
&

Guest column

What is an object-oriented
environment?
Five principles and their application

A
MOST EVERY SOFTWARE de
velopment environment these days

claims to be object oriented. But
what does the phrase really

mean? In some cases it seems that the au
thors of any tool that has so much as a menu
or perhaps a few icons feel they deserve to
call it 0-0. In other cases the justification
is simply that the environment supports an
object-oriented language, or perhaps an ob
ject-oriented analysis method.

About two years ago, as our group at ISE

was starting the development of EiffelBench
(the development environment for ISE Eiffel
3), we decided to explore how we could ap
ply the concepts of object orientation to the
environment itself-not just to the software
developed with it. Impressed as we were by
generally accepted ideas, which usually come
directly or indirectly from the brilliant ex
ample of Smalltalk, we felt that current
efforts stopped short of providing the true
benefits of object orientation at the envi
ronment level.

In this guest column I will share some
of the insights that we gained from that
effort, describe five key principles of object
oriented environments and explain why, in
our opinion, such an environment should
have no browser, no debugger, and, in a
sense, not even a compiler or an inter
preter-while providing all the needed
browsing, debugging, compiling, and in
terpreting facilities, and more. (If you think
this is a contradiction, just read on.)

Bertrand Meyer is the author of OBJECT-ORIENTED
SOFTWARE CONSTRUCTION, INTRODUCTION TO
THE THEORY OF PROGRAMMING LANGUAGES, and
other books published by Prentice Hall. He is a
member of the JOOP editorial board, the chair
man of the TOOLS conference and the editor of
the Prentice Hall Object-Oriented Series.

METHOD-ENVIRONMENT
CONSISTENCY
What do we want in a set of development
tools that claims to be an 0-0 environment?
It should not just help produce object-ori
ented software but also enforce the object
oriented paradigm throughout the devel
opment process.

Underlying this observation is an idea
which is hardly new: a good environment
will promote a style of user interaction
reflecting the style of the underlying lan
guage. Lisp environments tend to display
the kind of flexible, I-know-what-I-am-do
ing, no-safety-net allure of Lisp and Lisp de
velopers. Pascal environments usually look
like the language-simple and clean. Most
FORTRAN environments exhibit the same
"rugged simplicity of a Ford Model-T' that
was once described (by D.W. Barron) as
characterizing the spirit of FORTRAN.

Environments for C and derivatives appro
priately promote direct access to addresses,
pointers, memory blocks, words, bytes, sig
nals handlers, runtime call stacks and other
machine-level features, focused on the main
task that occupies developers in such envi
ronments: discovering the bug du jour. In
environments supporting the most popular
analysis methods, the little clouds and bub
bles which seem to be the main selling points
of these tools accurately reflect the vague
ness surrounding the methods' theoretical
foundations and practical usefulness.

We may express this observation as a
principle applicable to many environments:

Principle 1 (method-environment con~
sistency)-A development environment
meant to support a particular method or
language must rely on a consistent set of
user interaction conventions which closely
parallel the concepts promoted by the
method or language.

JULY-AUGUST 1993

Bertrand Meyer

This principle does not just state that the
environment must support the method or
language-a rather obvious requirement
but that the concepts that prevail in the
method or language must also apply, ap
propriately transposed, to the interaction
between developers and the environment.

DATA ABSTRACTION AND
DEVELOPMENT OBJECTS
Applied to the specific case of an object-ori
ented environment, the above principle
means that the environment itself should let
its users (called developers in the rest of this
discussion) work in an object-oriented way.

What does that mean? This article is not
the place for a lengthy definition or discus
sion of the 0-0 paradigm; but on one thing
all JOOP readers will (I hope) agree: object
orientation means data abstraction. The two
words in this phrase are equally important:

• The emphasis on data means that the
basis for our work is object types
(classes), not operations. Any operation
that we may have to perform is relative
to a certain object.

• The use of abstraction means that we sys
tematically apply information hiding: an
object type is known through the appli
cable operations, and these operations
are described through their abstract
properties (assertions), excluding any
implementation-related considerations.

In object-oriented software development
we apply these concepts to build our
software out of classes describing the ob
jects that our software models (at the anal
ysis levels) and implements (at the design
and implementation levels). These ob
jects-linked lists, bank accounts, lines of
text, airplanes, etc.-may be called software

75

Guest column

Project button

/ Melt button

./ Run button

Freeze button

I Finalize button

I
Figure I. Development object types.

Figure 2. A Class tool showing the Text format for a class.

objects because they are manipulated by
the software.

We may apply exactly the same ideas to
the way developers interacts with their de-

76

velopment environments. But the objects
that we need here are not software objects
any more: they correspond to the things
that developers (not their software!) ma-

JOOP

nipulate. We may call them development ob
jects. The main types of development ob
jects include:

• The class.

• The system. (I am using Eiffel termi
nology here; a system is an executable
assembly of classes. In other 0-0 ap
proaches the corresponding concept
would be program.)

• The feature. (The closest concept in other
approaches is method or function.)

• The explanation (if a help facility is
desired).

• Software objects-at runtime, for test
ing and debugging purposes among oth
ers, you may want to capture some
software objects, see their field values,
and follow references to other software
objects.

The first characteristic of an object-oriented
environment, then, is defined by the sec
ond principle, which is, as the others in this
discussion, a consequence of the first:

Principle 2 (data abstraction)-In an ob
ject-oriented environment, the basic way
of working must be through direct ma
nipulation of visual representations of de
veloper abstractions.

With an object-oriented environment, then,
the screen .will show various development
objects-classes, routines, systems, software
objects-under the appropriate represen
tations, and enable developers to work with
them using the principle of direct manipu
lation (as introduced originally by
Shneidermann 1 and now widely accepted).

The following control panel from
EiffelBench shows some of the major pic
torial representations for the fundamental
development object types (Fig. 1).

OBJECT-ORIENTED TOOLS
The data abstraction principle has more im
plications than are apparent at first. If you
look at most of today's environments, in
cluding those for object-oriented languages,
they have tools corresponding to operations:
a browser, compiler, debugger, tester. This
is wrong! In an 0-0 environment, we will
have none of this "er" stuff. What we want

..

are object tools: the Class tool, Routine tool,
System tool, Software Object tooL This is

our third principle:

Principle 3 (object-oriented tools)-In an
object-oriented environment, each tool
must be based on an object type (not on a
type of operation).

Figure 2 is an example of what is perhaps
the most important tool in EiffelBench: the
Class tooL It shows a class text users can
edit using normal editing facilities. The
Class tool shows part of the text of class DY
NAMIc_cHAIN' a class from the standard
data structures and algorithms library,
EiffelBase. (DYNAMIC_CHAIN is a deferred,
or abstract, class, which serves as ancestors
to classes describing extensible linear
structures such as LINKED_LIST and
TWO_WAY_LIST.) We say that class DY

NAMIC_CHAIN is the current target of the
tool; this mirrors the notions of target of a
call and of current object in object-oriented

computation (the feature call ao+f has a as
its target, and during its execution a is the
current object of the computation).2

At the bottom of the Class tool window,
a number of format buttons appear. They
make it possible to show information on
the class in various ways. (Note that icons
have no associated text, to avoid bothering
knowledgeable users by taking up precious
screen space. To know what an icon stands

for, just bring the cursor to it and the
«Focus" area at the top of the control panel

will display its meaning, for example "Flat
form" or "ancestors") Here are some of the
formats for a class:

• Text-the default, showing the class text.

• Flat-the developed version·ofthe class,
with all inherited features put at the same
level as the immediate features defined
in the class itself.

• Flat-short-the class interface, which keeps
exported features and their assertions

Figure 3. A Class tool showing the Ancestors format for a class.
Figure 4 (right). A Class tool showing the Descendants format for a class.

JULY-AUGUST 1993

("contracts") but removes all imple

mentation information.

• Ancestors-The inheritance hierarchy
leading to a class.

• Descendants.

Other formats include clients, suppliers, at
tributes, routines, deferred routines, once
routines, and "custom" (through which you
can devise a specific format and set of se
lection criteria).

Figure 3 shows the Ancestors format for
class DYNAMIC_CHAIN. Note the systematic
use of multiple inheritance, which is a cen
tral property of the Eiffel method and makes
it possible to build powerful classes with lit
tle effort. The EiffelBase library is the result
of a long-term effort to produce a multi
criterion taxonomy of the fundamental
structures of computer science3; some as
pects of the taxonomy are visible in the in
heritance structure shown.

77

Guest column

Figure S. Dragging a development object.

All branches of the inheritance graph
ends at class ANY, the mother of all classes.
Figure 4 shows the beginning of the
Descendants format for ANY; this is a good
way of seeing the inheritance structure of
an entire system.

SEMANTIC CONSISTENCY
The next principle is essential if we are to
enable users to interact with the environ
ment effectively and consistently.
Development objects will appear, undervar
ious guises, on different parts of the screen.
For example, class DYNAMIC_CHAIN appears
as the target of the Class tool of Figure 2, but
it also appears, represented by its name, on
Figures 3 and 4. The class name may also
appear in a System tool under the format
displaying the list of all classes in the system.

Assume that as you are using the envi
ronment you spot a development object,
shown under any suitable visual form-for
example, the object's name appearing ina
class text, or some icon which has been as-

78

sociated with it. In a flash you decide that
you need to perform some operation on the
object; depending on the object's type, this
may be an operation that obtains more in
formation about the object, modifies its text,
compiles it (for a class), executes it (for a
routine), or changes a field (for a software
object). In any such case you will want to
grab the development object right away, at
the very place where you have found it. You
should be able to do this regardless of the
tool in which you have spotted the object
(Class tool, Routine tool, System tool, etc.),
the format selected for that tool (Text,
Descendants, Clients, etc.), the visual rep
resentation under which the development
object appears in the tool (textual name,
graphical icon, etc.) and the place where it
appears. In all circumstances you should be
able to choose from the same set of appli
cable operations, determined only by the
object's type and properties. Hence the
fourth principle, which is perhaps the most
important in this discussion:

JOOP

Principle 4 (semantic consistencY)-An
object- oriented environment must en
able its users, for any symbol (textual,
graphical, or otherwise) representing a
development object in the user interface,
to select the object through its symbol
and apply any operation that is semanti
cally valid for the object, regardless of the
symbol's context-tool, location, format,
representation.

TYPED DRAG-AND-DROP
Now for the next question: given that we
can select an object wherever we see it, how
are we going to perform operations on it?
Here there is no absolute principle, as var
ious user-interface tastes may play their role.

A natural convention (assuming the now
common WIMP style of interface-for win
dows, icons, menus, pointing device) is to
let the user click on the symbol represent
ing the developer object and display a menu
listing the various applicable operations.
When our group was considering that is
sue, however, we were a bit tired of menus
and menu selection, and devised another
technique which we (and apparently our
users, too!) have come to like very much:
the typed drag-and-drop interface tech
nique. With this approach, the basic oper
ation consists of grabbing a software object,
identified by its name appearing in one of
the tool windows, and dragging it into a
matching hole of some tool (the same or
another). As you are dragging a software
object, its type is represented by a small icon
known as a pebble: a disk pebble if the de
velopment object is a class, a cross-shaped
pebble if it is a routine, a graph-like pebble
if it is a system, and so on.

The environment's basic operation, then,
is very simple: drag a pebble into the cor
responding hole in a tool.

For example, consider the situation in
Figure 5. I have selected the name of a class,
JOOP, in the System tool on the left; because
JOOP is the name of a class, the pebble shows
a disk. If! drag this pebble and drop it into
the hole of the Class tool on the right, JOOP
will become the new target of that Class tool;
in other words, the Class tool, which was
already in Text format, will now show the
text of JOOP rather than the text of DY
NAMIC_CHAIN. Rather than overwriting an
existing Class tool, I could get a new one (in

a new window) by dropping the pebble into
the class hole of the control panel.

N ow you have probably guessed the rule
behind typed drag and drop. Eifid is a typed
language; in accordance with Principle 1
and with the rest of this discussion, the en
vironment should be typed, too. The peb
ble shapes serve to visualize the types of de
velopment objects; and a pebble of a certain
shape can only be dropped into a hole of a
matching shape. For example, you cannot
drop a class pebble into a routine hole. (If
you try it, nothing will happen.) Although,
as noted, the exact choice of interface con
ventions is in part a matter of taste, there is
one more general principle at work here:

Principle 5 (typed environment)-In an
object-oriented environment supporting
a statically typed language and method, the
environment's visual conventions should
display and enforce the type constraints
on development objects.

In the same way that a typed object-oriented
language such as Eiffel offers some flexibil
ity (thanks to inheritance) as to what kinds
of values can be assigned to each other, the
environment lets pebbles match holes in
some cases where they are not of identical
shapes. For example, you may drop a fea
ture pebble into a class hole; the new target
of the class hole will then be the class in
which the feature appears. This is a nice and
easy way to obtain the context of a feature:
you select the feature at a place where its
name appears (e.g., in a call to the feature)
and bring it to a class hole. From then on
you can move to ancestors of the feature's
class, to its ancestors, and so on.

We have applied the Typed Drag and
Drop model of interaction to all the com
ponents ofISE Eiffel3-not just EiffelBench
but also EiffelBuild (the interactive applica
tion builder), EiffelCase (the analysis and de
sign environment), etc.; we find that it pro
vides a convenient and general mechanism,
which is both easy for novices to learn and
still pleasant for experienced users to use.

ERRORS:'PREVENTION RATHER
THAN CURE
Typed Drag and Drop has an important ef
fect on the general style of user interaction
with the environment. One of the annoy
ing features of most WIMP-style tools is the
number of times an «alert panel" pops up,

forcing you to click on an "OK" button.
This usually occurs as the result of an error,
but sometimes it is just because the tool au
thors want to make sure that you read a cer
tain message before proceeding. Alert pan
els are irritating, and fail to meet what I
believe to be an important principle of in
terface design: it is always better to prevent
errors than to detect them after the fact.

We have not yet found it possible to re
move all alert panels altogether. But we have
found that applying the following rules yields
a much improved user interface:

• Use Typed Drag and Drop to implement
consistency rules whenever possible. In
this way many potential errors disap
pear: they simply correspond to cases in
which a pebble does not fit a hole.

• With this rule, the application will have
very few alert panels if any. Make sure ev
ery remaining case is justified and cannot
be handled by less obtrusive methods.

• Never use an error panel requiring a sin
gle possible action (such as clicking
"OK"). If you are requiring the user to
act, you should-if only out of polite
nessI-give him a choice.

BROWSING WITHOUT A BROWSER
By now you may be beginning to see how one
can browse-and browse quite effectively
without a specific ((browser" tool. Imagine
the following sequence of operations:

• Start from the System tool.

• Grab the name of the root class (the place
where execution starts). Assume the root
class name is ROOT. Drag-and-drop-it
into the class hole of the control panel.
This starts a new class tool, with ROOT as
a target. The default format is Text, so
the class tool shows the text of ROOT.

• Change the format to Suppliers. The
clients of ROOT (the classes that ROOT uses
through calls) appear.

• In this list of suppliers choose one par
ticular client of ROOT, class C. Grab it and
drag-and-drop it to the class hole of the
current class tool. Change the format to
Text; the text of C appears.

• Change the format to Ancestors. Grab
one of the ancestors of C, say, D; drag-

JULY-AUGUST 1993

and-drop it to the class hole. Select the
Routines format; the list of all the rou
tines of D appear, each with its class of
origin (the class where it was first intro
duced). Grab one of these routines and
drag-and-drop it to the routine hole of
the control panel, and so on.

Rather than explaining all these manipula
tions on paper I would really prefer to show
them to you in real time, or, better yet, let
you play with the actual environment, but
following a written description is the next
best thing. I hope you are getting the knack
of this proximity-based browsing, which is
the nicest way I know to move around a sys
tem quickly and effectively.

DEBUGGING WITHOUT A DEBUGGER
SO far we have just explored the structure
and components of existing software. What
about changing class texts, compiling classes,
debugging a system?

For the debugging part, I'll leave you the
pleasure of guessing some of the details and
seeing how it all fits into place. We don't
want a debugger tool, of course. Instead, we
take the Routine tool and the Software
Object tool (both of which are object
oriented tools, not functional ones) and
consider such operations as:

• Put in a breakpoint at a specific place in
the routine.

• Resume execution of the routine until
the next breakpoint.

• Resume execution of the routine until
the next call.

• Remove a breakpoint.

• Grab a variable name (the Eiffel term is
entity) and drag-and-drop it into a
software object hole, which will show
the contents of the corresponding run
time object.

• Grab an object field representing a ref
erence to another object, and drag-and
drop it into an object hole.

And so on. You must see the picture by now,
and understand how one can debug with
out a debugger.

Something else that you may have
guessed is how the Help facility works.
Assume that during a compilation step (as

79

ADVERTISER INDEX
PAGE # CIRCLE PAGE # CIRCLE

Arkhon Technologies 83 Recruitment SAS Institute ... 23 -

Cadre Technologies C4 176 Semaphore .. 15 12

DataLink ... 82 Recruitment SES ... 9 167

Digitalk .. C2 34 Set Labs .. 37 56

Excel Software .. 25 I I 0 SIGS Books:

Fastrak .. 1 3 I 77 Writers Wanted 82 Recruitment

Houser, Martin, Morris, & Assoc 82 Recruitment Object Lessons 84 120

IBM .. 2 13 Conference Proceedings 94 178

Knowledge Systems Corp 19 54
White Paper ... 85 124

NeXT, Inc ... 20-21 80 SIGS Conferences:

Object Design ... I 17 C++ World .. 17 186

The Object People 39 81 Destination C++ 30-31 172

Objectivity ... 5 99 SIGS Publications

Objectshare Systems49 175 Cumulative Article Index 63 165

OOPSLA '93 67-69 63 SYBASE .. 83 Recruitment

Poet Software (formerly Bks) II 90 UniSQL .. 27 153

Rational .. 7 43 Versant Object Technology C3 88

Rogue Wave Software 29 131 Walt Disney Imagineering 33 Recruitment

Guest column

described next) an error occurs. A code and
brief explanation will show up on the con
trol panel. To know more about the error,
for example, if it is a violat~on of a language
constraint as discussed in EIFFEL: THE
LANGUAGE,2 grab the code with the mouse.
The pebble in this case has the form of the
"explanation" hole. Drag-and-drop it to the
Explanation hole of the control panel; and,
voila, the explanation pops up in an
Explanation tool, in the form of the com
plete language rule straight from the book.

You can of course drag many other ob
jects to an Explanation hole. In fact, the
usual way of obtaining information about
an object, in EiffelBench as in other envi
ronment components, is to drag it into an
Explanation hole.

COMPILING: THE MELTING
ICE TECHNOLOGY
The final aspect is compiling. You play
around with a few classes, change their
texts; in Text format, the Class tool dou-

80

bles as an editor and you can change class
texts (other formats are read-only). You
save your changes. Then you want to re
compile.

EiffelBench offers not one but three com
piling mechanisms: melting, freezing, and
finalizing. You can trigger them by clicking
on one of the three buttons on the right side
ofthe control panel (see Fig. 1).

Why three compiling modes? Compila
tion should reconcile the following goals:

• C code generation-for portability, it is
useful to use C in its proper role, that of
a portable assembly language rather than
a language for programmers to use di
rectly (except in special cases). The final
output of a compilation, then, will be a
complete C package that can be ported
to various platforms.

• Security and efficiency of the gener
ated code-traditional compiling tech
niques for typed languages ensure that
compilers can catch many errors before

JOOP

it is too late, and generate more efficient
code.

• Quick turnaround-interpreter-based
environments make it possible to have
an almost immediate transition from the
time you write or (more commonly)
modify software to the time when you
can execute the result of what you just
wrote.

These goals, especially the last two, have
so far tended to be mutually exclusive. A
good compiler and linker may perform ex
tensive checking and generate excellent
code, but this takes time. An interpreter
processes your changes quickly, but per
forms few checks and usually sacrifices run
time performance.

We wanted to have the best of all worlds
and avoid the limitations of the best tradi
tional answer-incremental compilers .
Hence the idea of the melting ice, which is
based on the following analysis.

Most of the compilation literature stud-

ies the problem of compiling an entire pro
gram. The practical problem is more that
of processing an incremental change to an
existing software system. The change may
be big or small; the system may be big or
small. (By "small" we mean up to a few
tens of thousands oflines.) Of the four pos
sible cases shown in Table I, only one is
really interesting:

If the system is small (left column), speed
of recompilation with a good compiler such
as earlier Eiffel compilers (e.g., ISE Eiffel
2.3) will be acceptable (although it never
hurts to make it faster). In the bottom-right
box, you have spent (say) six weeks chang
ing dozens of classes in a big system; then,
frankly, you can wait a little. Go and reward
yourself with a good dinner after starting
the r~compilation, and come back the next
day. The really important case-and the one
that can cause most frustration-is the one
marked ***: you change only a small part
of a big system. Then you will want the re
sult now. A few seconds' wait will be toler
able, but not much more.

Hence the melting ice technology. As
you start with your system you will do a first
compilation-possibly a bit slow, but that
does not matter too much, as the system is
still small. In melting ice terminology, you
have frozen your system, as if you had put
a block of ice in the freezer.

You come in the next morning, take the
system-the ice-out of the freezer, and
start working on it. As you work hard with
your mind, your forehead produces some
heat, and a few drops of water figuratively
fall into a bucket. The drops are the software
elements that you have changed.

One thing that you would not want to
do after a few such changes is refreeze the
system: that would take far too long. In
software terms this means that you will only
rarely perform a global recompilation.
Instead, the melted part (the changes) will
be processed much faster.

At execution time, the frozen part will
still be run in compiled mode, but the melted
part will be partly interpreted. Of course all
this is far from trivial since the melted and
frozen elements must be able to talk to each
other, but that is the business of the envi
ronment's implementers, not of its users.
What matters for the users is that interpre
tation does not have any negative effects,

Table I.

Small System Big System

Small Change ***
Big Change

since typically you will only melt a small
part of a system; the impact on efficiency is
then negligible. Also, melting still performs
all the type checks that you may expect from
a serious development environment. But
the key property of melting is its speed: the
time needed to melt a system after a change
depends only on the size of the change and
its logical implications, never on the size of
a system. This satisfies the major require
ment of software developers in this area:
small changes to big systems should re
compile quickly.

Some gauge on the screen should tell you
what proportion of the system you have
melted so far. When that proportion becomes
a little high, you may begin to experience a
decrease in efficiency: time to freeze again.
It may be a good idea to get into the habit of
freezing before going home every night. (I
take that back. Not all software developers
go home at night. Some go home in the
morning. Some seem never to go home. For
some, home is where the computer is.)

By now the meaning of the three com
piling buttons on the right of the control
panel should be clear:

• Click on the melt button after making
changes. After a short while-typically
ten seconds or so-your system will be
ready to execute again.

• Click on the Freeze button to restart on
a clean basis after many changes, or for
the first compilation of a system (although
you may start with a melt if you prefer).

• Click on the Finalize button at the end
of a project. Finalizing produces portable
and highly optimized C code. Note that
some optimizations can only be done in
final mode as they apply to an entire sys
tem. For example, dead code removal is
impossible as long as you remain under
EiffelBench: like Lazarus, a feature that
is dead today (because no one calls it)
can become alive again tomorrow (if you
insert a call to it somewhere). Only when
you finalize can you safely play Gogol's

JULY-AUGUST 1993

Revizor and sort out the legitimate dead
souls from the living.

One point I almost forgot to mention, since
it is obvious to Eiffel developers: in any com
pilation mode the analysis of what has
changed, of what is still the same, and of the
set of software elements impacted by a change
through the client and inheritance relations,
is entirely automatic. No Make file, no Include
file of any kind. These are tedious and error
prone mechanisms, and a thing of the past;
developers have better things to do than
telling compilers about information which,
with a little effort, can be deduced from the
text of the software itself.

IN SUMMARY
There is undoubtedly more to the notion
of object-oriented environments than has
been discussed in this column, and no doubt
others will explore further implications of
the ideas presented here. But I hope to have
shown that it is possible to apply object
oriented principles much more systemati
cally than has been thought possible so far,
and that the software engineering princi
ples we use for the software we produce can
have fruitful consequences on the verypr()
cess of producing it.

These observations are representative of
an idea that strikes me ever more often as I
examine the implications of the object
oriented paradigm-not the somewhat de
graded version that one finds in many cur
rent technical publications, but the serious
view based on abstract data types and other
profound ideas. The methodological and
epistemological consequences of these prin
ciples extend, I believe, far beyond software,
to domains such as sociology and eco
nomics. But this is the theme for some other
article. At least this one may have brought
to your attention some non-trivial applica
tions of 0-0 ideas to the way we interact
with our everyday working tools. •

References
1. Shneiderman, B. Direct manipulation: A step

beyond programming languages, IEEE

COMPUTER, 16(8):57-69, 1983.

2. Meyer, B. EIFFEL: THE LANGUAGE, Prentice Hall,
Englewood Cliffs, NJ, 1992.

3. Meyer, B. EIFFEL: THE LIBRARIES (forthcom
ing), Prentice Hall, Englewood Cliffs, N}, 1993.

81

