
Principles of language design
and evolution
Bertrand Meyer

Interactive Software Engineering
ISE Building, 356 Storke Road, Goleta, CA 93117 USAhttp://www.eiffel.com
Heeded or not, Tony Hoare’sHints on Programming Language Design[1] remains,
more than 25 years after publication, the principal source of wisdom on how to produce
sound programming languages. I will try to expand on Hoare’s principles by presenting
some of what my own experience has taught me, through my work not only on Eiffel
but also on numerous “little languages” as well formal specification languages such as
Jean-Raymond Abrial’s Z[2], and through a lifetime passion for critical observation
of languages of all kinds, from JCL, Fortran, troff, csh and awk to Miranda, Java, Perl,
and XML.

The topic is not just languagedesignbut the often neglected case of language
evolution. In the same way that a software engineering curriculum misses its target if it
confines itself to initial program construction and fails to address the successive
mutations that in the end account for most of the work on a real program, a discussion
of language design must encompass the successive revisions that mark the life of a
language — especially asuccessfullanguage — and constantly threaten to annul
whatever qualities its original version may have had.

A good part of the discussion will be drawn from the appendix on language design of
the first edition of “Eiffel: The Language” [3], the reference on Eiffel.

1 THE BONZAI AND THE BAOBAB

One view of design holds that good languages should be small. For many years the best
way to discredit any proposed design was to hint at similarity with PL/I. Just uttering
that name from the back of the room was guaranteed to bring laughter to the audience
and ridicule to the presenter. But many successful languages are large and complex; C++
is the most obvious example, but Java is just as typical; a look at the description of Java
initialization semantics athttp://www.javaworld.com/javaworld/jw-03-1998/jw-03-
initialization.html should be enough to dispel any suspicion of simplicity.

Oversize has many damaging consequences: making it harder to learn the language;
causing surprises even to experienced users, since they often will master only a subset,
and may involuntarily use properties they don’t know; increasing the likelihood that
compilers will be buggy, bloated, and late.
Citation reference: Bertrand Meyer,Principles of Language Design and Evolution, in Millenial Perspectives
in Computer Science(Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare),
eds. Jim Davies, Bill Roscoe and Jim Woodcok, Cornerstones of Computing, Palgrave, 2000, pages 229-246.
The present version, pre-copy-editing, reflects the author’s intent.

http://www.javaworld.com/javaworld/jw-03-1998/jw-03-initialization.html
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-initialization.html
http://www.eiffel.com

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §22
But languages should not be too simple, and the language designer should not resist
useful additions on principle. One can conjecture that Pascal could have had a much
more significant industrial role if a few extensions (such as variable-length array access
and an elementary module facility) had been included in the standard in the late
nineteen-seventies or early eighties. They were not, and Pascal was largely displaced by
C, certainly a regrettable development for software engineering.

So the truth has to be somewhere between the monsters of complexity and the zen-
like masterpieces of ascetism — between the bonzai and the baobab.

To complicate the discussion, there is no single definition of size. The Eiffel language
book occupies 594 pages, and the ongoing third edition[4] will probably reach into the
800s, which would seem to suggest that Eiffel is complex. But then if you read the book
you will realize that most of these pages are devoted to comments and explanations, and
it is possible to talk about pure Lisp (or for that matter about love, another seemingly
simple concept) over many more pages. Then if you consider that the syntax diagrams
occupy only four pages, Eiffel is very simple. From yet another viewpoint, the language
properties that enable a beginner to start writing useful software may be defined in the
20 pages of chapter 1; that is pretty short too. A “reference only” extract of the book,
retaining only the formal rules (syntax, validity, semantics) interspersed throughout the
text, would occupy about 40 pages.

We could paraphrase a famous quote and state that a language should be as small as
possible but no smaller. That doesn’t help much. More interesting is the answer Jean
Ichbiah gave to the journalist (for the bulletin of INRIA) who, at the time of Ada’s
original publication, asked him what he had to say to those who criticized the language
as too big and complex: “Small languages”, he retorted, “solve small problems”.

This comment is relevant because Ada, although undoubtedly a “big language”,
differs from others in that category by clearly showing (even to its critics) that it was
designedand has little gratuitous featurism. As with other serious languages, the whole
design is driven by a few powerful ideas, and every feature has a rational justification.
You may disagree with some of these ideas, contest some of the justifications, and
dislike some of the features, but it would be unfair to deny the consistency of the edifice.
Consistency is indeed the key here: size, however defined, is a measure, but consistency
is the goal.

2 CONSISTENCY

Consistency means having a goal: never departing from a small number of powerful ideas,
taking them to their full realization, and not bothering with anything that does not fit with
the overall picture. Transposed to human affairs this may lead to fanaticism, but for
language design no other way exists: unless you apply this principle you will never obtain
an elegant, teachable and convincing result.

§2 CONSISTENCY 3
Note the importance for the selected ideas to possess both of the properties
mentioned: each idea should bepowerful, and there should be asmall numberof them.
Eiffel may be defined by something like twenty key concepts. Here, as an illustration,
are a few of them:

•Software architectures should be based on elements communicating through clearly
defined contracts, expressed through formal preconditions, postconditions and
invariants.

•Classes(abstract data types) should serve as both modules and types, and the modular
and typing systems should entirely be based on classes. (Two immediate
consequences are that no routine may exist except as part of a class defining its target
type, and that Eiffel systems do not have a main program.)

•Classes should beparameterizableby types to support the construction of reusable
software components.

•Inheritanceis both a module extension facility and a subtyping mechanism. Attempts
to restrict the mechanism to only one of these aspects, in the name of some
misdirected attempt at purity, only serve to trouble the programmer with irrelevant
questions. Attempt to portraymultiple inheritance as evil only stem from clearly
inadequate uses, or badly conceived language mechanisms.

•The only way to perform an actual computation is tocall a (dynamically bound)
feature on an object.

•Whenever possible, software systems shouldavoid explicit discriminationbetween a
fixed list of cases, and instead rely on automatic selection at run time through
dynamic binding.

•Client uses of classes should only rely on the officialinterface.

•A strong distinction should be maintained betweencommands(procedures) and
queries (functions and attributes).

•A contract violation(exception) should lead to either organized failure or an attempt
to achieve the contract through another strategy.

•It should be possible for a static tool to determine the type consistency of every
operation by examining the software text, before execution (static typing).

•It should be possible to build sophisticatedrun-time object structures, modeling the
often complex relations that exist in the external systems being modeled, and to let
the supporting implementations take care ofgarbage collectionto reclaim unused
space automatically.

Eiffel is nothing else than these ideas and their companions taken to their full
consequences.

Why is consistency so important? One obvious reason is that it determines your
ability to teach the language: someone who understands the twenty or so basic ideas will
have no trouble mastering the details, and from then on will remember most of them
without having to go back all the time to the manual.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §34
Another justification of the consistency principle is that with more than a few basic
ideas the language design becomes simply unmanageable. Language constructs have a
way of interacting with each other which can drive the most careful designers crazy. This
is why the idea of orthogonality, popularized by Algol 68, does not live up to its
promises: apparently unrelated aspects will produce strange combinations, which the
language specification must cover explicitly.

An extreme example in Eiffel is the combination of theobsolete and join
mechanisms, two seemingly unrelated facilities. A class may declare a feature as
obsolete to prepare for its eventual removal without destroying existing software; this is
a fundamental tool for library design and evolution. In the inheritance mechanism, a
class may merge (“join”) features inherited from different parents. No two mechanisms
seem at first sight more “orthogonal” with each other. Yet they raise a specific question:
the Join rule must give all the properties of the feature that results from joining a few
inherited features, in terms of the properties of the inherited versions; but then one of
these features may be obsolete. Not the most fascinating use of language facilities; but
there is no reason to disallow it. (This would require an explicit constraint anyway, and
simplicity would not be the winner.) Now does this make the joined version obsolete?
The language specification must give an answer. (The answer is no.)

Such cases should suffice to indicate how crucial it is to eliminate anything that is not
essential. Many extensions, which might seem reasonable at first, would raise endless
questions because of their possible interactions with others.

Another interesting example of interference is the absence of garbage collection in
most C++ implementation. Although often justifiedex post factoin the name of the C
philosophy of putting the programmer in control of every detail, this limitation is in
reality a consequence of the language’s design: the presence of C-style casts makes it
possible to disguise a pointer into something else, thus fooling a garbage collector and
leading to serious potential errors. Many programmers do not realize how a seemingly
remote property of the type system exerts such a direct influence on the very practical
issue of memory management.

3 UNIQUENESS

Taken to its full consequences, the principle of Consistency implies the principle of
Uniqueness, which states that the language design should provide one good way to
express every operation of interest; it should avoid providing two.

This idea explains, for example, why Eiffel, almost alone among general-purpose
languages, supports only one form of loop. Why offer five or six variants (test at the
beginning, the end or the middle, direct or reverse condition, “for” loop offering
automatic transition to the next element etc.) while a single, general one will be easy to
learn and remember, and everything else may be programmed from it?

The loop example deserves further attention. A well-written Eiffel application will
have few loops: a loop is an iteration mechanism on a data structure (such as a file or
list); it should be written as a general-purpose routine in a reusable class, and then

§3 UNIQUENESS 5

.

adapted to specific contexts through the techniques illustrated in the discussion of
iterators. (Such pre-programmed iteration mechanisms are indeed available from
libraries, and made more attractive by the recent addition of anagentmechanism to
the language.) Then having to writei := i + 1 manually for the equivalent of a For loop
is not a problem.

This observation, which would not necessarily transpose to another language,
illustrates an important aspect of the Eiffel method, which makes almost all “X
considered harmful” observations, for arbitraryX, obsolete. The resolution of this
apparent paradox comes from the power of object-oriented abstraction. As soon as you
recognize some patternX as useful, this immediately makes it harmful, by suggesting
that you should not from then on reproduceX-like patterns in your software texts, but
instead hideX in a reusable software component and then reuse that component directly.

Loops are harmful, then, not because they pose a danger by themselves (as may be
argued of goto instructions), but because their very usefulness as a common pattern of
data structure traversal suggests packaging them in reusable components describing
higher-level, more abstract forms of these patterns. The only danger here would be long-
term — not taking advantage of potential reuse.

The principle of Uniqueness is a particularly useful guide for language evolution,
after initial design. It is natural for users of a language to request new facilities that
simplify their job. Most of the time, it was possible to do this job before, which suggests
that the principle requires rejecting these extensions. But that’s not necessarily a correct
interpretation, since the principle requires providing onegoodway of addressing each
need. The question then becomes whether the previous way is good enough.

Creation expressions provide a good example. Until recently, Eiffel had a creation
instruction (to create and initialize an object) but no creation expressions. The
language design discussion in[1] explains the rationale in detail, stating, however, that
creation expressions might have a role in the future. That future has come. Along with
a creation instruction

createx.make(...) [A]

which creates an object of the appropriate type, attaches it tox, and initializes it with the
given procedure and arguments, you may also write

x := create{ TYPE} .make(...) [B]

whereTYPE is the type ofx1. Is this a violation of the principle of Uniqueness? As
presented, yes. But in practice no good programmer will ever use form[B] in the case
given, because there is a better way: form[A] , which avoids the need to specify the type.
Why specify TYPE since (the language being strongly typed) it follows from the
declaration ofx? There is no good reason. Creation expressions, however, are useful in
another case: creating an object whose only use is to be passed as an argument to a routine
Then you can write

1. In both cases some variations and simplifications are available, especially for omitting the creation procedure if
it is thedefault_create associated with a class and guaranteed to preserve the class invariant.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §46
some_routine(...,create{ TYPE} .make (...), ...)

where the phrasing would be far more cumbersome if we only had creation instructions:

new_object: TYPE -- Declare local variable just for this purpose
...
createnew_object.make (...)
some_routine(...,new_object, ...)

Extensive, experienced users found that such schemes occurred frequently and caused
useless effort and distraction. It’s not a matter of keystrokes, as a longer form ispreferable
when it adds relevant information; it’s a matter of not wasting one’s time in repetitive
schemes that bring nothing new and obscure the truly relevant parts of the software.

So the two mechanisms, creation instructions and creation expressions, are both
useful because they cover complementary needs.

A similar example is “Unique” values and “Inspect” instructions. Because of Eiffel’s
emphasis on avoiding explicit discrimination and relying on dynamic binding instead,
all in the name of modular, extensible, reusable architectures, the language did not
initially (until 1989) include multi-branch mechanisms. As experience grew, it became
clear that such mechanisms were still needed in some cases, where they did not conflict
with object-oriented principles. Hence the introduction of Unique values (integer
constants whose values do not have to be specified by the programmer, being instead
chosen by the compiler) and Inspect instruction (a kind ofcase... of discriminating on
integers or characters). It is significant that the original solution erred on the side of
caution: only when extensive experience clarified the conditions under which explicit
discrimination was still legitimate did we go for the corresponding extensions. Better be
restrictive at first, and loosen the strings later when you fully understand what’s truly
needed and what would be mere featurism.

4 TOLERANCE AND DISCIPLINE

Using the word “restrictive” reminds us of the somewhat disciplinarian attitude that is
not infrequent in the software community. One commonly hears such phrases as
“preventing the programmers from doing their dirty tricks”. It is as if language designers
were invested with a moral mission, and languages served as ramparts against the threat
of the developers’ natural uncleanliness.

I disagree with this view. (This will seem surprising to those who have heard Eiffel
being categorized, I believe quite wrongly, as a language of the restrictive school.)
Programming language designers are not in the chastity belt business. Their role, to
repeat a comment which I first heard many years ago — at a Marktoberdorff summer
school — from C.H.A. Koster, is not to prevent developers from writing bad software (a
hopeless endeavor anyway), but to enable them to write good software; and perhaps to
make the task pleasurable as well.

This must be applied together with the principle of Uniqueness. If you exclude a
certain facility, be it the goto or function pointers, it is not to save humanity from some
abomination (although you may also be doing that) but because you are providing
elsewhere a better way to achieve the goals which the excluded constructs purported to

§5 METHODOLOGY 7
address. Loops and conditionals are better than gotos, and dynamic binding under the
control of static typing is better than function pointers or explicit discrimination.

In other words, if a design is defined as much by what it leaves out as by what it
includes, one cannot justify the exclusions without knowing the inclusions.

These ideas pervade Eiffel. The language’s ambition is to support an elegant and
powerful method for analysis, design, implementation and reuse, and to help competent
developers produce high-quality software. The method is precisely defined, and the
language does not attempt to promote any other way of developing software; but it also
does not attempt to prevent its users from applying their creativity.

The details of the inheritance mechanism provide a clear example of these
principles. The relation between inheritance and information hiding is a controversial
topic; Eiffel takes the view that descendants should be entirely free to define the export
status of inherited features, without being constrained by their ancestors’ choice.
Nothing really forces everyone to agree: a project leader may take a more restrictive
approach and, for example, prohibit the hiding of a feature exported by a parent. It is
not difficult to write a tool that will check adherence to this rule. Had the language
specification taken the restrictive stand, it would have been impossible for a project
leader to enforce the inverse policy.

In summary: language designers should not exclude “bad” constructs out of a desire
to punish or restrict the users of the language; that is not their job. The exclusions are
justified only by the inclusions: the designer should focus on the constructs that he
deems essential, and his responsibility is then to remove everything else, lest he produce
a monster of complexity.

5 METHODOLOGY

In a bad language design, the programmer is presented with a wealth of facilities, and
left to figure out when to use each, when not, and which to choose when more than one
appears applicable.

In a good design, each language facility goes with a precise theory — presumably
explained in the accompanying book or books — of the purpose it serves: when it is
desirable, when it is not.

The example of Unique values and Inspect constants in Eiffel, discussed earlier,
provides a typical example. Few constructs are bad by themselves (one might even argue
for a goto instruction in an assembly language). What makes a construct desirable or
detrimental is the software development methodology that the language reflects. It was
prudent to refrain at first from including explicit discrimination constructs, since they
seem to fly in the face of the object-oriented method (i.e. data abstraction and Design by
Contract principles). When, later on, we started to get a better appreciation for the role
such constructs may retain in a development process that flawlessly applies these
principles, it became safe to reintroduce a carefully designed variant which fits precisely
in the method.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §58
A counter-example of the Methodology principle is the use of argument overloading
in C++ and Java, a somewhat extreme case of a flexibility that has zero advantages and
more than a few disadvantages. In an object-oriented language, you get a powerful form
of dynamicoverloading: the guarantee thatx.f will trigger the exactly appropriate
version off, determined anew for each execution of the call depending on what kind of
objectx happens to denote. The semantics of every such variant off must be compatible
with the basic specification expressed by thecontractof f in the common originating
class. So you use the same name to denotedifferent variantsof thesame basic semantics
determined atexecution time. The mechanism provides a notable increase in expressive
power, since it offloads some of the programmer’s manual work (choosing between
variants of an operation) to an automatic mechanism provided by the computer. As an
added bonus, the effect on the flexibility of software architectures, the extendibility of
the resulting programs, and the reusability of their components are profound and
beneficial.

“Static” overloading of the kind provided by the languages cited does nothing of the
sort (see[5] for more details). all that overloading provides is the ability to use the same
name to denotedifferent semanticsdetermined atcompilation time, also known in less
technical parlance as “shooting yourself in the foot”. For different operations, one
should choose different names; using the same name just creates confusion and errors.
The mechanism adds not an ounce of expressive power: there is nothing you can do with
overloading that you couldn’t do just as well (better, in fact, since the text will be more
clear) without.

In addition, the criterion used to disambiguate overloaded routines is wrong.
Competing routines must have different argument signatures, which will enable the
compiler (and the poor human reader) to determine which is desired in every case. The
very first example of a “constructor” used in almost every textbook disproves the
wisdom of that criterion. If you have aPOINT or COMPLEX_NUMBERclass, it will
most likely have a constructor that takes cartesian coordinates, and one that takes polar.
Unfortunately, both take the same arguments: two real numbers. Missed.

Even more fundamentally, overloading destroys the fundamental simplicity and
beauty of the object-oriented model, where the basic construct, the class, represents a
mapping from operation names to operations. (With overloading you may have any
number of operations associated with an operation name for a given class.). This makes
it impossible to reason about programs and programming models, destroying the whole
semantic edifice for the benefit of a dubious syntactical convenience.

As if this were not enough, static overloading leads to more confusion and complex
semantic rules when used inconjunctionwith polymorphism and dynamic binding. This
is (at least in an object-oriented language) a rather stark example of a language trait that
contradicts the basic methodology of writing good programs.

§6 MEA CULPA, MEA MAXIMA CULPA 9
6 MEA CULPA, MEA MAXIMA CULPA

Thesurest signofaproblematicdesign is thepresence, ina languagemanual, of comments
stating that some constructs should never be used. A typical example in the C++ and Java
literature is the (justified) advice to avoid direct assignments to fields of objects, as in
x.a := b, which indeed violate all the principles of information hiding and object
technology. (It is possible, as in Delphi, to providex.a := b as a syntactical abbreviation
for the procedure callx.set_a(b), but this is not what the C++ and Java mechanisms
provide; they are direct field assignments, incompatible with modern principles of data
abstraction and information hiding.)

The natural question — especially for such a recent design as Java, which does not
have the excuse of being constrained by the requirement of full compatibility with C
— is how one can justify producing a programming language and immediately starting
to warn users against certain facilities. If the designer truly thinks (asks the naïve
observer) that a certain construct is harmful, could he perhaps not have refrained from
including it in the first place? Is the designer not the one who decides what goes in and
what stays out?

Loving your language means never having to say you’re sorry.

7 THE LANGUAGE AND THE LIBRARIES

In a method supporting reusability, it is often possible and desirable to provide a new
feature through a library facility rather than through a language change.

Like some other languages, Eiffel uses libraries for mechanisms such as input and
output, rather than defining language constructs. The inheritance mechanism also
provides a classANY, inherited by all classes and offering them a number of crucial
general-purpose features:copy, clone, deep_clone(producing recursive copies of
arbitrarily large and complex object structures), equality,out (which produces a
printable image of any value or object).

Other powerful library mechanisms include theSTORABLEclass, providing a
straightforward way to store an object structure — again, arbitrarily large and
complex — into a file, or to transmit it across a network, in a machine-independent
format if desired.

A cynic might question the benefit of extending the libraries to keep the language
simple. Indeed, tough problems of consistency and simplicity do arise for libraries.
There is an important difference, however: one of level. The library as well as any user
application are defined with respect to the basis provided by the language. Because
everything else relies on it, this basis must be kept simple at all costs. Complexity should
be avoided in libraries too, of course, but the consequences are less grave.

Mathematical theories provide the appropriate comparison. Adding a language
construct is like adding an axiom, certainly not a decision to be taken lightly. Adding
a library class or routine is simply like adding another theorem, inferred from the
current axioms.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §810
The interaction of libraries and language in Eiffel is sometimes intricate. The basic
exception mechanism is very simple; classEXCEPTIONSprovides further tuning, for
example to handle various kinds of exception differently, or to ignore certain signals.
Similarly, MEMORYallows for fine control over the operation of the garbage collector.
INTERNALgives access to the internal structure of objects, useful to write system-level
tools or interfaces to databases.

Arrays are not a language construct but come from a library classARRAY, since an
array can be described as an abstractly specified object, in the same way as a list or a
stack; this greatly simplifies the language and makes programs more consistent and
readable. The notion ofTUPLE is handled in a similar way. In both cases, there is a
language connection through special syntax for manifest arrays or tuples.

Similarly, all basic types, fromINTEGERto BOOLEANandSTRINGare formally
treated as classes. Unlike the solution of C++ and Java (which separates the basic types
from the rest of the type system) this makes it possible to have container structures —
lists, trees, hash tables, arrays — that may contain integers, characters and strings as well
as instances of programmer-defined classes. To the programmer, the basic types are
indeed normal classes, which can be browsed through the normal tools, and have their
proper place in the inheritance hierarchy (INTEGER, for example, inherits from
NUMERIC, describing number-like objects belonging to a set with the structure of a
ring, andCOMPARABLE, describing objects belonging to a set equipped with a total
order relation). The compiler, however, cheats since it knows about these classes and can
generate better code for them. This is an attempt to combine the best of both worlds: the
consistency, simplicity and elegance resulting from a uniform type system; and the
efficiency resulting from special knowledge.

8 ON SYNTAX

One of the most amusing characteristics of the software development community, from
a language designer’s viewpoint, is the discrepancy between professed beliefs and real
opinions on the subject of programming language syntax. The official consensus is that
syntax, especially “concrete” syntax (governing the textual appearance of software texts)
does not matter. All that counts is structure and semantics.

Believe this and be prepared for a few surprises. You replace a parenthesis by a square
bracket in the syntax of some construct, and the next day a million people march on
Parliament to demand hanging of the traitors.

Of the pretense (syntax is irrelevant) and the actual reaction (syntax matters), the one
to be believed is the actual reaction. Not that haggling over parentheses is very
productive, but unsatisfactory syntax usually reflects deeper problems, often semantic
ones: form betrays contents.

Once a certain notation has made its way into the language, it will be used thousands
of times by thousands of people: by readers to discover and understand software texts;
by writers to express their ideas. If its esthetically wrong, it cannot be successful.

§8 ON SYNTAX 11

d

There is no recipe for esthetic success, but here again consistency is key. To take just
one example, Eiffel follows Ada in making sure that any construct that requires an
instruction (such as the body of a Loop, the body of a Routine or a branch of a
Conditional) actually takes a sequence of instructions, or Compound. This is one of the
simple and universal conventions which make the language easy to remember.

For syntax, some pragmatism does not hurt. A modern version of the struggle
between big-endians and little-endians provides a good example. The programming
language world is unevenly divided between partisans of the semicolon (or
equivalent) as terminator and the Algol camp of semicolon-as-delimiter. Although
the accepted wisdom nowadays is heavily in favor of the first approach, I belong to
the second school. But in practice what matters is not anyone’s taste but convenience
for software developers: adding or forgetting a semicolon should not result in any
unpleasant consequences.

In the syntax of Eiffel, the semicolon is theoretically a delimiter (between
instructions, declarations, Index_terms clauses, Parent parts); but the syntax was so
designed as to make the semicolon syntactically redundant, useful only to improve
readability; so in most contexts it is optional.

This tolerance is made possible by two syntactical properties: an empty construct is
always legal; and the use of proper construct terminators (oftenend) ensures that no new
component of a text may be mistaken for the continuation of the previous construct. For
example in

x := y

a := b

there is no syntactic ambiguity, even without a semicolon, since no construct may involve
two adjacent identifiers such asy andb.

It is interesting to note here that the study often invoked to justify the C-Java-Ada
style of semicolon as terminator (Gannon and Horning, IEEETSE, June 1975) actually
used subjects that were trained in PL/I and a test “separator” language that (apparently)
treated successive semicolons as an error, a completely unrealistic assumption. This
seems to invalidate the piece of conventional wisdom that asserts separators are better
than terminators. The experience of Eiffel since semicolons were made optional
massively suggests that semicolons are in most cases a mere nuisance. (See the detaile
analysis in reference[5].)

Another example of the importance of syntax is the dominant practice, in the C-C+-
Java-Perl etc. world, of the equality symbol = as assignment operator, going against
centuries of mathematical tradition. Experienced programmers, so the argument goes,
will never make the error. In fact they make it often. A recent review of the BSD
operating system source, performed over one week-end, identified three cases ofif (x = y)
— a typo forif (x == y) which, unfortunately, is legal in C and C++ although it leads to
unexpected results. (In Java, at least, the first form is invalid so the error will have no
catastrophic consequence.) Syntax matters.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §912

t

9 THE INVENTOR AND THE ASSEMBLER

One of the most original comments in Hoare’sHints(inspired, it seems, by the experience
of Algol W) is the suggestion that the two main tasks of language design are best handled
by different people: one proposes constructs, the other refrains from invention but
assembles other people’s suggestions into a coherent engineering construction.

The design of Eiffel has tried to disprove this rule. Eiffel embodies a significant
number of inventions. Although many have been contributed by other people, a number
of the concepts were devised and integrated in a single process. They include such ideas
as once routines for shared objects and decentralized initialization, the multiple
inheritance mechanism, object-oriented contracts and their relation with inheritance,
renaming, and many others. I hope the result shows that the roles of construct inventor
and system assembler are in fact compatible.

10 FROM THE INITIAL DESIGN TO THE ASYMPTOTE

Although the programming literature contains a few references on language design, less
attention has been devoted to the subject of evolution after initial design. Yet successful
languages live and change; none of the major languages in use today still adheres to the
letter of its original definition. How do the design principles governing the childhood of
a language carry over to adolescence and adulthood?

Software developers are inordinately opinionated people, especially on the subject of
languages. Inevitably, they will come up with requests for change and extensions. Add
to this tremendous and constant source of ideas the contribution of co-workers, users,
course participants, colleagues in panels at conferences, and you get a constant influx of
new ideas.

In the current state of technology a new element, exciting and sometimes frightening,
complements these traditional sources of input: the net. Electronic mail, Usenet forums
and specific discussion groups (such as available through Talkitover.com, used for
current Eiffel discussions[4]) mean that thousands of people can learn in a few hours
about the latest announcements, ideas, proposals, opinions and suggestions — and reac
to them. For Eiffel this has been a tremendous benefit. The number of people who have
sent public or private comments is incomparably greater than what it would have been
just a few years earlier. Even Ada, probably the language most widely and thoroughly
debated before its final design, was born before network access became available on a
grand scale, and did not benefit from the unique combination of breadth, depth and
timeliness made possible by today’s technology.

It is striking to see how many of these ideas are in fact excellent; but this does not
mean that they should all be included!

First they may raise subtle or major incompatibilities with other language features;
but even if this is not the case they will make the language more complex. The designer
must weigh the evidence: is the purported benefit really worth the increase in
complexity? In nine out of ten cases the answer is no. Again this usually is no reflection

§11 EXTENSIONS 13
on the quality of the idea. But the designer’s primary responsibility is to keep in mind
the elegance of the overall picture.

What can one do in such a context? The best tactics is to say “no”, explain that you
are on your way to Vladivostok, and emerge some time later to see if there is still anyone
around. This is the basic policy: do not change anything unless you cannot find any more
arguments for the status quo.

But saying “no” most of the time is not an excuse for not listening. Almost any single
criticism or suggestion contains something useful for the language designer. This
includes comments by novices as well as expert users. Most of the time, however, you
must go beyond what the comment says. Usually, what you get is presented as a solution;
you must see through it and discover theproblem that it obscures. Users and critics
understand many things that designers do not; the users, in particular, are the ones who
have to live with the language day in and day out. But design is the job of the designers;
you cannot expect users to do it for you. (Sometimes, of course, they will: someone
comes up with just the right suggestion. This happened several times in the history of
Eiffel, with some recent examples visible on the Web in the ongoing discussion group
[4]. Then you can be really grateful.)

So there are deep and shallow comments but almost no useless ones. Sometimes the
solution simply resides in better documentation. Often it lies in a tool, not in any
language change. Even more often, as discussed above, the problem may be handled by
library facilities: after all, this is the aim of an object-oriented language — not to solve
all problems, but to provide the basic mechanisms for solving highly diverse problems.

Once in a while, however, none of this will work. You realize that some facility is
missing, or inadequately addressed. When this happens — and only as a last resort —
the tough conservative temporarily softens his stance. There are two cases, truly
different: an extension, or a change.

11 EXTENSIONS

Extensions are the language designer’s secret vice — the dieter’s chocolate mousse on
his birthday. After much remonstrance and lobbying you finally realize what many users
of the language had known for a long time: that some useful type of computation is harder
to express than it should be. You know it is extension season.

There is one and only one kind of acceptable language extension: the one that dawns
on you with the sudden self-evidence of morning mist. It must provide a complete
solution to a real problem, but usually that is not enough: almost all good extensions
solve several potential problems at once, through a simple addition. It must be
straightforward, elegant, explainable to any competent user of the language in a minute
or two. (If it takes three, forget it.) It must fit perfectly within the spirit and letter of the
rest of the language. It must not have any dark sides or raise any unanswerable questions.
And because software engineering is engineering, and unimplemented ideas are worth
little more than the whiteboard marker with serves to sketch them, you must see the
implementation technique. The implementors’ group in the corner of the room is

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §1214
grumbling, of course — what good would a nongrumbling implementor be? — but you
and they see that they can do it.

When this happens, then there is only one thing to do: go home and forget about it all
until the next morning. For in most cases it will be a false alarm. If it still looks good
after a whole night, then the current month may not altogether have been lost.

12 CHANGES

What happens if you realize that some existing language feature, which may be used by
thousands of applications out in the field, could have been designed better?

The most common answer is that one should forget about it. This is also the path of
least resistance: listening to the Devil of Eternal Compatibility with the Horrors of the
Past, whose constant advice is to preserve at all costs the tranquillity of current users.
The long-term price, however, is languages that forever keep remnants from another age.
For a glimpse of the consequences, it suffices to look at recent versions of Fortran, still
retaining (although they are meant for the most powerful parallel computers of
tomorrow) some constructs reflecting the idiosyncrasies of the IBM 701’s 1951
architecture, or at more recent “object-oriented” extensions of C, faithfully reproducing
all the flaws of their parent, compounded by extra levels of complexity.

The other policy is harder to sustain, but it is also safer for the long term: if something
can indeed be done better, and the difference matters, then change the construct. Such
cases should of course be rare and far between — otherwise one can doubt the very
soundness of the original design. They should meet two conditions:

1 There must be wide agreement that the new solution is significantly better than the
original one. It must not entail any negative consequence other than its
incompatibility.

2 The implementors must provide a conversion mechanism for existing software.

If these conditions are met, then I believe one should cut one’s losses and go ahead with
the change. To act otherwise is to act arrogantly (pretending that something is perfect
when it is not), or to sacrifice long-term quality for short-term tranquillity.

All the issues discussed above arose in the transition between successive versions of
Eiffel. It is only for the language users to judge whether the changes and extensions were
justified, and whether they followed the principles discussed here. More striking than the
changes has been the stability of Eiffel: the language’s key properties, especially its
semantics, are essentially identical to what was described in the very first publication.
But the maintainers of Eiffel have not refrained from making changes, including
incompatible ones. It is surprising to see both the intellectual cowardice of many people
in language committees, and the positive reaction of actual users. If a change is for the
better, it is clearly explained, carefully prepared, and well organized (avoiding pointing
a gun to them: changenow or die!), they will go for it.

§13 THE POLITICS OF LANGUAGE EVOLUTION 15
13 THE POLITICS OF LANGUAGE EVOLUTION

The mention of committees brings in the final observation of this overview,
addressing not the technology of language evolution but its politics. A number of
models are possible:

•The Town Hall model.

Everyone votes, and the majority wins.

•The Venetian model.

The Doges haggle it out between themselves.

•The Tammany Hall model.

Everyone votes, and the bosses haggle it out between themselves.

•The Dog Pack model.

He who shouts the loudest wins.

•The Usenet model.

He who shouts the longest wins.

•The dictatorship model.

The dictator wins(until he is toppled).

•The engineering project model.

The chief engineer wins, but only if he can convince the other engineers most of
the time.

•The CEO model

Like the engineering project model, but the board must approve major decisions.

Without reference to the management of society, where different criteria apply, I have
through my experience come to the conclusion that the appropriate model for language
evolution is one of the last two. Democracy is admirable for the government of humans,
but a language is before all an engineering project, and someone should be in charge. As
in a company, many checks and balances should be provided, and the chief engineer
should very seldom be permitted to pass his views just because he is the chief engineer:
a technical leader who has to govern by fiat — as opposed to convincing the troops on
the sheer strength of technical arguments — will not remain a leader for very long. Once
in a while, of course, he gets to make a choice simply because someone needs to choose
(concrete syntax details are the most common example); but these should remain rare
cases. After all, if the chief engineer deserves the position, his ideas, or more commonly
his ability to sort out the good ideas from the bad, regardless of who originated them,
should be better than everyone else’s, so he should win on the merits.

It is remarkable to see how the people who produce Internet standards, some of the
most successful ever, have reached similar conclusions. Although not every transposes
literally, the similarities are striking enough to justify citing a substantial extract of
Christian Huitema’s description of the process in a recent book2:

2. From section 2.5.3 of reference[6]. Reproduced with the permission of the author and publisher.

PRINCIPLES OF LANGUAGE DESIGN AND EVOLUTION §1316
The IETF[Internet standards group]is not the only organization that produces
networking standards, but it has a distinctive flavor. As Dave Clark explained it
during the 1992 discussions, “We reject kings, presidents, and voting; we believe
in rough consensus and running code”.

The IETF working groups generally don’t vote. The goal of the processis to
obtain a consensus of all participants; if your technical contribution cannot
withstand technical cricism by your peers, i1t will simply be rejected. Voting occurs
occasionally when there is a choice between two equally valid proposals, such as
on the position of fileds within a packet, but this is more a rational way to flip a coin
than anything else. In fact, voting supposes counting voting rights, which supposes
some formal membership — for example, one vote per country or one vote per
member organization. This is almost contradictory with the open membership
nature of the working groups which any interested individual can join. By avoiding
votes, the IETF also avoids the “horse trading” that occurs in the last days
preceding a vote in other organizations(“I will vote for your checksum algorithm
if you vote for my address format”). Voting leads to compromises and overblown
specifications that include every member’s desires. This kind of compromise would
not fly in the IETF. One has to get consensus through the excellence of the technical
work. The search for consensus leads to technical elegance.

Consensus does not mean unanimity. There will always be some unconvinced
minority. This is why the consensus is expected to be “rough”. In fact, it can be so
rough that two irreconcilable camps opt for two very different solutions. Treying to
merge them would yield what is often derided as “a camel— a horse designed by
a committee”, where the bumps on the back reflect the diverse options. There are
two famous examples of this situation, one in the management area(CMOT,
derived from ISO’s CMP versus SNMP) and one in the routing area(OSPF versus
the adaptation of ISO’s IS-IS). In both cases the problem was solved by letting two
independent working groups pursue the two different options, producing two
incompatible but self-consistent standards, and letting tyhe market choose.

This is why the last part of the equation, running code, is important. An IETF
specification can only progress from proposed standard to draft and then full
standaard if it is adopted by the market(if it is implemented and sold within
networking productgs). A perfect specification that could not be implemented
would just be forgotten; the document would be reclassified as “historical”.

For Eiffel as for other languages, the temptation periodically arises of deciding language
features through a vote. The IETF model — rough consensus and running code — seems
far preferable.

§ REFERENCES 17
REFERENCES

[1] C.A.R. Hoare: Hints on Programming Language Design, Stanford University
Artificial Intelligence memo AIM-224/STAN-CS-73-403, 1973; reprinted inEssays in
Computing Science, ed. C.B Jones, Prentice Hall International, 1989, pp. 193-214.

[2] Jean-Raymond Abrial:The Specification Language Z: Syntax and"Semantics",
Oxford University Computing Laboratory, Programming Research Group Technical
Report, Oxford, April 1980.

[3] Bertrand Meyer:Eiffel: The Language, Prentice Hall, 1991.

[4] Eiffel: The Language, ongoing work at http://eiffel.com/private/meyer/etlnew, with
discussion group at http://talkitover.com/etl. User name: Talkitover; password: etl3.

[5] Bertrand Meyer:Object-Oriented Software Construction, second edition, Prentice
Hall, 1997.

[6] Christian Huitema:Routing on the Internet, 2nd edition, Prentice Hall, 1999.

ACKNOWLEDGMENT

The prefaces to almost every one of my books acknowledge the debt I have to Tony Hoare.
His work, and his personal example, have inspired and influenced my entire career. In
addition to his scientific contributions, he showed that technical writing, however
technical, is also writing. I am deeply grateful to him for setting the standard so high.

	1 THE BONZAI AND THE BAOBAB
	2 CONSISTENCY
	3 UNIQUENESS
	4 TOLERANCE AND DISCIPLINE
	5 methodology
	6 mea culpa, mea maxima culpa
	7 THE LANGUAGE AND THE LIBRARIES
	8 ON SYNTAX
	9 The inventor and the assembler
	10 FROM THE INITIAL DESIGN TO THE ASYMPTOTE
	11 EXTENSIONS
	12 CHANGES
	13 the politics of language evolution
	References
	Acknowledgment

