted environment, an ob-

. ject may at runtime receive a
message it can't handle, resulting
in failure. But in Eiffel, such a case
would be detected at compile time,
causing the compiler to reject the
class containing it. This is essen-
tial, given Eiffel's software engi-
neering orientation: who, after all,
wants a production system liable
to suddenly stop with a printout
reading, "Sorry, I cannot treat the
last message I received"?

N ate that static typing should
not be confused with static bind-
ing. In Eiffel (as in Smalltalk), all

binding is dynamic; that is, when a
routine is applied (or, if you prefer,
when a message is sent) to an
object and more than one version
of the routine is available, the
version that's applied is chosen on
the basis of the object's runtime
form. Static typing guarantees that
there will be at least one version;
dynamic binding guarantees that
the "best" version will be selected.
Eiffel combines the two.

But enough of reliability; what
of efficiency? Eiffel generates C
code, the obvious advantage in this
being that it makes the environ-
ment reasonably portable. Still, it
would be inappropriate to call the
Eiffel compiler a "pre-processor",
given that it performs all the
functions of a sophisticated com-
piler and in no way serves as an
extension of C. (We feel it is
wrong-and indeed full of risks-
to mesh the features of C, a low-
level portable language, with ad-
vanced object-oriented features in-
tended to improve software qual-
ity. It's hard to see how a serious
software designer could accept the
combination within a single lan-
guage of such high-level techniques
as multiple inheritance with such

low-level C notions as pointer
arithmetic. Simplicity, consisten-
cy, and ease of learning are prob-
ably the three foremost require-
ments for a programming language;
under no circumstance can com-
patibility with past mistakes be
regarded as a legitimate excuse for
sacrificing these goals.)

One of the Eiffel design aims is to
approach the efficiency of straight-
forward C coding. The current
penalty in terms of space as well as
time is usually no more than 20
percent, which generally is accept-
able-especially considering the
production benefits that derive
from programming in an object-
oriented fashion.

A detailed discussion of the
techniques used to reach this
performance goal is beyond the
scope of this article, but it's
worth mentioning that dynamic
binding doesn't require a runtime
search conditioned by the depth of
the relevant inheritance diagrams.
Instead, the appropriate routine
can always be found in a constant
(and small) period of time. This is
particularly important given Eiffel's
use of multiple inheritance, which
without this technique would make

Figure 1 - Possible dependency relations In Elflei.

46 VOL. 6 NO. B

the system prohibitively slow.

Recompiling Quickly. One of
the major benefits of an
interpreted environment is

the speed of the change-to-re-
execute cycle. That is, when you
see some runtime behavior you
don't like, you need only stop
execution, make a change, and
restart the whole thing.

To emulate these results in
a compiled environment, it isn't
enough to write a compiler capable
of quickly compiling a class. What
really matters, after all, is not how
you can compile an individual class
but how you can recreate a working
environment (what in Eiffel is
called a system) after making a set
of changes to one or more classes.
Here again care must be taken to
combine efficiency with reliability:
compilation must be quick, but it
must also guarantee that the re-
sulting system uses the latest
version of each class.

In achieving this end, we wanted
to avoid using the make approach,
under which consistency is ensured
by requiring the programmer to
manually enter descriptions of
intermodule dependencies (make-
files). The process of entering
these descriptions is not only
tedious, but also error-prone; de-
pendencies can easily be forgotten,
especially if the software changes a
lot-and object-oriented program-
ming, after all, is there to make it
easy to change your software. In
any case, make wouldn't work for
Eiffel, since it doesn't support
cyclical dependencies. This is an
issue because Eiffel classes may
depend on each other in two ways:
A may be a client of B, meaning it
uses some of B's facilities (sends
messages to instances of B) through
B'B official interface; the other
possibility is that it may inherit
from B. In Eiffel, inheritance is
multiple, which means a class may
inherit from an arbitrary number
of other classes. While inheritance
is an acyclic relation, the client
relation may contain cycles; fur-
ther, the two relations may be
freely intertwined, with a class
being a client of one of its ancestors
or descendants (see Figure 1).

Thus, in the place of make, we
chose to implement a fully auto-
matic mechanism for achieving
both reliability and efficiency. The

magic command (es, for Eiffel
System) can take a set of classes
and find the minimum set of
operations needed to recompile it.
It needs only the following pieces
of information:

• the name of a distinguished class
serving as the system's root. A
"system" includes all classes on
which the root depends either
directly or indirectly. Also bear in
mind that dependency includes
"client" as well as "heir";

• a list of the directories where the
classes of the system can be
found.

There is a simple correspondence
in Eiffel between class names and
file names: class XXX would be
stored in file xxx.e, for instance.
The classes of a system may be
scattered over many directories,
for which several different pro-
grammers can be assigned respon-
sibility. Command es will find the
corresponding files as needed.

Based on this information, es
will compile classes, generating
files (C, object code, and auxiliary
information) in associated directo-
ries. Using time stamps, the com-
mand will only recompile as neces-
sary; in particular, if a class has
been modified but its interface
hasn't been, es will recognize this.
and not recompile clients. The
point of all this is that program-
mers neither have to recompile
manually nor suffer through the
maintenance of makefiles.

Of course, even with es, recom-
piling can never be as fast as
restarting execution in an inter-
preted environment. But generally
the delays are quite acceptable.
Typically, changes in a few classes
of a system, even a fairly large
system, can be implemented in a
few minutes.

The Generated C. C was chosen
as an intermediate language for
Eiffel because of its portability and
its low level. The role it plays for
the Eiffel compiler is akin to the
role ofP-code for Pascal compilers,
or of quadruples and other inter-
mediate representations for other
compilers. C turned out to be less
portable than initially expected,
but has enabled us to port Eiffel to
close to 30 UNIX platforms and,
recently, to VMS.

Although the form of the C code
Eiffel generates is such that users
can easily trace it back to the
corresponding Eiffel code (thanks
to simple naming conventions and
automatically generated comments),
users are not expected to maintain
it. (Were that the case, there
hardly would be a need for lan-
guages of a higher level than C.)

An important practical advan-
tage of using C as intermediate
code is that Eiffel programs thus
can communicate easily with func-
tions written in C (or even in other
languages, assuming the implemen-
tations in question follow appropri-
ate passing conventions). This is
essential if reusability is a concern,
since it must be possible to inter-
face new software with existing
code.

C Package Generation. In
standard Eiffel usage, the
generated C is not relevant

to programmers. There is, all the
same, another es option by which
users can produce from an Eiffel
system a complete C package. This
is indispensable for those software
developers who need to distribute
their products to environments
where Eiffel is not supported. A
package thus produced will consist
of a set of functions corresponding
to the exported routines of selected
classes. Generated in a directory,
the components of the system will
include:

• a C translation of all the classes
from the system in the form of
a set of C files, where only
the exported routines (including
Create) from certain designated
classes will be visible (in C form)
from other C programs;

• a copy of the Eiffel runtime
system, in C form;

• a system-generated makefile,
which will allow for the automat-
ic recompilation of the package;

• some automatically generated
documentation.

Eiffel's C package generation
option thus produces entirely self-
contained programs, which can be
moved to any machine and recom-
piled there, independent of any
Eiffel tools. Packages produced in
this way are highly portable, mean-
ing in particular that target sys-
tems need not be UNIX-based.

Naming the C Functions When
a package is generated, the prob-
lem of choosing names for the
generated C functions arises. It
would be too tedious for the
programmer to have to specify all
names; but letting the Eiffel com-
piler fabricate names would not be
good for clarity. A natural choice is
to use Eiffel names for exported
routines, but then-since several
classes may use the same routine
names-enable programmers to
remove ambiguities at the C level.
Another issue is the length of
identifiers; whereas many C com-
pilers consider only the first seven
or eight characters of an identifier,
Eiffel has no such restriction. As a
consequence, the following naming
policy has been adopted for gener-
ating packages:

• By default, the original Eiffel
name is used, truncated to the
appropriate number of characters.

• Whenever the compiler detects a
conflict, it fabricates names of its
own for the second occurrence of
an Eiffel name and for every
subsequent occurrence.

• The compiler produces a corre-
spondence file, giving for each
Eiffel routine (identified by class
name and routine name) the
corresponding C function name.
The programmer then is given a
chance to edit the file and replace
any particular C name with an-
other. The compiler will use the
names the programmer chooses
and will keep and update the
correspondence file, meaning the
programmer won't be forced to
retype choices between succes-
sive runs.

A typical correspondence file
contains a set of entries such as the
following:

Eiffel
routine

C
name

Window display display
Window parent parent
Window height win_height
Window Create win_Create

Screen height scr_height
Screen Create sccCreate

where the third column has al-
ready been edited by the program-

mer to replace some conflicting C
names.

Optimization. Eiffel's C pack-
age generator doubles as an opti·
mizer, playing an important role in
removing undue overhead from
object-oriented techniques. In many
implementations of object-orient-
ed languages, three issues contrib-
ute serious overhead:

• A routine defined in a class may
be redefined in a descendant (in
the inheritance sense). Dynamic
binding ensures that the version
to be applied in any call depends
on the runtime form of the object.
The Eiffel mechanism for calling
a routine takes this possibility
into account. But although we've
seen that the overhead is kept
to a reasonable minimum, it still
is desirable to obviate it altogeth-
er for routines that are never
redefined.

• Object-oriented design encour-
ages the packaging of many faciIi-
ties in the same class. As a result,
a considerable amount of useless
code may end up getting loaded
into applications, along with the
desired routines. This problem
can become especially serious
with inheritance; designers are
tempted to inherit from classes

that include only a few needed
facilities.

• Finally, object-oriented design,
even more than "structured pro-
gramming", promotes a highly
modular style that requires many
routine calls. This can lead to
inefficiencies.

The Eiffel optimizer addresses
these problems in the following
ways:

• Calls to never-redefined routines
are statically bound to the actual
code.

• Unneeded code is removed.
• Routines are automatically ex-

panded in line according to pre-
defined criteria.

These optimizations are critical
to obtaining the highest possible
efficiency.

Documentation Tools. Good
tools for exploring software
that's already developed are

essential in a powerful develop-
ment environment. Users in inter-
preted environments, for example,
often like to use source code as a
form of documentation. The fam-
ous Small talk "browser" enables
this use of the code, taking advan-
tage of a multiple-windowing in-

~..:,,' ", "'<',, .;,,1
h~\Cla~'ln~~!I,~~.:~~\1; rn .xpori!;'df~~t,~~~' .'" .''.';" .'.• '

"j>'F';\hse~;'q~'er~!i~~;;d~;'"a;~~,:A~~eT~i~;'T~~:/~+:~f~~,~;,;;i
i;;;i~tJlljf~~ii~~iil~p;};~~~*1i~;:ii:"g,;;:'~;~';ftff1f,;;
'. ,:' '., Insr;r(el.ement: 'r".key:' STRING) .. ",:. 00' , .• ';'-' ••• ; ; ••••• ', ••. ; ••

':.' ... , ... ' ..'~7 l(1ser't element with key',key' ".:'.;. ,;.. "".;':: ..'.'. <:.' ~': >'
;';',C, ..'requlr~:\:";,'?'~~'~::•.>/:·';::":l·:·'.i\ :':- .;'", ",<·:/;··:L:' :;. ;':~:"';.::: ..
• 'J • _. '" 'nb....:.elements"'< 'max.:-elements· . :' .. " ,.;';);;
;,:··:;·~~,~siJre:".:;,:.:::,/.;<;,.".",::'<i:.,j;':;·.:·'·. " ;;" ';.,,:::.;-:;' '.,.

}'>,/;:':;"·,nb'..:.J#emen.ts,<,,:;, mci6'elements:.~:,:;:/:: "'(,~',..,. ,/;}:,:.'
:'):_-;;.:~:':';".. " ,"

" ., . " . 1: -.--:;::~: --! .••: •

Figure 2 - Part 01 a class interlace generated by short.

48 VOL. 6 NO. a

terface to give users access to
useful classes, explored in source
form.

The Eiffel approach is some-
what different. Although library
classes are made available in source
form, we've tried to provide tools
that also offer more abstract views
of the software. These include a
class abstracter (short), a class
flattener (flat), and a system for
generating and exploring system
structures (good) .

The Class Abstracter. The
tool short offers a simple
but useful means for taking

a class and automatically produc-
ing interface documentation. For
example, the command short c
will yield the interface of class C.
Included in this output will be the
text of the class, exclusive of any
implementation detail and any
non-exported feature-a bit like
the specification part for an Ada or
Modula-2 module, but produced
by the computer rather than the
programmer.

An extract from sample output
of short is shown in Figure 2
(obtained using the -t option,
which produces troff code). Note
that the use of Eiffel assertions is
essential to abstractly express the
semantics of classes (preconditions
are introduced by the require
keyword, while postconditions are
introduced by ensure).

Flattening a Class. When a class
has been defined through one or
more levels of inheritance, it will
often be difficult to understand the
class by merely viewing it in isola-
tion. This is because the definitions
for many of the class IS components
can be found only by examining its
ancestors. Such detailed informa-
tion cannot be obtained just by
using the short command.

The Eiffel class flattener ad-
dresses the problem by producing
as output a "flat" version of the
class in which it's shown as a self-
contained module, without refer-
ence to any ancestor. This means
that all inherited components are
copied into the output class (tak-
ing renaming and redefinition into
account), and that the inheritance
clause is removed. For clients of
the class, the resulting flat version
is functionally equivalent to the
original. The flat version of class C

is obtained by executing flat c. By
injecting this output into short, as
in flat c : short, one can obtain a
complete interface for C providing
the same type of information for
inherited features as for features
declared in the class itself. The
result is a complete interface de-
scription of C.

Used independently of short,
the flattener may serve to produce
a standalone version of a class
(for distribution to customers, for
instance).

Good: Graphical Explora-
tion of System Structures.
Complementing the com-

mands short and flat (which
apply to individual classes) is a set
of tools useful for controlling the
design and analysis of a system's
overall structure. The set goes by
the name good (for "Graphics for

Object-Oriented Design") and is
used for the graphical creation and
exploration of class relationships.

The tools of good are based on
the graphical conventions Eifl'el
uses to describe classes and their
connections [1]: bubbles represent
classes, single arrows show inheri-
tance, and double arrows denote
client relationships. The user in-
terface for good was built with the
Eiffel graphics library, providing
classes for windows, pop-up menus,
and the like; internally, this library
relies on the X Windows graphics
package.

One of the applications of good
is system analysis: starting with a
class, one can see ancestors and
clients. The tools also work in
generation mode, meaning you can
enter a new class and graphically
indicate its ancestors and clients.
The tools then generate the skele-

tons of the corresponding Eiffel
class texts.

As an example, Figure 3 shows a
screen from a representative good
session. Notice how the system has
generated a class superstructure
from the diagram entered by a user
employing a mouse.

Debugging and Testing. Per-
haps the most visible ad-
vantage of interpreted envi-

ronments is that they make it easy
to trace and control execution
during searches for bugs. But
compiled environments can offer
similar facilities, as shown by
what's available in Eiffel. The
intent is to enable Eiffel program-
mers to forget a compiler is in-
volved when they're trying to
interactively debug an application.

It's already been noted that the
Eiffel compiler is not a preproces-

sor. This in particular means that
Eiffel programmers need not know
C since they should be able to
handle all debugging without ven-
turing outside the Eiffel environ-
ment. A number of facilities make
this possible:

• As previously indicated, Eiffel
supports assertions-that is, "re-
quire" and "ensure" clauses
which express conditions on rou-
tines, as well as class invariants
which express integrity con-
straints. These assertions may, as
an option, be monitored at run-
time, providing much support for
debugging if some care is taken to
decorate classes and routines
with proper assertions. Actually,
even application classes that
don't include many assertions of
their own may benefit from the
mechanism because of the heavy
reliance typical Eiffel program-
ming places on the basic library
classes, which have been heavily
loaded with assertions. Accord-
ingly, many errors in application
classes will give rise to assertions
being violated in the basic classes
(a good example of this is an

attempt to insert an element into
a list at an illegal position).

• Routine calls on a given class can
be traced.

• The Eiffel "debug" option en-
ables the selective execution of
debugging instructions.

All of these options are selected
at compile-time but may then be
changed dynamically without re-
compilation. They are particularly
useful when used in conjunction
with a tool named the viewer. The
viewer is an interactive tool for
runtime exploration and object-
based debugging-both of which
are especially important in object-
oriented systems. When the viewer
is called, the user is given a chance
to traverse the object structure by
following references. Figure 4 in-
cludes an extract from a typical
session. Among the commands
available at any step are:

• show the values of the attributes
(instance variables) for the cur-
rent object;

• show the list of routines (meth-
ods) applicable to the current
object (this is the command

I ."'. """.}: ,.:'
1:·,·.·;·.:-' ,,'.;r :';. " '.,

I
. ~I • •• • •• s., • . I •

::+--+: I (23) last+--------------------------------------+ I
1" I (24) chanl Obj.id: AE274 Class: TWO_WAY_TREEI +--------------------+1

l. I ~~~~ ~:~l--~~~~~~~~~~~-:~---~~~:~~~:~-~~-------lI<OEL>: Delete char I:
to' (27) start I<RETURN>: Accept II
t. (2B) fi nish I II
!I" (29) forth I<CTRL_C>: Cancel II
, (311) back I II
" (31) go I I I

I" (32) search I II

\
.: (33) ma rk I II
; (34) return I II

t
·~ (35) index of I II
• (36) present J II
-; (37) duplicate I II

(3B) wipe out ~--------------------+I
(39) insert ri ght I

I (46) ineert-left I
I (41) delete-child I

:~ I (42) de lete -child right I
I (43) delete·child-left I

. I (44) de 1ete -all occurrencea I
,I (45) marge right I

I (46) merge=left I
I (47) get.element I+--+
I E~ecute routine It--t--+
IE~ecute routine number: 4~ I+--+

shown in Figure 4);
• move to another object refer-

enced by an attribute of the
current object;

• execute a routine on the current
object;

• change the value of an attribute;
• create a new object;
• check the class invariant.

The viewer thus is not just a means
for inspecting objects but a com-
plete tool for interactive debugging.

The viewer also serves as a
testing tool: the et (Eiffel Test)
command creates an instance of a
class and sets the viewer to work on
it. Accordingly, users can avoid
writing a test driver for handling a
simple test that needn't be kept for
later repetition. Built into the
compiler but residing in the library
class VIEWABLE, the viewer can
be started by calling the procedure
view (input-file, output-file) in
any class that inherits from VIEW-
ABLE. The viewer can also be set so
that it will be triggered automatical-
ly when a runtime error occurs and
isn't caught by the Eiffel exception-
handling mechanism.

Garbage Collection. Any decent
object-oriented environment must
have a garbage collector, lest the
task of reclaiming unused object
space fall squarely onto the pro-
grammer (which, of course, would
be unacceptable for all but the
smallest programs). In the case of
Eiffel, the task falls to a garbage
collector that conceptually is a
parallel process but is implement-
ed as a co-routine activated when-
ever the Eiffel runtime system
detects that available space is
running low. Since the collector is
organized as an infinite loop that
can be interrupted at any point,
the runtime system controls the
activation time of each collector
burst, using a self-adapting scheme
that attempts to maintain an
equilibrium in terms of space
occupancy, while ensuring fairness
in the competition between appli-
cation and collector for CPU time.

At perfect equilibrium, memory
usage will be kept constant as the
application "forgets" one object
for each new one it creates and the
co-routine quickly recovers the
space. But when equilibrium is
broken and the size of occupied
memory grows, the co-routine willFigure 4 - An extract from a typical session.

50 VOL. 6 NO.8

Oq~ct-Qriented
Englneerl ng Not~1I obje~t-oriented pro-

gramming environments are
created equal.

Especially when it comes

W+lthout Ob~iect+l\IO_C® to features and support.
:J Vv I Unfortunately, many software engineers find

\/iOU could be m+lss+lng this out too late.
I . Avoid missing out by using Objective-C. Irs thesometh ing im porta nt most advanced obj~ct-oriented environment for

• C programmers available today.
And it will be tomorrow.
Our business is object-oriented technology, so

we have the know-how and desire to keep you at
the leading edge.

Objective-C is 100% compatible with the nevv
ANSI C standard. So you can freely intermix object
oriented code with "straight G' And combine nevv
object-oriented programs with existing C code.

Objective-C provides powerful type checking
and compile-time error detection independent of
your C compiler. Plus, you can choose between
static and dynamic binding,

Even better. you get powerful memory
management features ranging from a memory
leakage detector to a set of state-of-the-art gar-
bage collectors,

There's also built-in support to automate the
complexities of releasing multiply-owned objects,
And built-in support for your own runtime
memory manager.

Objective-C puts you in control. You determine
just how much of the power of object-oriented
engineering you vvant to use for each application

So if you vvant your softvvare to turn out as effi-
cient and safe as you planned, get Objective-C.

You'll never know what you've been missing till
you do.

f!~R~lQP~::gy

o
c

TheStepstoneCorporation 75GlenRoad SandyHook,CT06482 2034261875 1800 BUYOBJECT (18002896253)
Objeclive·C isa registered Irademark 01The Slepslane Carparalion. Stepslane is a Irademark 01The Stepslane Corporation.

be called in longer bursts; as it does
its job and as the size of occupied
memory decreases, the bursts are
reduced. Below a certain thresh-
old, the collector won't be activat-
ed at all. Conversely, if memory
has been exhausted, the co-routine
will turn into a full sequential
mark-and-sweep garbage collector.

Further collection improvements
are obtained by Eiffel through a
technique known as generation
scavenging. Under this approach,
collection is accelerated by "tenur-
ing" objects that have survived a

large enough number of collector
cycles.

Some applications, of course,
may require no garbage collection
whatsoever, so Eiffel treats collec-
tion as a compilation option. If
enabled, it can always be turned
off and on again at runtime. Also,
the collector can be explicitly
called at specified points.

The Library. The Eiffel li-
brary, which constitutes a
key part of the environ-

ment, contains a set of carefully

C-MACS
NO SPEED LIMITS

f'--._
~~E:=......A

/1(\I \.~-......J

t'~-....,
- __---. -Jo.

.I. \. -- \
/ ,....... \

<\ --.-'-" "---- --......,
•.•... - ---"./ ,," -- .~_.-..- \.

, \. '-.«)~~c.rj---'~1\ \... - __C'-::.. _ /\

~/ ~~\ \
~ __-:--J "-..'----'

~ -- - ,-- -----./ C
(----
Finally I the Text Editor for C Programmers.

Today's programmers use sophisticated and calling sequences at the touch of a
tools-like C-macs"'. They know that button. No more getting up to look in the
each advance in software methodology manual!
has made them much more effective. C-macs can optionally display pull-down

menus to assist the user.
C-macs maintains "tags" of all the com-
ponents of your system. This allows you
to edit functions without knowing their
filenames. No more wasting time hunt-
ing for your routines!
C-macs includes all UniPress Emacs'"
facilities.
C-macs is available for a wide range of
computers running UNIX, Ultrix'·, Xe-
nix'" and other UNIX derivatives.
Call us at 800-222-0550 <outside NIl or
201-985-8000.We'll send you information
about C-macs and our other UNIX soft-
ware products. Ask about our "Try it,
Then Buy it" plan.
UniPress Software, Inc.
2025 Lincoln Hwy.
Edison, NJ 08817

C-macs checks and balances parentheses
and braces, and inserts user definable C
language control flow templates into your
program.
Cmacs is multi-window. You can edit
and view several files or portions of the
same file simultaneously to see all your
work at once. It even has "shell win-
dows" to run commands in an edit win-
dow. No more exiting the editor, running
commands and re-invoking the editorr
C-macS will run "make" and collect com-
piler error messages in a window. C-macs
then analyzes these errors and automat-
ically positions the cursor on the errone-
ous source lines for editing, one-by-one.
Cmacs knows C keywords and UNIX'·
calls, and displays appropriate definitions

Trademarks 01: UNIX, AT&T Bell Laboratories; Ultrix, Digilal
Equipment Corp.,; Xenix, Microsoft; C·macs UniPress
Emacs, UniPress ~oflware, Inc.

IJniPressSoftwor0

written, reusable software compo-
nents, covering fundamental data
structures and algorithms from
table searching to trees to parsing.
The elements of the library are
readily available to users in source
form and, besides serving as tools,
are meant to serve as examples of
Eiffel style. They use all the
language's properties extensively,
including genericity (most of the
library classes have generic param-
eters representing types), asser-
tions, multiple inheritance, rede-
finition, renaming, and such.

The library also includes a set of
graphic classes, internally based on
X Windows, that allow program-
mers to think in terms of graphical
concepts such as windows, menus,
polygons, circles, and the like, as
opposed to X Window concepts.
The already described good sys-
tem, for instance, was built using
this library .

Apart from any other aspect of
object-oriented design, the mere
presence of the library would
suffice to distinguish Eiffel pro-
gramming from programming with
such classical languages as Pascal
and C. The effect is that Eiffel·
functions as a much higher-level
language where the basic data
types are not limited simply to
integers, reals, and so on, but also
include lists, trees, hash tables,
and other such types-all of which
are open to extension and special-
ization thanks to genericity and
inheritance.

One of the most significant
practical consequences is that it is
not necessary in everyday Eiffel
programming to explicitly use poin-
ters. Although necessary for non-
trivial data structures, pointer ma-
nipulations are quite tricky and
prone to error. A look at the
internals of the Eiffel library is
sufficient evidence of this. Hap-
pily, the pointer manipulations in
the library are (I hope) correct, and
have been encapsulated once and
for all. Hence, in standard situa-
tions, Eiffel programmers should
be able to use lists and trees in the
place of pointers and offsets.

Further Facilities. Among the
other facilities in the Eiffel envi-
ronment are:

• Storing object structures. To
store the state of a system, or part

of it, into a file, the call x.store
(file_name) can be used. This
will store the whole object struc-
ture starting at x into file.Jl.ame,
using an appropriate external rep-
resentation for handling arbitrary
pointer structures (including cy-
cles). The objects may be retrieved
by x.retrieve (file_name). Rou-
tines store and retrieve are part
of the library class STORABLE,
which may be inherited by any
class requiring these facilities.

• Access to internal structures.
Normally, internal object repre-
sentation is irrelevant to pro-
grammers. Special applications,
however, may require that the
representation be directly ac-
cessed. In particular, this need
arises in systems that must ma-
nipulate Eiffel objects from other
languages such as C. A library
class, INTERNAL, provides the
appropriate primitives, enabling
programs to obtain such informa-
tion as the dynamic type of an
object and the corresponding
class name, the number of fields,
the type and value of each field,
and the like. Also provided are
procedures for dynamically alter-
ing the internal structure. As
with VIEWABLE and STOR-
ABLE, class INTERNAL must
be inherited by any class that
needs access to its facilities .

• Syntax-directed editor. A ver-
sion of the general syntax-direct-
ed editor Cepage [2J, which has
been specifically tailored to Eif-
fel, supports the development
and modification of Eiffel texts.

Other tools and library additions
are also under development.

Being compiler-based, the Eif-
fel environment is very dif-
ferent in spirit and style from

interpreted environments and so
will probably never satisfy pro-
grammers who are accustomed
to programming through informal
experimentation and observation.
Instead, it is intended to be used by
developers concerned with building
production-quality software, and
has been shown to be applicable to
industrial developments [3J as well
as to teaching software engineering
[4]. Still, we've found that even
though the environment is compil-
er-based, users can be given
enough power and flexibility that

they needn't be jealous of their
interpreter-oriented colleagues. •

Oriented Software Construction,
was published by Prentice-Hall in
March 1988.

Bertrand Meyer is president of
Interactive Software Engineering
Inc. (Santa Barbara, CA), a com-
pany engaged in the development
of tools, methods, and languages
(such as Eiffel) for improving
software quality. Besides holding
various industry and academic
positions in the US and in France,
Meyer has taught at the Universi-
ty of California in Santa Barbara
(1983-86). His latest book, Object-

[1] B. Meyer, Object-Oriented Software Gon-
struction, Prentice-Hall (1988).
[2] B. Meyer, "Cepage, a Software Design Tool",
Computer Language (Sept. 1986).
[3J C. Cindre llnd F. Sada, "A Development in
Eiffel: Design and Implementation of a Network
Simulator", to appear in Journal 0/ Object-
Oriented Programming (1988).
[4] R. Roueseau and M. Rueher. "Teaching
Software Engineering Uaing Eiffel", Fourth AF-
CET Software Engineering Conference, 1988 (in
French).

