
Automatic C to O-O Translation with C2Eiffel
Marco Trudel · Carlo A. Furia · Martin Nordio

Chair of Software Engineering, ETH Zurich, Switzerland
Email: firstname.lastname@inf.ethz.ch

Abstract—C2Eiffel is a fully automatic source-to-source trans-
lator of C applications into the Eiffel object-oriented program-
ming language. C2Eiffel supports the complete C language,
including function pointers, unrestricted pointer arithmetic and
jumps, arbitrary native libraries, and inlined assembly code.
It produces readable Eiffel code that behaves as the source C
application; it takes advantage of some of Eiffel’s object-oriented
features to produce translations that are easy to maintain and
debug, and often even safer than their sources thanks to stricter
correctness checks introduced automatically. Experiments show
that C2Eiffel handles C applications of significant size (such as
vim and libgsl); it is a fully automatic tool suitable to reuse C
code within a high-level object-oriented programming language.

I. REUSING C CODE WITH A CLICK

This paper presents C2Eiffel (C2Eif for short), a completely
automatic tool that translates C source code into the Eiffel
object-oriented programming language. With C2Eif, you can
reuse C applications in a modern environment, where they
can be seamlessly integrated with other native Eiffel code
that fully takes advantage of the object-oriented paradigm
and of other high-level language features such as contracts
and static type safety. Since C2Eif translates source-to-source,
the translated C code is not merely made available within
a host environment—as is the case with integration solu-
tions based on foreign language interfaces—but becomes a
native Eiffel implementation, which developers can refactor
and extend as the overall application evolves and undergoes
maintenance. The translation provided by C2Eif may even
single-handedly improve the safety and debuggability of the
C implementation, because it automatically introduces safety
checks for issues such as out-of-bound array access and null-
pointer dereferencing. The checks make understanding and
debugging translated applications considerably easier, because
faults manifest themselves closer to their source location, and
because certain buffer overflow errors are harder to replicate
and exploit within the tight Eiffel runtime.

Even if you are not developing applications in Eiffel, the
same ideas used in C2Eif underlie the development of fully
automatic translators of C into other full-fledged modern
object-oriented programming languages such as Java and C#.
In fact, the chasm existing between the C and Eiffel languages
ensures that the translation of one into the other is not a simple
transliteration (as it would have been possible, for example,
with C++) but has to provide output that is germane to the
object-oriented paradigm.

C2Eif is open-source and available for download at
http://se.inf.ethz.ch/research/c2eif

This tool demo paper describes the overall architecture of

C2Eif (Section II), presents the main results of an extensive
experimental evaluation (Section III), and compares C2Eif
against other similar tools (Section IV). This short paper
only describes the tool architecture and usage; a detailed
presentation of the translation scheme including examples is
available in a companion paper [1].

II. OVERVIEW AND ARCHITECTURE

C2Eif is a compiler with a graphical user interface and a
command-line interface that translates C programs to Eiffel.
The translation produces a complete Eiffel application that is
functionally equivalent to the C source application. C2Eif is
implemented in Eiffel, and it is available as a standalone tool.

Input and output. Figure 1 shows the overall workflow
of using C2Eif. It inputs C projects (applications or libraries)
preprocessed with the C Intermediate Language (CIL) frame-
work [2]. CIL simplifies programs written in C into a subset
of C amenable to program transformation. Using CIL input
ensures complete support of the whole set of C statements,
without polluting the translation with variants and special
cases only to deal with syntactic sugar. C2Eif translates CIL
programs to Eiffel projects consisting of collections of classes.

C application
or library CIL C file

Eiffel
application or

library
Binary

Helper
Classes

CIL C2Eif Eiffel
Compiler

Fig. 1. Overview of how C2Eif works.

Incremental translation. C2Eif builds an initial AST by
parsing the input C program, and transforms it into a target
AST that can be pretty-printed as Eiffel code. Following a
modular design that improves maintainability, C2Eif imple-
ments the translation from C to Eiffel as a series of successive
incremental transformations on the AST. Every transformation
targets exactly one language aspect (for example, loops or
inlined assembly code) and produces an AST that combines C
features with Eiffel extensions: the code progressively morphs
from C to Eiffel. C2Eif can output the AST in text form
after any of the intermediate transformations; the output is a
mixture of C and Eiffel code that is readily understandable
by programmers familiar with both languages. The current
implementation uses about 40 transformations.

http://se.inf.ethz.ch/research/c2eif


SIZE (LOCS) #EIFFEL TRANSLA- BINARY
CIL EIFFEL CLASSES TION (S) SIZE (MB)

hello world 8 15 1 1 1.3
micro httpd 565 1,934 16 1 1.5
xeyes 1,463 10,661 78 1 1.8
less 16,955 22,545 75 5 2.6
wget 46,528 57,702 183 25 4.5
links 70,980 100,815 211 33 13.9
vim 276,635 395,094 663 144 24.2
libcurl 37,836 65,070 289 18 –
libgmp 61,442 79,971 370 21 –
libgsl 238,080 344,115 978 85 –
gcc (torture) 147,545 256,246 2,569 79 1,576
TOTAL 898,037 1,334,168 5,433 413 1,626

TABLE I
AUTOMATED TRANSLATION OF OPEN-SOURCE PROGRAMS.

III. EVALUATION

Table I shows data about 10 open-source C programs and
one testsuite (for gcc) translated to Eiffel with C2Eif. The
10 programs include 7 applications and 3 libraries; all of
them are widely-used in Linux and other *nixes. For each
entry Table I reports: the size (in lines of code) of the CIL
version of the C code and of the translated Eiffel code; the
number of Eiffel classes created; the time (in seconds) spent
by C2Eif to perform the source-to-source translation (not
including compilation from Eiffel source to binary); the size
of the binaries (in MBytes) generated by EiffelStudio1.

We ran extensive trials on the translated programs to verify
that they behave as in their original C version. In addition to
informal usage, we ran standard testsuites on the 3 libraries
totalling over 770 tests. All tests execute and pass on both the
C and the translated Eiffel versions of the libraries, with the
same logged output. The gcc torture testsuite includes 1002
tests that pass after being processed by CIL; C2Eif (which
depends on CIL) passes 989 (nearly 99%) and fails 13 of these
tests (see [1] for a detailed discussion of the reasons for the 13
failures). Given the variety of the programs considered (and the
challenging nature of the torture testsuite), the experiments are
strong evidence that C2Eif handles the complete C language
used in practice, and produces correct translations.

Performance. We performed systematic performance tests
for some of the applications; the results of the tests are
described in detail in [1]. In summary, the performance over-
head in switching from C to Eiffel significantly varies—from
negligible to noticeable—with the program type. Even in the
cases where the slowdown is noticeable, it does not preclude
the usability of the translated application or library in normal
conditions.

Safety. While running the Eiffel translation of libgmp we
detected 3 bugs (1 in the library itself and 2 in the accom-
panying testsuite) thanks to the dynamic checks introduced
automatically by C2Eif. More generally, C2Eif translations
are often more robust and easier to debug than the original
C versions thanks to the contracts introduced by C2Eif and
by the tighter Eiffel runtime.

1We do not give a binary size for libraries, because EiffelStudio cannot
compile them without a client.

ta
rg

et
la

ng
ua

ge

co
m

pl
et

el
y

au
to

m
at

ic

av
ai

la
bl

e

re
ad

ab
ili

ty

ex
te

rn
al

lib
ra

ri
es

po
in

te
r

ar
ith

m
et

ic

go
to

s

in
lin

ed
as

se
m

bl
y

C2Eif Eiffel yes yes + yes yes yes yes
Ephedra [3] Java no no + no no no no
C2J++ [4] Java no no + no no no no
C2J [5] Java no yes − no yes no no
C++2Java [6] Java no yes + no no no no
C++2C# [6] C# no yes + no no no no

TABLE II
TOOLS TRANSLATING C TO O-O LANGUAGES.

IV. RELATED WORK

A number of tools are available that translate C to object-
oriented languages. Table II shows a summary feature com-
parison among the currently available tools. For each tool,
Table II reports:

• The target language: Eiffel, Java, or C#.
• Whether the tool is completely automatic, that is whether

it generates translations that are ready for compilation
without need for any manual rewrite or adaptation.

• Whether the tool is available for download and usable.
In a couple of cases we could only find papers describing
the tool but not a version of the implementation working
on standard machines.

• An assessment of the readability of the code produced.
The evaluation of this aspect—subjective to a certain
extent—is based on the analysis of sample programs
translated using the various tools; when the tool was not
available, we analyzed translation examples discussed in
the tool documentation. In each case, we tried to evaluate
if the translated code is sufficiently similar to the C source
to be readily understandable by a programmer familiar
with the latter.

• Whether the tool supports unrestricted calls to exter-
nal libraries, unrestricted pointer arithmetic, unrestricted
gotos, and inlined assembly code.

See [1] for a discussion of other work related to C2Eif; and
[3] for a comparison among Ephedra, C2J++ and C2J.

Acknowledgements. This work was partially supported by
ETH grant “Object-oriented reengineering environment”.

REFERENCES

[1] M. Trudel, C. A. Furia, M. Nordio, B. Meyer, and M. Oriol, “C to O-O
Translation: Beyond the Easy Stuff,” in WCRE, 2012.

[2] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs,” in
Conference on Compilier Construction, 2002, pp. 213–228.

[3] J. Martin and H. A. Müller, “Strategies for migration from C to Java,” in
CSMR. IEEE Computer Society, 2001, pp. 200–210.

[4] E. Tilevich, “Translating C++ to Java,” in First German Java Developers’
Conference Journal, Sun Microsystems Press. IEEE Computer Society,
1997.

[5] Novosoft, “C2J: a C to Java translator,” http://www.novosoft-us.com/
solutions/product c2j.shtml, 2001.

[6] Tangible Software Solutions, “C++ to C# and C++ to Java,” http://www.
tangiblesoftwaresolutions.com/.

http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.tangiblesoftwaresolutions.com/
http://www.tangiblesoftwaresolutions.com/

