SPECIFICATION LANGUAGE

J.R. Abrial S.A. Schuman B. Meyer

Consultant Intermetrics F.D.F

"You have e querrel on hand, I see," said I, "with some of the
algebraists of Paris; but proceed.”

Edgar Allan Poe, The Purloined Letter

INTRODUCTION

The concept of specification language is now widely spread;
formalising & problem is well recognised as a necessary step pre-
ceding any programming. The formalisation technique, however, is
still the purpose for intensive research: the number of proposals
in this field is a sufficient account of this fact. But a few
basic principles seem to emerge and be generally agreed upon:

using a strict formalism inherited from mathematical
practice

recognising the set theory as a sound basis for the
formalisation

necessity of strong structuring of the formal text.

The proposed language takes its inspiration from these
principles; it is especially indebted to the effort made within the
last fifty years to present mathematical works in a satisfactory
way .

The formal specification of a problem is provided by a strict
statement of its contents written in a non natural languege, in
such a way that any future reader might have the same understanding
of it. This necessitates that the given definition he exhaustive
and unamtiguous, in contrast with most of the non-formal, natursl
lanpuage srecifications.

Fyperience shcws that practicel (industrial) problems seldom
rose major thecretical difficulties; their complexity lies rather
ir the lerge nurter cf irtricate details thet hide their in-depth
nature and thus impede the discovery of clear solutions. Conse-
quently, such protlems raise the following question: how to

343

J.R., ABRIAL ET AL.

empha51ze the main points without sacrificing the detallSV rr‘he
answer is of great importance, as the emergence of the "true”
problem makes it possible to discover its decomp051t10n into
possibly known sub~problems. By doing this, the formalisation is
no longer a lonely activity. It now belongs to a larger work per-
formed by the same person, or better, a whole community: the spec-
ification language thus becomes a communication medium. Cne
recognises & process that has been at work for more than two
thousand years among mathematicians; returning to this source
therefore seems to be an especially adequate step.

THE MATHEMATICAL TEXT

What is the organisation of the mathematical text? This is
certainly a leading question for the beginning "formaliser." To
illustrate, let us then open a book and analyse its contents.

The most obvious structure is shown by the decomposition of the
boock into chapters, sections, paragraphs, and so forth, each of
them with a title and a tree structured number. The reason for this
is quite obvious: it allows nonlinear reading of the text by using
references, tables of contents, or other indications (sometimes =
graph); in other words, everything that provides fruitful use of
the book. These first elements constitute the so called utilis-
ation text; it is by now almost standard.

The second structure encountered in the mathematical text is
the one given by the various definitions, exioms, or theorems of a
chapter. As above, s8ll these elements have a name allowing further
references. The content of definitions and the statement of axioms
or theorems constitute the so called statement text; it is partially
formalised, or even almost completely so, as in eslgebra, for example.

The third category is the proof text contalnlpg, as its name
indicates, the proofs of the theorems. It is also only partially
formelised.

Finally, in the midst of these texts, one may find all sorts of
remerks, comments and the like, forming the explanation text.

It is interesting to note that, very often, these various terts
are distinguished besides their content by the character set used to
print them. Frequently, the utilisation text is printed with bold-
face characters, the statement text with italic characters, the
proof text with normal, and the explanation text with small char—
acters.

At a deeper level, the mathematical text is characterised ty

two trends general enough to require attention. Most of the tire,
& mathematical statement takes a generic (polymorphic, schematic)

3l

e P, —

SPECIFICATION LANGUAGE

form, e.g., the statement in question contains set identifiers that
are free. The following definition, for exsmple, is generic with
respect to A and B:

"Let f be a function from A to B. One says thet £ is an
injection if two distinct elements of A have distinct images
through f."

The second trend of the modern mathematical text lies in the
iptensive usage of the notation of structure, as the order struc-
ture, the topological structure, the group or ring structure, end
so forth. The definition of a structure consists of two distinct
elements: firstly, the "typification," giving the (generic) defini-
tions of its components; and, secondly, the axiomatisation,
pointing out the characteristic properties of the components.

Te reason in terms of structure has obviocus advantages: this
allows us to give definitions and to prove theorems at an abstract
level. Then, if in some problem, one encounters an instance (=&
special case) of a known structure, one may apply all previous
accumulated knowledge. Modern mathematics is actually a vast con-
struction of structures. '

LANGUAGE PRINCIPLES

The previous analysis, superficial as it was, allowed us to
define some useful terms for defining the basic building principles
of the languasge. It should allow us to write utilisation and state-
ment texts; proof and explanation texts will take the form of nere
comments written in natural language and formal language as well.

Thus a text will present itself as a set of nemed chapters,
each of them with the nsmes of locally used chapters. Fach chapter
is made of a list of possibly generic definitions or theorems.
Definitions are given for sets or structures ss previously encount-
ered.

The specification of a problem is actuaslly realised by writing
e certain number of new chapters incrementing the set of old ones.

The language is now described by giving first the definition of
& kernel language (54), followed by the visibility rules (§5); some

syntactic extensions are then given (§6) before a few last remarks
on structures (§7).

TEE KERNEL LANGUAGE

The kernel language may be decomposed as indicated by the
following diagram:

345

J.R. ABRIAL ET AL,

kernel langusge

utilisation statement
sublangusge sublanguage
64,1 §4,2
set boolean structure
sublanguage sublanguege | sublanguage
§4.3 §h.) §4.5

The syntax is written in classical BNF with the following
added conventions:

[] means an option
{ } means a zero or more times repetition

When the symbols {, }, [, 1, or | are used as linguistic symbols,
they are quoted in order to avoid confusion with their meta-

linguistic usage.

The lengusge definition does not contain any examples. The
reader may skip at will to §9 and §10.

4.1 Utilisstion sublanguage

The utilisstion sublanguage describes the framework of a
chapter. ‘ '

Syntax
chapter ::= id = [use id_list] def body end id
id_1ist ::= ia {, id}

The identifiers hetween use and def reference locally used
chapters. The last identifier (after end) is the same as the first
one (before =).

4,2 Statement sublanguage

.The stetement sublengusge describes the content of a chepter as
a list of (possitly generic) definitions of sets, or structures

346

SPECIFICATION LANGUAGE

(here called classes), or theorems.

Syntax

body = clause {; clause}

clause ::= gset_definition|theorem|class_definition
set_definition ::= generic_neme = set

theorem 1:= generic_name => bool

class_definition ::= generic_name = class

generic_neme 1i= 14 ['['ig_1ist'1']

The identifiers possibly found in the list of a generic_name
ere formal generic parameters (set identifiers) of the corresponding
definition or theorem.

.3 Set sublanguege

The set sublanguage gives the various forms taken by a set
expression.

Syntax

set ::= set 1d_list for decl [where cond [given def]] end |
any id_list for decl [where cond [given defl] end |
subset (set)|'{'set{;set}'}'|null|set_idl
object | set{,set} |(set)

decl = id list : set {; id list : set}

cond ::= bool {; bool}

def t:= 14 list = set {; id _list = set}

set_id ::= [id.1ida['['set{,set}']"]

First, it is worth noting that the set sublanguege is "pure"
in the sense that any distinction between sets and atoms does not
exist: set elements, if any, always are sets.

The main set expressions correspond to the classical axioms cf
the theory: comprehension axiom, choice axiom, powerset axiom and
extensive definition axiom.

The first form may be written:

247

J.R. ABRIAL ET AL.

set idl,...,idn for
id1 : set];
1dn : setn
[where

cond

[given
def]]

end

This derivation shows the existing constraints between the list
of identifiers following the key-word set and the declarations; note
that a declaration may be factorised ag usual, but that all declar-
ations must be independent of each other. If there are more than
one identifier in the list, the defined subset is a subset of the
Cartesian product of the various sets present in the declarations.
The condition defines the characteristic predicates (bool) of the
subset. One may provide some local definitions ("def") to lighten
the writing of the predicates.

The second form, very close to the first, defines a "privileged"
element of a non empty set. The declaration comstraints are the
same as above. Note that, axiomatically, the privileged elements
provided by "two" equal and non empty sets are alike. Consequently,
the operator any does not perform any random choice; such a set
expression is therefore factorisable in a local definition.

The third form (key;word subset) corresponds to the mathematical
CPoperator (the set of all subsets of a given set).

In the fourth form (extensive definition), the various set
expressions must already denote elements belonging to the same set:
it is not possible to construct any "heterogeneous" set.

In a set identifier:

- s tre 1
[161].1d2[L setl,...,setn 1']
"idl“ is a chapter identifier (if any ambiguity occurs on "ide")

"idz" is a set or a class identifier defined in the same

chapter or in a locally used chapter

"setl",...,"setn" are actual generic parameters in equal

number to the formal generic parameters (see §4.2) associated

348

SPECIFICATION LANGUAGE

with the definition of "id2".

Note that "set-id" may also be a simple identifier corresponding
to a variable bound by e declaration or to a locsl definition.

The next set form corresponds to & class instance ("object".
See §h.5).

4.4 Boolean sublanguage

The boolean sublanguage describes the boolean expressions.

Syntax

bool ::= not(bool) |bool or bool|
set = set|set ¢ set |
finite (set) | (bool)
The third form (operator =) introduces the set equality and

corresponds to the extensionality exiom of the theory (two sets
are equal if they have the same elements).

In the fourth form (membership operator e£), when the left set
corresponds to & list, then the right set is a subset of a Cart-
esian product constituted by as many sets as the left list has
elements.

The fifth form (operator finite) corresponds to the axiom of
infinity (there exists at least an infinite set).

4,5 Structure sublanguage

The structure sublangusge describes a class and how class
instances may be constructed.

Syntax
class ::= class [decllwhere condlgiven def1]] end |
subclass class_explclass decll{where cond given defll]
end
class_exp ::= class-id {x class_id} | class_ia{'[' class id}
class_id ::= set_id

cons object_id [with def [given defll] end |
repl object_id with def [given def] end

object_id ::= set_id

object i

349

J.R. ABRIAL ET AL.
A class definition may be derived as follows:

class

[ldl : setl; basic components

id : set
n n
[where
cond axioms

(given
(N B |
1d 1 set 1

.eo derived components

s A

id m

set'm]]]

end

A class definition is essentially an open definition: it is
possible, from a given class, to define another one having more
components and more axioms corresponding to the added basic comp-
onents. The definition

subclass class_id class
class_body

end

implicitly contains all basic components, axioms and derived comp-
onents of "class_id" as well as its own components and axioms. All
definitions or theorems applicable to "class_id" may be used also,
by extension, for the so defined subclass, but the converse is not

possible.

A subclass may also be defined from several other classes (or
subclasses) either in conjunction (operator x) or as alternatives
(operator |).

The universal class

class end

has no components. Every class is therefore a subclass of the
universal class.

It is worth noting the difference between subclass and subset.
A subclass generally corresponds to a richer structure (more comp—
onents, more axioms) than its constituent classes: in mathematics,
for example, the topological group structure is richer than the

350

e —— e

SPECIFICATION LANGUAGE

topology or group structures alone. On the other hand, the notion
of subset corresponds to a poorer construction than its "parent"
set (it has less elements because of the added constraints); the
notion of subset may be applied to classes as well: in mathematics,
for example, the sbelian groups are a (generic) subset of the
groups.

In the same way, it is important to note the difference between
the universal class (that has no component) and the empty class or
set (that has no element).

To construct an object of a class, the value of each of its
basic components is given. An object may be constructed globally
(operator cons) or from e previous object (operator repl) by pro-
viding only some values that ere supposed to replace some basic
component values, the others remaining implicitly unchanged. In
any case, the construction of an object corresponds as well to the
statement of a theorem expressing the validity of the proposed
values against the class axioms. In order to simplify the value
expressions, one may use, in the object construction, any derived
components already defined with the class or some local definitions

(given def).

Note that the definition of a subclass without extra components
or conditions

generic_name = subclass class_id end

builds a new subclass (of "class id").

5. VISIBILITY RULES

New identifiers may be defined in the following conditioms:
chapter identifier (at the beginning of a chapter. See §k4.1).

set, theorem, or class identifier (heading & generic_name.
See §4.2).

formal generic parsmeter (within a generic_name. See §L.2).
bound variable identifier (within e declarationm. See §4,3).,
basic or derived class component identifier. (See §k4.5).

local definition identifier. (See §k4.3 and §k.5).

351

J.R. ABRIAL ET AL.

Scope rules

Non

The scope of an identifier defines where it may be used.
The scope of a chapter identifier is universal.

The scope of a set, theorem, or class identifier covers the
chapter where it is defined as well as the chapters where this
chapter is used (use).

The scope of a formal generic parameter covers the corresponding
definition or theorem.

The scope of a bound variable identifier covers the correspondlng
construction (See §4.3).

The scope of a basic or derived class component identifier is
the same as the one of this class identifier (basic components
of & class must be independent of each other, however).

The scope of a locel definition identifier covers the corres—
ponding construct.

recovering rule

Except for set or class identifiers defined in different chap-

ters, no identifier shall be ambiguous within its scope. A dot
notation is used when ambiguities occur in using set or class
identifiers (see "set_id" §k4.3).

Non recursivity rule

No definition shall be directly or indirectly recursive.

KERNEL LANGUAGE EXTENSIONS

The whole language is obtained by extending the kernel lang-

uage; some useful syntactic construct may be replaced by simpler
ones. These equivalences are denoted by special syntactic equa-
tions

new syntactic construct ::=:: syntactic construct

where "::=::" may be read as "is syntactically equivalent to".
A syntactic construct is represented by an incomplete derivation
containing some non terminal symbols acting as metalinguistic
variesbles that may be indexed or primed. Lists are denoted by

1"

"

.««'+ These extensions concern the set, boolean and structure

sublanguages.

352

SPECIFICATION LANGUAGE

6.1 Boolean sublanguage extensions

Boolean sublangusge extensions introduce classical boolean
operators as well as existential and universal guantifiers.

Syntactic extensions

bool, => bool, ::=:: not (booll) or bool,

! bool, ggg'booiz ::=:: not (ggg'(booll)‘gg,ggz (boolg))
bool, <=> bool, ::=:: (bool, => boole)_ggg (bool, => booll)
set, * set, ::=:: pot (set, = setz)
set, ¢ set, 1s=2: not (setl € setz)
exist id list for ::=:: (set id list for

spec spec
end end) # null

: existl id list for ::=:: exist id for

spec id : set
ena vhere

(set id_list for
spec
end) = {id}

L end
vwhere "spec" is defined by:
spec ::= decl [where cond [given def]]

forall id list for ::=:: not (exist id list for

decl decl
[where where
condll [condl;]
Y then not cond2
cond, (given
[given def]
def) end)
end
booll;...;booln HEE bool1 and ... and booln

353

J.R. ABRIAL ET AL.

6.2 Set sublanguage extensions

Set sublanguege extensions introduce a simplified notation for
the Cartesian product, a simplified notation for the "privileged"
element of a set, & notation for the set of relations, total or
partial functions from a set to another one and the classical
functional and relational notations.

Syntactic extensions

:: set id ,...,idn for

set1 X 200 X setn 1
ldl : setl;
id : set
n n
end

any (setl X...X setn) 11 any idl,...,idn for

ldl : setl;
id : set
n n
end
set +* set' 1:=:: subset (set x set')

The sbove notation denotes the set of binary relations from one set
to another.
rel id list « id list' for ::=:: set id list, id list' for

spec spec
end end
The above notation allows definition of a binary relation with a
predicate. Note that, if "id list" or "id_list'" have several
identifiers, then several binary relations may be defined this way
for the same right syntactic construction. This is due to the fact

that a Cartesian product made of more than two sets may be "cut" in
different ways.

rel_id (set <> set') ::=:: ((set).(set')) e rel id

In the above notation "rel_id" designates & relation identifier.

354

SPECIFICATION LANGUAGE

rel_id (set, x...x setn) s:=:: set id' for
jd' : codom (rel_id)
where

exist idl,...,idn for

2 1dl : setl;
‘! :.l
1d : set
n n
where

rel id ((id ,...,id) « ia')
end
end
The above notation defines the image of a set through a given
relation. The expressions "dom (rel id)" and "codom (rel_id)"

designate the domain and codomain of a relation (dencted by the
* identifier "rel id").

rel_id (setl,...,setn) s1=:; rel_id ({(setl,...,setn)})
{set1 <> set' 3. si=is {((setl),(set'l));...;
]
set +* set'n} | ((setn),(set n))}

The sbove notation allows for the extensive definition of a
binary reletion.

Similar notations are now given for functionms.

set > set' ::=:: gset id'' for
id'' : set <+ set!’
¥here
forall id for
id : set
then

existl id' for
id' : set'
where
iat' (id < di4")
end
end

end

355

J.R. ABRTAL ET AL.

The above notation defines the set of total functions from one set
to another.

set — get! ::=:: set id'' for
id'' : set <« set'
where

exist 14 for
id : subset (set)

where

id'!' = id + set'
end
end
The above notation defines the set of partial functions from one
set to another.
fune idl,...,idn > id'l,...,id'm for ::=:: rel idl,...,idn >

1d1 : setl; 1d1 : setl;
id : set_; id_ : set ;
n n n n
3 t - . T At .] .
1d 1" set'l, | id ¢ set 13
id' : set! id' : set'
m m n n
[where wvhere
cond] [eond;]
then id'1 = set"l;
2 a1 e .
1d 1 set 13 aas
“o s id'm = Se't' 'm
id'm = set"m [given
def]
(given
def] end
end

The above notation defines & function by one or several formulas.
Note that "cond" shall not contain any of the bound variahle

356

SPECIFICATION LANGUAGE

identifiers "id' ",...,"id'm".

1l

func id list + id list' for ::=:: rel id list «> id list' for

decl decl
[where 3 vhere

cond] Ceond;]
when bool, then bool, => bind, or

bindy cee
coe bool ~=> bind (or

not (vool, and ... and bool)
=> bind]

when booln then

bindn [given
[else def]

bindl end
[given

def]

end

The sbove notation defines a function by case. Note that the
various predicates "bool.",...,'"bool " <hall be exclusive (no non-
determinism) and that, ifi the case of a missing "else", their dis-
junction shell be true. The non terminal symbol "pind" may be
defined by

bind ::= id = set {; id = set}
func_id (set,,...,set) ::=:: amy id' for
id' : codom (func_id)
where
((setl,...,setn),id') ¢ func_id

end

The above equation introduces the usual functional notation
("func_id" is a function identifier)

func_id (set, X...x setn) ::=:: get id' for

id' : codom (func_id)

where

exist idy,...,1d for

357

J.R. ABRIAL ET AL.

id., : set

1 1}
id_ : set
n n
wvhere

((idl,...,idn),id') ¢ func_id
end
end

The above notation defines the image of & set through a given
function.

{setl > set'l;...; R {set1 > set'yiaaa;

e 1
setn + set n setn set n
The above notation defines & function extensively. Note that,
obviously, the expressions "set ",...,"setn" must el1 have different
values as well as the expressioils "set'l",...,"set'n".

subst func_id with ::=:: func id -~ id' for

set, + set'y; id : dom (func_id);
. id' : codom (func_id)
set_ + set' when id = set, then

n n — 1l ——

1d' = se’cl

end e & o
when id = setn then
- ' = '
id set n
else
id' = func_id(id)
end
The above notation allows definition of a function by changing some
of the values of a given function, leaving the others unchanged.
Note that the expressions "set.",...,"set_" shall have different

values and that the expressions "set' ",.?.,"set'n" shall be such
that the result still is a function.

Some remarks

The general form of a function definition is, as seen previously:

id[id’ Ql’...,id"p] - .:_f_.l.l_p_c.:_ idl’.o-’idn -> id'l,.'.q,id'm _i"(z-l:

end

358

SPECIFICATION LANGUAGE

The identifiers "id''.",...,"id''_" denote formal generic parameters
vhereas "id ",...,"idn" denote the formal parameters of the function.

1
An invocation of this function has the following form
id(setl,...,setn)

vhere "set.",...,"set_" denote the actual parameter of the function.
In this caSe, it is not necessary to provide some values for the
actual generic parameters because they are implicitly defined
within the expressions "set ",...,"setn".

Whenever n = 2, it is sometimes useful to denote a function
invocation using an infixed form:

setl 1d set2

In order to indicate this special usage, the identifier "id" is
replaced in its definition by

op (id).
Any use of "id", out of an invocation, must be written
op (id) [set"l,...,set"p]
vhere "set''.",...,"set'' " denote the actual generic parameters.
1 P
This special notation may be used for binary relations as well.

6.3 Structure sublanguage extension

The structure sublanguage extension allows us to define a dis-
crete set composed of a certain number of explicitly denoted
elements.

Syntactic extensions

id = {idl;...;idn} ti=s idl class end;

id = class end;
id' = subclass idl eoo] idn.ggg;
id = set id'' for
ia'' : set (ia')
where
ig'' = idl or
ia' = ia
end n

359

J.R. ABRIAL ET AL.
T. SOME REMARKS ABOUT CLASSES
Recall that a class is defined by (See §k4.5)

id(id*'y,...5id"")) = class

id, : set.;
formal cee basic components
generic id setn

parameters

cond axioms

set!

He
s
n

ere derived components

set!

e
fo 7}
#

An expression like
id[set"l,...,set"zl

denotes the set of objects of the class "id" for the values
"set''. ,...,"'set'' " of the generic parameters.. Such a set may be

used ifi a declaration

id'' id[set"l,...,set"zl
where the identifier "id'''" denotes a bound variable (see §L.3),
or even a component of yet another class (see §L.5). In order

to reference a basic or derived component of the obJect "iqrr",
& functional notation is used, i.e.:

id;(ia''") or idj(id"')

Class component identifiers denote (generic) unary functions
on the cobjects of the class. This notation may be applied for
explieitly constructed objects as well (operator coms or repl).

Finally, note that within an explicit replacement construction
(operator repl), or within a class definition, the usage of a comp-
onent identifier alone is sufficient to refer to the component in
question (this is & convention similar to the one used in PASCAL
within a "with" construct).

360

9.

SPECIFICATION LANGUAGE
SYMBOLS AND KEY WORDS

The symbols and key-words of the kernel language are the
following:

any for set
class iven subclass
cons not subset
def null use
end or where
finite repl with

The symbols and key-words of the extended language are the
following

<=> 2 ¢ o + 4

and func
codom op
don rel
else subst
exist when
existl with
forall

BASIC CHAPTERS

We now present a few basic "chepters" that will be extensively
used in later applications. The first of these chapters, named
SET, defines the standard generic operators of elementary set
theory. It is worth noting that these operators apply to binary
relations or functions as well because they are themselves sets.

The next chapter, named REL, uses SET and defines the standard
operators of binary relation theory, namely inversion, composition,
functionelity (to go possibly from a relation to a function), and
products. These operators apply to functions as well, because they
are special cases of binary relations.

A third chapter named FUNC uses SET and REL, and defines special
kinds of functions, namely injections, surjections, and bijections.
It also defines the restriction of a function and the constant
function.

361

J.R. ABRIAL ET AL.

SET =
def
op(U)[X] = func 51,52 + S3 for
s1,52, 53 : subset(X)
then

83 = set x for x : X where
x € 81 or x e 82
end

end;

op(n)[X] = fune 51,82 ~ 53 for
81,82,53 : subset(X)
then
S3 = set x for x : X where
x € 81 and x € 52
end

end;

union[X] = func 88 - S for
S8 : subset(subset(X));
S : subset(X)

then

S = set x for x : X where

exist 8' for 5' : SS where
| x € 8'
end

end

end;

inter[X] = func S8 - S for
SS : subset(subset(X));
S : subset(X)

then
S = set x for x : X where
forall S' for S' : SS then

x € 8!

end

362

SPECIFICATION LANGUAGE

end

end;

op(-)[X] = func 81,82 - 83 for
81,852,583 : subset(X)
then
S3 = set x for x : X where
x € S1 and x ¢ 82
end

end;

op(e)[X] = rel S1 ++ S2 for
S1,52 : subset(X)
vhere
forall x for x : S1 then
x € 852

end

end;}

it

op(¢)[X]

rel S1 «» 82 for
81,52 : subset(X)
where
not(S1cs2)

end;

partition(X] = set S5 for .
88 : subset(subset(X))

where
union(sS) = X;
forell S1,52 for
Sl,S? : 88
where
Sl = S2
then
S1nS2 = pull
end

end;

363

J.R. ABRIAL ET AL.

projllXx,Y] = func x,y + x' for
x,x' : X
Y i §
then-
x'=x

end;

projelX,Y] = func x,y + y' for

x ¢ X
y,y' + X
then
y'=y
end
end SET
REL =
use SET def
inv[X,X'] = funcr-+r' forr : X« X'; r' : X' <> X then

r' = rel x' « x for x' : X'; x ¢ X where
r(x <+ x")
end

end;

op(e)[X,Y,2] = fune r2,rl - r3 for
rl : X+ Y;r2: Y+ 2;r3: X2
then
r3 = rel x < z for x : X; z : Z where

exist y for y : Y where

rl(x < y); r2(y +> 2z)

end
end
end;
ident[X] = rel x +*+ x' for x,x' : X where x = x' end;

364

SPECIFICATION LANGUAGE

functionallX,Y] = get r for r : X «+ Y where
r'(Y) = X3 (r o r') c ident[Y]
iven

r' = inv(r)

end;
function[X,Y] =;ﬁ£gr+f£g_§r:XH!;f:X+Ym
r ¢ functioneallX,Y]
then
f=_fu__x_13x+y_i_‘_g_z;_x:)(;y:¥_§£§_:_1_
y = any (r(x))
end

end;

Qp(prod)[A,B,C,D] = func rl,r2 + r3 for

rl : A<+ B; r2 : C > Dy
r3 :AxB+—CxD
then

r3=_z_-_g_;_a,c+—>b,d£9_r_
& : A;b : By e:Cyd:D
where
r1(a — b); r2(c «> d)

end
end;
_o_g(&)[A,B,C] = func rl,r2 + r3 for

rl : A<« B; r2 : A+ Cj
r3 : A <+ B x C;
then

r3 = rel a +* b,c for
a:A;b:Byc:C
vhere
r1(a «* b); r2(a + c)

end

end REL

365

J.R. ABRIAL ET AL.

FUNC =
use SET, REL def
inj(X,Y] = get £ for £ : X = Y where
inv(f) o £ = ident[X]
end;
suri[X,Y] = set £ for £ : X -~ Y where
£ o inv(f) = ident[Y]
end;
bijlX,Y] = inj[X,Y] n surjlX,Y¥l;
inverse[X,Y] = fune f + f' for f : vijlx,¥1; £ : ¥ » X then
f' = function(inv (f))
end;
restriction[X,Y] = func f,5 + £' for
f:X~+Y; S : subset (X); £' : X # ¥
then
f' = func x >y for x : S; y : Y then
y = £(x)
end
end;
const[X,Y] = fune S, y >~ f for
S : subset (X); y : ¥5 £ : X #Y
then
f =funcx+y' for x : S; y' : Y then
y'=vy
end
end;
end FUNC

The next two chapters define the natural numbers and the
sequences, NAT, the first of them, starts by introducing generic-
ally the cardinal of a set S as the set of set S' equinumerous
with S; then the set of natural numbers is the set of finite card-
inals. The classical relations "<" and '<' and the operation
successor are then defined before the iterate of a function. This
allows us to give the definition of the basic arithmetic operationms.

366

g

{0,1,..

*),

SPECIFICATION LANGUAGE

The chapter SEQ generically defines the sequences as the set of
functions whose domains are segments of the natural numbers; i.e.

"sirst" and "tail"

.,n}. Tt is then easy to define the concatenation (operator

operators. The chapter ends with definitions

of a sorted sequence of natursl numbers and the set of sub—-sequences
of a given sequence.

NAT =
use SET, REL, FUNC def

equinumerous[X]

card(X]

NATLX]

o[x]
+h1[X]
th2[X]

op(=)[X]

op(<)[x]

= rel S <+ 8! for S,5' : subset (X) where
bij [S,S'] z null
end;
= func S ~ S8 for S : subset (X); SS : subset
(subset{X)) then
SS = equinumerous(S)
end;
= get n for n : subset (subset(X)) where
not (finite(X));
exist S for S : subset(X) where
card(s) = n; finite(S)
end
end ;
= card(null);
=> 0[X] = null;

=> O[X] £ NAT[X];

rel nl <> n2 for nl,n2 : NAT[X] where
exist S1,52 for 51,52 : subset(X) yhere
card(81l) = nl; card(S2) = n2;
inj[s1,82] # null

end
end;

rel nl <+ n2 for nl,n2 : NAT[X] where

nl € n2; nl # n2

end;

367

J.R. ABRIAL ET AL.

suce(X] = func nl + n2 for nl,n2 : NAT[X] then
n2 = card (su{x})

glven
S = any (nl); x = any (X - 8)

end;

relpred[X] = inv(succl[X]);
th3[X] => relpred(X] e (NAT[X] - {0[xX1}) - NAT[X];
pred[X] = function(relpred(X1);

-- from now on the generic parameter X is omitted

induction theorem => forall S for S : gubset(NAT) wvhere
0 e S;
forall n for n : S then

suce(n) € S

end
then
S = NAT
end;
recursion[X] = function(rel y,g «* f for
y :Y¥; g+ Y>Y, f: NAT > Y
f
N ——eee—e where
succ g £(0) = y3
‘ fosucc=gef
T e RN '
nt+l ? y end);
iter(Z] = func h » £ for

h:Z2+2Z;f : NAT > (Z » Z)
then
f = recursion(y,g)
iven
y = ident[Z];
g = func hl + h2 for h1,h2 : Z + Z then
h2 =h o hl
end

end;

268

SPECIFICATICN LANGUAGE

—- £(0) = ident[Z]

o= £(n+1) = g(£(n)) =h e £(n) = ="
op(+) = func nl,n2 - n3 for nl,n2,n3 = NAT then
n3 = iter(suce)(nl)(n2)
end;
QEKX) = func nl,n2 -+ n3 for nl,n2,n3 : NAT then
n3 = iter(op(+))(nl)(n2)
end;
op(exp) = func nl,n2 + n3 for nl,n2,n3; NAT then
n3 = iter (op(x))(nl)(n2)
end;
op(-) = function(rel nl,n2 <+ n3 for nl,n2,n3 :
NAT where
n2<nl; nl = n2+n3
end);
div_mode = function(rel a,b <> ¢,r for a,b,q,r :
NAT where
p20; & = (b x q) + r; r<b
end) ;
op(div) = projllNAT ,NAT] o div_mod;
op(mod) = proj2[NAT,NAT] o div_mod;
1 = suce(0); 2 = suece(1l); 3 = succ(2); L = suce(3);
5 = guce(l); 6 = suce(5); T = suce(6); 8 = suee(T);
9 = succ(8)
end NAT
SEQ=
use SET, REL, NAT def
segment = func n + S for n : NAT; S : subset(NAT) then

S = set i for i : NAT where i<n end

end;

369

J.R. ABRIAL ET AL.

seqlX] = set s for s : NAT # X where
dom (s) € segment(NAT)
end;
length[X] = func s > n for s : seq(X]; n : NAT then
n = card(dom(s))
end;
op(#*){X] = fune sl,s2 » s3 for sl1,s2,s3 : seq[X] then
s3 = slu(s2 ¢ f)
given
f = iter(pred)(length(sl))
end;
first[X] = func s + x for s : seq(X]; x : X where
s # null
then
x = s(0)
end;
cat[X] = func x, sl > s2 for s1,s2 : seqlXl;
x : X then
s2={0~+x} * sl
end;
taillX] = func sl + s2 for sl,s2 : seq[X] where
sl # null
then

s2 = (g1 - {0 + first(sl)}) ¢ sucec

end;

(first[X] & taillX]) = ident[seqlX1];

th{X] => cat[X]

associated rellX] func s ~ r for
s : seq[X];
r: X+ X
then
r =35 ° succ ® inv(s)

end;

370

SPECIFICATION LANGUAGE

sorted

sub_seq[X]

end SEQ

set s for s : seq[NAT] where
associated rel(s)cop(s)

end;

rel sl «+ s2 for s1,s2 : seqlX] where
exist s3 for s3 : sorted where
sl = 82 o g3

end

end

As a last syntactic extension, an explicit sequence is denoted

by

<K 53X 5 eee}X >
1°72? *n

The chapter MON defines the monoids &s a sub-class of a sub-group
(e binary commutative operation). Classicel exsmples of monoids
are then given, followed by the definition of the extensions of
binary operations (with neutral element) to sequences.

MON =

use SET, REL, FUNC, NAT, SEQ def

subgroup[s]

monoidls]

examplel[X]

C -
-

class
oper : S x S+ 8
where
oper * (oper prod ident[S]) = oper e
(ident[S] prod oper)

end;

subclass subgroup[S] class

u:sS

¥here
oper ¢ (const(S,u) & ident[S]) = ident[S];
oper ® (ident[S] & const(S,u)) = ident[S]

end;

cons monoidl[subset(X}] with

oper = op (U)[X]} u = pull

end ;

371

J.R. ABRIAL ET AL.

example2[X] cons monoidlsubset(X)] with
oper = op(n)[X]; u =X

end;

cons monoidlX + XJ] with

example3[X]
oper = op (°)[X,X,X]; u = ident[X]

end;

examplel cons monoid[NAT] with

oper = op(+); u=0

n

example5 cons monoid[NAT] with
oper = op(x); u =1

end;

example6[X] cons monoidlseq[X]] with
oper = op(*)[X]; u = null
end;
extension(X] = function(gg;‘m +> f for
m : monoidl[X];
f : seqlX] + X
yhere
f=f1lUT*f2
given
f1 = const({null}, u(m));
£2 = oper(m) ¢ £3;
£3 = first(X] & (£ ¢ taillX])

end);

sigme = extension (examplel);

pi = extension (exampleS);

comp[X] = extension (exemple3[X]);

cone[X]

extension (example6{X])

end MON

372

SPECIFICATION LANGUAGE

Finelly, the chapter RELATIONS gives the classical definitions
of the transitive closure of a binary relation, of symmetry,
transitivity, reflexivity, and so forth, as well as preorder,
equivalence, order, and so forth, for binary relstionms.

RELATIORS =
use SET, REL, NAT def
rel_iter(Z] = func r + £ for

r: 2 «>Z3 f : NAT + (2 +> 2Z)

then

f = recursion(y,g)

given
y = ident(Z];

g = func rl » x2 for rl,r2 : Z ++ Z then

r2=rerl
end

end;

— £(0) = ident[Z]

— #(n+1) = g(£(n)) n+l

re f{n) = ... ®r

closure(Z] = fune r -+ r' for r,r': Z <> 7 then
r' = union(rel iter(r)(NAT))
end;
—— closure(r) = ident[Z] U U r2 U...UrtvU...
th[2] = forall r for r : Z <> Z then
jdent[Z] c closure(r);
r o closure(r) c closure(r)
end;
sym[X] = set r for r : X «* X where r = inv(r) end;
trans[X] =get r for r : X «+ X where (r e r)cr
end;
reflex[X] = get r for r : X ++ X where ident[X] c r
end;
asym[X] = get r for r : X +* X where(r n inv(r)) =

null end;

373

lOc

J.R. ABRIAL ET AL.

antisym[X] = set r for r : X <+ X where (r n inv(r)) =
ident[X] end;

irreflex[X] = set r for r : X <> X where (r n ident[X])=
null end;

totallX] = set r for r : X ++ X where (r v inv(r)) =
X x X end;

preorder[X] = trans(X] n reflex[X];

equiv{X] = preorder[X] n sym[XJ;

order[X] = preorder[X] n antisym[X];‘

trans[X] n irreflex[X];

strict_order(X]

total order[X] = order(X] n totallX];

+h1[X] => op (s) e total order (NAT);
th2[X] => op (<) e strict_order (NAT);
th3[x] => op (c)[X] ¢ order(subset(X));
th4[X,Y,2] => forall rl,r2,r3 for

rl : X+ Y;r2: Y «—=+Z;r3: X1
then
((r2 e r1) n r3 = pull) => (inv(r3) * r2)
n inv(rl) = pull)

end;
ths[X] => strict_order[X] => asym[X]

end RELATIONS

EXAMPLES

The preceding "chapters" were extensions of the language in
order to constitute an elementary mathematical background. This
section attacks more "realistic" problems in various areas of pro-
gramming: an editing problem (§10.1) represents "classical" pro-
gramming, a system problem (§10.2), and a garbage collector spec-—
ification (§10.3) cover the "system" programming field, and finally
a very simple algebraic language definition (§10.4) goes towardsthe
language design area. /

374

SPECIFICATION LANGUAGE

Note : All "basic chapters" are implicitly used in the examples.

10.1 An editing problem

The first problem that we try to specify is a simple editing
problem. It may be informally stated as follows: to transform a
string of characters by replacing all its substrings of consecutive
blank characters by a single blank charsacter. This problem is
interesting for several reasons:

- it is simple enough so that anyone may understand it immediately

- it is a practical and classical problem illustrating a large
class of editing problems

-~ the corresponding program is not very difficult to write
although its complete proof is not that trivial,

Before attacking the problem we need to write a small "theoret-
ical" chapter defining a few concepts of the fixed point theory.
These concepts may be informally defined as follows:

Let £ be a function from X to X; if, for all x, there exists
a natural number n such that

(%) = P(x)

then any sequence
xy £(x) 5000, (x),...

is stationary after a certain number n depending upon x, i.e., all
further elements of the sequence are the same and said to be the
stationary element of x through f. The corresponding function is
called the limit of f. Note that not all functions from X to X
have such a limit.

In order to ensure that a function f has a limit, it is suff-
icient to find & variant, i.e., a function g from X to the natural
numbers such that

if f£(x) = x then g(x) =0

if f(x) # x then g(x) # 0 and
g(f(x)) < glx)

A binary relation R is said to be consistent with respect to
function f from X to X, if, for any x, the following holds:

x R £(x)

375

J.R. ABRTAL ET AL.

A very useful theorem finally states that if R is consistent
with respect to f, then R* (the transitive closure of R) is con-
sistent with respect to the limit of f (if any).

MINI_FIXED_POINT_THEORY =

def
1imit(X] = func £+ ' for £,f' : X + X where
forall x for x : X then
r(x) # null
end
then
f' = func x » x' for x,x' : X then
x' = iter(f)(i)(x)
given
i = any(r(x))
end
given
r =rel x ++ n for x : X; n : NAT vhere
iter(f)(n+l) (x) = iter(f)(n)(x)
end
end;
variant([X] =rel f+>gfor f: X~ X;g: X~ NAT vhere

forall x for x : X then
(£(x) = x) = (g(x) = 0);

(£(x) = x) => (g(x) > 0 and
g(f(x)) < g(x))

end

end;

variant theorem(X] => forall £ for f : X » X where

variant(f) = null

then
f ¢ dom(1imit[X])
gnd;

376

T, —

=

O]

SPECIFICATION LANGUAGE

invariant_theorem(X] => forsll f,r for

f : dom(limit(X]);
r: X+ X
vhere
fcr
then
limit(£) < closure(r)

end
end MINI_FIXED_?OINT_EHEORY

The specification of the editing problem constitutes another
chapter using MINI FIXED POINT THEORY. A class "state" is first
defined as that containing three components: "b" (for blank), and
"in" and "out", that are a sequence of characters. The purpose of
the specification is to define the properties of "out" with regard
to "in", i.e., "out" shall not contain two consecutive blank char-—
ascters (this is specified in "specl", a subclass of state) and shall
be "equivalent”" to "in" (this is described in "spec2", a subclass of
"specl"): two sequences of characters are said to be equivalent if
they only differ by the (non null) length of their subsequences of
consecutive blank characters.

A function "one-step" is then given that is proven (i) to leave
"specl" invariant, (ii) to have & limit, (iii) to be such that
"equivalent” is consistent with respect to it (remember that the
concepts of limit and consistency have been defined in the previous
"chapter"). As a consequence, the limit of "one-step" is proven to
fulfil the specification of the problem.

In order to comstruct a real program, the function "one-step"
is then decomposed into two other functions, namely "stepO",
handling null "out" sequences, and "stepl"”, handling non null "out"
sequences.,

The PASCAL program is then written as a final step of the spec-
ification and construction process.
EDITING PROBLEM =
use MINI_FIXED POINT THEORY def
state[C] = class
P :Cs
in,out : seqlC]

end;

377

J.R. ABRIAL ET AL.

A

specl[C] =

spec2[C]

L]

one_step(C]

subelass statelC] where

out € no_two_consecutive blanks

given

=

no_two_consecutive_blanks
set s for s : seq(C] where

not(associated rel(s)(b <> b))

end

end;

subclass specl[C] where

equivalent_string(in +> out)

gaven
equivalent string = closure(r);
r = rel sl ++ s2 for sl,s2 : seqlCl
where
exist x,y,bl,b2 for
x,y : seqlCl;
bl,b2 : seq[{b}] - null
where
sl = x¥*bl¥*y;
s2 = x¥*p2*y
end
end
end;
func s + s' for
s,s' : specllC]

when in(s) = null then

s' =38
when in(s) # null and
out (g)*<first(in(s)) > € no_consecutive_

blanks(s) then

s! = repl s'l with

out = out®<first(in)>

end

378

SPECIFICATION LANGUAGE

var{C]

thl{C]

th2[C]

n

=>

=>

else

st = g']

given

s'l = repl s with

end;

func s + n for s : specl{Cl; n :

in = tail(in)

end

n = length(in(s))

end;

var[C] € variant(one_step)

NAT then

one_steplCl e dom(limit[specllC]])

—— after thl and variant_theorem

equivalent_state[C] =

rel s +> s' for s,s' : specllC] where

equivalent string(s)(out(s)*in(s) ++ out(s')*in(s'))

end;

th3[C] => one_steplC] c equivalent_state[C];

—- after definition of one_steplC]

thU4[C] => limit(one_step[Cl) < equivalent_statelCl;

-— after th3[C] and invariant_theorem. Note that

-- equivalent_statelC]

normaliselC]

closure(equivalent_state(C])

fune & »+ s' for

specl[C]

s,s' =

where

out{s)

then

s' = limit(one_steplCl)(s)

end ;

379

null

J.R. ABRIAL ET AL.

ths{c] => forall s for s : specl[C] where

out(s) = null
then

s' € spec2(C]

-

given
s' = repl s with

out = out({normalise(s))
end

end;

— after th4[C] and definition of normalise. Towards a Pascal

program
specl'{C] = gubclass specllC] class
ch : C
end;
stepolC] = func s -~ s' for s,s' = specl'[C] where
out(s) = null
vhen in(s) = mil then
s' =8
else
s' = repl s'l with
out = out * <chl>; —— write (chl)
ch = chl
end
given —- read (chl)
s'l = repl s with
in = tail(in)
end;
chl = first(ch)
end;
stepl{C] = func s + s' for s,s' : specl'(C] vhere

out(s) # pull;

ch(s) = last(out(s))
when in(s) = pull then

s' = s

380

g -

SPECIFICATION LANGUAGE

when in(s) # null and(ch(s) = b or chl = b)

then

s' = repl s'l with

out = out * <chl>; —— write(chl)
ch = chl
end
else
s' = s'l

given -— read (chl)
s'l = repl s with

in = tail(in)
end;
chl = first(in(s))

end;
normalise'[C] | = limit(stepl[Cl) * stepoOl(C]
end EDITING PROBLEM
The corresponding PASCAL progrem is the following
program normalise(input,output);
const b ="' '3

var ch,chl : char;

if not eof then

begin
read(ehl);
write(chl); stepoOlC]
ch := chl

end;

while not eof do

begin
read(chl);

if chl # b or ch = b then

%81

J.R. ABRIAL ET AL.

begin
write(chl); limit(stepilC])
ch := chl
end
end

end.,

10.2 A "system" problem

The behaviour of a disk handler is now specified as a system
programming example. In order to prove that this system has some
"good" properties, & first "theoretic'" chapter introduces a simple
model for & non-deterministic system. This model is & graph in
which the nodes and edges, respectively, represent the states and
possible transitions of a dynamic system. Predefined "initial" and
"final" states indicate where the system should start and possibly
stop. These components constitute a structure (a class) whose
axioms state that a final state has no successors and an initisal
state either is a final state or has successors. Four special cases
are then introduced, namely:

. loop_free systems, whose graphs have no loop

. deadlock free_system, where those nodes that are reachable
from +the initial nodes are final or have successors

. finite systems where the set of nodes that are reachable
from an initial node is finite

. well halting systems that contain all the previous
properties.

NON_DETERMINISTIC SYSTEM =
def

system[X] class
reachable : X < X;
initial, final : subset(X)
vhere
reachable ¢ trans{X];
initial c (final U inv(reachable)(X));
reachable(final) = null

end;

382

SPECIFICATION LANGUAGE

loop free_system[X]= subelass system[X] where
reachable € irreflex[X]

end;

dead_lock free_system[Xl=subclass system[X] where

3 : reachable(initial) c (final U inv(reach-

dead_lock_free_system[X] n

| able)(X))
! end;
finite system{X] = subclass system[X] where
forall x for x : initial then
finite(reachable(x))
| end
end;
!
! halting system[X] = loop free system[X] n
|
i

finite_system[X]
end NON_DETERMINISTIC SYSTEM

! An informal description of the disk handler is now given. A

! disk is made up of a finite number of concentric tracks. In order
f to optimise the arm movement, one organises the disk scheduling in
such a way that the arm goes regularly from the exterior to the
interior and back (this is the "1lift" algorithm): the queries are
therefore not served according to a FIFO strategy but rather by
taking into account the current arm position and its next intended
move. With each track is associated a queue of recognised queries
that have not yet been served.

Examgle:
TRACKS QUEUES
! 4 W
] 3 LT next move
3 2 U v
i arm position
1 LTI

After serving the queries for track No 2, the arm moves to
track No 3, serves its waiting queries, does the same for track No L,
then turns around to serve successively lower tracks, and so on.

383

J.R. ABRIAL ET AL.

The various tracks of the disk constitute, as stated above, a
finite well order. It is then necessary, before entering the main
definitions, to write yet another "chapter” introducing the concept
and properties of well ordering. We first define the minimal
elements of a set through an order relation; a well order relation
is simply an order relation where the minimal element of all non
null sets is unique: it is called the minimum of the given set
through the relation. A finite well order is a well order relation
whose domain is finite. The inverse of a finite well order is also
a finite_well order: this allows us to define the maximum of a set

through a finite_well order.

WELL _ORDER =
def
minimum[X] = rel S,r ++ x for
S : subset(X) - {null};
r : order[X];
x + X
where
inv(r)(x) n 8 = {x}
end;
well order[X] = set r for r : order[X] where
minimum € functional(Y,X)
iven
Y = (gubset(X) - {pull}) x order[X]
end;
min[X] = fune S,r + x for
S : subset(X) - {null};
r : well order[X];
x + X
then
x : function(minimum)(S,r)
end;
finite well order[X] = get r for r : well order[X] !hggg
finite(X)
end;

384

——

—

SPECIFICATION LANGUAGE

th[X] => forall r for r : finite well order[X] then

inv(r) € finite_well order[(X]

end;

max{X] func 8,r + x for
S : subset(X) — {null};
r : finite well order(X];
x + X

then

®
H

min(S,inv(r))

end WELL_ORDER

The final "chapter", named LIFT SYSTEM, contains the specific-
ation of the disk handler. It starts with the definition of the
"herdware", a class defining the finite well ordering of the tracks
and the content of the disk. This class is generic with respect to
both TRACK and VALUE sets, the latter representing, without further
details, the possible data stored on a disk track. The "hardware"
cless is then extended (subclass "static_state") by adding two new
components, the first giving the maximum queue size (this is a
"software" parameter), the second defining the initial input as sa
function from QUERY (another generic parameter) to TRACK. Finally,
"static_state" is also extended (subclass "state"), thus defining
the complete dynamic state of this system. This last subclass
contains four new components, namely:

. input : a partial function from QUERY to TRACK representing
the not yet entered queries (future queries)

. wait : a partial function from QUERY to TRACK representing
the entered but not yet served queries (those that
are waiting in the internal queues)

. output : a partial function from QUERY to VALUE representing
the past queries (already served)

. current: giving the current track position of the arm.

These components, of course, obey some predicates in order
to constitute an acceptable state; no query shall be simultaneously
in the "input", "wait" or "output" domains; the number of queries
waiting within the internal queues shall not exceed the maximum
size of such queues; the disk value corresponding to each query
shall not be changed throughout the dynamic evolution of the system
(no updating). Four partial fimctions from "state" to "state"
describe the transitions

385

J.R. ABRIAL ET AL.
. "ask" enters a query into the internal queues
"serve" removes a query from the "current_queue" after serving it
"change move" changes the direction of the disk head movement
"search" looks for the next track to become the current track.
The union of these partial functions defines a binary relstion

"next_state" between states. It is now possible to construct an
instance of a "system" (the general model described in the chapter

NON_DETERMINISTIC_SYSTEM) and to prove that the proposed "1lift system"

is indeed a "halting_system".

LIFT_SYSTEM =
use NON_DETERMINISTIC_SYSTEM, WELL ORDER def

hardware[TRACK,VALUE] = class
track order : finite well order

[TRACK];
disk : TRACK -+ VALUE
end;
static_state[TRACK,VALUE,QUERY] = subclass hardware{TRACK,VALUE]
class
max_gqueue_size : NAT;
initial input : QUERY - TRACK

where
finite(QUERY)
end;
state[T,V,Q] = subclass static_statelT,V,Q] class

input,wait : Q # T;

output 1 Q FV,

current : T

vhere

{dom(input); dom(wait); dom(output)} e
partition[Q];

card(queue(T)) < max_queue_size;

(disk ¢ (input U wait)) U output = disk

° initial_input

386

SPECIFICATION LANGUAGE

given

queue inv(wait);

L

waiting queries = queue(T);

candidate = track_order(current)
n wait(Q);
current_queue = queue(current)
end;
-~ now the state transition functions
ask[T,V,Q] = func s + s' for s,s' : state[T,V,Q] where

input(s) # null;
card(waiting_queries(s)) < max_gueue_
size(s)
then

s' = repl s with

input = input - {q -+ input(q)};
wait = wait U {q - input(q)}
given
q = any(dom(input))
end
end;
serve[T,V,Q] = func s > s' for s,s' ! statelT,V,Q] where
| current_queue(s) # null
then
s' = repl s with
wait = wait - {q » wait(q)};
given
q = any(current_queue)
end
end;
change_movelT,V,Q] = func s + s' for s,s' : statelT,V,Q] where

waiting queries(s) # null;
candidate(s) = null;

current_gueue(s) = pull

387

J.R. ABRIAL ET AL.

search[T,V,Q]

next_statelT,V,Q]

then

s!' = repl s with

track_order = inv(track_order)

end
end;
= func s + s' for s,s' : state[T,V,Q] where

candidate(s) # null;

current_gueue(s) = null
then

s' = repl s with

current = min(candidate,

track_order)
end
end;
= rel s «+ s' for s,s' : state[T,V,Q] where

s' = ask(s) or s' = serve(s) or
s' = chenge move(s) or s' = search(s)

end;

—< now the final instantiation

initial;ptate[T,V,Q]

final_state[T,V,Q]

1iftlT,V,Q]

th(T,V,q)
end LIFT_SYSTEM

= subclass statelT,V,Q] where
input = initial input

end;

subclass statel[T,V,Q] where
output = disk ¢ initial input

end;

gggg.system[state[T,V,Q]] with
reachable = closure(next_state[T,V,Q1)
~ident[statelT,V,Q1];
initisl = initial_statelT,V,Ql;
final = final statelT,V,Ql

end;

=> 1ift(T,V,Q] ¢ halting__system[state['l‘,V,Q]]

388

SPECIFICATION LANGUAGE

10.3 Garbage collectors

A.classical example is now proposed. It has already been
desc€1?ed in several papers, particularly the one by Dijkstra et
al. (*).

The informal description of this system will be given together
with the formal text; however, a previous knowledge of the problem
is probably necessary to comprehend fully the proposed development.
GARBAGE COLLECTORS =
def

/% A first class, called "stateO[N]", describes the basic data
structure of this system. It is generic with respect to N (for
Node) #/
stateO[N] = class
next : N «& N;
free,root : subset(N)
Eiven
reachsble = closure(next)(root)
end;
/#* An acceptable state is one where free nodes are not reachable
and have no successors %/
statel[N] = subclass stateO[N] vhere
free n reachable = null;
next(free) = null
end;

/* One now describes three functions, together called the "mitator”.
They stand for the basic primitives at a user's disposal*/

/* The first primitive allows a user to extend the reachaeble nodes
by connecting an already reachable node with one that is free.
This node will, of course, lose this property */

(%) On_the_Fly Garbage Collection: An Exercise in Cooperation,
E.W. Dijkstra et al., CACM, Vol 21, No 11, Nov. 1978.

389

J.R. ABRIAL ET AL.

extendl(N] = func n,s ~ s' for
n : N; s,s' : statel[N]
where
n € reachable(s); free(s) # null
then

s!' = repl s with

next = next U {n < n'};
free = free - {n'}
given

n' = any(free)
end
end;
/* The second primitive allows a user to connect two already reach-
able nodes. This primitive requires that the set of free mnodes be
not empty, although this is not strictly necessary */
insertl[N] = func n,n',s - s' for
n,n' : N; s,s' : statellN]
vhere
n € reachable(s);
n' € reachable(s);
free(s) # null
then
s' = repl s with

next = next U {n «<> n'}
end
end;
/%* The third primitive disconnects two reachable nodes (if they were

already connected). A non empty free node set is also required */

removel[N] = func n,n',s » s' for
n,n' : N; s,s' : statel(N]
where
ne reachable(s);
n' € reachable(s);

free(s) # null

390

SPECIFICATION LANGUAGE

then

g' = repl s with

next = next - {n + n'}
end
end;
/* Whenever the free set is empty any previous "mutator" activity
ceases and another function, called the '"collector", appends the
non-reachable nodes (called "garbage') to the free set */
collectorl[N] = func s + s' for
s,s' : statellN]
where
free(s) = null
then

s' = repl s with

free = free U garbage;
next = next - (garbege x next(garbage))
given

garbage = node - reachable
end

end;

/* Note that the "mutstor" and "collector" activities exclude each
other, Note also that

next = next - (garbage x next(garbage))
ensures that the invariant of "statel[N]"
next(free) = null
always holds ¥/
/% The "collector" activity will now be decomposed into two phases
- a marking phase where reachasble nodes are marked

-~ an appending phase where non marked nodes are appended to the
free nodes.

In order to do this one extends "statel[N1" to introduce marked
nodes */

39

J.R. ABRIAL ET AL.

state2[N] = subclass statel(N) class
marked : subset(N)
¥here
marked < reachsable;
root < marked
end;
/* The "mutator" primitives do not change. The first "collector"
primitive marks the nodes */
mark2[N] = func s + s' for s,s' : state2[N] where
next(s)(marked(s)) ¢ marked(s);
free(s) = null
then

s' = repl s with

marked = marked U next(marked)
end
end;

/* The second "collector” primitive appends the non marked nodes to
the free set */

append2[N] = func s - s' for s,s' : state2[N] where
next(s) (marked(s)) < marked(s);

free(s) = null

then
s' = repl s with
free = free U non marked;
next = next - (non marked x next(non_marked));
marked = root
given
non_marked = node - marked
end
end;

/* Note that both "collector" primitives exclude each other (and
still exclude the “"mutator™ activities), and that the marking phase
is usually performed by several invocations of the "mark" function.
It is important to prove that this new "collector" does the same

392

SPECIFICATION LANGUAGE

thing as the previous one. In other words, we have to prove the
following theorem */

th2[N] => forall s for s : dom(append2[N]) then

marked(s) = reachable(s)

end;

/* We have to prove

marked = closure(next)(root)
- under the following hypothesis

Hl : root © marked c closure{next){(root)
coming from the definition of "state2[N]"

H2 : next(marked) c marked
coming from the definition of "dom(append2[N1)".
It is therefore sufficient to prove

closure(next)(root) c marked

This is done by induction.

step O : root c marked (from H1)
step n : next”(root) c marked (induction Hyp)
nextn+l(root) c next(marked)
nextn+1(root) < marked (from H2)
Q.E.D. ¥/

/# One now removes the constraint that "mutator" and "collector"
activities exclude each other. In other words, we allow the
"mutator" activities to be possibly performed between two invoc-
ations of the "mark" function. In order to do this, "statellN]"
is extended by another component, a set of "pre marked" nodes, and
extra axioms ¥/
state3[N] = subclass statel[N] class

marked ,pre_marked : subset{(N)

where
marked n pre marked = null;

next(marked) n non_marked = null;

root n non marked = null

393

J.R. ABRIAL ET AL.

given

non_marked = node - (marked U pre_marked)

end;

/* The "mutator" functions are, of course, different.

In particular,

the "insert" and "remove" functions do no longer require that the

free set be non_empty */

extend3[N] = func n,s + s' for
n: N; x,x' : state3[N]
¥here
n € reachable(s); free(s) # null
then
repl s with
next = next U {n «>n'};

free = free - {n'};

pre_marked = pre_marked U ({n'} n non_marked)

given
n' = any(free)
end
end;
/* Note that
pre_marked = pre_marked U ({n'} n non marked)

ensures the conservation of

next(marked) n non _marked = null

which is an axiom of "state3[N]" whose importance will be clear

later. (See the proof of th3[N]) */
insert3[N] = func n,n',s > s' for
n,n' : N; s,s' : state3[N]

where
n € reachable(s); n' € reachable(s)

then

s' = repl s with

next = next U {n <> n'};

pre_marked = pre_marked U ({n'}nnon_marked)

end

end; 294

SPECIFICATION LANGUAGE

/* The last "mutator" primitive "remove3[N]" is the same as
"removel[N]1",

Next are the "collector" primitives */

mark3[N] = func s + s' for s,s' : state3[N] where

pre_marked # null

then
s' = repl s with
marked = marked U pre marked;
pre_marked = next(pre_marked) n non_marked
end
end;
append3(N] = func s + s' for s,s' : state3[N] where

pre_marked = null

then
s' = repl s with
free = free U non_marked;
next = next - (non marked x next(non_marked));
marked = null;
pre_marked = root
end
end;

/* Note first that the "collector" activities still exclude each
other. It is now necessary to prove that this third "collector"
does the seme thing as the previous one. This is not actually
true: this new "collector" only collects part of the garbsage as
stated by the following theorem */

th3[N] => forall s for s : dom(append3[N]) then

reachable(s) < marked(s)
end;
/¥ By comparison with "th2[N]" above, one may figure out that when
"append3[N]" is invoked, there exist some "marked" nodes that are
no longer reachable. We have to prove that

closure(next)(rcot) < marked

under the following hypothesis

395

J.R. ABRIAL ET AL.

Hl : root c (marked U pre marked)

H2 : next(marked) c (marked U pre marked)
both coming from the definition of "state3[N]"

H3 : pre marked = null
coming from the definition of "dom(append3{N])".
Proof:
(1) root c marked (by H1l and H3)
(2) next(marked) c marked (by H2 and H3)
(3) closure(next)(marked) = marked (by (2))
(4) closure(next)(root) c closure(next)(marked) {(by (1))
(5) closure(next)(root) c marked (by (3) and (4))
Q.E.D. R

Unfortunstely, this theorem does not prove that this actual
"collector" indeed collects anything. In other words, the set of
"non marked" nodes might very well be empty when "append3[N]" is
invoked. Let "old garbage" be the set of nodes that are reachable
but still marked when "append3[N]" is invoked. One now proves that
this "old_garbage" will indeed be appended to the free set upon

the next invocation of "append 3[N]". To do this, the following
extension of "state3[N1" is performed */

statel{N] = subclass state3[N] class
old garbage : subset(N)
vhere |
0ld garbage n free = null;
old garbage n reachable = null;
old garbage c non marked

end
/* The function "eppend3[N]" is accordingly changed into */

append L[N] = func s + s' for s,s' : statel[N] where
pre marked = null
then

s' = repl s with

3%

PR S

SPECIFICATION LANGUAGE

free = free U non_marked;

next = next - (non_marked x next(non marked))

marked = null;
pre_marked = root;
old_garbage = marked - reachable
end
end;
/* As "old_garbage" is neither in the free set nor reachable, it so

remains through the "mutator" activities, and neither does the

interfering marking phase "paint" it. Therefore, the following
theorem holds */

th4[N] => forall s for s : dom(appendi[N1) then
old_garbage(s) < free(s')
given
s' = append4(s)
end;
/* Note that '"old garbage" is an "auxiliary varigble" that has

nothing to do with the system itself: it is only defined for the
purpose of proving "thL[N]" */

/¥ One now proceeds by decomposing the "mutator" activities one step
further, thereby allowing more interferences to occur with the
marking phase. Remember that the following was performed by
"extend3[N]" and "insert3[(NW1"

pre_marked = pre_marked U ({n'} n non _marked)

By doing this, we possibly "shade' n', This shading might be per-
formed in a non-exclusive way. To do this, a new component called
"param" is added, the purpose of which is to "store" the value of
n' while other activities occur before its shading */

/¥ In order to prove that th3[N] still holds, we introduce yet
another auxiliary variable (*) named "old_next" that retain the
value of "next" just before the possible invocation of the shading
primitive */

stateS5[N] = subeclass statellN] class
marked, pre_marked,param : subset(N);
old next : N <« N

where

397

J.R. ABRIAL ET AL.

marked n pre marked = null;

next(marked) ¢ (marked U pre_marked U param);
root ¢ (marked U pre_marked);

free c marked;

parem < old_reachable;

old_next(marked) ¢ (marked U pre merked)

given
non _marked = node - (marked U pre_marked);

0ld_reachsble = closure(old_next)(root)
end;

/* Tt is interesting to note the difference from the axioms of
"state3[N]":

. "next(merked)" is no longer always "non marked" as "param" may
be "non_marked".

. We require that the free set be "marked".
The new "mutstor" functions are the following */

extend5[(N] = func n,s + s' for
n:N; s,s' : state5[N]
vhere
n £ reachable(s);
free(s) # null;
param(s) = null
then

s' = repl s with

next U {n <+ n'};

next

free - {n'};

free
0ld_next = next U {n ++ n'}
iven
n' = any(free)
end

end;

g*) Auxiliary variable technique was first introduced by S. Owicki
in her thesis: Axiomatiec Proof Technique For Parallel Programs,
Dept. C.S., Cornell University, TR.251 (1975).

398

I

SPECIFICATION LANGUAGE

/* Note that n' need not be shaded as it is already "marked" because
it belongs to '"free" ¥/

insert5[N] = func n,n',s + s' for
n,n' : N; s,s' : state5[N]
¥here
n € reachable(s);
n' ¢ reachable(s);
param(s) = null
then

s' = repl s with

next = next U {n «> n'};
param = {n'};
old next = next
end
end;

/* Note that after the invocation of insertS[N] the following still
holds

param ¢ old reachable

old_next(marked) c (marked U pre_marked)

because n' was an element of "reachable" end 'param" was empty

before the invocation */

shade5[N] = func s + s' for
s,s' : state5[N]
where
param(s) # null
then

s' = repl s with

pre_marked = pre marked U (param n
non_marked);

perem = null;

0ld_next = next

end

399

J.R. ABRIAL ET AL.

/* Note that after the invocation of "shade5[N1", the invariant
next(marked) ¢ (marked U pre marked U param)

still holds, since "pre_marked" was possibly extended if "param"

was '"non_marked". Note that this would not have been the case if
"shade5[N]" had been performed before "insertS[N1" ¥/

remove5[N] = func n,n',s » s' for
n,n' : N;
s,s' : statelN]
where
n £ reachable(s);
n' € reachsable(s);
parem(s) = null
then
s' = repl s with

next = next - {n <> n'};
0ld next = next - {n <+ n'};
end

end;
/* Now the "collector'" */

markS[N] = func s ~ s' for
s,s' : stateS[N]
vhere
pre_marked # null
then

s' = repl s with

marked = marked U pre_marked;
pre_marked = next(marked) n non marked
end

end;

append5[(N] = func s + s' for
s,s' : state5[N]
where

pre_marked = null

Loo

SPECIFICATION LANGUAGE

then
s' = repl s with
free = free U non_marked;
next = next - (non marked x next(non marked));
merked = non marked;
pre_marked = root;
0ld_next = old _next — (non marked x next
(non_marked))
end
end;

/* Of course, it is now important to prove that th3[NJ] still holds,
. namely:

forall s for s : dom(append5(N]) then

reachable(s) < marked(s)

end
The only hypothesis of th3[N] that changes is H2, that was
H2 : next(marked) c (marked U pre_marked)
which now becomes
H2 : next(marked) c (marked U pre_marked U param)
One proves that H2 indeed holds because of the following theorem */

th5[N] => forall s for s : dom(append5[N]) then

param(s) < marked(s)

end
/* One has to prove
param € marked
under the following hypotheses

Hl : param c closure(old_next)(root)
H2 : root c (marked U pre_marked)
H3 : old next(marked) c (marked U pre_marked)

all three coming from the definition of "stateS[N]"

Lo

J.R. ABRIAL ET AL.
Hb : pre_marked = null

coming from the definition of "dom(append5)[N]"

Froof:
(1) root c marked (by H2 and Hb)
(2) 014 next(marked c marked (by H3 and Hb)
{3) closure(old next)(marked) = marked (vy (2))
(4) closure(old_next)(root) ¢ closure(old next)

(marked) (vy (1))
(5) closure(old_next)(root) c marked (by (3) and (4))
(6) param c marked ‘ (by H1 and (5))

Q.E.D. ¥/

end GARBAGE COLLECTORS

The reader is invited to pursue further decompositions of "extend",
"mark", and "append". Note that the previous formalisation does

not contain any proof that the marking phase ever terminates.,

10.4 Algebraic language

Our last example is an attempt to specify a formal langusge (!)
by defining its abstract syntax and semantics. We have chosen
algebraic languages because they are simple enough and also because
they are part of any programming language containing (boolean,
arithmetic and so forth) "expressions". The specification is
given at a general enough level so that any instantiation might be
performed for a particular case of algebraic language: in this
example, & boolean algebra.

An algebraic expression, as is well known, may be represented
by a tree structure. For example, the following expression

(a + (a+b)) / (a + D)

is pictured by

402

-

TR,

SPECIFICATION LANGUAGE

In this drawing, each node represents & sub-expression made of
an operator and a set of ordered edges leading to other sub-
expressions. The number of out-going edges depends upon a property
of the corresponding operator called its arity, i.e., "/" and "+"
have an arity of two, whereas "a'" and "b" are considered as operators
of 0 arity.

Algebraic expressions may contain several common subexpressions:
therefore a new structure, here called a double order, is best
suited to represent them. The above expression, for example,
might be represented by

Such a structure is a "double" order because (i) it is a strict
order relation, (ii) the out-going edges are also ordered. Before
entering into the main definitions, a small "chapter" describes
double orders.

403

J.R. ABRIAL ET AL.

DOUBLE_ORDER =
def
double order(X] = set f for
f : X -+ seq[X]

vhere
(closure(r) - ident[X]) e strict—order(X]
given
r = rel x <+ x' for
x,x' : X
where
x' ¢ f(x)(NAT)
end

end;

/* One now defines the evaluation of a function through a double
order */
eval_rellX,Y] = rel g,f ++ h for

g : X x seql¥] + Y;

f : X » seqlX];

h:X~->Y

vhere
f ¢ double_order(X];
forall x for x : X then
n(x) = gl(x,h ° £(x))

end

end ;

-

th(X,Y] => eval_jel[X,Y] ¢ functional(((X x seqlY] » Y)
x (X + seq(x1),X » Y))
evallX,Y] = function(eval rellX,Y1)

end DOUBLE_ORDER

The chapter "ALGEBRAIC_LANGUAGE" first defines a "program' as a
class whose components are the operator and arguments of each sub-
expression. Another class defines an "algebra" as a class defining
the application of an operator to a sequence of data as well as the
arity of each operator. The semantics of a program with respect to
an algebra defines the value of a sub—expression as the evaluation

Lok

sy

SPECIFICATION LANGUAGE

of its arguments through the double order represented by the program.
An 1nstant1at10n of these classes finally defines a boolean expres-
sion program" interpreted by a boolean algebra.

ALGEBRAIC_LANGUAGE =
use DOUBLE_ORDER def
program[EXP,0P] = class
operator : EXP -+ QP;
argument : EXP -+ seq[EXP]
vhere
argument ¢ double_ order[EXP]

end;

algebra[DATA ,0P] = class
value : OP x seq[DATA] # DATA;
arity : OP - NAT

where
dom(value) = set op,s for
op : OP;
s : seqlDATA]
¥here
arity(op) = length(s)
end
end;

semanties[EXP,0P,DATA] = func p,a,e + v for

p : program[EXP,0P];
a : algebralDATA,QP];
e : EXP;
v : DATA

vhere -- static check
arity(a) ¢ operator(p) =

length(EXP] o argument(p)

then

v o= eval(value(a) ,argument(p)){e)

end;

-—- nov an example

405

J.R. ABRIAL ET AL.

BOOL_OP
BOOL

{a; V3713 true; falsel;

{true; falsel;

boolean_algebra =
cons algebra(BOOL,BOOL_OP) with
velue = {A, <true; true> > true;
A, <true; false> — false;
A, <false; true> - false;
, <false; false> > false;
vV, <true; true> - true;
v, <true; false> = true;
v, <false; true> - true;
v, <false; false> > false;
=, <true> + false;
-1, <false> > true;
true, null -+ true;

false, null ~ false};

arity = {v - 2;
A + 23
— -—>1;

true =+ 0O;

false = 0 }
end;

EXP = {el; e2; e3; ekh; e5; ebl;
example = cons program[EXP,BOOL_OP] with

operator = {el +71;
e?2 + v,
e3 + v;
el + A,
e5 -+ true;
e6 + false};
argument = {el + <e2>;
e2 * <e3;el>;

e3 * <e5;el>;

Lo6

SPECIFICATION LANGUAGE

el + <e5;eb>;

e5 + null;

e6 + null}
end;

th => semantics(example,boolean algebra,el) = false

end ALGEBRAIC_LANGUAGE

APPENDIX: SUMMARY OF THE LANGUAGE

Utilisation sublangusage

chapter ::= id = [use id_list] def body end id

id list ::

ia{,ia}

Statement sublanguage

body ::= clause{;clause}

clause ::= generic_name = set |
‘generic_name => bool |
generic_name = class

generic name ::= ial'('id_list'1']

Set sublangusge

set ::= set id_list for spec end |
any id_list for spec end |
subset(set) |
'{'set{;set}'}" |
il |
set_id.l
object |
set{,set} |

(set)

407

J.R. ABRIAL ET AL.

spec ::= decllwhere condlgiven def]]
decl ::= id list : set{;id_list : set!
cond ::= bool{;bool}

def 1= id list = set{;id list = set}
set_id ::= [id.Jid['['set{,set}']']
Boolean sublanguage
bool ::= not(bool) |

bool or bool |

set = set |

set € set |

finite(set) |

(bool)
Class_sublanguage
class ::= class[spec] end |

subclass class_explclass decl][where cond(given defl]

end
class_exp ::= class_id{x class_id} |
class_id{'|' class_id}
class_id = set_id
object ::= cons object_idlwith deflgiven def]] end |

repl object_id with deflgiven def] end
object_id ::= set_id

Statement sublanguage extensions

clause ::= operator_generic_name = set

operator_generic_name ::= op(id)C'['id list']1']

Lo8

SPECIFICATION LANGUAGE

Boolean sublanguage extensions

bool ::= bool => bool |
bool and bool |
bool <=> bool |
set # set |
set ¢ set |
exist id list for spec end |
existl id_list for spec end |

forall id_list for decllwhere condl] then cond
[given def] end |
bool{; bool}

Set sublanguage extensions

set 1= set{x set} |
any(set) |
set +*> set l
set + set \
set + set l
dom(id) |
codom(id) |
rel id list < id_list for spec end |

func id list + id_list for decllwvhere condlbind

[given def] end |

operator_id |

id(set + set) |

id(set) ‘

"{'set <> set{; set +> set}'}' |
'{'set + set {; set » set}'}"' |

subst id with set + set{; set -+ setl}lgiven def] end
Log

J.R, ABRIAL ET AL.
bind ::= then def |

when bool then def{when bool then defl}lelse def]

operator_id ::= [id.] op(id)['['set{,set}']1"]

Class sublanguage extension

class ::= '{'id list'}'

ACKNOWLEDGEMENTS

We are particularly indebted to M. Demuynck, A. Guillon,
P. Moulin and G. Terrine for their fruitful comments, and to
B. Keller for her beautiful typing of the original version of this
text.

410

