
Education & Training

Toward an object-oriented
curriculum .

A
THE SOFTWARE community

recognizes the value of the object­
oriented approach, the question
increasingly arises of when,

where and how to include object-oriented
concepts, languages, and tools in a software
curriculum-at universities, colleges, or
even high schools.

This article proposes a coordinated ap­
proach to structuring such a curriculum,
based on systematic reliance on the best as­
pects of the object-oriented method. It sug­
gests a radical departure from traditional
methods of teaching programming, design,
and analysis, ie, the progressive opening of
black boxes, also known as the inverted cur­
riculum, which is based on the systematic
use of object-oriented libraries of reusable
components. It also offers ideas for univer­
sity departments in search of ambitious,
multiyear federating projects.

Although the discussion will mostly ad­
dress the question of academic education,
some of it is also applicable to courses taught
to professionals, either in public seminars or
as part of an in-house company training plan.

WHEN?
Start early
The earlier the better. The object-oriented
method provides an excellent intellectual
discipline. If you agree with its goals and
techniques, there is no reason to delay
bringing it to your students; you should
teach it as the first approach to software de-

Bertrand Meyer is president of ISE, Santa Barbara,

CA. In addition to the books listed in the bibli­

ography, he is the author of INTRODUCTION TO

THE THEORY OF PROGRAMMING LANGUAGES

(Prentice Hall), editor of the Prentice Hall Object­

Oriented Series, and chairman of the TOOLS
conference series.

velopment. Beginning students react fa­
vorably to object-oriented teaching, not
just because it is trendy but because the
method is clear and effective.

This strategy is preferable to a more
conservative one whereby you would teach
an older method first, then "unteach" it
in order to introduce object-oriented
thinking. If you think object-oriented de­
velopment is the right way to go, there is
no reason to delay.

Teachers sometimes have a (usually un­
conscious) tendency to apply the biologists'
dictum that in human evolution ontogeny
(the story of the individual) repeats phy­
logeny (the story ofthe species): a human
embryo, at various stages of its develop­
ment, vaguely looks like a frog, a pig, etc.
Transposed to education, this means that a
teacher who first learned Algol, then went
on to structured design, and finally discov­
ered object orientation, may want to take
his students tl1fough the same path. (If Algol
is the frog, structured design must be the
pig.) There is little justification for such an
approach, which, transposed to elementary
education, would mean that students would
first learn to count in Roman munerals, only
later to be introduced to more advanced
"methodologies" such as Arabic numerals.
If you think you know what the right ap­
proach is, teach it first.

Paving the way for other approaches
One of the reasons for recommending
(without fear of fanaticism or narrow­
mindedness) the use of object orientation
as the first method that students will learn
is that, because the method is so general, it
prepares students for the later introduction
of other paradigms such as logic and func­
tional programming-which should be part
of any software engineer's culture. If your

Bertrand Meyer,
Guest Columnist

curriculum calls for the teaching of tradi­
tional programming languages such as
FORTRAN, COBOL, or Pascal, it is also
preferable to introduce these later, as knowl­
edge of the object-oriented method will
make it possible to use them in a safer and
more reasoned way.

The object-oriented method is also good
preparation for a topic that will become an
ever more prevalent part of software edu­
cation programs: formal approaches to
software specification, construction, and
verification. The use of assertions and, more
generally, of the Desigtl by Contract ap­
proach 1 is, in my experience, an effective
way to raise the students' awareness of the
need for a sound, systematic, implementa­
tion independent, and at least partially for­
mal characterization of software elements.
Premature exposure to the full machinery
of a formal specification method such as Z
or VDM may ovelwhelm students and cause
rejection; even if this does not OCCllr, stu­
dents are unlikely to appreciate the merits
of formality until they have had significant
software development experience. Object­
oriented software construction with Design
by Contract enables students to start pro­
ducing real software and at the stlme time
gain a gentle, progressive exposure to for­
mality. Some recent developments in the
area of object-oriented formal specification,
such as Object-Z,2 may ease that transition
by providing a natural bridge between the
two areas.

A caveat
As you will probably have noted by your­
self, the use of the object-oriented method
for introductory programming, recom­
mended above, only makes sense if you
can rely on a language and environment
that fully support the paradigm, and are

------------------------------------. __ _ ... , _ __ ,." ,_•.....•.• -_ ..• -.'
76 JOOP

not encumbered by remnants from the

past. In particular, "hybrid" approaches

(based on object-oriented extensions of

older languages) are unsuitable for be­
ginning students.

Opening a C++ textbook at almost any

page will provide ample evidence of this in­

adequacy. Here is a short extract from one

of the best current C++ books3 showing
some typical code:

#defineMakeRPtr (T)
class RPtr (t) : public RPtr_base {

Counted *ptr;
public:

} ;

RPtr(T) 0
: RPtcbaseO
{ }

RPtr(T) (RPtr(T)& r)
: RPtr_base(r)
{ }

RPtr(T) (T *tp)
: RPtebase ((Counted *) T)
{ }

~RPtr (T) 0
{ }

RPtr(T)& operator=(RPtr(T)& r)
{ *((RPtcbase *) this) = r; }

RPtr(T)& operator=(T *tp)
{ *((RPtebase *) this) =

(Counted *) tp; }
T& operator * 0

{ assert(ptr); return *((T *) ptr); }
operator T * 0

{ return (T *) ptr; }
int operator! 0

{ return !ptr; }

With this kind of notation, it is impossi­

ble to teach the concepts. Most of the time

will be spent on notation: trying to explain

the use of various special symbols such as

{, }, &, *, -, #, !, and I; going through the

differences between. and ->; or ex­

plaining the mysteries of bizarre con­

structions such as:

return *((T *) ptr);

Just explaining why an array and a pointer

have to be treated as the same notion-a

central property of C-based languages, the

roots of which lie in obscure optimization

techniques for hardware architectures of

the 1960s-would consume precious time

and energy, better used for teaching the

concepts of software design. More gener­

ally, students would be encouraged, at the

very beginning of their training, to reason

in terms of low-level mechanisms-ad-

dresses, pointers, memory, and signals.

They would inevitably spend much of their

time, if they eventually produce any com­

pilable program, chasing various damag­

ing bugs. This approach would leave stu­

dents perplexed and might well result in
disaster.

In contrast, an introductory course must

focus on the essential concepts and tech­

niques, and present the students with a

clear, coherent set of principles. The no­

tation must directly support these princi­

ples; in fact, there must be a one-to-one

correspondence between the language and

the method. The language must help the
students, not confuse them.

So even teachers who believe in hybrid

approaches should not use such a notation

for introductory teaching. If your prefer­
ence is indeed for hybrids, use a more con­

servative approach (such as Pascal, the tra­

ditional choice of most computer science

departments for introductory teaching) for

the first courses, and introduce the object­

oriented method, with your favorite lan­
guage and tools, in later courses. The ini­

tial notations taught to students must always
be simple and consistent.

WHERE?
Beyond introductory courses, the object­

oriented method can playa role at many

stages of a software curriculum. Let us re­
view the corresponding uses.

Terminology
The organization of higher education differs

widely among countries. To avoid any con­

fusion, we must first decide on a reasonably

universal terminology to denote the vari­

ous levels of study. Here is some attempt at

common ground:

• High school (US), lycee, Gymnasium;

called secondary education below.

• First few years of university or equiva­

lent: this is called "undergraduate stud­

ies" in the US and other Anglo-Saxon

countries (Gakubu in Japan). In France

and countries influenced by the French

system it corresponds to either the com­

bination of classes preparatoireswith the

first two years of engineering schools, or

to the first and second cycles of uni­

versities. In the German system, it is the

MAY 1993

Grundstudium. The term undergraduate
will be retained below.

• Finally, for the later years, leading to ad­
vanced degrees, we can use the US term

graduate. (The rough equivalents are

postgraduate in the UK; third cycle, D EA,

DESS, or options of engineering schools

in France; Hauptstudium in Germany;
Daigakuin in Japan.)

Secondary and undergraduate studies
At the secondary or undergraduate level,
the object-oriented method can playa cen­

tral role, as noted above, in an introductory
programming course.

The method, of course, can be of help

in many other courses. We may distinguish

here between courses that can be taught
entirely in an object-oriented way, and

those that will benefit from a partial use of
object-oriented ideas.

In the first category, we find the fol­
lowing courses (or their equivalents) that

may be based on a fully object-oriented
approach:

• Data structures and algorithms. Here

the techniques of Design by Contract
are fundamental: characterizing rou­

tines by assertions, specifying data struc­

tures with class invariants, and associ­

ating loop variants and invariants with

algorithms. In addition, an innovative

and powerful way to organize such a

course is to design it around a library of

software components from an existing
object- oriented environment. Then, in­

stead of starting from scratch, students
can learn by imitation and improve­

ment. (More on this topic below.)

• Software engineering. The object-oriented
method provides the best framework I

know for introducing students to the chal­

lenges of industrial, multiperson software
development, and for evaluating the·

benefits and limitations of project man­

agement techniques, software metrics,

software economics, development envi­
ronments) and the other techniques dis­

cussed in the software engineering liter­

ature (along with object orientation) as

answers to these challenges.

• Analysis and design. Clearly this can be

77

Education & Training

taught in a fully object-oriented way;
again, Design by Contract is central. It is
essential here to avoid the disastrous pit­
falls of earlier methods, which presented
analysis and design as the "noble" activ­
ities of system development and main­
tained a wide gap with implementation,
viewed as the low-level part. Object-ori­
ented technology makes it possible to have
a much more seamless approach in which
the same concepts and notations are ap­
plied throughout the process; this is es­
pecially true in the Eifid method (as dis­
cussed below). The teaching of analysis
and design should be consistent with this
view and emphasize the seamless transi­
tion to implementation and maintenance.
The work of Nerson,4,5 Henderson­

Sellers,6 and Hewlett-Packard's Fusion
group is particularly useful to help achieve
this objective.

• Introduction to graphics.

• Introduction to simulation.

In the second category-undergraduate
courses that may benefit from heavier or
lighter object doses-we may note: operat­
ing systems (in which the method aids in
understanding the notion of process, the
message-passing paradigm, and the impor­
tance of information hiding, clearly defined
interfaces, and limited communication chan­
nels in the design of proper system archi­
tectures); introduction to formal methods
(as noted above); functional programming;
logic programming (in which the connec­
tion with assertions should be emphasized);
introduction to artificial intelligence (for
which inheritance is a key concept in knowl­
edge representation); databases (where one
should reserve a central place for the notion
of abstract data types and include a discus­
sion of object-oriented databases).

Even computer architecture courses are
not immune from the influence of object­
oriented ideas, as the concepts of modular­
ity, information hiding, and assertions can
serve to present the topic in a clear and con­
vincing manner.

Graduate courses
At the graduate level, manyobject-ori­
ented courses and seminars are possible,
covering all the areas to which researchers
and advanced developers are currently ap-

78

plying their efforts: concurrency, dis­
tributed systems, persistence, databases,
formal specifications, advanced analysis
and design methods, configuration man­
agement, distributed project management,

and program verification.

Toward a completely object-oriented
curriculum
This incomplete list shows the method as be­
ing so ubiquitous that it would make sense
to design an entire software curriculum
around it. I do not know of any such com­
plete curriculum yet, although some en­
couraging partial attempts are in progress
(Universite de Nantes, Universite de Nice,
Carleton University, University of Technology
Sydney). No doubt in the years to come some­
one will jump and convince the management
of some university to go all the way.

HOW?
Not only does object orientation affect what
can be taught to students of software top­
ics; the method also suggests new pedagog­
ical techniques. Here are a few suggestions,
based on discussions with university pro­
fessors as well as my own experience.

Progressively opening black boxes
It was mentioned above that an object­
oriented course on data structures and algo­
rithms could be organized around a library.
This idea deserves further consideration, as
it may actually be applied to courses on in­
troductory programming and many other
subjects.

A frustrating aspect of many courses is
that teachers can only give introductory
examples and exercises, so that students
do not get to work on really interesting ap­
plications. One can only get so much ex­
citement out of computing the first 25
Fibonacci numbers, or replacing all oc­
currences of a word by another in a text­
two typical exercises in an introductory
programming course.

With the object-oriented method, a good
object-oriented environment, and, most
importantly, good libraries, a less traditional
strategy is possible if you give students ac­
cess to the libraries early in the process. In
this capacity students are just reuse con­
sumers, and use the library components as
black boxes; this assumes that proper tech-

roop

niques are available for describing compo­
nent usage without showing the compo­
nents' internals. (The "short form," dis­
cussed below, is essential for this purpose.)

With this technique, students can start
building meaningful applications early: their
task is merely to combine existing compo­
nents and assemble them into systems. In
many respects, this is a better introduction
to the challenges and rewards of software
development than the toy examples that
have been the mainstay of traditional in­
troductory courses.

Almost on day one of the course, stu­
dents will be able to produce impressive
applications by reusing existing software.
Their first assignment may involve writ­
ing just a few lines-enough to call a pre­
built application-and produce striking
results (devised by someone else!). Then
they are invited to take the components
making up the application and recombine
them in different ways so as to produce
variants of the application, or apply them

to new uses.
This black-box use of preexisting com­

ponents is only the first step. As students
progress, a process of progressive opening of
the black boxes will take place. The students
are encouraged to start looking into the
components themselves. The teacher may
wish to specify the order in which the com­
ponents are to be thus examined.

Initially, the purpose of this progressive
opening is simply to let students understand
the components, which provide models of
good object-oriented designs. Then, little
by little, the students are induced to adapt
the components to new purposes-either
by copying them and modifying the copies,
or by using the inheritance mechanism, the
very purpose of which is to support a com­
bination of reuse and adaptation. In the pro­
cess, the need for new software elements
will most likely arise so the students will
start writing their own classes; they do so
only after having had extensive exposure to
the best possible examples of quality object­
oriented software-library classes.

For this process to work, good abstrac­
tion facilities must be present, making it
possible to understand the essentials of a
component without understanding all of it.
The notion of the short form of a class, as
present in Eiffel,7,8 supports this idea: a short

form (which can be produced by tools of
the environment) is an abstracted version
of the class, revealing only the specification
of the class, i.e., the properties that can be
used explicitly by client classes. The short
form lists the exported features with their
assertions but hides implementation prop­
erties. After students have seen and under­
stood the short form, they may selectively
explore the internals of the class-again un­
der the guidance of the instructor.

Apprenticeship
The technique of progressive opening of
black boxes is the application of a time­
honored technique of apprenticeship to
software teaching:.learning from the pre­
vious generation of master practitioners of
your chosen craft-and, once you have un­
derstood their techniques, trying to do bet­
ter if you can. For lack of available masters,
one-on-one apprenticeship is necessarily
oflimited applicability; but here we do not
need the masters themselves, just the re­
sults of their work made available as
reusable components.

This approach is the continuation of a
trend that influenced the teaching of some
topics in software education before object
orientation became widely popular. The
evolution of the standard "Compiler
Construction" course of computer science
departments is a good example. In the 1970s
and early 1980s, the typical term project for
such a course was the writing of a complete
compiler or interpreter from scratch. In
practice, because the front-end tasks of com­
piler construction, lexical analysis and pars­
ing, require significant development effort,
the project could only be a compiler or in­
terpreter for a very small, toy language. Then
tools for lexical analysis and parsing (such
as lex and yacc on UNIX) became widely
available and started to be used more and
more frequently for course projects; this
made it possible to spend less time on these
front-end tasks and to include work on the
more challenging aspects of compiler con­
struction such as code generation. The ap­
proach outlined above may be viewed as the
generalization of this trend.

The inverted curriculum
The pedagogical technique of progressive
opening of the black boxes has an interest-

ing analogy in a neighboring discipline­
electrical engineering. There has been much
talk in recent years, in electrical engineer­
ing circles, of an educational policy known
as the inverted curriculum.9 The propo­
nents of this approach criticize the classical
electronics curriculum (field theory, then
circuit theory, power, device physics, con­
trol theory, digital systems, and VLSI de­
sign) as "reductionist" and suggest instead
using a more "systems-oriented" approach,
in the following order:

• Digital systems, using VLSI and CAD.

• Feedback, concurrency, hardware verifi­
cation.

• Linear systems and control.

• Power supply and transmission; impe­
dance matching requirements.

• Device physics and technologies, using
simulation and CAD techniques.

The ideas seem similar: rather than repeat­
ing phylogeny, start by giving students a
user's view of the highest-level concepts and
techniques actually applied in the most ad­
vanced industrial environments, then, little
by little, unveil the underlying principles.

A long-term policy
The "progressive opening" approach has an
interesting variant applicable by professors
in a position to define a multiyear educa­
tional strategy. This variant is relevant for
courses on application-oriented topics such
as operating systems, graphics, compiler
construction, or artificial intelligence.

To teach such an application area, it is in­
teresting to have the students build a system
by successive enhancement and generaliza­
tion, each year's class taking over the collec­
tive product of the previous year and trying
to build on it. This method has some obvi­
ous drawbacks for the students of the first
class (who collectively serve as advancemen
for future generations, and will not enjoy the
same reuse benefits), and I must confess I
have not yet seen it applied in a systematic
way. But on paper, at least, it is an attractive
idea. There hardly seems to be a better way
ofletting the students weigh the advantages
and difficulties of reuse, the need for build­
ing extensible software, and the challenge of
improving on someone else's work.

MAY 1993

The experience will prepare them for
the reality of software development in their
future company where, chances are, they
will be asked to perform maintenance work
on an existing system long before they are
asked to develop a brand new system of
their own.

A practical note is in order here. Even
if the context does not permit such a mul­
tiyear strategy, instructors in charge of
software education should try to avoid a
standard pitfall. Many undergraduate cur­
ricula include a "software engineering"
course, which often devotes a key role to
a software proj ect to be carried out by the
students, often in groups. Such project
work is necessary, but often disappoint­
ing due to the time limitations stemming
from its inclusion in a one-trimester or
one-semester course. If the academic ad­
ministration can at all be convinced, it is
much preferable to run such a project over
an entire schoolyear (even if the total
amount of allocated work is the same).
Trimester projects, in particular, border
on the absurd; they either stop at the anal­
ysis or design stage or result in a rush over
the last few weeks to code at any cost, us­
ing any technique that will produce a run­
ning program-:-often defeating the very
purpose of software engineering educa­
tion. It is desirable to have a little more
time on your hands, so as to let the stu­
dents appreciate the depth of the issues
involved in building serious software. A
year-long project, whether or not it is part
of a longer-term policy as suggested above,
favors this process. It is a little more
difficult to fit into the typical curriculum
than the standard trimester or semester
course, but well worth the fight.

AN OBJECT-ORIENTED PLAN
The idea of a long-term teaching strategy
based on reuse, as well as the earlier sug­
gestion of organizing an entire curricu­
lum around object-oriented concepts, may
lead to a more ambitious concept that goes
beyond the scope of software education to
encompass research and development.
Although this concept will be appealing
to certain institutions only, it is worth
some thought.

This discussion applies to a university
department (computing science, informa-

79

Education & Training

tion systems, or the equivalent) in search of
a long-term, unifying project-the kind of
project that produces better teaching, de­
velopment of new courses, faculty research,
sources of publication, PhD theses, Master's
theses, undergraduate projects, collabora­
tions with industry, and government grants.
Many a now well-respected department
originally "put itself on the map" through
such a collective multiyear effort.

The object-oriented method provides a
natural basis for such an endeavor. The fo­
cus of the work will not be compilers, in­
terpreters, and development tools for an
object-oriented language (since all of these
may already be available from companies)
but libraries. What object-oriented tech­
nology needs most to progress today is ap­
plication libraries (also called domain li­
braries). With a good object-oriented
environment, as already noted, will come
general-purpose libraries covering such uni­
versal needs as the fundamental data struc­
tures and algorithms of computing science,
graphics, user interface design, and parsing.
This leaves open entire application do­
mains-from financial software to signal
analysis, computer-aided design, and many
others-in which the need for quality
software components is critical.

The choice of such a libraty development
project as a unifying effort for a university
department presents several advantages:

• Even though such an effort is a long­
term pursuit, partial results can start to
appear early. Compilers and other tools
tend to be of the all-or-nothing category:
until they are reasonably complete, dis­
tributing them may damage your repu­
tation more than it helps it. With li­
braries, this is not the case: just a dozen
or two high-quality reusable classes can
render tremendous services to their users
and attract favorable attention.

• Because an ambitious library is a large
project, there is room for many people
to contribute, from advanced under­
graduates to PhD candidates, researchers,
and professors. This assumes, of course,
that the application domain and the
breadth of the library's coverage have
been chosen judiciously so as to match
the size of the available resources in peo­
ple, equipment, and funds.

80

• Talldng about resources, such a project
may start with relatively limited means
but is a prime candidate to attract the
attention of funding agencies. It also
offers prospects of funding by indus­
try if the application domain is one of

direct interest to companies.

• Building good libraries is a technically
exciting task that raises new scientific
challenges, so the output of a success­
ful project may include theses and pub­
lications, not just software. The intel­
lectual challenges are of two kinds. First,
the construction of reusable compo­
nents is one of the most interesting and
difficult problems of software engi­
neering, for which the method is of
some help but certainly does not an­
swer all questions. Second, any suc­
cessful application library must rest on
a taxonomy of the application domain,
requiring a long-term effort at classify­
ing the known concepts in that area. As
is well known in the natural sciences
since the work ofLinnaeus and Buffon,
classification is the first step towards
understanding. Developed for a new
application area, such an effort (known
as domain analysis) raises new and in­
teresting problems.

• The last comment suggests the possi­
bility of interdisciplinary cooperation
with researchers whose specialty is in
the application domain rather than
software engineeering.

• Cooperation should begin with people
working in neighboring fields. Many
universities have two groups pursuing
teaching and research in software is­
sues, one (often "computing science")
having more of an engineering and sci­
entific background, the other (often «in­
formation systems") more oriented to­
ward business issues. Whether these
groups are administratively separate or
part of the same structure- both cases
are common-the project may appeal
to both, and provides an opportunity
for collaboration.

• Finally, a successful library offering com­
ponents for an important application
area will be widely used and bring much
visibility to its originating institution.

JOOP

I have no doubt that in the years to come a
number of universities will seize on these
ideas, and that the "X University Reusable
Financial Components" or "Y Polytechnic
Object-Oriented Text Processing Library"
will (with better names than these) bring to
their institutions the modern equivalent of
what UCSD Pascal, Waterloo FORTRAN,
and MIT's X Window system achieved in
earlier eras for their respective sponsors.

THE ROLE OF EIFFEL
One of the goals in the design of Eiffe1 was
to provide a vehicle for a new approach to
teaching software, based on the ideas de­

scribed above.
Here Eiffel denotes not just a program­

ming language, but a methodology for
software construction, based on a language
(covering analysis and design as well as im­
plementation and maintenance), a set of
methodological principles, libraries, and
tools. It is particularly important to note that
the approach is not restricted to imple­
mentation but covers the entire lifecycle and
promotes a seamless approach to system de­
velopment, meant to avoid the "impedance
mismatches" between successive steps pro­
moted by traditional approaches (and, re­
grettably, by much of the recent work in ob­
ject-orientedanalysis). This makes it possible
to attract and reconcile t~1CUlty and students
from both of the two main subcultures of
software engineering: computing science
and information systems.

Of course, Eiifel is meant for industrial
development, not just teaching. But as a ve­
hicle for teaching, it presents a number of

important properties:

• A design that is generally recognized as
«clean" and consistent.

• Coverage of many aspects of software
development, from analysis to imple­
mentation and maintenance.

• Inclusion of many principles of modern
software engineering.

• Use of assertions, disciplined exceptions,
and systematic techniques of software
construction ("Design by Contract").

• Presence of carefully designed libraries
covering many areas of computer sci­
ellce (data structures, graphics, llser

ADVERTISER INDEX
PAGE # CIRCLE PAGE # CIRCLE

BSO/Tasking .. C4 100 Rothwelllnternational 23, 93 1 16
Cap Gemini .. 93 Recruitment
C++ REPORT .. 9431

SAS Institute ... 21 -

Digitalk .. C234
SBM International .. 7 144

GE Aerospace .. 92 Recruitment SES .. 19 167

GE Advanced Concepts Center 9 1 0 I Set Labs ... 18 56

GE Advanced Concepts Center .. Supplement 1 0 I SIGS Books: Writers Wanted 93 Recruitment
IBM .. 2 160 SIGS: Article Index 10 165
Itasca .. 1 0 1 6 I SIGS: C++ World 85 166
Microtemps .. 93 Recruitment
Object Design .. 1 17

SIGS: Object Expo Europe74-75 93

The Object People 28 81
SIGS Books: Object Lessans 83 120

Objectivity ... 5 99 System House .. 93 Recruitment

Poet Software (formerly BKS) 1 I 162 UniSQL .. 15 153

Quest Windows Corporation 13 163 Versant Object Technology C3 .: 88

interfaces, language analysis), and serv­
ing as ready-made models for students,
so as to support the apprenticeship pro­
cess described above.

• Availability of source for the libraries,
essential for the aforementioned ideas
to be implemented successfully.

• Advanced tools, particularly in the area
of graphical user interfaces.

• As noted above, a seamless approach
making it possible to unite rather than
separate the different steps and views of
software construction.

• Existence of good textbooks (although
more are needed).

• Widely available implementations, with
inexpensive academic licenses.

Around 1975, the educational community
switched worldwide to the use of Pascal as
the vehicle of choice to teach computing
science. This move was not the result of in­
dustry demand: if anything, the industry
would have suggested FORTRAN, COBOL,

or PLlr. It was not the result of a desire to
adhere to "standards"; the only languages
to have been reasonably standardized then
were, apart from the ones just mentioned,
Algol 60 and Algol 68. It was simply a real­
ization, on the part of the academic com­
munity, that teaching must be done right,
whatever the commercial pressures may be.

After playing its role admirably for some
twenty years, Pascal, in the mind of many ed­
ucators, is ready for retirement. As this arti-

de has shown, object-oriented technology,
in its serious variant, is ready to take Pascal's
place. It is the ambition of Eiffel to serve as
the primary tool for teaching programming
and software engineering in a modern, user­
friendly, and systematic way, from the most
elementary introduction to the most advanced
courses. We feel that Eiffel in its current in­
carnation is ready to take on that role .•

Acknowledgments
A short sabbatical August-October 1992 at
University of Technology, Sydney, enabled
me to practice and validate some of the ideas
developed here, with important contribu­
tions from John Potter and David Morgan
of UTS. I am indebted to Warren Yates of
the Electrical Engineering Dept. at UTS for
bringing the concept of "inverted curricu­
lum" to my attention. This article also
benefited from James McKim's experience
teaching software engineering with Eiffel at
the Hartford Graduate Center (as reported
in ref 10). The feedback of other university
professors who have taught various subjects
using object-oriented technology and Eiffel
over the years is also gratefully acknowledged;
they include Jean Bzivin (U. of Nantes,
France), Jean-Claude Boussard and Roger
Rousseau (U. of Nice, France), Brian
Henderson-Sellers (u. of New South Wales,
Australia), J.R. Kerstholt (T.R. Enschede,
The Netherlands), Peter L6hr (T. U. Berlin,
Germany), Naftaly Minsky (Rutgers U.,
USA), Christine Mingins and Sita
Ramakrishnan (Monash u., Australia), R.
OgorandR. Rannou (ENST, France), David
Riley (U. of Wisconsin, USA), David Rine

MAY 1993

(George Mason U., USA), Robert Switzer
(u. of G6ttingen, Germany), Pete Thomas
and Ray Weedon (Open U., Great Britain),
and many others.

References
1. Meyer, B. Applying" design by contract", IEEE

COMPUTER 40-51(10),1992.

2. Duke, R. P. King, G. Rose, and G. Smith. The
Object-Z specification language, PROCEEDINGS
OF TOOLS 5, T. Korson, V. Vaishnavi, and B.
Meyer, Eds., Prentice Hall, Englewood Cliffs,
NT, 1991, pp. 465-483.

3. Shapiro, J.S. A C++ TOOLKIT, Prentice Hall,
Englewood Cliffs, NT, 1991.

4. Nerson, J.-M. Applying object-oriented analy­
sis and design, COMMUNICATIONS OF THE ACM

35(9):63-74, 1992.

5. Nerson, J.-M. and K. Walden. OBJECT-ORIENTED
ARCHITECTURES: ANALYSIS AND DESIGN OF
RELIABLE SYSTEMS (forthcoming), Prentice Hall
International Object-Oriented Series, Hemel
Hempstead, 1993.

6. Henderson-Sellers, B. A BOOK OF OBJECT­
ORIENTED KNOWLEDGE, Prentice Hall,
Englewood Cliffs, NJ, 1991.

7. Meyer, B. OBJECT-ORIENTED SOFTWARE
CONSTRUCTION, Prentice Hall, Englewood Cliffs,
NJ,1988.

8. Meyer, B. EIFFEL: THE LANGUAGE, Prentice Hall,
Englewood Cliffs, NJ, 1991.

9. Cohen, B. THE INVERTED CURRICULUM (report,)
National Economic Development Council,
London, 1991.

10. McKim, J. Teaching object-oriented program­
ming and design, EIFFEL OUTLOOK 2(3):8-19,
1992. (also TUTORIAL NOTEs, TOOLS USA, Santa
Barbara, August 1992.)

81

