
________________________________________________________________________________________

O
This article appeared as a guest editorial in JOOP in 1991. Citation reference: Bertrand Meyer: Object-

rientation Outlook 1991: Optimism, pessimism, challenges, Guest Editorial, Journal of Object-Oriented
_Programming (JOOP), 1991._______________________________________________________________________________________

Object-Orientation Outlook 1991:

Optimism, pessimism, challenges

e
d

An uninformed reader browsing through just about any computer magazine thes
ays – not just JOOP – couldn’t be blamed for inferring that the object-oriented

s
e
revolution is over, having routed the opposition. On paper, object-orientedness i
verywhere. No ad, no technology announcement is complete unless it claims that its

product or project is object-oriented.

The reality, as everyone in the O-O world knows, is far behind the appearance.

o
Fast as the growth may be, object-oriented technology has only skimmed the surface
f the software industry. All the rest is hope and hype, with the ‘‘object-oriented’’

p
label on software products soon to become as meaningful as ‘‘all natural’’ on food
roducts.

Is this good or bad? Both, of course. It would be hypocritical for a developer or

c
researcher in the field to complain about all the current attention, especially in
omparison with the years of preaching in the desert. Just being in the limelight

t
t
makes it possible to undertake projects that would have been unthinkable before. Ye
here is also a considerable danger: the dilution of O-O ideas. If everyone and his

p
brother is object-oriented, how do we separate the wheat from the chaff? How do we
resent ‘‘real’’ O-O technology so that as to distinguish it, in the eyes of users,

customers and government sponsors, from mere lip service?

A similar question presents itself to those members of the community who can’t

o
force themselves to take solutions based on ‘‘hybrids’’ such as C++ as the ideal in
bject-oriented technology (and view them in some ways, as a move back to the pre-

p
structured days of address arithmetic and weak typing). But here also two outlooks are
ossible. An optimist will see the hybrid approach as attracting people who might

l
otherwise have thought O-O technology too esoteric for them, but will then realize the
imitations and move on to the real thing. A pessimist will fear that the approach’s

h
failure to produce the advertized benefits – after all, hybrid solutions are likely to yield
ybrid quality – will cause a backlash for the whole field, giving us all a bad name.

Who can say today whether the optimist or the pessimist is right?

The answer to these questions will depend for a large part on how well the
e

i
object-oriented community can provide, in the months and years to come, what th
ndustry is clamoring for: complete, extendible and (talk about buzzwords!) open

e
r
solutions. The groundwork in O-O principles and tools has been done; but ther
emains to make our ideas applicable to the real goals of companies. A company’s IS

g
p
department is not in the business of programming; it is in the business of solvin
roblems. Solving problems usually involves programming, of course, but the

programs must fit within the rest.



2

To succeed, then, developers of O-O technology must address the big picture.

f
Some of the problems are in more urgent need of a solution than others; here are a
ew. (Lest this appears like a summary of session titles for OOPSLA or TOOLS, you

may also want to check all the fashionable topics that are not on this list.)

• Databases. Anyone will tell you these days that data are the lifeblood of an
d

m
organization. How do we use object-oriented systems to improve access to an

anipulation of these data? With all due respect to my colleagues in the O-O
’

a
database field, it has not yet been proved, at least for ‘‘mainstream’
pplications, that object-oriented databases are the solution.

• User interfaces. It is not enough any more to provide fancy menus and tools

i
for defining screen layouts; object-oriented technology should allow the
nteractive definition of entire applications from reusable components. Even

a
m
more importantly, it should integrate the user interface with the dat

anipulation tools – hence the close connection between this item and the

•
previous one.

Libraries. We need better quality control methods for libraries; we need more
e

n
input from formal methods of specification, validation and documentation; w
eed vertical libraries developed in collaboration between O-O specialists and

•
experts of the problem domain.

Concurrency. With again no disrespect intended to the already considerable
l

m
body of valuable work in this field, no one has yet come up with the genera

odel that will reconcile the O-O view of computation with the needs of

T

operating systems, multiprocessing, real-time and distributed applications.

his is enough to keep any organization’s plate full for some time. Well, if the
solutions were here already, where would the fun be?


