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"You have e. quarrel on hand, I see," said I, "with some of the 
algebraists of Paris; but proceed." 

Edgar Allan Poe, The Purloined Letter 

1. INTRODUC~ION. 

The concept of specification language is now wid.ely spread; 
formalising a problem is well recognised as a necessary step pre­
ceding any programming. The formalisation technique, however, is 
still the purpose for intensive research: the number of proposals 
in this field is a sufficient account of this fact. But a few 
basic principles seem to emerge and be generally agreed upon: 

using a strict formalism inherited from m.athematical 
practice 

recognising the set theory as a sound basis for the 
formalisation 

necessity of strong structuring of the formal text. 

The proposed language takes its inspiration from these 
principles; it is especially indebted to the effort made within the 
last fifty years to present mathematical works in a satisfactory 
way_ 

The formal specification of a problem is provided by a strict 
stetement of its contents written in a non natural language, in 
such a vray that any future reader might have the sane understanding 
of it. !his necessitates that the given definition be exhaustive 
and unambiguous, in contrast with most of the non-formal, natura.l 
lanfuage s~ecifications. 

F:xrerief'ce 8:101-.'·S tra.t r-ra.ctical (industrial) problems seldom 
rose rrd or t1:eoretica.l d.ifficulties; their corar>leyi t~' lies rather 
ir: tte. larf,e rluyler of' intricate details the,t hide their in-depth 
nature and t'hus impede the ciscovErj' of clear solutions. Conse­
quently, such problerr.s raise the following question: how to 
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emphasize the main points without sacrificing the details? The 
•• .p th "t " answer 2S of great ~portance, as the emergence o~ e rue 

problem makes it possible to discover its decomposition into 
possibly known sub-problems. By doing this, the formalisation is 
no longer a lonely activity. It now belongs to a larger work per­
formed by the same person, or better, a whole community: the spec­
ification language thus becomes a communication med.ium. One 
recognises a process that has been at work for more than two 
thousand years among mathematicians; returning to this source 
therefore seems to be an especially adequate step. 

2. THE MATHEMATICAL TEXT 

What is the organisation of the mathematical text? This is 
certainly a leading question for the beginning "formaliser." To 
illustrate, let us then open a book and analyse its contents. 

The most obvious structure is shown by the decomposition of the 
book into chapters, sections, paragraphs, and so forth, each of 
them with a title and a tree structured number. The reason for this 
is quite Obvious: it allows nonlinear reading of the text by using 
references, tables of contents, or other indications (sometimes a 
graph); in other words, everything that provides fruitful use of 
the book. These first elements constitute the so called utilis­
ation text; it is by now almost standard. 

The second structure encountered in the mathematical text is 
the one given by the various definitions, axioms, or theorems of a 
chapter. As above, all these elements have a name allow'ing further 
references. The content of definitions and the statement of axioms 
or theorems constitute the so called statement text; it is partially 
formalised, or even almost completely so, as in algebra, for example. 

The third category is the proof text containing, as itR name 
indicates, the proofs of the theorems. It is also only partially 
formalised. 

Finally, in the mid.st of these texts, one may find all sorts of 
remarks, comments and the like, forming the explanation text. 

It is interesting to note that, very often, these various texts 
are distinguished besides their content by the character set used to 
print them. Frequently, the utilisa.tion text is rrintec vith bold­
face characters, the statement text with italic characters, the 
proof text with normal, and the explanation text ~Tith small char­
acters. 

At a deeper level, the mathematical text is characterised bv 
"Cwo trends. general enough to require attention. }.1'ost of the t:i.~e, 
a mathemat1cal statement takes a generic (polJ~orphic~ schem~tic) 
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form, e.g., the statement in question contains set identifiers that 
are free. The following definition, for example, is eeneric with 
respect to A and B: 

fiLet l' be a function from A to B. One says that f is an 
injection it. two distinct elements of A have distinct images 
through f." 

The second trend of the modern mathematical text lies in t~e 
intensive usage of the notation of structure, as the order struc­
ture, the topological structure, the group or ring structure, and. 
so forth. The definition of a structure consists of two distinct 
elements: firstly, the "typification," giving the (seneric) defini­
tionsof its components; and, secondly, the axiornatisa.tion, 
pointing out the characteristic properties of the components. 

To reason in terms of structure has obvious advantages: this 
allows us to give definitions and to prove theorems s.t an abstract 
level. Then, if in some problem, one encounters an instance (a 
special case) of a known structure, one may apply all previous 
accumulated knowledge. l-1od.ern mathematics is actually a vast con­
struction of structures. 

3. LANGUAGE PRINCIPLES 

The previous analysis, superficial as it vTaS, allowea us to 
define some useful terms for defining the basic huilding principles 
of the language. It should allow us to write utilisation and state­
ment texts; proof and explanation texts will take the form of TIeTe 
comments written in natural language and formal language as well. 

Thus a text will present itself as a set of named chapters, 
each of them with the names of locally used chapters. Each chs.pter 
is made of a list of possibly generic definitions or theorems. 
Definitions are given for sets or structures as previously encount­
ered. 

The specification of a problem is actually realised bJr writin~ 
a certain number of new chapters incrementing the set of old ones. 

The language is now described by giving first the definition of 
a kernel language (§4), followed by the visibility rules (§5); some 
syntactic extensions are then given (§6) before a few last remarks 
on structures (§7). 

4. THE KERNEL LANGUAGE 

The kernel language may be decomposed as indicated by the 
~ollowing diagram: 
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kernel language 

utilisation' statement 
sub language sublanguage 

§4.l §4'1 
set boolean structure 

sub language sublanguage sublanguae.;e 

§4.3 §4.4 

The syntax is written in classical BNF with the following 
added conventions: 

[ ] means a.n option 

{ } means a zero or more times repetition 

vfuen the symbols {, }, [, J, or I are used as linguistic symbols, 
they are quoted in order to avoid confusion with their meta­
linguistic usage. 

The la.nguage definition does not contain any examples. The 
reaaer may skip at will to §9 and. §lO. 

4.1 Utilisation sublanguage 

The utilise.tioD sublanguage describes the framework of a 
chapter. 

pyntax 

chapter 

ic1 list 

· .-· .-
· .-· .-

id = [~ id_list] def body ~ io 

id {, id} 

The identifiers between use ancl def reference locally used 
chapters. The last identifi;r-( a.fter end) is the same as t}1e first 
one (before =). 

4.2 Statementsublanguage 
: 4 

The statement su'hla,ngu8,ge describes the content of e, chapter a,s 
a ljst of (possihly generic) definitions of sets, or structures 
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(here called classes), or theorems. 

Syntax 

body ::= clause {j clause} 

clause ::= set_definition! theorem! class_definition 

set definition ::= generic_name = set 

theorem ::= generic_name => bool 

class_definition ::= generic name = class 

generic_name ::= id ['['id_list'J'] 

The identifiers possibly found in the list of a generic name 
are forma}.. generic paramet~ (set identifiers) of the corr;sponding 
definit~on or theorem. 

~.3 Set sublanSRage 

The set su~language gives the various forms taken by a set 
expression. 

set : := mid_list for decl [where cond Ce;iven def]l .£!!£. 

decl 

cond 

def 

set id 

.. -.. -

any i~list ~ decl [where cond [given defl] ~ 

subset (set)!' { , set{ ;set}' } t !~! set_id I 
object ! set{ ,set} ! (set) 

id list set { ; id_list set} 

: := bool { ; bool} 

: := id list = set { ; id list = set} 

: := [id.lid['['set{,set}'J'l 

First, it is worth noting that the set suhlanguage is lIpure" 
in the sense that any distinction between sets and atoms d.oes not 
exist: set elements, if B.ny, always are sets. 

The main set expressions correspond to the classical axioms (,f 
the theory: comprehension axiom, choice axiom, powerset axiom and. 
extensive nefinition axiom. 

The first form ma.y be written: 
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set id-, ••• ,id for 
- ~ n-

i~ set]; 

... 
id set 

n n 

[were 

cond 

[given 

def]] 

end -
This derivation shows the existing constraints between the list 

of identifiers following the key-word'set and the declarations; note 
that a declaration m~ be factorised asusual, but that all declar­
ations must be independent of each other. If there are more than 
one identifier in the list, the defined subset is a subset of the 
Cartesian product of the various sets present in the declarations. 
The condition defines the characteristic predicates (bool) of the 
subset. One m~ provide some local definitions ("def") to lighten 
the writing of the predicates. 

The second form, very close to the first, defines a "privileged" 
element of a non empty set. The declaration constraints are the 
same as above. Note that, axiomatically, the privileged elements 
provided by "tvo" equal and non empty sets are alike. Consequently, 
the operator ~ does not perform any random choice; such a set 
expression is therefore factorisable in a local definition. 

The third form (key_word subset) corresponds to the mathematical 
~operator (the set of all subsets of a given set). 

In the fourth form (extensive definition), the various set 
expressions must already denote elements belonging to the same set: 
it is not possible to construct any "heterogeneous" set. 

In a set identifier: 

[idl J·id2[·['setl ,···,setn']'] 

"idl " is e. chapter identifier (if any ambiguity occurs on "id
2

") 

"id2" is a m or a class identifier defined in the same 

chapter or in s. locally used chapter 

" t" "t " t I· . se 1 , ••• , se n are ac us. gener~c parameters ~n equal 

number to the formal generic parameters (see §4.2) associated 
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with the definition of "id2". 

Note that "set-id" may also be a simple identifier corresponding 
to a variable bound by a declaration or to a local definition. 

The next set form corresponds to a class instance ("objectl1. 
See §4. 5). 

~.~ BoQlean sublanguage 

The boolean sublanguage describes the boolean expressions. 

Syntax 

bool :: = !!2l (bool) I bool .2!. booll 

set = setlset £ set I 
finite (set) I (bool) 

The third form (operator =) introduces the set equality and 
corresponds to the extensionality axiom of the theory (two sets 
are equal if they have the same elements). 

In the fourth form (membership operator E), when the left set 
corresponds to a list, then the right set is a subset of a Cart­
esian product constituted by as many sets as the left list has 
elements. 

The fifth form (operator finite) corresponds to the axiom of 
infinity (there exists at least an infinite set). 

4.5 Structure sublangu!£ie 

The structure sublanguage describes a class and how class 
instances may be constructed. 

Syntax 

class ::= class [decl[where cond[given def]]] ~ 

subclass class exp[class decl][where cond given def]] 

end 

class exp ::= class-id {x class_id} 

class_id ::= set_id 

object ::= ~ object_id [~def [given def]] ~ 

repl object_id with def [given def] ~ 

object_id ::= set_id 
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A class definition may be derived as follows: 

class 

[idl setl ; basic components 

id set n n 
[where 

cond axioms 

[siven 

id\ = set' 
1 

derived components 

id' = set' ] ] ] m m 
end 

A class definition is essentially an open definition: it is 
possible, from a given class, to define another one having more 
components and more axioms corresponding to the added basic comp­
onents. The definition 

subclass class_id class 

class_body 

end 

implicitly contains all basic components, axioms and derived comp­
onents of "class id" as well as its own components and axioms. All 
definitions or theorems applicable to "class_id" may be used also, 
by extension, for the so defined subclass, but the converse is not 
possible. 

A subclass may also be defined from several other classes (or 
subclasses) either in conjunction (operator x) or as alternatives 
(operator I). 

The universal class 

class end 

has no components. Every class is therefore a subclass of the 
universal class. 

It is worth noting the difference between subclass and subset. 
A subclass generally corresponds to a richer structure (more comp­
onents, more axioms) than its constituent classes: in mathematics,· 
for example, the topological group structure is richer than the 
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topology or group structures alone. On the other hand, the notion 
of subset corresponds to a poorer construction than its "parent" 
set (it has less elements because of the added constraints); the 
notion of subset may be applied to classes as veIl: in mathematics, 
for example, the abelian groups are a (generic) subset of the 
groups. 

In the same way, it is important to note the difference between 
the universal class (that has no component) and the empty class or 
set (that has no element). 

To construct an object of a class, the value of each of its 
basic components is given. An object may be constructed globally 
(operator cons) or from a previous object (operator repl) by pro­
viding only some values that are supposed to replace some basic 
component values, the others remaining implicitly unchanged. In 
any case, the construction o£ an object corresponds as well to the 
statement of a theorem expressing the validity of the proposed 
values against the class axioms. In order to simplify the value 
expressions, one may use, in the object construction, any derived 
components already defined with the class or some local definitions 
(given def). 

Note that the definition of a subclass without extra components 
or conditions 

builds a ~ subclass (of "class_id"). 

5. VISIBILITY RULES 

New identifiers may be defined in the following conditions: 

chapter identifier (at the beginning o£ a chapter. See §4.1). 

set, theorem, or class identifier (heading a generic name. 
See §4.2). 

formal generic parameter (within a generic name. See §4.2). 

bound variable identifier (within a declaration. See §4.3). 

basic or derived class component identifier. (See §4.5). 

local definition identifier. (See §4.3 and §4.5). 
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Scope rules 

The scope of an identifier defines where it m~ be used. 

The scope of a chapter identifier is universal. 

The scope of a set, theorem, or class identifier covers the 
chapter where it is defined as well as the chapters where this 
chapter is used (use). -
The scope of a formal generic parameter covers the corresponding 
definition or theorem. 

The scope of a bound variable identifier covers the corresponding 
construction (See §4.3). 

The scope of a basic or derived class component identifier is 
the same as the one of this class identifier (basic components 
of a class must be independent of each other, however). 

The scope of a local definition identifier covers the corres­
ponding construct. 

Non recovering rule 

Except for set or class identifiers defined in different chap­
ters, no identifier shall be ambiguous within its scope. A dot 
notation is used when ambiguities occur in using set or class 
identifiers (see "set_id" §4.3). 

Non recursivity rule 

No definition shall be directly or indirectly recursive. 

6. KERNEL LANGUAGE EXTENSIONS 

The whole language is obtained by extending the kernel lang­
uage; some useful syntactic construct may be replaced by simpler 
ones. These equivalences are denoted by special syntactic equa­
tions 

new syntactic construct ::=:: syntactic construct 

where ": :=::" may be read as "is syntactically equivalent to". 
A syntactic construct is represented by an incomplete derivation 
containing some non terminal symbols acting as metalinguistic 
variables that may be indexed or primed. Lists are denoted by 
" " These extensions concern the set, boolean and structure 
sublanguages . 
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6.1 Boolean sub language extensions 

Boolean sub language extensions introduce classical boolean 
operators as well as existential and universal quantifiers. 

Syntactic extensions 

booll => bool2 
booll and bool

2 
booll <=> bool2 
setl ;II! set2 
setl t set2 

: :=:: E.9i (booll ) ..Q!. boo12 
: : =:: not (.E.£i (booll ) E1: ~ (bool2 ») 
: :=:: (bool

l 
=> bool

2
) .!!!£ (boo12 => booll ) 

: :=:: !'!Qi (setl = set2 ) 

: :=:: E.9i (setl E set2 ) 

exist idJist f2!. ::=:: (m id_list tEL 
spec 

end -
spec 

end) ;II! .!illll. 
existl id _list !2!:. :: =: : exist id !EI. 

spec 

~ 

id : set 

'Where 

(set id list for - - -
spec 

~) = {id} 

~ 

where "spec" is defined by: 

spec ::= decl [where cond [given de!]] 

forall id_list !2!:. ::=:: .!!.2l (exist id_list !!2!. 
decl 

[where 

condl ] 

~ 
cond2 

[given 

def] 

booll ; ••• ; booln 

decl 

'Where 

[condl ;] 

.!!2i cond2 
[given 

de!] 

~) 

: :=:: booll ~ ••• !:!!£.. booln 
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6.2 Set sub language extensions 

Set sublanguage extensions introduce a simplified notation for 
the Cartesian product, a simplified notation for the "privileged" 
element of a set, a notation for the set of relations, total or 
partial functions from a set to another one and the classical 
functional and relational notations. 

Syntactic extensions 

setl x ••• x setn 
: :=:: set idl , .•• ,id for 

- n-

id set 
n n 

end -
any (setl x •.• x setn ) :: =:: any idl ,··· ,idn :f2l:. 

idl setl ; 

id set n n 
~ 

set -+-+ set' : :=:: subset (set x set') 

The above notation denotes the set of binary relations from one set 
to another. 

~ id_list -+-+ id list' ..f.2r :: =:: ~ id_list, id list t !2! 
spec spec 

end 

The above notation allows definition of a binary relation with a 
predicate. Note that, if "id list" or "id list'" have several 
identifiers, then several binary relations-may be defined this way 
for the same right syntactic construction. This is due to the fact 
that a Cartesian product made of more than two sets may be "cut" in 
di:fferent ways. 

rel_id{set -+-+ set') ::=:: ((set).(set')) £ rel id 

In the above notation "rel id" designates a relation identifier. 
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reI id (setl x ••• x setn) : :=:: ~ id t !!rr. 
id' eodom (rel_id) 

where 

exist idl , ••• ,id for n-

id 
n 

where 

set n 

rel_id ((idl , ••• ,idn) ~ id') 

The above notation defines the image of a set through a given 
relation. The expressions "2 (rel_id)" and "eodom (rel_id)" 
designate the domain and codomain of a relation (denoted by the 
identifier "rel_id"). 

reI id (setl, ••• ,set ) - n 
::=:: reI id ({(set1,.··,set )}) - n 

{setl ~ set'l;···; ::=:: {«setl),(set'l»);"'; 

«set ),(set' »} set ~ set' } 
n n n n 

The above notation allows for the extensive definition of a 
binary relation. 

Similar notations are now given for functions. 

set .... set' : : =: : ~ id" !E!. 
id" set ++ set' 

where 

forall id f.91: 
id set 

~ 
existl id' !2!: 

id' : set' 

where 

id" (id ++ id') 

end 

~ 
end 
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The above notation defines the set of total functions from one set 
to another. 

set - set' : : =: : ill. id" tEE. 
id" set ...... set' 

where 

exist id !.sr£. 
id . subset (set) . 

where 

id" = id -+ set' 

~ 

~ 

The above notation defines the set of partial functions from one 
set to another. 

func id1 , ••• ,id -+ id'l, ••• ,id' for ::=:: rel idl,···,id ...... 
- n m- - n 

idl 
· .. 
id . . 

n 

id\ 

· .. 
id' m 

[where 

cond] 

then 

id'l 

· .. 
id' m 

[given 

def] 

. . 

= 

= 

set
1

; 

set . 
n' 

set' 1; 

set' m 

set" . l' 

set' , 
m 

id \' ••• ,id' m for 

id
l 

set
l

; 

• •• 
id : set ; n n 

· .. 
id' set' m m 

where 

[cond;] 

id\ = 

· .. 
id' = m 

[given 

def] 

set" . 
l' 

set't 
m 

The above notation defines a function by one or several formulas. 
Note that "cond" shall not contain an.v of the bound varia'h' e 
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identifiers "id\", ••• ,"id'm" 

decl 

[where 

cond] 

~booll~ 

bindl ... 

when bool then 
- n-

bind n 
[~ 

bind] 

[given 

def] 

decl 

where 

[cond;] 

booll => bindl g£ 

••• 

bool => bind [_or 
n n 

.!l21 (booll ~ ••. !:!!£ booln ) 

[given 

de!] 

=> bind] 

The above notation defines a :function by case. Note that the 
various predicates "bool ", .•• ,"bool " shall be exclusive (no non­
determinism) and that, i~ the case 01" a missing fI else", their dis­
junction shall be true. The non termina.1 sYlIlbol "bind" may be 
defined by 

bind ::= id = set {; id = set} 

func_id (set
l

, ••• ,setn ) :: =:: !!:EZ. id' f2I.. 
ide : codom (tunc_id) 

where 

( (set
l 

, ••• ,set
n

) ,id') £ func_id 

~ 

The above equation introduces the usual functional notation 
("func_id" is a function identifier) 

func_id (set
l 

x ••• x setn) : :=:: mid' :f!2l: 
ide : codom (func_id) 

where 

exist idl, ••. ,id for n-
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. .. 
id set n n 

where 

~ 

((idl, .•• ,idn),id t ) E func_id 

end 

The above notation defines the image of a set through a given 
function. 

{setl ~ set'l;"'; 

setn ~ set' n 

::=:: {setloH- set t

l ;···; 

set oH- set' 
n n 

The above notation defines a function extensively. Note that, 
. . " " "t" t 11 h d' ff t Obv1ously, the express10ns setl , ••• , se mus a ave 1 eren 

. " ,,, n "t'" values as well as the express10ns set 1 , .•• , se n' 

subst func_id with 

setl ~ set'l; 

... 
set ~ set' 

n n 

: :=:: func id -+ id' for - -
id : dom (func_id); 

id' : codom (func_id) 

when id = setl ~ 

id' = setl 

when id = set then 
- n-

id' = set' n 
else 

id' = func_id(id) 

~ 

The above notation allows definition of a function by changing some 
of the values of a given function, leaving the others unchanged. 
Note that the expressions "set

1
", ... , "set " shall have different 

values and that the expressions "set' 1" ,. ~. , "set' " shall be such 
that the result still is a function. n 

Some remarks 

The general form of a function definition is, as seen previously: 

. d[ . d' , . d I I ] f . d . . d' . , 
1 1 1,··.,1 P = ~ 1 1"" ,1dn -+ 1 1,···,1d m for 

end 
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The identifiers "id" ", ••• , "id" " denote fonnal generic parameters 
h " 'd " " ' dIll 'P ' wereas 1 1 , ••• ,1 n denote th~ formal parameters of the funct1on. 

An invocation of this function has the following form 

id(setl,···,setn) 

where "set
l
", ••• ," set " denote the actual parameter of the function. 

In this case, it is ngt necessary to provide some values for the 
actual generic parameters because they are implicitly defined 
within the expressions "setl ", ••• ,"setn

ll
• 

Whenever n = 2, it is sometimes useful to denote a function 
invocation using an infixed for.m: 

setl id set2 

In order to indicate this special usage, the identifier "id" is 
replaced in its definition by 

.2E. (id). 

Any u~e of "id", out of an invocation, must be written 

.2E. (id) [set' \,.,. ,set"p] 

where "set' t 1" , ••• ,"set' 'pll denote the actual generic parameters. 

This special notation may be used for binary relations as well. 

6.3 Structure sUblanguage extension 

The structure sublanguage extension allows us to define a dis­
crete set composed of a certain number of explicitly denoted 
elements. 

Syntactic extensions 

... 
id = class end' 

n -' 
id t = subclass, idl I ... I id end' n-' 
id = set idl t !2!. 

id' t ill (id t ) 

where 
id' , = idl g.r. 

ia' , = id n 
~ 
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'7. SOME REMARKS ABOUT CLASSES 

Recall that a class is defined by (See §4.5) 

id(id' \, ••• ,id' 't) = class 
idl setl ; 

fonnal 

generic 

parameters 

An expression like 

... 
id 

n 

where 

cond 

given 

id'l 

••• 
id' m 
~ 

id[set t \" •• ,set' , 1] 

= 

= 

set 
n 

set' . l' 

set t 
m 

basic components 

axioms 

derived components 

denotes the set of objects of the class "id" for the values 
"set' :l, ••• ,"set"t" of the generic parameters •. Such a set may be 
used ~n a declarat10n 

. d t ,t • • d[ t t , t ,. ] 
1 • ~ se l,···,se 1 

where the identifier "id' I ,II denotes a bound variable (Bee §4. 3) , 
or even a component of yet another class (see §4.5). In order 
to reference a basic or derived component of the object "id"''', 
a functional notation is used, i.e.: 

id.(id"') or id.(id"') 
1 J 

Class component identifiers denote (generic) unary functions 
on the objects of the class. This notation may be applied for 
explicitly constructed objects as well (operator ~ or repl). 

Finally, note that within an explicit replacement construction 
(operator repl) , or within a class definition, the usage of a camp­
on~nt identifier alone is sufficient to refer to the component in 
question (this is a convention similar to the one used in PASCAL 
wi thin a "with" construct). 
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8. SYMBOLS AND KEY WORDS 

The symbols and key-words of the kernel language are the 
following: 

= . => £ X ( ) [ ] { } , , 

any for set -
class given subclass 

~ .!!2i subset 

~ ~ ~ 

~ .2!: where 

finite repl !ill!. 
The symbols and key-words of the extended language a.re the 
following 

<=> ~ t ++ ~ + 
~ ~ 
codom .2I!. 

~ .!:tl 
~ subst 

exist !l!!m 
existl ~ 
forall 

9. BASIC CHAPl'ERS 

We now present a few basic "chapters" that will be extensively 
used in later applications. The first of these chapters, named 
SET, defines the standard generic operators of elementary set 
theory. It is worth noting that these operators apply to binary 
relations or functions as well because they are themselves sets. 

The next chapter, named REL, uses SET and defines the standard 
operators of binary relation theory, namely inversion, composition, 
functionality (to go possibly from a relation to a function), and 
products. These operators apply to functions as well , because they 
are special cases of binary relations. 

A third chapter named FUNC uses SET and REL, and defines special 
kinds of functions, namely injections, surjections, and bijections. 
It also defines the restriction of a function and the constant 
function. 
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SET = 
def -

££(u)[X] = fune 81,82 ~ 83 f2r 
81,82, 83 : subset(X) 

then 

83 = set x for x : X where 

x £ 81 or x £ 82 

~ 
end' -' 

2E(n)[x] = ~ 81,82 ~ 83 for 

81,82,83 : subset(X) 

then -
83 = ~ x for x : X where 

x £ 81 ~ x £ 82 

end 

end' -' 
union[X] = ~ 88 ~ 8 for 

88 subset(subset(X»; 

8 subset(X) 

~ 
8 = ill x !.2! x , X where , 

exist 8' 1£!: 8 I . 88 where . 

inter[X] = 

x £ 8 1 

end 

~ 
end' -' 

.f.EE.£ 88 ~ 8 for 

88 subset(subset(X»; 

8 subset(X) 

then 

8 = ill x !2! x : X where 

foral1 8 I t.£!: S' 

X £ SI 
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end· -' 
.2£( -) [X] = fune 81,82 -+ 83 for 

81,82,83 : subset(X) 

then 

83 = set x for x : X where 

x £ 81 ~ x ¢ S2 

end 

end· -' 
~(c) [X] = rel 81 +-+ 82 !£!.. 

81,82 : subset(X) 

where 

fora11 x f.£r. x 

X £ 82 

end -
end· -' 

.Q.E.( ¢) [X] = rel 81 +-+ 82 !£!.. 
S1,82 : subset(X) 

where 

not(81cS2) 

end· -' 
partition[X] = set S8 f£r 

81~ 

SS : subset(subset(X» 

where 

union(SS) = X; 

forall 81,82 ill 
81,82 : 88 

where 

81 ;o! 82 

~ 
S1n82 = ~ 

end -
end· -' 
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projl[X,YJ = ~ x,y -+- x' !2l: 
x,x' X; 

y Y; 

lli!!.. 
x' = x 

end' -' 
proj2[X,Y] = ~ x,y -+- y' !.E1: 

end SET 

REL = 
use SET def 

invCX,X'] 

.2£(0 )[X,Y,Z] 

ident[X] 

x X; 

y,y' Y 

~ 
y' = y 

~ 

= fune r -+- r' for r : X ~ X'; r' : X' +-+ X ~ 

r' = m x' ~ x !EI. x' 
r(x ~ x') 

~ 
end' -' 

= funer2,rl -+- r3 for 

X'; x : X where 

rl :X ~ Y; r2 : Y ~ Z; r3 X +-+ Z 

~ 
r3 = reI x ~ zfor x - - X; z : Z where 

end' -' 

exist y !.E1: y Y where 

rl(x ~ y); r2(y ++ z) 

~ 
end -

= ~ x ~ x' !£!: x ,x' X where x = x' end' -' 
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tunctionaJ.[X,YJ 

f'unction[X,Y] 

I: set r for r : X ++ Y where - -
r' (y) I: X; (r 0 r') c ident[Y] 

siven 

r' = inver} 
end" -' 

I: tunc r + f for r : X ++ Y; f X + Y where - -
r £: functional[X,Y] 

~ 
f I: ~ X + Y !2!: x : X; y Y ~ 

Y = ..!.&. (r(x) 

~ 
end' -' 

£ll(prod)[A,B,C,DJ == ~ rl,r2 + r3 !E.!. 

.Qlt( &) [A ,B ,cJ 

~REL 

rl : A ++ B; r2 : C ++ D; 

r3 A x B ++ C x D 

~ 
r3 = reI a,e ++ b ,d for - -

end' -' 

a : A; b : B; C : C; d D 

where 

rl(a ++ b); r2(c ++ d) 

end -
I: ~ rl,r2 + r3 !.9I. 

rl A ++ B; r2 : A ++ C; 

r3 : A ++ B x C; 

tpen 

r3 = reI a ++ b,c for - -

end' -' 

a : A; b : B; c C 

where 

rl(a ++ b); r2(a ++ c) 
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FUNC= 

~ SET, REL def 

inj[X,Y] = set f for f x -+ Y where 

surj[X,y] 

bij[X,Y] 

inv(f) 0 f = ident[X] 

~; 

= set f ~ f : X -+ Y where 

f 0 inv(f) = ident[Y] 

end' -' 
= injeX,Y] n surj[X,Y]; 

inverse[X,Y] = ~ f -+ f' ~ f : bij[X,Y]; f' 

f' = function(inv (f)) 

restriction[X,Y] 

const[X,Y] 

end FUNe 

end' -' 
= ~ f,S -+ f' ~ 

f : X -+ Y; S : subset (X); f' 

~ 
f' = func x -+ y for x 

y = f(x) 

end 

end' -' 
= ~ S, Y -+ f for 

S : subset (X); y Y; f 

~ 
f = ~ x -+ y' for x 

y' = y 

end' --' 

S; Y 

x-fy 

S; y' 

Y -+ X then 

x -f Y 

Y then 

The next two chapters define the natural numbers and the 
sequences. NAT, the first of them, starts by introducing generic­
ally the cardinal of a set S as the set of set S' equinumerous 
with s; then the set of natural numbers is the set of finite card­
inals. The classical relations n:s;" and '<I and the operation 
successor are then defined before the iterate of a function. This 
allows us to give the definition of the basic arithmetic operations. 
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The chapter SEQ generically defines the sequences as the set of 
functions whose domains are segments of the natural numbers; i.e. 
{O,l, .•• ,n}. It is then easy to define the concatenation (operator 
*), "first" and "tail" operators. The chapter ends with definitions 
of a sorted sequence of natural numbers and the set of sub-sequences 
of a given sequence. 

NAT = 
use SET, REL, FUNC def - -

equinumerous [X] = ~ S -H- 8' fEr. 8,8' subset (X) where 

bij [8,8'] ~ ~ 

card[X] 

NAT[X] 

O[X] 

thl[X] 

th2[X] 

.2E,(s )[X] 

op«)[X] 

encl--' 
= ~ S -+ S8 !E.r. 8 subset (X); 8S : subset 

(subset(X)) ~ 

8S = equinumerous(8) 

end· -' 
= ~ n .f.2!:. n : subset (subset(X)) where 

not (finite(X)); 

exist 8 1£! 8 : subset(X) where 

card(8) = n; finite(8) 

= card(~); 

=> O[XJ =~; 

=> O[xJ € NAT[X]; 

= reI n1 ~ n2 for n1,n2 : NAT[XJ where - -
exist 81,82 ~ 81,S2 : subset(X) where 

card(Sl) = nl; card(S2) = n2; 

inj[Sl,S2J ~ ~ 

~ 
end--' 

= m nl ~ n2 !E.!. nl, n2 NAT[XJ where 

nl s n2; nl ~ n2 

end' -' 
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succ[X] 

relpred[X] 

= ~ nl .. n2 for nl,n2 NAT[X] ~ 

n2 = card (Su{x}) 

given 

S = ~ (nl); x = any (X - S) 

end" -' 
= inv( suee[X]) ; 

th3[X] => relpred[X] E (NAT[X] - {O[X]}) .. NAT[X]; 

pred[X] = funetion(relpred[X]); 

-- ~rom now on the generic parameter X is omitted 

induction_theorem => forall S for S subset(NAT) where 

o £ S; 

recursion[X] 

f 
n--+)--y 

suee t t g 

n+l ~ y' f 

iter[Z] 

forall n !2r.. n S ~ 

suec(n) E S 

~ 
then -

S = NAT 

end· -' 
= funetion(r~. y,g -+-+ f !2r. 

y : Y; g : Y .. Y; f NAT" Y 

where 

f(O) = y; 
f 0 suee = g 0 f 

~); 

= ~ h" f for 

h : Z .. Z; f : NAT .. (Z .. Z) 

~ 
f = reeursion(y,g) 

given 

y = ident[Z]; 

g = ~ hI .. h2 ~ hI,h2 Z" Z ~ 

h2 = h 0 hI 

end -
end" -' 368 
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f(O) = ident[ZJ 

f(n+l) = g(f(n)) = h 0 f(n) = ••.• = hn
+
1 

.2E,( exp) 

.9.£(-) 

div mode 

=~ nl,n2 ~ n3 for nl,n2,n3 = NAT ~ 

n3 = iter(suec)(nl)(n2) 

end--' 
= ~ nl,n2 ~ n3 f£t nl,n2,n3 NAT ~ 

n3 = iter(~(+))(nl)(n2) 
~; 

= fune nl,n2 ~ n3 for nl,n2,n3; NAT then 

n3 = iter (£E(x))(nl)(n2) 

end--' 
= funetion(rel nl,n2 ++ n3 for nl,n2,n3 

NAT where 

n2~nl; nl = n2+n3 

~); 

= function(~ a,b +7 q,r for a,b,q,r : 
NAT where 

b~O; a = (b x q) + r; r<b 

end); 

~(div) = projl[NAT,NATJ 0 div~od; 

~(mod) = proj2[NAT,NATJ 0 div~od; 

1 = succ(O); 2 = succ(l); 3 = succ(2); 4 = suce(3); 

5 = suee(4); 6 = succ(5); 7 = suec(6); 8 = suce(7); 

9 = suce(8) 

end NAT -
SEQ= 

~ SET, REL, NAT ~ 

segment = ~ n ~ S ~ n : NAT; S : subset(NAT) ~ 

S = ill.. i for i : NAT where i <n ~ 

end' -' 
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seq[X] 

1ength[X] 

.£E.{ *) [X] 

first[X] 

eat[X] 

tai1[X] 

= set s for s : NAT f X where 

dam (s) E segment(NAT) 

end; 

= fune s -+ n fE!: s : seq[X]; n NAT then 

n = eard{~{s)) 
end' -' 

= ~ sl,s2 -+ 53 for 5l,s2,53 seq[X] then 

s3 = 51u(s2 0 f) 

given 

f = iter(pred)(length(sl)) 

end; 

= ~ s -+ x for 5 

s ~ EE11 
~ 

x = s(O) 
end' -' 

seq[X]; x X where 

= ~ x, sl -+ s2 for 81,52 : seq[X]; 

x: X~ 

52 = {O -+ x} * 51 

end; 

= fune 81 -+ s2 for sl,82 seq[X] where 

51 ~ null 

~ 
s2 = (51 - {O -+ first(sl)}) 0 suce 

~; 

th[xJ => eat[XJ 0 (first[XJ & tail[XJ) = ident[seq[XJJ; 

a550ciated_re1[X] = fune 5 -+ r for 

s seq[XJ; 

r X~X 

then 

r = s 0 suee • inv(s) 

end' -' 
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sorted = ~ s :!El: s : seq[NAT] where 

associated-!el(s)c~(s) 

end' -' 
= ~ 51 ++ s2 !2!:. sl,82 : 8eq[X] where 

exist s3 ~ 83 : sorted where 

sl = s2 • s3 

~ 
end 

end SEQ 

As a last syntactic extension, an explicit sequence is denoted 
by 

The chapter MON defines the monoids as a sub-class of a sub-group 
(a binary commutative operation). Classical examples of monoids 
are then given, followed by the definition of the extensions of 
binary operations (with neutral element) to sequences. ' 

MON = 
~ SET, REL, FUNC, NAT, SEQ M 

subgroup[S] , - class 

monoid[S] 

examplel[X] 

oper : S x S ~ S 

where 

oper • (oper prod ident[SJ) = oper • 

(ident[S] prod oper) 

end' -' 
= subclass subgroup[S] class 

u:S 

where 

oper • (const(S,u) & ident[SJ) = ident[SJ; 

oper • (ident[S] & const{S,u» = ident[S] 

end' -' 
= cons monoid[subset(X)] with - -

oper = .2E. (U) [X] l u = ~ 
end' ~, 
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example2[X] 

example3[X] 

example4 

example 5 

example6[X] 

extension[X] 

= cons monoid[subset(X)] with - -
oper = .2P.(n )[X]; u = X 

~; 

= cons monoid[X + X] with - -
oper = ~ (o)[X,X,X]; u = ident[X] 

~; 

= £2B! monoid[NAT] ~ 

oper = £E(+); u = 0 

end" -' 
= £2B! monoid[NAT] ~ 

oper = .2E,(x); u = 1 

~; 

= £2B! monoid[seq[X]] with 

oper = .2P.(*)[X]; u = ~ 
~; 

= function(~ m ++ f ~ 
m monoid[X]; 

f seq[X] + X 

where 

f = fl U f2 

given 

fl = const( {~}, u(m)); 

f2 = oper(m) 0 f3; 

f3 = first[X] & (f • tail[X]) 

~); 

sigma = extension (example4); 

end MON 

pi = extension (example5); 

comp[X] = extension (example3[X]); 

conc[X] = extension (example6[X]) 
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Finally,- the chapter RELATIONS gives the classical definitions 
of the transitive closure of a binary relation, of symmetry, 
transitivity, reflexivity, and so forth, as well as preorder, 
equivalence, order, and so forth, for binary relations. 

RELATIONS = 
use SET, REL, NAT def - -

rel_iter[ZJ I: ~ r -.. f I!a. 

-- f(O) = identEZ] 

f(n+l) = g(f(n» 

closure[Z] 

closure(r) 

th[Z] 

sym[X] 

trans[X] 

reflex[X] 

asym[xJ 

r Z ++ Z; f : NAT ..... (Z +-to Z) 

~ 
f I: recursion(y,g) 

given 

y = ident[ZJ; 

g = ~ rl ..... r2 tEL rl,r2 Z ++ Z ~ 

r2 = r • rl 

~ 
end' -' 

I: r • fen) I: ••• 
n+l -= r 

= ~ r -.. r 1 !£!. r ,r': Z ++ Z ~ 

r' = union(rel_iter(r)(NAT» 

end" -' 
2 n = ident[Z] U r U r U ••• U r U 

= forall r .!2.!: r : Z ++ Z ~ 

ident[Z] c closure(r); 

r • closure(r) c closure(r) 

end" -' 

, .. 

= ill. r ..f2!:. r X ++ X where r I: inv( r) ~; 

= set r ..f2!:. r X ++ X where (r • r) c r 

~; 

I: set r for r X ++ X where identEX] c r 

~; 

I: ill. r .!£!: r X ++ X where(r n inv{r» = 

EEl!~; 
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antisym[X] 

irreflex[X] 

total[X] 

= ill r for r X +-+- X where (r n inv(r)) = 
ident[XJ end; 

= ill r !.E!:. r X +-+- X where (r n ident[XJ)= 

~end; 

= ill r !.E!:. r X ++ X where (r u inv(r)) = 
X x X~; 

preorder[XJ = trans[X] n reflex[X]; 

equiv(X] = preorder[XJ n sym[XJ; 

order[XJ = preorder(XJ n antisym[XJ; 

strict_order[X] = trans[X] n irreflex[XJ; 

total_order[X] = order[XJ n total[X]; 

thleX] => .2:e. (s)· £ total_order (NAT); 

th2[X] => .2:e. «) £ strict_order (NAT); 

th3[X] => .2:e. (c)[XJ £ order(subset(X)); 

th4[X,Y,zJ => forall rl,r2,r3 ~ 

rl X +-+- Y; r2 : Y ++ Z; r3 X +-+- Z 

~ 
((r2 0 rl) n r3 = ~) => (inv(r3) • r2) 

n inv(rl) = null) 

end" -' 
th5[xJ => strict order[X] => asym[X] 

end RELATIONS -
10. EXAMPLES 

The preceding "chapters" were extensions of the language in 
order to constitute an elementary mathematical background. This 
section attacks more "realistic" problems in various areas of pro­
gramming: an editing problem (§lO.I) represents "classical" pro­
gramming, a system problem (§IO.2), and a garbage collector spec­
ification (§IO.3) cover the "system" programming field, and finally 
a very simple algebraic language definition (§lo.4) goes towardsthe 
language design area. 
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Note: All "basic chapters" are im;plicitly used 1n the examples. 

10.1 An editing problem 

The first problem that we try to specify is a simple editing 
problem. It may be informally stated as follows: to transform a 
string of characters by replacing all its substrings of consecutive 
blank characters by a single blank character. This problem is 
interesting for several reasons: 

it 1S simple enough so that anyone may understand it immediately 

it 1S a practical and classical problem illustrating a large 
class of editing problems 

the corresponding program is not very difficult to write 
although its complete proof is not that trivial. 

Before attacking the problem we need to write a small "theoret­
ical" chapter defining a few concepts of the fixed point theory. 
These concepts may be informally defined as follows: 

Let f be a function from X to X; if, for all x, there exists 
a natural number n such that 

then any sequence 
. 

x, f (x) , ••• ,f1 (x) , ••• 

is stationary after a certain number n depending upon x, i.e., all 
further elements of the sequence are the same and said to be the 
stationary element of x through f. The corresponding functi~is 
called the limit of f. Note that not all functions from X to X 
have such a limit. 

In order to ensure that a function f has a limit, it is suff­
icient to find a variant, i.e., a function g from X to the natural 
numbers such that 

if f(x) = x then g(x) = 0 

if f(x) ~ x then g(x) ~ 0 and 
g(f(x)) < g(x) 

A binary relation R is said to be consistent with respect to 
function f from X to X, if, for any x, the following holds: 

x R f(x) 
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A very useful theorem finally states that if R is consistent 
with respect to f, then R* (the transitive closure of R) is con­
sistent with respect to the limit of f (it any). 

MINI FIXED POINT THEORY = - - -
~ 

limit[X] 

variant [X] 

variant_theorem[X] 

= func f + ft for f,f' : X + X where - -
forall x !.2!: x X ~ 

r( x ) ;Jt .mill:. 

~ 

~ 
f t = !:!:m£ x + X t tE1:. x ,x I 

given 

x, = iter(f)(i)(x) 

given 

l. = any(r(x» 

~ 

X~ 

r = m x +-+ n for x : X; n : NAT where 

iter(f)(n+l)(x) = iter(f)(n)(x) 

end 

end' -' 
= m f +-+ g !.2!: f : X + X; g : X + NAT where 

forall x tsa: x : X then 

(f(x) = x) => (g(x) = 0); 

(f(x) ;Jt x) => (g(x) > 0 ~ 

g(f(x» < g(x» 

end -
end' -' 

=> forall f tsa: f· : X + X where 

variant(f) ;Jt ~ 

then -
f £ dom(limit[X]) 

end' ~, 
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invariant_theorem[X] => forall f ,r !9£ 
f ,2(limit[X]); 

r X ~ X 

where 

fer 

~ 
limit(f) c closure(r) 

~ 

end MINI FIXED POINT THEORY - - - -
The specification of the editing problem constitutes another 

chapter using MINI FIXED POINT THEORY. A class "state" is first 
det'ined as that containing three components: "bit (for blank), and 
"in" and "out", that are a sequence of characters. The purpose of 
the specification is to define the properties of "out" with regard 
to "in", i.e., "out" shall not contain two consecutive blank char­
acters (this is specified in 11 specl It, a subclass of state) and shall 
be "equivalent" to "in" (this is described in "spec2", a subclass of 
"specl"): two sequences of characters are sa.id to be equiva.lent if 
the,y only dift'er by the (non null) length of their subsequences of 
consecutive blank characters. 

A function "one-step" is then given that is proven (i) to leave 
"specl" inva.riant, (ii) to have a limit, (iii) to be such that 
"equivalent" is consistent with respect to it (remember that the 
concepts of limit and consisten~ have been defined in the previous 
"chapter"). As a consequence, the limit of "one-steptl is proven to 
fulfil the specification of the problem. 

In order to construct a real program, the function "one-step" 
is then decomposed into two other functions, namely "stepO", 
handling null "out" sequences, and "stepl", handling non null "out" 
sequences. 

1~e PASCAL program is then written as a final step of the spec­
ification and construction process • 

EDITING PROBLEM = 
use MINI FIXED POINT THEORY def - - - - -

state[C] = class 

b : C; 

in,out 

~; 
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specl[C] 

spec2[C] 

one step[C] 

= subclass state[C] where 

out £ no_two_consecutive_blanks 

gl.ven 

no two_consecutive_blanks = 

end' -' 

~ s for s : seq[C] where 

not(associated_rel(s)(b ~ b)) 

end -
= subclass specl[C] where 

equivalent_string(in ~ out) 

given 

equivalent_string = closure(r); 

r = reI sl ~ 52 for sl,s2 : seq[C] 

where 

end' -' 

exist x,y,bl,b2 for 

x ,y : seq[C]; 

bl,b2 : seq[{b}] - null 

where 

end 

end 

51 = x*bl*y; 

s2 = x*b2*y 

= func 5 -+ 5' !2!:. 
S ,5' : specl[C] 

when in(s) = ~ ~ 
s' = s 

~ in ( s) ;t null !:!!.£ 
out(s)*<first(in(s)) > £ no_consecutive_ 

blanks(s) ~ 

s· - repl s' 1 with 

out • 09t*<rirst(in)~ 

~ 
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var[C] 

thl[C] 

th2[C] 

else 

st • stl 

given 

5'1 = repl s with 

end' -' 

in = tail(in) 

end 

= fune s -+- n for 5 : speel[C]; n NAT then 

n = length(in(s)) 

end' -' 
=> var[CJ € variant(one_step) 

=> one_step[C] E ~(limit[speel[C]]) 

after thl and variant theorem 

equivalent_state[C] = 
reI s ++ 5' f£! s,s' : speel[C] where 

equivalent_string(s)(out(s)*in(s) ++ out(s')*in(s')) 

end; 

th3[C] => one_step[C] c equivalent_state[C]; 

after definition of one step[C] 

th4[cJ => limit(one_step[C)) c equivalent_state[CJ; 

after th3[C] and invariant_theorem. Note that 

equivalent_state[C] = elosure(equivalent_state[C]) 

normalise[C] = fune s -+- 5' ~ 

s,s' = speel[C] 

where 

out{s) = null 

~ 
5' = limit(one_step[C])(s) 

~; 
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;> forall s !2r s : specl[C] where 

out(s) = ~ 

~ 
s' E spec2[C] 

g~ven 

st = repl s ~ 
out = out(normalise(s)) 

~ 
end" -' 

_ after th4[C] and definition of normalise. Towards a Pascal. 
program 

specl t [C] 

stepO[C] 

stepl[C] 

= subclass specl[C] class 

ch : C 

end" -' 
= ~ s ~ s' !2r s,st = specl'[C] where 

out(s) ; null -
:!!!!m in ( s) ; .m;11. ~ 

Sl = S 

~ 
s' = repl stl ~ 

out = out * <chl>; -- write (chl) 

ch = chl 

~ 
given -- read (chl) 

s 'l = repl s !i!ill. 
in = tail(in) 

~; 

chl = first(ch) 

end' -' 
= ~ s ~ st ~ s,s' : specl'[C] where 

out ( s) ~ null; -
ch(s) = last(out(s)) 

when in(s) = null then - --
Sl = S 
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~ in(s)~ null ~(ch(s)' ~ b .2.t chI ~ b) 

~ 
s' = repl 5'1 with 

out = out * <chI>; -- write(chl) 

ch = chI 

end 

~ 
s' = 5'1 

given -- read (chI) 

s'l = repl 5 ~ 

in = tail(in) 

2; 
chI = first(in(s» 

end' -' 
normalise'[C] = 1imit(stepl[CJ) • stepO[C] 

~ EDITING~ROBLEM 

The corresponding PASCAL program is the following 

program nor.malise(~nput,output); 

const b = , '; 

.!!!: ch ,chI : char; 

begin -------------------------------------------------------
if ,lli21eof then 

begin 

read(chl); 

write(chl) ; 

ch := chI 

end' -' 
while !!2.i eof .2:2. 
begin 

read( chI); 

if chI ~ b .2!. ch ~ b ~ 

stepO[C] 
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begin 

write(ch1) ; 

ch := ch1 

~ 
end 

1imit(step1[C]) 

end.--------------------------------------------------------------

10.2 A "system" problem 

The behaviour of a disk handler is now specified as a system 
programming example. In order to prove that this system has some 
"good" properties, a first "theoretic" chapter introduces a simple 
model for a non-deterministic system. This model is a graph in 
which the nodes and edges, respectively, represent the states and 
possible transitions of a dynamic system. Predefined "initial" and 
"final" states indicate where the system should start and possibly 
stop. These components constitute a structure (a class) whose 
axioms state that a final state has no successors and an initial 
state either is a final state or has successors. Four special cases 
are then introduced, namely: 

loop_free_systems, whose graphs have no loop 

deadlock_free_system, where those nodes that are reachable 
from the initial nodes are final or have successors 

finite systems where the set of nodes that are reachable 
from an initial node is finite 

well_halting_systems that contain all the previous 
properties. 

NON_DETERMINISTIC_SYSTEM = 
def -

systemexJ = class 

reachable : X ++ X; 

initial, final : subset(X) 

where 

reachable E trans[XJ; 

initial c (final U inv(reachable)(X)); 

reachable(final) = ~ 
!:.!!£; 
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loop_free_system[X]= subclass system[X] where 

reachable € irreflex[XJ 

end; 

dead_lock_free_system[X]=subclass system[X] where 

reachable(initial) c (final U inv(reach­

able) (X)) 

end' -' 
finite_system[X] = subclass system[X] where 

forall x for x : initial then 

finite(reachable(x)) 

!!!£ 
~;. 

halting_system[X] = loop_free_system[X] n 

dead_lock_free_system[X] n 

finite_system[X] 

An informal description of the disk handler is now given. A 
disk is made up of a finite number of concentric tracks. In order 
to optimise the arm movement, one organises the disk scheduling in 
such a w~ that the arm goes regularly from the exterior to the 
interior and back (this is the "lift" algorithm): the queries are 
therefore not served according to a FIFO strategy but rather by 
taking into account the current arm position and its next intended 
move. With each track is associated a queue of recognised queries 
that have not yet been served. 

Example: 

TRACKS QUEUES 

4 11111111111111111111111111 

3 1111111111111 next move 

2 1111111 , JlIIIIIIIIIII 
arm position 

1 

After serving the queries for track No 2, the arm moves to 
track No 3, serves its waiting queries, does the same for track No 4, 
then tUrns around to serve successively lower tracks, and so on. 
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The various tracks of the disk constitute, as stated above, a 
finite well order. It is then necessary, before entering the main 
definitions, to write yet another "chapter" introducing the concept 
and properties of well ordering. We first define the minimal 
elements of a set through an order relation; a well order relation 
is simply an order relation where the minimal element of all non 
null sets is unique: it is called the minimum of the given set 
through the relation. A finite well order is a well order relation 
whose domain is finite. The inverse-of a finite vell order is also 
a finite well order: this allows us to define the m~imum of a set 
through a-finite_well_order. 

'WELL ORDER = 
def -

minimum[X] 

min[X] 

= rel S,r ++ x for - -
S subset(X) - {~}; 

r order[X]; 

.x X 

where 

inv(r)(x) n S = {x} 

end· -' 
= ~ r for r : order[X] where 

minimum £ functional(Y,X) 

given 

Y = (subset(X) - {~}) x order[XJ 

~; 

= ~ S,r ~ x !2£ 
S subset(X) - {~}; 

r well_order[X]; 

x X 

then 

x function (minimum) (S,r) 

.!m2.; 

= ~ r !2! r : well_order[X] where 

finite(X) 

end; 
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th[X] 

max[X] 

=> forall r !2! r : finite_well_order[X] ~ 

inver) £ finite_well_order[X] 

end· -' 
= ~ S,r + x !£r 

S subset(X} - {~}; 

r finite_well_order[X]; 

x X 

then 

x = min(S,inv(r}) 

!B£ 

The final "chapter", named LIFT SYSTEM, contains the specific­
ation of the disk handler. It starts with the definition of the 
"hardware", a class defining the finite well ordering of the tracks 
and the content of the disk. This class is generic with respect to 
both TRACK and VALUE sets, the latter representing, without further 
details, the possible data stored on a disk track. The "hardware" 
class is then extended (subclass "static state") by adding two new 
components, the first giving the maximum-queue size (this is a 
"software" parameter), the second defining the initial input as a 
function from QUERY (another generic parameter) to TRACK. Finally, 
"static_state" is also extended (subclass "state"), thus defining 
the complete dynamic state of this system. This last subclass 
contains four new components, namely: 

input a partial function from QUERY to TRACK representing 
the not yet entered queries (future queries) 

wait a partial function from QUERY to TRACK representing 
the entered but not yet served queries {those that 
are waiting in the internal queues} 

output a partial function from QUERY to VALUE representing 
the past queries (already served) 

current: giving the current track position of the arm. 

These components, of course, obey some predicates in order 
to constitute an acceptable state; no query shall be simultaneously 
in the "input", "wait" or "output" domains; the number of queries 
waiting within the internal queues shall not exceed the maximum 
size of such queues; the disk value corresponding to each query 
shall not be changed throughout the ~amic evolution of the system 
(no updating). Four partial 'f"nnctions from "state" to "state" 
describe the transitions 
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"ask" enters a query into the internal queues 

"serve" removes a query from the "current queue" after serving it 

"change_move" changes the direction of the disk head movement 

"search" looks for the next track to become the current track. 

The union of these partial functions defines a binary relation 
"next state" between states. It is now possible to construct an 
instance of a "system" (the general model described in the chapter 
NON DETERMINISTIC SYSTEM) and to prove that the proposed "lift system" 
is indeed a "halting_system". -

LIFT SYSTEM = 
~ NONYETERMINISTIC_SYSTEM, WELL_ORDER def 

hardware[TRACK,VALUE] = class 

track order finite_well_order 

[TRACK]; 

disk TRACK + VALUE 

end--' 
static_state[TRACK,VALUE,QUERYJ = subclass hardware[TRACK,VALUE] 

class 

state[T ,V ,QJ 

max_queue_size 

initial_input 

where 

finite(QUERY) 

end; 

NAT; 

QUERY + TRACK 

= subclass static_state[T,V,QJ class 

input,wait Q + T; 

output Q + V; 

current T 

where 

{f!2!!! (input); dom (wait); dom (output)} E 

partition[QJ; 

card(queue(T)) S max_queue_size; 

(disk • (input U wait)) U output = disk 

• initial input 
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Sl.ven 

queue 

waiting_queries 

candidate 

current_queue 

end' -' 

= inv(wait); 

= queue(T); 

= track_order(current) 

n wait(Q); 

= queue(current) 

now the state transition functions 

ask[T,V,Q] 

serve[T,V,Q] 

change_move[T,V,QJ 

= ~ s + s' ~ s,s' : state[T,V,QJ where 

input(s) ~ null; 

card(waitin~queries(s)) < msx_queue_ 

size{s) 

~ 
s' = re:pl s with 

end' -' 

input = input - {q + input(q)}; 

wait = wait U {q + input(q)} 

given 

q = any(g,2.!(input)) 

end 

= func s + s' for s,s' : state[T,V,QJ where 

current queue(s) ~ null 

then 

s' = re:pl s with 

end' -' 

wait = wait - {q + wait(q)}; 

given 

q = any(current_queue) 

end 

= func s + s' for s,s' : state[T,V,QJ where - -
waiting_queries(s) ~ null; 

candidate(s) =~; 

current_queue(s) = null 
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search[T,V,QJ 

next state[T,V,QJ 

~ 
s' = repl 5 ~ 

track_order = inv(track_order) 

end 

end' -' 
= func 5 ~ 5' for s,s' : state[T,V,QJ where - -

candidate(s) # null; -
current_queue(s) = ~ 
~ 

s' = repl s ~ 

end' -' 

current = min(candidate, 

track_order) 

= lli 5 ++ 5' .f.Q!. s,s' : state[T,V,QJ where 

s' = ask(s) gr s' = serve(s) ~ 

s' = change~ove(s) ££ s' = search(s) 

end' -' 
-- now the final instantiation 

initial_state[T,V,Q] 

final_state[T,V,QJ 

lift[T,V,QJ 

th[T,V,QJ 
end LIFT SYSTEM - - . 

= subclass state[T,V,QJ where 

input = initial_input 

end' -' 
= subclass state[T,V,QJ where 

output = disk • initial input 

~; 

= £2E! system[state[T,V,QJJ with 

reachable = closure(next_state[T,V,QJ) 
-ident[state[T,V,QJJ; 

initial = initial_state[T,V,QJ; 

final = final state[T,V,QJ 

end' -' 
=> lift[T,V,QJ £ haltin&-system[state[T,V,QJJ 
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W I 10.3 Garbage collectors 

1
1,.' A classical example is now proposed. It has already been 
! described in several papers, particularly the one by Dijkstra et 
ill ale (*). 
~ 

i 
The informal description of this system will be given together 

with the formal text; however, a previous knowledge of" the problem 
is probably necessary to comprehend fully the proposed development. 

GARBAGE_COLLECTORS = 
~ '* A first class, called "stateO[N]", describes the basic data 
structure of this system. It is generic with respect to N (for 

Node) *' 
stateO[N] = class 

next : N ++ N; 

free,root : subset(N) 

given 

reachable = closure(next)(root) 

end' -' 
1* An acceptable state is one where free nodes are not reachable 
and have no successors *' 
statel[N] = subclass stateO[N] where 

free n reachable = ~; 
next(free) = ~ 

end' -' 
1* One now describes three functions, together called the "mutator". 
They stand for the basic primitives at a user's disposal*1 

1* The first primitive allows a user to extend the reachable nodes 
by connecting an already reachable node with one that is free. 
This node will, of course, lose this property *1 

(*) On_the_Fly Garbage Collection: An Exercise in Cooperation, 
E.W. Dijkstra et al., CACM, Vol 21, No 11, Nov. 1978. 
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extendl[N] = ~ n,s + s' for 

n : N; s,s' : statel[N] 

where 

n £ reachable(s); free(s) # ~ 

then 

s r = repl s with 

end" -' 

next = next U {n ++ n'}; 

free = free - {n'} 

given 

n' = any(free) 

end 

/* The second ~rimitive allows a user to connect two already reach­
able nodes. This primitive requires that the set of free nodes be 
not em~ty, although this is not strictly necessary */ 

insertl[N] = func n,n',s + 5' for 

n,n' : N; s ,s' : statelENJ 

where 

n £ reachable(s); 

n' E reachable(s); 

free(s) # null 

then 

5' = repl s with 

next = next U {n ++ n'} 

end 

end" -' 
/* The third primitive disconnects two reachable nodes (if they were 
already connected). A non empty free node set is also required */ 

removel[N] = func n,n',s + 5' for 

n,n' : N; s,s' : statelENJ 

where 

n E reachable(s); 

n' E reachable(s); 

free(s) "I null 
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~ 
S' =, repl s ~ 

next = next - {n ++ nf} 

~ 
end" -' 

1* Whenever the free set is empty any previous "mutator" activity 
ceases and another function, called the "collector", appends the 
non-reachable nodes (called "garbage") to the free set */ 

collectorl[N] = func s ~ S' for 

s,s' : statel[N] 

where 

free(s) = .!illll 
then 

s' = repl s with 

free = free U garbage; 

next = next - (garbage x next(garbage» 

gl.ven 

garbage = node - reachable 

~ 
end" -' 

1* Note that the "mutator" and "collector" activities exclude each 
other. Note also that 

next = next - (garbage x next(garbage)) 

ensures that the invariant of "statel[N]" 

next(free) = ~ 

always holds * / 
1* The "collector" activity will now be decomposed into two phases 

a marking phase where reachable nodes are marked 

- an appending phase where non marked nodes are appended to the 
free nodes. 

In order to do this one extends "statel[NJ" to introduce marked 
nodes */ 
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state2[NJ = subclass statel(N) class 

marked : subset(N) 

where 

marked c reachable; 

root c marked 

end' -' 
/* The "mutator" primitives do not change. The first "collector" 
primitive marks the nodes */ 

mark2[NJ = ~ s ~ Sl ~ s,s' : state2[NJ where 

next(s)(marked(s» ¢ marked(s); 

free(s) = ~ 
~ 

5' = repl s ~ 

marked = marked U next(marked) 

~ 
end; . 

/* The second "collector" primitive appends the non marked nodes to 
the free set */ 

append2[NJ = ~ s ~ S I !.2.! 5,5' : state2[N] where 

next(s)(marked(s» c marked(s); 

free(s) = ~ 
~ 

s' = repl s with 

end" -' 

free = free U non~arked; 
next = next - (non_marked x next(non_marked»; 

marked = root 

given 

non~arked = node - marked 

~ 

/* Note that both "collector" primitives exclude each other (and 
still exclude the "mutator" activities), and that the marking phase 
is usually performed by several invocations of the "mark" function. 
It is important to prove that this new "COllector" does the same 
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thing as the previous one. In other words, we have to prove the 
following theorem */ 

th2[N] => forall s tEL s : .9£!!l(append2[N]) ~ 

marked(s) = reachable(s) 

~; 

/* We have to prove 

marked = closure(next)(root) 

under the following hypothesis 

HI : root c marked c closure(next)(root) 

coming from the definition of "state2(N]" 

H2 next (marked) c marked 

coming from the definition of "~(append2[N])II. 

rt is therefore sufficient to prove 

closure(next)(root) c marked 

This is done by induction. 

step 0 root c marked 

step n nextn(root) c marked 

nextn+l(root) c next (marked) 
n+l next (root) c marked 

Q.E.D. */ 

(from HI) 

(induction Hyp) 

(from H2) 

/* One now removes the constraint that "mutator" and "collector" 
activities exclude each other. In other words, we allow the 
"mutator" activities to be possibly performed between two invoc­
ations of the "mark" function. In order to do this, "statel[N]" 
is extended by another component, a set of' "pre~arked" nodes, and 
extra axioms * / 
state3[U] = subclass statel[N] class 

marked,pre_marked : subset(N) 

where 

marked n pre_marked =~; 

next (marked) n non ..... marked = ~; 

root n non marked = null - -
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given 
non marked = node - (marked U pre_marked) 

end; 

/* The "mutator" functions are, of course, different. In particular, 
the "insert" and "remove" functions do no longer require that the 
free set be non empty */ 

extend3[NJ = func n,s ~ s' !2r 
n : N; x,x' : state3[NJ 

where 

n € reachable ( s ); free ( s) :;. nEll. 

~ 
repl 5 ill.h 

next = next U {n ++ n'}; 

free = free - {n'}; 

pre~arked = pre~arked U ({n'} n non_marked) 

given 

n' = any(free) 

~ 
end; 

/* Note that 

pre~arked = pre marked U ({n'}n non_marked) 

ensures the conservation of 

next (marked) n non_marked = ~ 
which is an axiom of "state3[NJ" whose importance will be clear 
later. (See the proof of th3[NJ) */ 

insert3[NJ = func n,n' ,s ~ 5' for 

n,n' : N; 5,5' : state3[NJ 

where 

n € reachable(s); n' € reachable(s) 

~ 

5' = repl 5 ~ 

end" -' 

next = next U {n ++ nl}; 
pre~arked = pre_marked U ({n'}nnon~arked) 

end -
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/* The last "mutator" primitive "remove3[N]" is the same as 
"removel[N]". 

Next are the "collector" primitives *1 

mark3[N] = func s + s' for s,s' : state3[N] where - -
pre_marked ~ null 

then 

s' = repl s with 

end' -' 

marked = marked U pre_marked; 

pre_marked = next(pre marked) n non_marked 

end 

append3[N] = func s + s I .f.2!: s, s r 

pre_marked = null 

state3[N] where 

~ 
s' = repl s ~ 

end' -' 

free = free U non_marked; 

next = next - (non~arked x next(non_marked»; 

marked = null; 

pre~arked = root 

end 

/* Note first that the "collector" activities still exclude each 
other. It is now necessary to prove that this third "collector" 
does the same thing as the previous one. This is not actually 
true: this new "collector" only collects part of the garbage as 
stated by the following theorem */ 

th3[N] => forall s for s : dom(append3[NJ) then 

reachable(s) c marked(s) 

~; 

/* By comparison with "th2[N]" above, one may figure out that when 
"append3[N]" is invoked, there exist some "marked" nodes that are 
no longer reachable. We have to prove that 

closure(next)(root) c marked 

under the following hypothesis 
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HI root c (marked U pre~arked) 

H2 next (marked) c (marked U pre marked) 

both coming from the definition of "state3[N]" 

H3 : pre~arked = ~ 
coming from the definition of ".9-.2!.(append3[N])". 

Proof: 

(1) root c marked (by HI and H3) 

(2) next (marked) c marked (by H2 and H3) 

(3) closure(next)(marked) = marked (by (2» 

( 4) closure ( next) ( root) c closure ( next) (marked) .( by (1» 

(5) closure(next)(root) c marked (by (3) and (4» 

Q.E.D. 

Unfortunately, this theorem does not prove that this actual 
"collector" indeed collects anything. In other words, the set of 
"non~arked" nodes might very well be empty when "append3[N]" is 
invoked. Let "oldJarbage" be the set of nodes that are reachable 
but still marked when "append3[N]" is invoked. One now proves that 
this "oldJarbage" will indeed be appended to the free set upon 
the next invocation of "append 3[N]". To do this, the following 
extension of "state3[N]" is performed */ 

state4[N] = subclass state3[N] class 

old-Barbage : subset(N) 

where 

oldJarbage n free = ~; 
oldJarbage n reachable = ~; 
oldJarbage c non_marked 

~ 

1* The function "append3[N]" ~s accordingly changed into *1 

append 4[N] = func 5 ~ st for s,s' : state4[NJ where - -
pre marked = null - -

then 

st = repl s ~ 

396 



SPECIFICATION LANGUAGE 

end' -' 
/* As "old garbage" 
remains through the 
interfering marking 
theorem holds */ 

free = free U non_marked; 

next = next - (non_marked x next(non_marked)) 

marked = null' -' 
pre_marked = root; 

old-Earbage = marked - reachable 

end 

is neither in the free set nor reachable, it so 
"tt" t-" , mu a or ac ~v~tles, and ne~ther does the 
phase "paint" it. Therefore, the following 

th4[NJ => forall s ~ s : ~(append4[N]) ~ 

old_garbage(s) c free(s') 

g~ven 

S' = append4(s) 

end; 

/* Note that "old~arbage" is an "auxiliary variable" that has 
nothing to do with the system itself! it is only defined for the 
purpose of proving "th4[NJ" */ 

/* One now proceeds by decomposing the "mutator" activities one step 
further, thereby allowing more interferences to occur with the 
marking phase. Remember that the following was perfonned by 
"extend3[NJ" and "insert3[N]" 

pre_marked = pre~arked U ({n'} n non_marked) 

By doing this, we possibly "shade" n I. This shading might be per­
formed in a non-exclusive way. To do this, a new component called 
"param" is added, the purpose of which is to "store" the value of 
n ' while other activities occur before its shading */ 

/* In order to prove that th3[N] still holds, we introduce yet 
another auxiliary variable (*) named "old_next" that retain the 
value of "next" just before the possible invocation of the shading 
primitive */ 

state5[N] = subclass statel[N] class 

marked, pre~arked,param 

old next ; N ++ N 

where 
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marked n pre_marked = ~; 
next (marked) c (marked U pre~arked U param); 

root c (marked U pre marked); 

free c marked; 

param c old-!eachable; 

old next (marked) c (marked U pre marked) - -
given 

non marked = node - (marked U pre_marked); 

old_reachable = closure(old_next)(root) 

~; 

1* It is interesting to note the difference from the axioms of 
"state3[N]" : 

"next (marked)" is no longer always "non-Flarked II as "param" m8¥ 
be "non_marked". 

We require that the free set be "marked". 

The new "mutator l1 functions are the following * / 

extend5[NJ = fune n,s ~ s' ~ 

n : N ; 5,5' : state5[N] 

where 

n £ reachable(s); 

free(s) :; ~; 

param(s) = ~ 
~ 

s' = repl s with 

next = next U {n ++ n'}; 

free = free - {n'}; 

old_next = next U {n ++ n'} 

given 

n' = ~(free) 

end -
(*) Auxiliary variable technique was first introduced by S. Owicki 
in her thesis: Axiomatic Proof Technique For Parallel Programs, 
Dept. C.S., Cornell University, TR.251 (1975). 
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1* Note that n' need not be shaded as it is already "marked" because 
it belongs to "free" */ 

insert5[N] = ~ n,n',5 + s' for 

n,n' :N; S,5' : state5[NJ 

where 

n £ reachable(s); 

n' £ reachable(s); 

param ( s) = null 

then 

s' = repl s with 

end" -' 

next = next U {n ++ n'}; 

param = in'}; 

old_next = next 

end 

1* Note that 'after the invocation of insert5[NJ the following still 
holds 

param c ol~reachable 

old_next(marked) c (marked U pre_marked) 

because n' was an element of "reachable" and "param" was empty 
before the invocation *1 

shade5[N] = fune s + s' ~ 

s,s' : state5[NJ 

where 

param(s):; null 

~ 
s' = repl s with 

end" -' 

pre_marked = pre marked U (param n 

non_marked) ; 

param = .m!ll; 
old_next = next 

end 
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/* Note that after the invocation of "shade5[NJ", the invariant 

next(marked) c (marked U pre_marked U param) 

still holds, since "pre marked" was possibly extended if "param" 
was "non marked". Note-that this would not have been the case if 
II shade5[NJ" had been performed before "insert5[NJ" * / 

remove5[NJ = fune n,n',8 -+ S' for 

n,n l N; 

s ,s I state[NJ 

where 

n t reachable(s); 

n l t reachable(s); 

.J?aram ( s) = null 

then 

s I = repl s with 

next = next - {n +-+ n l
}; 

old next = next - {n +-+ n l
}; 

end 

end' -' 
/* Now the "collector" */ 

mark5[NJ =~s+s'f2! 

s, s I : state5[NJ 

where 

pre_marked # ~ 
then 

s' = repl s .!lih 

end' -' 

marked = marked U pre marked; 

pre~arked = next(marked) n non marked 

~ 

append5[NJ = ~ 5 -+ S' !2! 
5 ,s' : state5[NJ 

where 

pre~arked = ~ 
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1h!:E. 
s' = repl s with 

end 

end· -' 

free = free U non_marked; 

next = next - (non_marked x next(non_marked); 

marked = non_marked; 

pre_marked = root; 

old next = old next - (non~arked x next 

(non-Ylarked) ) 

/* Of course, it is now important to prove that th3[N] still holds, 
namely: 

forall s for s : dom( append5[NJ) ~ 

reachable(s) c ·marked(s) 

end 

The only hypothesis of th3[N] that changes is H2, that was 

H2 : next (marked) c (marked U pre_marked) 

which now becomes 

H2 : next (marked) c (marked U pre marked U param) 

One proves that H2 indeed holds because of the following theorem */ 

th5[N] => forall s for s : dom(append5[NJ) then 

param(s) c marked(s) 

end 

/* One has to prove 

param c marked 

under the following hypotheses 

HI param c closure(old_next) (root) 

H2 root c (marked U pre~arked) 

H3 old_next (marked) c (marked U pre marked) 

all three coming from the definition of "state5[N]" 
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H4 : pre_marked = null 

coming from the definition of "dom(append5)[N]" 

Proof: 

(1) root c marked 

(2) old_next(marked c marked 

(3) closure(old_next)(marked) = marked 

(by H2 and H4) 

(by H3 and H4) 

(by (2» 

(4) closure(old_next)(root) c closure(old next) 
(marked)- (by (1» 

(5) closure(old-pext)(root) c marked 

( 6) param c marked 

Q.E.D. */ 

end GARBAGE_COLLECTORS 

(by (3) and (4») 

(by Hl and (5» 

The reader is invited to pursue further decompositions of "extend", 
"mark", and "append". Note that the pre'·fious formalisation does 
not contain any proof that the marking phase ever terminates. 

10.4 Algebraic language 

Our last example is an attempt to specify a formal language (!) 
by defining its abstract syntax and semantics. We have chosen 
algebraic languages because they are simple enough and also because 
they are part of any programming language containing (boolean, 
arithmetic and so forth) "expressions". The specification is 
given at a general enough level so that any instantiation might be 
performed for a particUlar case of algebraic language: in this 
example, a boolean algebra. 

An algebraic expression, as is well known, may be represented 
by a ~ structure. For example, the following expression 

(a + (a+b» / (a + b) 

is pictured by 
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In this drawing, each node represents a sUb-expression made of 
an operator and a set of ordered edges leading to other sub­
expressions. The number of out-going edges depends upon a property 
of the corresponding operator called its ari ty, i. e., ";n and n+" 
have an arity of two, whereas "a" and "b" are considered as operators 
of 0 arity. 

Algebraic expressions may contain several common sUbexpressions: 
therefore a new structure, here called a double order, is best 
suited to represent them. The above expression, for example, 
might be represented by 

Such a structure is a "double" order because (i) it is a strict 
order relation, (ii) the out-going edges are also ordered. Before 
entering into the main definitions, a small "chapter" describes 
double orders. 
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DOUBLE ORDER = 
M 

double_order[X] = set f !£r 
f : X -+ seq[X] 

where 

(closure(r) - ident[X]) E strict-order[X] 

given 

r = reI x ++ Xl for - -
x ,x I : X 

where 

x I E f(x)(NAT) 

end -
end' -' 

/* One now defines the evaluation of a function through a double 
order */ 

eval-Fel[X,Y] = ~ g,f ++ h f£! 
g X x seq[Y] -+ Y; 

f X -+ seq[X]; 

h X -+ Y 

where 

f E double_order[X]; 

forall x f£r x : X ~ 

h(x) = g(x,h 0 f(x)) 

th[X,Y] => eval_rel[X,Y] E functional(((X x seq[Y] -+ Y) 

x (X -+ seq[X]),X -+ Y)) 

eval[X,Y] = function(eval_rel[X,Y]) 

The chapter "ALGEBRAIC LANGUAGE" first defines a "program" as a 
class whose components-are the operator and arguments of each sub-
expression. Another class defines an "algebra" as a class defining 
the application of an operator to a sequence of data as well as the 
arity of each operator. The semantics of a program with respect to 
an algebra defines the value of a sub-expression as the evaluation 
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of its arguments througb the double order represented by the program. 
An instantiation of these classes finally defines a boolean expres­
sion "program" interpreted by a boolean algebra. 

ALGEBRAIC_LANGUAGE = 

~ DOUBLE_ORDER ~ 

program[EXF,OP] = class 

operator EXP ~ OP; 

argument EXP ~ seq[EXP] 

where 

argument & double_order[EXPJ 

end; 

algebra[DATA,OP] ~ class 

value OP x seq [DATA] f DATA; 

arity Op ~ NAT 

where 

.9B.!. ( value) = set op, s ill 
op OP; 

s : seq[DATAJ 

'Where 

arity(op) = length(s) 

end 

end· -' 
semantics[EXP,OP,DATAJ = ~ p,a,e ~ v !2r 

-- now an example 

p program[EXP,OP]; 

a algebra[DATA,OPJ; 

e EXP; 

v DATA 

where static check 

arity(a) • operator(p) = 
length[EXPJ 0 argument(p) 

~ 
v = eva1(value(a) ,argument(p)) (e) 
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BOOL OP = {A; v;-'; true; false}; 

BOOL = {true; false}; 

boolean_algebra = 
~ algebra(BOOL,BOOL_OP) !!illi 

value = {A, <true; true> -+ true; 

A, <true; false> -+ false; 

A, <false; true> -+ false; 

A, <false; false> -+ false; 

v, <true; true> -+ true; 

v, <true; false> -+ true; 

v, <false; true> -+ true; 

v, <false; false> -+ false; 

." <true> -+ false; 

" <false> -+ true; 

true, ~ -+ true; 

false, ~ -+ false}; 

arity = {v ... 2-, 
A ... 2-, 
-, ... 1; 

true ... 0; 

false ... ° } 
end' --' 
EXP = {el; e2; e3; e4; e5; e6}; 

example = .££!!! program[EXP ,BOOL_OP] with 

operator = {el ... -'; 

argument = 

e2 ... v; 

e3 ... v-, 
e4 -+ A' , 
e5 -+ true; 

e6 -+ false} ; 

{el ... <e2> ; 

e2 ... <e3 ;e4>; 

e3 -+ <e5;e4>; 
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e4 .... <e5;e6>; 

e5 .... .!ll!Jd; 
e6 .... null} 

end' -' 
th => semantics(example,boolean_algebra,el) = false 

end ALGEBRAIC_LANGUAGE 

APPENDIX: SUMMARY OF THE LANGUAGE 

Utilisation sUblanguage 

chapter ::= id = [use id list] def body end id -- --- ----
id list ::= id{ ,id} 

Statement sUblanguage 

body ::= clause{;clause} 

clause ::= generic name = set 

gener~c_name => bool 

generic_name = class 

generic-pame ::= id['['id_list']'] 

Set sublanguage 

set ::= set id list for spec end -- - ----

subset (set) I 
'{'set{;set}'}' 

mill. I 

object 

set{,set} 

(set) 
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spec ::= decl[where cond[given def]] 

decl ::= id_list : set{;id_list : set} 

cond ::= bool{;bool} 

def ::= id~ist = set{;id_list = set} 

set~d ::= [id.]id['['set{,set}'J'] 

Boolean sublangu28e 

bool : := not(bool) 

bool 2!. bool 

set = set 

set £: set 

finite ( set) 

(bool) 

Class sublanguage 

class ::= class[sl'ec] end I 
subclass class_exp[class decl][where cond[given def]] 

class_exp ::= class_id{x class_id} I 
class_id{ , I' class_id} 

class_id ::= set id 

~ 

object ::= £QE! object_id[~ def[given def]J ~ 

repl object_id with def[given defJ end 

object_id ::= set id 

Statement sUblanguage extensions 

clause ::= operator~eneric_name = set 

operator-seneric-pame ::= ££(id)['['id_list']'] 
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Boolean sublanguage extensions 

bool ::= bool => bool I 
bool and bool 

bool <=> bool 

set :f. set 

set V. set 

exist id_list !s2!. spec ~ I 

existl id_list !£r spec end I 

forall id_list for decl[where 

bool{; bool} 

Set sUblanguage extensions 

set ::= set{x set} 

YSiL( set) I 
set +-+ set I 
set -I- set I 
set 1- set 

eodom( id) 

eond] ~cond 

[given de!] end -

func id list -I- id list for deel[where condJbind - - --

operator_id I 
id(set +-+ set) 

id(set) I 
, { 'set +-+ set{; set ++ set}'}' I 

'{'set -I- set {; set -I- set}'}' 

[given de!] ~ 

subst id ~ set -I- set{; set -I- set}[given de!] ~ 
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bind ::= then def I 
when bool then def{~ bool ~ def}[~ def] 

operator_id ::= [id.] ~(id)[I[Iset{,set}']'] 

Class sublanguage extension 

class ::= '{'id_list'}' 
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