
This is a pre-publication version of an article that appeared in the JOOP Eiffel column in 1999. Citation reference:
Bertrand Meyer, Extension Season, in Journal of Object-Oriented Programming (JOOP), vol. 12, no. 3, June 1999.

Extension season

Bertrand Meyer

For the first time in many years, Eiffel is undergoing significant changes, all
meant to increase expressibility without renouncing simplicity and safety.

Eiffel, more than a language, is a method of building software, and previous articles in
this column have accordingly concentrated on principles and applications of the method
rather than on the language itself. Language issues are important too, so this column and
the next one turn their attention to recent changes. For the first time in many years, the
Eiffel language is indeed undergoing some significant extensions. They have been
discussed extensively on the Internet and within the Nonprofit International Consortium
for Eiffel (NICE); but this will be their first description in print, as befits the JOOP Eiffel
column.

Although the discussion is more language-specific than in previous, the idea is, as
usual, to have something for everyone, Eiffel programmers as well as others. So even if
you are programming in another language and have only a superficial knowledge of
Eiffel I hope you will find this column useful, because the goals addressed by recent
changes are not just Eiffel goals: they are software design issues, and I am sure you will
be able to relate them to your language of choice.

Eiffel programmers are not, by instinct, favorably disposed towards language
extensions. They chose Eiffel because they like it just the way it is, and when anyone —
original language designer included — wants to add or change something, their first
reaction usually is: “hands off!”. Partly for that reason, Eiffel has enjoyed great stability,
as a language as well as a method, since its original design in 1985. During that period
most other O-O languages have changed significantly, sometimes dramatically; but Eiffel
incurred only one major revision, leading in the years 1990-1991 to the book Eiffel: The
Language [1] or “ETL”, which describes the language level known as Eiffel 3. This is the
basis for all current implementations. The only significant addition since then has been
the Precursor mechanism, the result of a collective design in 1997-1998, facilitating the
redefinition of a routine in terms of its original implementation.

In the software world nothing can remain completely static, and the time has
come to take a closer look at the language. A number of modifications premiered recently
with release of ISE Eiffel 4.3. They all try to follow the principles discussed in detail in
the chapter On Language Evolution of ETL:

• The general idea is to increase the signal-to-noise ratio of the language: improve the

signal (the expressive power available to language users) and decrease the noise (the
amount of redundant or useless features).

• When thinking of changes, consider not only adding constructs but also removing
superfluous constructs and cleaning up existing ones for simplicity and consistency.

• Every extension must address clear user needs.
• Every extension must be compatible with the spirit and letter of the language.
• Every extension must be easy to explain to any competent user.
• Every extension must have been carefully discussed by users and implementers; the

syntax, validity constraints and semantics should be available in the precise form used
in ETL.

• Extensions must favor safety and, in particular, support Eiffel's static typing policy
and its Design by Contract principles.

• Don't shoot for upward compatibility at all costs. Be considerate to existing users, of
course, but you find a better way and it really makes a difference, go for it. Users will
follow, as long as you explain the rationale convincingly and provide a migration
path. They don't want you to sacrifice consistency and simplicity for the sake of
compatibility. There are too many examples around us of languages that are just made
of stratified layers of successive sediments.

• The good extensions are those which address several issues rather than just one.
• Extensions should not violate the Eiffel principle that for every need there should be

one good way to express the solution, rather than many competing mechanisms.
• No extension must be accepted definitively until an official compiler release has

supported it for several months.

The extensions described here satisfy, I hope, these criteria. They are all part of 4.3, and
have already been used in a number of large applications (including by us). Their final
incorporation is of course subject further discussion by all involved.

The extensions discussed below are:
• New creation syntax
• Creation expressions
• Generic creation (as you see, the area of object creation has been particularly active)
• Recursive generic constraints
• Tuples
• Generic conformance

This list does not include what is clearly the most spectacular innovation, the agent
mechanism, which pursues many different goals at once: higher-level operators
(functions that manipulate functions that…), iterators, introspection (“reflection”),
mechanisms for numerical computation, higher-level contracts and assertions. Agents are
important enough to justify a separate article, which will be the next one in this column,

co-signed with the other developers of the mechanism. If you can't wait, take a peek at its
description at http://eiffel.com, where you will also find further information about the
extensions described below.

New creation syntax

We start with a purely syntactic change; nothing earth-shattering but an improvement
of the syntax's clarity. It has always been the goal with Eiffel that even someone who
doesn't know the language should be able to grasp immediately the essentials of a class
text. Eiffel is often used for analysis and design, so you may have to show Eiffel texts
to people who are not experts in the technology. An exception to this rule of
“immediate understanding of basic constructs” was introduced by Eiffel 3 (the original
version was better in this respect) with its creation syntax, employing exclamation
marks. This convention is simple and easy to remember, but it has to be learned. The
new variant is more in line with the keyword-oriented style of the rest of the language:

 create x -- No creation procedure, implicit type

 create x.make (a, b) -- Initialize object with make, with given arguments

 create {T} x -- Use T as the type of the new object

 create {T} x.make (a, b) -- Use T as type, initialize with make

 The creation procedure make (“constructor” in C++ terminology) must be one of
the procedures listed in the create (ex creation — there is only one keyword left, for
ease of learning and remembering) clause at the beginning of the class. In the forms
with an explicity type T, that type must be a descendant of the type declared for T.

 For this and subsequent comments on creation mechanisms, you need to
understand the role of creation procedures, which the Eiffel method views are more
than just a convenience to initialize objects at the time of creation, overriding the
language's default initializations. In the Design by Contract approach, creation
procedures fulfill a clear role: making sure that every object starts its life in a state
satisfying the invariant. That's why you must declare creation procedures explicitly:
you should make sure that each of them, starting from the default initializations (zero
for numbers, false for booleans and so on) will ensure the invariant.

Creation expressions

The notion of creation expression, well known in other languages (Simula already had
it), is new in Eiffel, because so far we have been content with creation instructions of
the form shown above. Indeed, in most cases you will still be using creation
instructions. But sometimes you want to create an object for the sole purpose of
passing it immediately as argument to a routine. Then instead of writing something like

 x: YOUR_TYPE

 …

 create x

 your_routine (x)

with its need for a local entity x and a separate creation instruction, creation
expressions allow you to write just

 your_routine (create {YOUR_TYPE})

or, if you need a creation procedure make:

 your_routine (create {YOUR_TYPE}.make (…))

We found out that some users had hundreds of such cases, so the simplification is
nothing to be scoffed at. Note that this mechanism would seem to violate the principle
of “only one good way to do anything”, since instead of create x you can now also
write x := create {TYPE_OF_x}, but in fact the principle stands intact since the
instruction (the first) form is preferable to the expression form, if only because in most
cases you don't need to specify the type, which the expression form requires you to do.
The expression form appears useful only in the case discussed above (creating an
object as argument to a routine), where the instruction form is clumsy. So there is no
redundancy between the two forms; rather, a clear separation of roles.

Generic creation

The next issue is more delicate: how to create objects of a generic type (template class, in
C++ terms). Assume you have a class C [G], parameterized by G which represents an
arbitrary type, and, within the class, an entity (variable) x: G. Now in some routine of C
you want to create a new instance of G and attach it to x. How do you do it?

So far, it was impossible, and ETL explains in detail why: because G, by nature,
represents an arbitrary type, you don't know what creation procedures it may accept!
Recall that initialization by a creation procedure is not just a matter of convenience, but a
matter of ensuring consistent objects; if we ever got objects that don't satisfy their
invariants, we would be unable to reason about our software. (C++ and Java
programmers should also note that Eiffel has none of the strange rules about constructor
inheritance: each class is, simply and naturally, free to determine how to initialize its own
instances, using techniques that are often different from those of its parents.)

ETL also gives some workarounds to create and initialize generic objects, but they are
rather heavy. Fortunately, a clever idea (due to Mark Howard of Axa Rosenberg,
formerly Rosenberg Institutional Equity Management) solves the problem in a really neat
way. Mark's solution involves a variant of genericity known as constrained genericity.

Instead of C [G], you can declare a generic class as C [G –> CT] where CT is a type, the
“constraining type” for G. What this means is that a generic derivation C [SOME_TYPE]
(a “template instantiation” in C++ terms, but we prefer to reserve the word “instantiation”
for the run-time creation of objects, instances of a class) is only legal if SOME_TYPE
conforms, in the sense of inheritance, to CT. For example Free EiffelBase [2] contains a
class HASH_TABLE [G, H –> HASHABLE] representing hash tables (dictionaries)
containing objects of an arbitrary type G, identified by keys of an almost arbitrary type H.
Almost, because types corresponding to H must conform to HASHABLE, requiring them
to have a hash function. HASHABLE is a deferred (abstract) class with a few features
including hash_code. This enables class HASH_TABLE to apply these features to
anything of type H, and hence to provide a proper, type-safe implementation of hash
tables. INTEGER, STRING and the like conform to HASHABLE, and you can achieve the
same for any of your classes by making it inherit from HASHABLE (this is a multiple
inheritance world, of course) and providing an implementation of hash_code.

How does constrained genericity address creation of generics? The idea is to permit a
declaration of the form C [G –> CT create make, … end] with the rule that the names
listed, here make etc., must be procedures of CT, although not necessarily creation
procedures of that class. Then for the generic derivation C [SOME_TYPE] to be legal you
must use a SOME_TYPE that is not only a descendant of CT, as before, but also such that
its versions of make and co. are creation procedures in CT (i.e. listed in its create clause
at the beginning of the class). Then it is permitted in the body of C, for x of type G, to use
creation instructions or expressions on x, with one of the listed creation procedures.

Part of the beauty of the scheme is that because we only require the listed names to
denote procedures of CT, not creation procedures at that level, CT may be a deferred
class. So a whole category of elegant applications opens up.

Recursive generic constraints

It was not explicitly possible, previously, to write a generically constrained class

C [G –> CT, H –> ARRAY [G]]

Which makes legal such derivations as C [INTEGER, ARRAY [INTEGER]]. This is now
permitted through careful rewording of the corresponding validity rules. You can even
write something like C [G –> H, H –>G], which means that the only legal generic
derivations are of the form C [A, A] for arbitrary A. This last example doesn't seem very
useful, but the first one is typical of a practical scheme that may often be convenient. You
can see how Eiffel addresses the needs of a truly typed object-oriented language, with the
powerful combination of resulting mechanisms, involving both genericity (parametric
polymorphism, as it's sometimes called) and inheritance with its many facets.

Generic conformance
The next change is not a language change at all, but in fact the correction of a difficult
but. The language specification states that C [U], for a generic class C, conforms to C [T]

if and only if U conforms to T. In previous release, this was not properly enforced for
reference types (the only major language rule not yet implemented). 4.3 now has the rule
fully implemented. To the non-expert this will seem obvious, but the correction actually
represented a major architectural effort.

As sometimes happens in such circumstances, we know that some systems took

“advantage” of the bug and will have to be correspondingly adapted. But the correct type
rule must of course be supported.

Tuples

The last change to be discussed here is a notion of anonymous class, or tuple. A tuple is a
sequence of values of arbitrary (although specified) types. You can write a tuple type as

 TUPLE [X, Y, …]

For arbitrary types X, Y, …This looks like a generically derived type, but the number of
parameters is arbitrary. To obtain a generalized notion of generic type with an arbitrary
number of parameters for a type other than TUPLE, use constrained genericity, as in
VARTYPE [G –> TUPLE], which you can then use as VARTYPE [TUPLE], VARTYPE
[TUPLE [INTEGER]], VARTYPE [TUPLE [INTEGER, REAL]] and so on.

A tuple expression may be written simply as [value1, value2, …], with
appropriate types for the successive values. This replaces the previous (and still
supported for the moment) “manifest arrays”, and gives them a proper type; manifest
arrays were the only kind of expression whose type status was a bit murky.

Tuples give us an incredible array of facilities. They enable us to manipulate sequences
of values; to define functions with multiple results without writing superfluous classes;
and to define agents (the topic of the next article) in a type-safe way. I should add that
there is actually more to the tuple mechanism than described here, but what I have
presented is what has been implemented so far as part of 4.3, and I will continue to abide
with the principle of not talking about any change until there is a working
implementation. None of the extra facilities invalidates what has been said so far.

As you can see, Eiffel design work is alive and even vibrant. All the ideas presented here
have been thoroughly discussed and tested; only a tiny number of the proposed changes
survive the process. The result will continue to support the Eiffel principles of simplicity,
clarity and safety, while offering Eiffel developers an ever increased power of expression.

References
[1] Eiffel: The Language, Bertrand Meyer, Prentice Hall, 1991 (second printing).

[2] EiffelBase goes public, Bertrand Meyer, JOOP, November 1998 See also
http://eiffel.com/products/base.

	Extension season
	Bertrand Meyer
	This list does not include what is clearly the mo
	It was not explicitly possible, previously, to write a generically constrained class
	Which makes legal such derivations as C [INTEGER,

