
SPECIFICATION LANGUAGE

J.R. Abrial

Consultant

S .A. Schuman

Intermetrics

"B. Meyer

E.D.F

"You have e. quarrel on hand, I see," said I, "with some of the
algebraists of Paris; but proceed."

Edgar Allan Poe, The Purloined Letter

1. INTRODUC~ION.

The concept of specification language is now wid.ely spread;
formalising a problem is well recognised as a necessary step pre­
ceding any programming. The formalisation technique, however, is
still the purpose for intensive research: the number of proposals
in this field is a sufficient account of this fact. But a few
basic principles seem to emerge and be generally agreed upon:

using a strict formalism inherited from m.athematical
practice

recognising the set theory as a sound basis for the
formalisation

necessity of strong structuring of the formal text.

The proposed language takes its inspiration from these
principles; it is especially indebted to the effort made within the
last fifty years to present mathematical works in a satisfactory
way_

The formal specification of a problem is provided by a strict
stetement of its contents written in a non natural language, in
such a vray that any future reader might have the sane understanding
of it. !his necessitates that the given definition be exhaustive
and unambiguous, in contrast with most of the non-formal, natura.l
lanfuage s~ecifications.

F:xrerief'ce 8:101-.'·S tra.t r-ra.ctical (industrial) problems seldom
rose rrd or t1:eoretica.l d.ifficulties; their corar>leyi t~' lies rather
ir: tte. larf,e rluyler of' intricate details the,t hide their in-depth
nature and t'hus impede the ciscovErj' of clear solutions. Conse­
quently, such problerr.s raise the following question: how to

J.R. AERIAL ET AL.

emphasize the main points without sacrificing the details? The
•• .p th "t " answer 2S of great ~portance, as the emergence o~ e rue

problem makes it possible to discover its decomposition into
possibly known sub-problems. By doing this, the formalisation is
no longer a lonely activity. It now belongs to a larger work per­
formed by the same person, or better, a whole community: the spec­
ification language thus becomes a communication med.ium. One
recognises a process that has been at work for more than two
thousand years among mathematicians; returning to this source
therefore seems to be an especially adequate step.

2. THE MATHEMATICAL TEXT

What is the organisation of the mathematical text? This is
certainly a leading question for the beginning "formaliser." To
illustrate, let us then open a book and analyse its contents.

The most obvious structure is shown by the decomposition of the
book into chapters, sections, paragraphs, and so forth, each of
them with a title and a tree structured number. The reason for this
is quite Obvious: it allows nonlinear reading of the text by using
references, tables of contents, or other indications (sometimes a
graph); in other words, everything that provides fruitful use of
the book. These first elements constitute the so called utilis­
ation text; it is by now almost standard.

The second structure encountered in the mathematical text is
the one given by the various definitions, axioms, or theorems of a
chapter. As above, all these elements have a name allow'ing further
references. The content of definitions and the statement of axioms
or theorems constitute the so called statement text; it is partially
formalised, or even almost completely so, as in algebra, for example.

The third category is the proof text containing, as itR name
indicates, the proofs of the theorems. It is also only partially
formalised.

Finally, in the mid.st of these texts, one may find all sorts of
remarks, comments and the like, forming the explanation text.

It is interesting to note that, very often, these various texts
are distinguished besides their content by the character set used to
print them. Frequently, the utilisa.tion text is rrintec vith bold­
face characters, the statement text with italic characters, the
proof text with normal, and the explanation text ~Tith small char­
acters.

At a deeper level, the mathematical text is characterised bv
"Cwo trends. general enough to require attention. }.1'ost of the t:i.~e,
a mathemat1cal statement takes a generic (polJ~orphic~ schem~tic)

344

I ,
i r

SPECIFICATION LANGUAGE

form, e.g., the statement in question contains set identifiers that
are free. The following definition, for example, is eeneric with
respect to A and B:

fiLet l' be a function from A to B. One says that f is an
injection it. two distinct elements of A have distinct images
through f."

The second trend of the modern mathematical text lies in t~e
intensive usage of the notation of structure, as the order struc­
ture, the topological structure, the group or ring structure, and.
so forth. The definition of a structure consists of two distinct
elements: firstly, the "typification," giving the (seneric) defini­
tionsof its components; and, secondly, the axiornatisa.tion,
pointing out the characteristic properties of the components.

To reason in terms of structure has obvious advantages: this
allows us to give definitions and to prove theorems s.t an abstract
level. Then, if in some problem, one encounters an instance (a
special case) of a known structure, one may apply all previous
accumulated knowledge. l-1od.ern mathematics is actually a vast con­
struction of structures.

3. LANGUAGE PRINCIPLES

The previous analysis, superficial as it vTaS, allowea us to
define some useful terms for defining the basic huilding principles
of the language. It should allow us to write utilisation and state­
ment texts; proof and explanation texts will take the form of TIeTe
comments written in natural language and formal language as well.

Thus a text will present itself as a set of named chapters,
each of them with the names of locally used chapters. Each chs.pter
is made of a list of possibly generic definitions or theorems.
Definitions are given for sets or structures as previously encount­
ered.

The specification of a problem is actually realised bJr writin~
a certain number of new chapters incrementing the set of old ones.

The language is now described by giving first the definition of
a kernel language (§4), followed by the visibility rules (§5); some
syntactic extensions are then given (§6) before a few last remarks
on structures (§7).

4. THE KERNEL LANGUAGE

The kernel language may be decomposed as indicated by the
~ollowing diagram:

J .R. ABRIAL ET AL.

kernel language

utilisation' statement
sub language sublanguage

§4.l §4'1
set boolean structure

sub language sublanguage sublanguae.;e

§4.3 §4.4

The syntax is written in classical BNF with the following
added conventions:

[] means a.n option

{ } means a zero or more times repetition

vfuen the symbols {, }, [, J, or I are used as linguistic symbols,
they are quoted in order to avoid confusion with their meta­
linguistic usage.

The la.nguage definition does not contain any examples. The
reaaer may skip at will to §9 and. §lO.

4.1 Utilisation sublanguage

The utilise.tioD sublanguage describes the framework of a
chapter.

pyntax

chapter

ic1 list

· .-· .-
· .-· .-

id = [~ id_list] def body ~ io

id {, id}

The identifiers between use ancl def reference locally used
chapters. The last identifi;r-(a.fter end) is the same as t}1e first
one (before =).

4.2 Statementsublanguage
: 4

The statement su'hla,ngu8,ge describes the content of e, chapter a,s
a ljst of (possihly generic) definitions of sets, or structures

346

SPECIFICATION LANGUAGE

(here called classes), or theorems.

Syntax

body ::= clause {j clause}

clause ::= set_definition! theorem! class_definition

set definition ::= generic_name = set

theorem ::= generic_name => bool

class_definition ::= generic name = class

generic_name ::= id ['['id_list'J']

The identifiers possibly found in the list of a generic name
are forma}.. generic paramet~ (set identifiers) of the corr;sponding
definit~on or theorem.

~.3 Set sublanSRage

The set su~language gives the various forms taken by a set
expression.

set : := mid_list for decl [where cond Ce;iven def]l .£!!£.

decl

cond

def

set id

.. -.. -

any i~list ~ decl [where cond [given defl] ~

subset (set)!' { , set{ ;set}' } t !~! set_id I
object ! set{ ,set} ! (set)

id list set { ; id_list set}

: := bool { ; bool}

: := id list = set { ; id list = set}

: := [id.lid['['set{,set}'J'l

First, it is worth noting that the set suhlanguage is lIpure"
in the sense that any distinction between sets and atoms d.oes not
exist: set elements, if B.ny, always are sets.

The main set expressions correspond to the classical axioms (,f
the theory: comprehension axiom, choice axiom, powerset axiom and.
extensive nefinition axiom.

The first form ma.y be written:

J .R. ABRIAL ET AL.

set id-, ••• ,id for
- ~ n-

i~ set];

...
id set

n n

[were

cond

[given

def]]

end -
This derivation shows the existing constraints between the list

of identifiers following the key-word'set and the declarations; note
that a declaration m~ be factorised asusual, but that all declar­
ations must be independent of each other. If there are more than
one identifier in the list, the defined subset is a subset of the
Cartesian product of the various sets present in the declarations.
The condition defines the characteristic predicates (bool) of the
subset. One m~ provide some local definitions ("def") to lighten
the writing of the predicates.

The second form, very close to the first, defines a "privileged"
element of a non empty set. The declaration constraints are the
same as above. Note that, axiomatically, the privileged elements
provided by "tvo" equal and non empty sets are alike. Consequently,
the operator ~ does not perform any random choice; such a set
expression is therefore factorisable in a local definition.

The third form (key_word subset) corresponds to the mathematical
~operator (the set of all subsets of a given set).

In the fourth form (extensive definition), the various set
expressions must already denote elements belonging to the same set:
it is not possible to construct any "heterogeneous" set.

In a set identifier:

[idl J·id2[·['setl ,···,setn']']

"idl " is e. chapter identifier (if any ambiguity occurs on "id
2

")

"id2" is a m or a class identifier defined in the same

chapter or in s. locally used chapter

" t" "t " t I· . se 1 , ••• , se n are ac us. gener~c parameters ~n equal

number to the formal generic parameters (see §4.2) associated

348

I
f

SPECIFICATION LANGUAGE

with the definition of "id2".

Note that "set-id" may also be a simple identifier corresponding
to a variable bound by a declaration or to a local definition.

The next set form corresponds to a class instance ("objectl1.
See §4. 5).

~.~ BoQlean sublanguage

The boolean sublanguage describes the boolean expressions.

Syntax

bool :: = !!2l (bool) I bool .2!. booll

set = setlset £ set I
finite (set) I (bool)

The third form (operator =) introduces the set equality and
corresponds to the extensionality axiom of the theory (two sets
are equal if they have the same elements).

In the fourth form (membership operator E), when the left set
corresponds to a list, then the right set is a subset of a Cart­
esian product constituted by as many sets as the left list has
elements.

The fifth form (operator finite) corresponds to the axiom of
infinity (there exists at least an infinite set).

4.5 Structure sublangu!£ie

The structure sublanguage describes a class and how class
instances may be constructed.

Syntax

class ::= class [decl[where cond[given def]]] ~

subclass class exp[class decl][where cond given def]]

end

class exp ::= class-id {x class_id}

class_id ::= set_id

object ::= ~ object_id [~def [given def]] ~

repl object_id with def [given def] ~

object_id ::= set_id

,me

J .R. AERIAL ET AL.

A class definition may be derived as follows:

class

[idl setl ; basic components

id set n n
[where

cond axioms

[siven

id\ = set'
1

derived components

id' = set']]] m m
end

A class definition is essentially an open definition: it is
possible, from a given class, to define another one having more
components and more axioms corresponding to the added basic comp­
onents. The definition

subclass class_id class

class_body

end

implicitly contains all basic components, axioms and derived comp­
onents of "class id" as well as its own components and axioms. All
definitions or theorems applicable to "class_id" may be used also,
by extension, for the so defined subclass, but the converse is not
possible.

A subclass may also be defined from several other classes (or
subclasses) either in conjunction (operator x) or as alternatives
(operator I).

The universal class

class end

has no components. Every class is therefore a subclass of the
universal class.

It is worth noting the difference between subclass and subset.
A subclass generally corresponds to a richer structure (more comp­
onents, more axioms) than its constituent classes: in mathematics,·
for example, the topological group structure is richer than the

350

-'-------

SPECIFICATION LANGUAGE

topology or group structures alone. On the other hand, the notion
of subset corresponds to a poorer construction than its "parent"
set (it has less elements because of the added constraints); the
notion of subset may be applied to classes as veIl: in mathematics,
for example, the abelian groups are a (generic) subset of the
groups.

In the same way, it is important to note the difference between
the universal class (that has no component) and the empty class or
set (that has no element).

To construct an object of a class, the value of each of its
basic components is given. An object may be constructed globally
(operator cons) or from a previous object (operator repl) by pro­
viding only some values that are supposed to replace some basic
component values, the others remaining implicitly unchanged. In
any case, the construction o£ an object corresponds as well to the
statement of a theorem expressing the validity of the proposed
values against the class axioms. In order to simplify the value
expressions, one may use, in the object construction, any derived
components already defined with the class or some local definitions
(given def).

Note that the definition of a subclass without extra components
or conditions

builds a ~ subclass (of "class_id").

5. VISIBILITY RULES

New identifiers may be defined in the following conditions:

chapter identifier (at the beginning o£ a chapter. See §4.1).

set, theorem, or class identifier (heading a generic name.
See §4.2).

formal generic parameter (within a generic name. See §4.2).

bound variable identifier (within a declaration. See §4.3).

basic or derived class component identifier. (See §4.5).

local definition identifier. (See §4.3 and §4.5).

351

J .R. AERIAL ET AL.

Scope rules

The scope of an identifier defines where it m~ be used.

The scope of a chapter identifier is universal.

The scope of a set, theorem, or class identifier covers the
chapter where it is defined as well as the chapters where this
chapter is used (use). -
The scope of a formal generic parameter covers the corresponding
definition or theorem.

The scope of a bound variable identifier covers the corresponding
construction (See §4.3).

The scope of a basic or derived class component identifier is
the same as the one of this class identifier (basic components
of a class must be independent of each other, however).

The scope of a local definition identifier covers the corres­
ponding construct.

Non recovering rule

Except for set or class identifiers defined in different chap­
ters, no identifier shall be ambiguous within its scope. A dot
notation is used when ambiguities occur in using set or class
identifiers (see "set_id" §4.3).

Non recursivity rule

No definition shall be directly or indirectly recursive.

6. KERNEL LANGUAGE EXTENSIONS

The whole language is obtained by extending the kernel lang­
uage; some useful syntactic construct may be replaced by simpler
ones. These equivalences are denoted by special syntactic equa­
tions

new syntactic construct ::=:: syntactic construct

where ": :=::" may be read as "is syntactically equivalent to".
A syntactic construct is represented by an incomplete derivation
containing some non terminal symbols acting as metalinguistic
variables that may be indexed or primed. Lists are denoted by
" " These extensions concern the set, boolean and structure
sublanguages .

352

-.---. --

SPECIFICATION LANGUAGE

6.1 Boolean sub language extensions

Boolean sub language extensions introduce classical boolean
operators as well as existential and universal quantifiers.

Syntactic extensions

booll => bool2
booll and bool

2
booll <=> bool2
setl ;II! set2
setl t set2

: :=:: E.9i (booll) ..Q!. boo12
: : =:: not (.E.£i (booll) E1: ~ (bool2 »)
: :=:: (bool

l
=> bool

2
) .!!!£ (boo12 => booll)

: :=:: !'!Qi (setl = set2)

: :=:: E.9i (setl E set2)

exist idJist f2!. ::=:: (m id_list tEL
spec

end -
spec

end) ;II! .!illll.
existl id _list !2!:. :: =: : exist id !EI.

spec

~

id : set

'Where

(set id list for - - -
spec

~) = {id}

~

where "spec" is defined by:

spec ::= decl [where cond [given de!]]

forall id_list !2!:. ::=:: .!!.2l (exist id_list !!2!.
decl

[where

condl]

~
cond2

[given

def]

booll ; ••• ; booln

decl

'Where

[condl ;]

.!!2i cond2
[given

de!]

~)

: :=:: booll ~ ••• !:!!£.. booln

353

J.R. AERIAL ET AL.

6.2 Set sub language extensions

Set sublanguage extensions introduce a simplified notation for
the Cartesian product, a simplified notation for the "privileged"
element of a set, a notation for the set of relations, total or
partial functions from a set to another one and the classical
functional and relational notations.

Syntactic extensions

setl x ••• x setn
: :=:: set idl , .•• ,id for

- n-

id set
n n

end -
any (setl x •.• x setn) :: =:: any idl ,··· ,idn :f2l:.

idl setl ;

id set n n
~

set -+-+ set' : :=:: subset (set x set')

The above notation denotes the set of binary relations from one set
to another.

~ id_list -+-+ id list' ..f.2r :: =:: ~ id_list, id list t !2!
spec spec

end

The above notation allows definition of a binary relation with a
predicate. Note that, if "id list" or "id list'" have several
identifiers, then several binary relations-may be defined this way
for the same right syntactic construction. This is due to the fact
that a Cartesian product made of more than two sets may be "cut" in
di:fferent ways.

rel_id{set -+-+ set') ::=:: ((set).(set')) £ rel id

In the above notation "rel id" designates a relation identifier.

354

~-. --

.,
..;

SPECIFICATION LANGUAGE

reI id (setl x ••• x setn) : :=:: ~ id t !!rr.
id' eodom (rel_id)

where

exist idl , ••• ,id for n-

id
n

where

set n

rel_id ((idl , ••• ,idn) ~ id')

The above notation defines the image of a set through a given
relation. The expressions "2 (rel_id)" and "eodom (rel_id)"
designate the domain and codomain of a relation (denoted by the
identifier "rel_id").

reI id (setl, ••• ,set) - n
::=:: reI id ({(set1,.··,set)}) - n

{setl ~ set'l;···; ::=:: {«setl),(set'l»);"';

«set),(set' »} set ~ set' }
n n n n

The above notation allows for the extensive definition of a
binary relation.

Similar notations are now given for functions.

set set' : : =: : ~ id" !E!.
id" set ++ set'

where

forall id f.91:
id set

~
existl id' !2!:

id' : set'

where

id" (id ++ id')

end

~
end

355

J .R. ABRIAL Er AL.

The above notation defines the set of total functions from one set
to another.

set - set' : : =: : ill. id" tEE.
id" set set'

where

exist id !.sr£.
id . subset (set) .

where

id" = id -+ set'

~

~

The above notation defines the set of partial functions from one
set to another.

func id1 , ••• ,id -+ id'l, ••• ,id' for ::=:: rel idl,···,id
- n m- - n

idl
· ..
id . .

n

id\

· ..
id' m

[where

cond]

then

id'l

· ..
id' m

[given

def]

. .

=

=

set
1

;

set .
n'

set' 1;

set' m

set" . l'

set' ,
m

id \' ••• ,id' m for

id
l

set
l

;

• ••
id : set ; n n

· ..
id' set' m m

where

[cond;]

id\ =

· ..
id' = m

[given

def]

set" .
l'

set't
m

The above notation defines a function by one or several formulas.
Note that "cond" shall not contain an.v of the bound varia'h' e

356

IIIIII!JIII""'-----------------------------

"

SPECIFICATION LANGUAGE

identifiers "id\", ••• ,"id'm"

decl

[where

cond]

~booll~

bindl ...

when bool then
- n-

bind n
[~

bind]

[given

def]

decl

where

[cond;]

booll => bindl g£

•••

bool => bind [_or
n n

.!l21 (booll ~ ••. !:!!£ booln)

[given

de!]

=> bind]

The above notation defines a :function by case. Note that the
various predicates "bool ", .•• ,"bool " shall be exclusive (no non­
determinism) and that, i~ the case 01" a missing fI else", their dis­
junction shall be true. The non termina.1 sYlIlbol "bind" may be
defined by

bind ::= id = set {; id = set}

func_id (set
l

, ••• ,setn) :: =:: !!:EZ. id' f2I..
ide : codom (tunc_id)

where

((set
l

, ••• ,set
n

) ,id') £ func_id

~

The above equation introduces the usual functional notation
("func_id" is a function identifier)

func_id (set
l

x ••• x setn) : :=:: mid' :f!2l:
ide : codom (func_id)

where

exist idl, ••. ,id for n-

357

J .R. AERIAL E'T AL.

. ..
id set n n

where

~

((idl, .•• ,idn),id t) E func_id

end

The above notation defines the image of a set through a given
function.

{setl ~ set'l;"';

setn ~ set' n

::=:: {setloH- set t

l ;···;

set oH- set'
n n

The above notation defines a function extensively. Note that,
. . " " "t" t 11 h d' ff t Obv1ously, the express10ns setl , ••• , se mus a ave 1 eren

. " ,,, n "t'" values as well as the express10ns set 1 , .•• , se n'

subst func_id with

setl ~ set'l;

...
set ~ set'

n n

: :=:: func id -+ id' for - -
id : dom (func_id);

id' : codom (func_id)

when id = setl ~

id' = setl

when id = set then
- n-

id' = set' n
else

id' = func_id(id)

~

The above notation allows definition of a function by changing some
of the values of a given function, leaving the others unchanged.
Note that the expressions "set

1
", ... , "set " shall have different

values and that the expressions "set' 1" ,. ~. , "set' " shall be such
that the result still is a function. n

Some remarks

The general form of a function definition is, as seen previously:

. d[. d' , . d I I] f . d . . d' . ,
1 1 1,··.,1 P = ~ 1 1"" ,1dn -+ 1 1,···,1d m for

end

358

SPECIFICATION LANGUAGE

The identifiers "id" ", ••• , "id" " denote fonnal generic parameters
h " 'd " " ' dIll 'P ' wereas 1 1 , ••• ,1 n denote th~ formal parameters of the funct1on.

An invocation of this function has the following form

id(setl,···,setn)

where "set
l
", ••• ," set " denote the actual parameter of the function.

In this case, it is ngt necessary to provide some values for the
actual generic parameters because they are implicitly defined
within the expressions "setl ", ••• ,"setn

ll
•

Whenever n = 2, it is sometimes useful to denote a function
invocation using an infixed for.m:

setl id set2

In order to indicate this special usage, the identifier "id" is
replaced in its definition by

.2E. (id).

Any u~e of "id", out of an invocation, must be written

.2E. (id) [set' \,.,. ,set"p]

where "set' t 1" , ••• ,"set' 'pll denote the actual generic parameters.

This special notation may be used for binary relations as well.

6.3 Structure sUblanguage extension

The structure sublanguage extension allows us to define a dis­
crete set composed of a certain number of explicitly denoted
elements.

Syntactic extensions

...
id = class end'

n -'
id t = subclass, idl I ... I id end' n-'
id = set idl t !2!.

id' t ill (id t)

where
id' , = idl g.r.

ia' , = id n
~

359

J .R. ABRIAL ET At.

'7. SOME REMARKS ABOUT CLASSES

Recall that a class is defined by (See §4.5)

id(id' \, ••• ,id' 't) = class
idl setl ;

fonnal

generic

parameters

An expression like

...
id

n

where

cond

given

id'l

•••
id' m
~

id[set t \" •• ,set' , 1]

=

=

set
n

set' . l'

set t
m

basic components

axioms

derived components

denotes the set of objects of the class "id" for the values
"set' :l, ••• ,"set"t" of the generic parameters •. Such a set may be
used ~n a declarat10n

. d t ,t • • d[t t , t ,.]
1 • ~ se l,···,se 1

where the identifier "id' I ,II denotes a bound variable (Bee §4. 3) ,
or even a component of yet another class (see §4.5). In order
to reference a basic or derived component of the object "id"''',
a functional notation is used, i.e.:

id.(id"') or id.(id"')
1 J

Class component identifiers denote (generic) unary functions
on the objects of the class. This notation may be applied for
explicitly constructed objects as well (operator ~ or repl).

Finally, note that within an explicit replacement construction
(operator repl) , or within a class definition, the usage of a camp­
on~nt identifier alone is sufficient to refer to the component in
question (this is a convention similar to the one used in PASCAL
wi thin a "with" construct).

360

~---------------------------------------

SPECIFICATION LANGUAGE

8. SYMBOLS AND KEY WORDS

The symbols and key-words of the kernel language are the
following:

= . => £ X () [] { } , ,

any for set -
class given subclass

~ .!!2i subset

~ ~ ~

~ .2!: where

finite repl !ill!.
The symbols and key-words of the extended language a.re the
following

<=> ~ t ++ ~ +
~ ~
codom .2I!.

~ .!:tl
~ subst

exist !l!!m
existl ~
forall

9. BASIC CHAPl'ERS

We now present a few basic "chapters" that will be extensively
used in later applications. The first of these chapters, named
SET, defines the standard generic operators of elementary set
theory. It is worth noting that these operators apply to binary
relations or functions as well because they are themselves sets.

The next chapter, named REL, uses SET and defines the standard
operators of binary relation theory, namely inversion, composition,
functionality (to go possibly from a relation to a function), and
products. These operators apply to functions as well , because they
are special cases of binary relations.

A third chapter named FUNC uses SET and REL, and defines special
kinds of functions, namely injections, surjections, and bijections.
It also defines the restriction of a function and the constant
function.

J.R. AERIAL ET AL.

SET =
def -

££(u)[X] = fune 81,82 ~ 83 f2r
81,82, 83 : subset(X)

then

83 = set x for x : X where

x £ 81 or x £ 82

~
end' -'

2E(n)[x] = ~ 81,82 ~ 83 for

81,82,83 : subset(X)

then -
83 = ~ x for x : X where

x £ 81 ~ x £ 82

end

end' -'
union[X] = ~ 88 ~ 8 for

88 subset(subset(X»;

8 subset(X)

~
8 = ill x !.2! x , X where ,

exist 8' 1£!: 8 I . 88 where .

inter[X] =

x £ 8 1

end

~
end' -'

.f.EE.£ 88 ~ 8 for

88 subset(subset(X»;

8 subset(X)

then

8 = ill x !2! x : X where

foral1 8 I t.£!: S'

X £ SI

362

88 then -

T
8PECIFICATION LANGUAGE

end· -'
.2£(-) [X] = fune 81,82 -+ 83 for

81,82,83 : subset(X)

then

83 = set x for x : X where

x £ 81 ~ x ¢ S2

end

end· -'
~(c) [X] = rel 81 +-+ 82 !£!..

81,82 : subset(X)

where

fora11 x f.£r. x

X £ 82

end -
end· -'

.Q.E.(¢) [X] = rel 81 +-+ 82 !£!..
S1,82 : subset(X)

where

not(81cS2)

end· -'
partition[X] = set S8 f£r

81~

SS : subset(subset(X»

where

union(SS) = X;

forall 81,82 ill
81,82 : 88

where

81 ;o! 82

~
S1n82 = ~

end -
end· -'

J .R. ABRIAL ET AL.

projl[X,YJ = ~ x,y -+- x' !2l:
x,x' X;

y Y;

lli!!..
x' = x

end' -'
proj2[X,Y] = ~ x,y -+- y' !.E1:

end SET

REL =
use SET def

invCX,X']

.2£(0)[X,Y,Z]

ident[X]

x X;

y,y' Y

~
y' = y

~

= fune r -+- r' for r : X ~ X'; r' : X' +-+ X ~

r' = m x' ~ x !EI. x'
r(x ~ x')

~
end' -'

= funer2,rl -+- r3 for

X'; x : X where

rl :X ~ Y; r2 : Y ~ Z; r3 X +-+ Z

~
r3 = reI x ~ zfor x - - X; z : Z where

end' -'

exist y !.E1: y Y where

rl(x ~ y); r2(y ++ z)

~
end -

= ~ x ~ x' !£!: x ,x' X where x = x' end' -'

T-
~

f
SPECIFICATION LAlGUAGE

tunctionaJ.[X,YJ

f'unction[X,Y]

I: set r for r : X ++ Y where - -
r' (y) I: X; (r 0 r') c ident[Y]

siven

r' = inver}
end" -'

I: tunc r + f for r : X ++ Y; f X + Y where - -
r £: functional[X,Y]

~
f I: ~ X + Y !2!: x : X; y Y ~

Y = ..!.&. (r(x)

~
end' -'

£ll(prod)[A,B,C,DJ == ~ rl,r2 + r3 !E.!.

.Qlt(&) [A ,B ,cJ

~REL

rl : A ++ B; r2 : C ++ D;

r3 A x B ++ C x D

~
r3 = reI a,e ++ b ,d for - -

end' -'

a : A; b : B; C : C; d D

where

rl(a ++ b); r2(c ++ d)

end -
I: ~ rl,r2 + r3 !.9I.

rl A ++ B; r2 : A ++ C;

r3 : A ++ B x C;

tpen

r3 = reI a ++ b,c for - -

end' -'

a : A; b : B; c C

where

rl(a ++ b); r2(a ++ c)

J .R. Al3RIAL ET AL.

FUNC=

~ SET, REL def

inj[X,Y] = set f for f x -+ Y where

surj[X,y]

bij[X,Y]

inv(f) 0 f = ident[X]

~;

= set f ~ f : X -+ Y where

f 0 inv(f) = ident[Y]

end' -'
= injeX,Y] n surj[X,Y];

inverse[X,Y] = ~ f -+ f' ~ f : bij[X,Y]; f'

f' = function(inv (f))

restriction[X,Y]

const[X,Y]

end FUNe

end' -'
= ~ f,S -+ f' ~

f : X -+ Y; S : subset (X); f'

~
f' = func x -+ y for x

y = f(x)

end

end' -'
= ~ S, Y -+ f for

S : subset (X); y Y; f

~
f = ~ x -+ y' for x

y' = y

end' --'

S; Y

x-fy

S; y'

Y -+ X then

x -f Y

Y then

The next two chapters define the natural numbers and the
sequences. NAT, the first of them, starts by introducing generic­
ally the cardinal of a set S as the set of set S' equinumerous
with s; then the set of natural numbers is the set of finite card­
inals. The classical relations n:s;" and '<I and the operation
successor are then defined before the iterate of a function. This
allows us to give the definition of the basic arithmetic operations.

366

QSJ• '.
:t
j

SPECIFICATION LANGUAGE

The chapter SEQ generically defines the sequences as the set of
functions whose domains are segments of the natural numbers; i.e.
{O,l, .•• ,n}. It is then easy to define the concatenation (operator
*), "first" and "tail" operators. The chapter ends with definitions
of a sorted sequence of natural numbers and the set of sub-sequences
of a given sequence.

NAT =
use SET, REL, FUNC def - -

equinumerous [X] = ~ S -H- 8' fEr. 8,8' subset (X) where

bij [8,8'] ~ ~

card[X]

NAT[X]

O[X]

thl[X]

th2[X]

.2E,(s)[X]

op«)[X]

encl--'
= ~ S -+ S8 !E.r. 8 subset (X); 8S : subset

(subset(X)) ~

8S = equinumerous(8)

end· -'
= ~ n .f.2!:. n : subset (subset(X)) where

not (finite(X));

exist 8 1£! 8 : subset(X) where

card(8) = n; finite(8)

= card(~);

=> O[XJ =~;

=> O[xJ € NAT[X];

= reI n1 ~ n2 for n1,n2 : NAT[XJ where - -
exist 81,82 ~ 81,S2 : subset(X) where

card(Sl) = nl; card(S2) = n2;

inj[Sl,S2J ~ ~

~
end--'

= m nl ~ n2 !E.!. nl, n2 NAT[XJ where

nl s n2; nl ~ n2

end' -'

J .R. AERIAL ET AL.

succ[X]

relpred[X]

= ~ nl .. n2 for nl,n2 NAT[X] ~

n2 = card (Su{x})

given

S = ~ (nl); x = any (X - S)

end" -'
= inv(suee[X]) ;

th3[X] => relpred[X] E (NAT[X] - {O[X]}) .. NAT[X];

pred[X] = funetion(relpred[X]);

-- ~rom now on the generic parameter X is omitted

induction_theorem => forall S for S subset(NAT) where

o £ S;

recursion[X]

f
n--+)--y

suee t t g

n+l ~ y' f

iter[Z]

forall n !2r.. n S ~

suec(n) E S

~
then -

S = NAT

end· -'
= funetion(r~. y,g -+-+ f !2r.

y : Y; g : Y .. Y; f NAT" Y

where

f(O) = y;
f 0 suee = g 0 f

~);

= ~ h" f for

h : Z .. Z; f : NAT .. (Z .. Z)

~
f = reeursion(y,g)

given

y = ident[Z];

g = ~ hI .. h2 ~ hI,h2 Z" Z ~

h2 = h 0 hI

end -
end" -' 368

.. ~' ---
SPECIFICATION LANGUAGE

f(O) = ident[ZJ

f(n+l) = g(f(n)) = h 0 f(n) = ••.• = hn
+
1

.2E,(exp)

.9.£(-)

div mode

=~ nl,n2 ~ n3 for nl,n2,n3 = NAT ~

n3 = iter(suec)(nl)(n2)

end--'
= ~ nl,n2 ~ n3 f£t nl,n2,n3 NAT ~

n3 = iter(~(+))(nl)(n2)
~;

= fune nl,n2 ~ n3 for nl,n2,n3; NAT then

n3 = iter (£E(x))(nl)(n2)

end--'
= funetion(rel nl,n2 ++ n3 for nl,n2,n3

NAT where

n2~nl; nl = n2+n3

~);

= function(~ a,b +7 q,r for a,b,q,r :
NAT where

b~O; a = (b x q) + r; r<b

end);

~(div) = projl[NAT,NATJ 0 div~od;

~(mod) = proj2[NAT,NATJ 0 div~od;

1 = succ(O); 2 = succ(l); 3 = succ(2); 4 = suce(3);

5 = suee(4); 6 = succ(5); 7 = suec(6); 8 = suce(7);

9 = suce(8)

end NAT -
SEQ=

~ SET, REL, NAT ~

segment = ~ n ~ S ~ n : NAT; S : subset(NAT) ~

S = ill.. i for i : NAT where i <n ~

end' -'

J.R. AERIAL ET AL.

seq[X]

1ength[X]

.£E.{ *) [X]

first[X]

eat[X]

tai1[X]

= set s for s : NAT f X where

dam (s) E segment(NAT)

end;

= fune s -+ n fE!: s : seq[X]; n NAT then

n = eard{~{s))
end' -'

= ~ sl,s2 -+ 53 for 5l,s2,53 seq[X] then

s3 = 51u(s2 0 f)

given

f = iter(pred)(length(sl))

end;

= ~ s -+ x for 5

s ~ EE11
~

x = s(O)
end' -'

seq[X]; x X where

= ~ x, sl -+ s2 for 81,52 : seq[X];

x: X~

52 = {O -+ x} * 51

end;

= fune 81 -+ s2 for sl,82 seq[X] where

51 ~ null

~
s2 = (51 - {O -+ first(sl)}) 0 suce

~;

th[xJ => eat[XJ 0 (first[XJ & tail[XJ) = ident[seq[XJJ;

a550ciated_re1[X] = fune 5 -+ r for

s seq[XJ;

r X~X

then

r = s 0 suee • inv(s)

end' -'

370

1

~
~
i
I

I

I
I
I
!
!)
I t

SPECIFICATION LANGUAGE

sorted = ~ s :!El: s : seq[NAT] where

associated-!el(s)c~(s)

end' -'
= ~ 51 ++ s2 !2!:. sl,82 : 8eq[X] where

exist s3 ~ 83 : sorted where

sl = s2 • s3

~
end

end SEQ

As a last syntactic extension, an explicit sequence is denoted
by

The chapter MON defines the monoids as a sub-class of a sub-group
(a binary commutative operation). Classical examples of monoids
are then given, followed by the definition of the extensions of
binary operations (with neutral element) to sequences. '

MON =
~ SET, REL, FUNC, NAT, SEQ M

subgroup[S] , - class

monoid[S]

examplel[X]

oper : S x S ~ S

where

oper • (oper prod ident[SJ) = oper •

(ident[S] prod oper)

end' -'
= subclass subgroup[S] class

u:S

where

oper • (const(S,u) & ident[SJ) = ident[SJ;

oper • (ident[S] & const{S,u» = ident[S]

end' -'
= cons monoid[subset(X)] with - -

oper = .2E. (U) [X] l u = ~
end' ~,

371

J .R. AERIAL ET AL.

example2[X]

example3[X]

example4

example 5

example6[X]

extension[X]

= cons monoid[subset(X)] with - -
oper = .2P.(n)[X]; u = X

~;

= cons monoid[X + X] with - -
oper = ~ (o)[X,X,X]; u = ident[X]

~;

= £2B! monoid[NAT] ~

oper = £E(+); u = 0

end" -'
= £2B! monoid[NAT] ~

oper = .2E,(x); u = 1

~;

= £2B! monoid[seq[X]] with

oper = .2P.(*)[X]; u = ~
~;

= function(~ m ++ f ~
m monoid[X];

f seq[X] + X

where

f = fl U f2

given

fl = const({~}, u(m));

f2 = oper(m) 0 f3;

f3 = first[X] & (f • tail[X])

~);

sigma = extension (example4);

end MON

pi = extension (example5);

comp[X] = extension (example3[X]);

conc[X] = extension (example6[X])

372

1
SPECIFICATION LANGUAGE

Finally,- the chapter RELATIONS gives the classical definitions
of the transitive closure of a binary relation, of symmetry,
transitivity, reflexivity, and so forth, as well as preorder,
equivalence, order, and so forth, for binary relations.

RELATIONS =
use SET, REL, NAT def - -

rel_iter[ZJ I: ~ r -.. f I!a.

-- f(O) = identEZ]

f(n+l) = g(f(n»

closure[Z]

closure(r)

th[Z]

sym[X]

trans[X]

reflex[X]

asym[xJ

r Z ++ Z; f : NAT (Z +-to Z)

~
f I: recursion(y,g)

given

y = ident[ZJ;

g = ~ rl r2 tEL rl,r2 Z ++ Z ~

r2 = r • rl

~
end' -'

I: r • fen) I: •••
n+l -= r

= ~ r -.. r 1 !£!. r ,r': Z ++ Z ~

r' = union(rel_iter(r)(NAT»

end" -'
2 n = ident[Z] U r U r U ••• U r U

= forall r .!2.!: r : Z ++ Z ~

ident[Z] c closure(r);

r • closure(r) c closure(r)

end" -'

, ..

= ill. r ..f2!:. r X ++ X where r I: inv(r) ~;

= set r ..f2!:. r X ++ X where (r • r) c r

~;

I: set r for r X ++ X where identEX] c r

~;

I: ill. r .!£!: r X ++ X where(r n inv{r» =

EEl!~;

373

J .R. AERIAL ET AL.

antisym[X]

irreflex[X]

total[X]

= ill r for r X +-+- X where (r n inv(r)) =
ident[XJ end;

= ill r !.E!:. r X +-+- X where (r n ident[XJ)=

~end;

= ill r !.E!:. r X ++ X where (r u inv(r)) =
X x X~;

preorder[XJ = trans[X] n reflex[X];

equiv(X] = preorder[XJ n sym[XJ;

order[XJ = preorder(XJ n antisym[XJ;

strict_order[X] = trans[X] n irreflex[XJ;

total_order[X] = order[XJ n total[X];

thleX] => .2:e. (s)· £ total_order (NAT);

th2[X] => .2:e. «) £ strict_order (NAT);

th3[X] => .2:e. (c)[XJ £ order(subset(X));

th4[X,Y,zJ => forall rl,r2,r3 ~

rl X +-+- Y; r2 : Y ++ Z; r3 X +-+- Z

~
((r2 0 rl) n r3 = ~) => (inv(r3) • r2)

n inv(rl) = null)

end" -'
th5[xJ => strict order[X] => asym[X]

end RELATIONS -
10. EXAMPLES

The preceding "chapters" were extensions of the language in
order to constitute an elementary mathematical background. This
section attacks more "realistic" problems in various areas of pro­
gramming: an editing problem (§lO.I) represents "classical" pro­
gramming, a system problem (§IO.2), and a garbage collector spec­
ification (§IO.3) cover the "system" programming field, and finally
a very simple algebraic language definition (§lo.4) goes towardsthe
language design area.

374

SPECIFICATION LANGUAGE

Note: All "basic chapters" are im;plicitly used 1n the examples.

10.1 An editing problem

The first problem that we try to specify is a simple editing
problem. It may be informally stated as follows: to transform a
string of characters by replacing all its substrings of consecutive
blank characters by a single blank character. This problem is
interesting for several reasons:

it 1S simple enough so that anyone may understand it immediately

it 1S a practical and classical problem illustrating a large
class of editing problems

the corresponding program is not very difficult to write
although its complete proof is not that trivial.

Before attacking the problem we need to write a small "theoret­
ical" chapter defining a few concepts of the fixed point theory.
These concepts may be informally defined as follows:

Let f be a function from X to X; if, for all x, there exists
a natural number n such that

then any sequence
.

x, f (x) , ••• ,f1 (x) , •••

is stationary after a certain number n depending upon x, i.e., all
further elements of the sequence are the same and said to be the
stationary element of x through f. The corresponding functi~is
called the limit of f. Note that not all functions from X to X
have such a limit.

In order to ensure that a function f has a limit, it is suff­
icient to find a variant, i.e., a function g from X to the natural
numbers such that

if f(x) = x then g(x) = 0

if f(x) ~ x then g(x) ~ 0 and
g(f(x)) < g(x)

A binary relation R is said to be consistent with respect to
function f from X to X, if, for any x, the following holds:

x R f(x)

375

J .R. ABRIAL ET AL.

A very useful theorem finally states that if R is consistent
with respect to f, then R* (the transitive closure of R) is con­
sistent with respect to the limit of f (it any).

MINI FIXED POINT THEORY = - - -
~

limit[X]

variant [X]

variant_theorem[X]

= func f + ft for f,f' : X + X where - -
forall x !.2!: x X ~

r(x) ;Jt .mill:.

~

~
f t = !:!:m£ x + X t tE1:. x ,x I

given

x, = iter(f)(i)(x)

given

l. = any(r(x»

~

X~

r = m x +-+ n for x : X; n : NAT where

iter(f)(n+l)(x) = iter(f)(n)(x)

end

end' -'
= m f +-+ g !.2!: f : X + X; g : X + NAT where

forall x tsa: x : X then

(f(x) = x) => (g(x) = 0);

(f(x) ;Jt x) => (g(x) > 0 ~

g(f(x» < g(x»

end -
end' -'

=> forall f tsa: f· : X + X where

variant(f) ;Jt ~

then -
f £ dom(limit[X])

end' ~,

376

~~------------~--

I
J

r

\
!

l

J

•

1
i

SPECIFICATION LANGUAGE

invariant_theorem[X] => forall f ,r !9£
f ,2(limit[X]);

r X ~ X

where

fer

~
limit(f) c closure(r)

~

end MINI FIXED POINT THEORY - - - -
The specification of the editing problem constitutes another

chapter using MINI FIXED POINT THEORY. A class "state" is first
det'ined as that containing three components: "bit (for blank), and
"in" and "out", that are a sequence of characters. The purpose of
the specification is to define the properties of "out" with regard
to "in", i.e., "out" shall not contain two consecutive blank char­
acters (this is specified in 11 specl It, a subclass of state) and shall
be "equivalent" to "in" (this is described in "spec2", a subclass of
"specl"): two sequences of characters are sa.id to be equiva.lent if
the,y only dift'er by the (non null) length of their subsequences of
consecutive blank characters.

A function "one-step" is then given that is proven (i) to leave
"specl" inva.riant, (ii) to have a limit, (iii) to be such that
"equivalent" is consistent with respect to it (remember that the
concepts of limit and consisten~ have been defined in the previous
"chapter"). As a consequence, the limit of "one-steptl is proven to
fulfil the specification of the problem.

In order to construct a real program, the function "one-step"
is then decomposed into two other functions, namely "stepO",
handling null "out" sequences, and "stepl", handling non null "out"
sequences.

1~e PASCAL program is then written as a final step of the spec­
ification and construction process •

EDITING PROBLEM =
use MINI FIXED POINT THEORY def - - - - -

state[C] = class

b : C;

in,out

~;

377

seq(C]

J.R. ABRIAL ET AL.

specl[C]

spec2[C]

one step[C]

= subclass state[C] where

out £ no_two_consecutive_blanks

gl.ven

no two_consecutive_blanks =

end' -'

~ s for s : seq[C] where

not(associated_rel(s)(b ~ b))

end -
= subclass specl[C] where

equivalent_string(in ~ out)

given

equivalent_string = closure(r);

r = reI sl ~ 52 for sl,s2 : seq[C]

where

end' -'

exist x,y,bl,b2 for

x ,y : seq[C];

bl,b2 : seq[{b}] - null

where

end

end

51 = x*bl*y;

s2 = x*b2*y

= func 5 -+ 5' !2!:.
S ,5' : specl[C]

when in(s) = ~ ~
s' = s

~ in (s) ;t null !:!!.£
out(s)*<first(in(s)) > £ no_consecutive_

blanks(s) ~

s· - repl s' 1 with

out • 09t*<rirst(in)~

~

378

SPECIFICATION LANGUAGE

var[C]

thl[C]

th2[C]

else

st • stl

given

5'1 = repl s with

end' -'

in = tail(in)

end

= fune s -+- n for 5 : speel[C]; n NAT then

n = length(in(s))

end' -'
=> var[CJ € variant(one_step)

=> one_step[C] E ~(limit[speel[C]])

after thl and variant theorem

equivalent_state[C] =
reI s ++ 5' f£! s,s' : speel[C] where

equivalent_string(s)(out(s)*in(s) ++ out(s')*in(s'))

end;

th3[C] => one_step[C] c equivalent_state[C];

after definition of one step[C]

th4[cJ => limit(one_step[C)) c equivalent_state[CJ;

after th3[C] and invariant_theorem. Note that

equivalent_state[C] = elosure(equivalent_state[C])

normalise[C] = fune s -+- 5' ~

s,s' = speel[C]

where

out{s) = null

~
5' = limit(one_step[C])(s)

~;

379

J .R. ABRIAL ET AL.

;> forall s !2r s : specl[C] where

out(s) = ~

~
s' E spec2[C]

g~ven

st = repl s ~
out = out(normalise(s))

~
end" -'

_ after th4[C] and definition of normalise. Towards a Pascal.
program

specl t [C]

stepO[C]

stepl[C]

= subclass specl[C] class

ch : C

end" -'
= ~ s ~ s' !2r s,st = specl'[C] where

out(s) ; null -
:!!!!m in (s) ; .m;11. ~

Sl = S

~
s' = repl stl ~

out = out * <chl>; -- write (chl)

ch = chl

~
given -- read (chl)

s 'l = repl s !i!ill.
in = tail(in)

~;

chl = first(ch)

end' -'
= ~ s ~ st ~ s,s' : specl'[C] where

out (s) ~ null; -
ch(s) = last(out(s))

when in(s) = null then - --
Sl = S

380

SPECIFICATION LANGUAGE

~ in(s)~ null ~(ch(s)' ~ b .2.t chI ~ b)

~
s' = repl 5'1 with

out = out * <chI>; -- write(chl)

ch = chI

end

~
s' = 5'1

given -- read (chI)

s'l = repl 5 ~

in = tail(in)

2;
chI = first(in(s»

end' -'
normalise'[C] = 1imit(stepl[CJ) • stepO[C]

~ EDITING~ROBLEM

The corresponding PASCAL program is the following

program nor.malise(~nput,output);

const b = , ';

.!!!: ch ,chI : char;

begin ---
if ,lli21eof then

begin

read(chl);

write(chl) ;

ch := chI

end' -'
while !!2.i eof .2:2.
begin

read(chI);

if chI ~ b .2!. ch ~ b ~

stepO[C]

J .R. ABRIAL ET AL.

begin

write(ch1) ;

ch := ch1

~
end

1imit(step1[C])

end.--

10.2 A "system" problem

The behaviour of a disk handler is now specified as a system
programming example. In order to prove that this system has some
"good" properties, a first "theoretic" chapter introduces a simple
model for a non-deterministic system. This model is a graph in
which the nodes and edges, respectively, represent the states and
possible transitions of a dynamic system. Predefined "initial" and
"final" states indicate where the system should start and possibly
stop. These components constitute a structure (a class) whose
axioms state that a final state has no successors and an initial
state either is a final state or has successors. Four special cases
are then introduced, namely:

loop_free_systems, whose graphs have no loop

deadlock_free_system, where those nodes that are reachable
from the initial nodes are final or have successors

finite systems where the set of nodes that are reachable
from an initial node is finite

well_halting_systems that contain all the previous
properties.

NON_DETERMINISTIC_SYSTEM =
def -

systemexJ = class

reachable : X ++ X;

initial, final : subset(X)

where

reachable E trans[XJ;

initial c (final U inv(reachable)(X));

reachable(final) = ~
!:.!!£;

,
I

)

i
rl
!

SPECIFICATION LANGUAGE

loop_free_system[X]= subclass system[X] where

reachable € irreflex[XJ

end;

dead_lock_free_system[X]=subclass system[X] where

reachable(initial) c (final U inv(reach­

able) (X))

end' -'
finite_system[X] = subclass system[X] where

forall x for x : initial then

finite(reachable(x))

!!!£
~;.

halting_system[X] = loop_free_system[X] n

dead_lock_free_system[X] n

finite_system[X]

An informal description of the disk handler is now given. A
disk is made up of a finite number of concentric tracks. In order
to optimise the arm movement, one organises the disk scheduling in
such a w~ that the arm goes regularly from the exterior to the
interior and back (this is the "lift" algorithm): the queries are
therefore not served according to a FIFO strategy but rather by
taking into account the current arm position and its next intended
move. With each track is associated a queue of recognised queries
that have not yet been served.

Example:

TRACKS QUEUES

4 11111111111111111111111111

3 1111111111111 next move

2 1111111 , JlIIIIIIIIIII
arm position

1

After serving the queries for track No 2, the arm moves to
track No 3, serves its waiting queries, does the same for track No 4,
then tUrns around to serve successively lower tracks, and so on.

J .R. ABRI.AL ET AL.

The various tracks of the disk constitute, as stated above, a
finite well order. It is then necessary, before entering the main
definitions, to write yet another "chapter" introducing the concept
and properties of well ordering. We first define the minimal
elements of a set through an order relation; a well order relation
is simply an order relation where the minimal element of all non
null sets is unique: it is called the minimum of the given set
through the relation. A finite well order is a well order relation
whose domain is finite. The inverse-of a finite vell order is also
a finite well order: this allows us to define the m~imum of a set
through a-finite_well_order.

'WELL ORDER =
def -

minimum[X]

min[X]

= rel S,r ++ x for - -
S subset(X) - {~};

r order[X];

.x X

where

inv(r)(x) n S = {x}

end· -'
= ~ r for r : order[X] where

minimum £ functional(Y,X)

given

Y = (subset(X) - {~}) x order[XJ

~;

= ~ S,r ~ x !2£
S subset(X) - {~};

r well_order[X];

x X

then

x function (minimum) (S,r)

.!m2.;

= ~ r !2! r : well_order[X] where

finite(X)

end;

384

~--

SPECIFICATION LANGUAGE

th[X]

max[X]

=> forall r !2! r : finite_well_order[X] ~

inver) £ finite_well_order[X]

end· -'
= ~ S,r + x !£r

S subset(X} - {~};

r finite_well_order[X];

x X

then

x = min(S,inv(r})

!B£

The final "chapter", named LIFT SYSTEM, contains the specific­
ation of the disk handler. It starts with the definition of the
"hardware", a class defining the finite well ordering of the tracks
and the content of the disk. This class is generic with respect to
both TRACK and VALUE sets, the latter representing, without further
details, the possible data stored on a disk track. The "hardware"
class is then extended (subclass "static state") by adding two new
components, the first giving the maximum-queue size (this is a
"software" parameter), the second defining the initial input as a
function from QUERY (another generic parameter) to TRACK. Finally,
"static_state" is also extended (subclass "state"), thus defining
the complete dynamic state of this system. This last subclass
contains four new components, namely:

input a partial function from QUERY to TRACK representing
the not yet entered queries (future queries)

wait a partial function from QUERY to TRACK representing
the entered but not yet served queries {those that
are waiting in the internal queues}

output a partial function from QUERY to VALUE representing
the past queries (already served)

current: giving the current track position of the arm.

These components, of course, obey some predicates in order
to constitute an acceptable state; no query shall be simultaneously
in the "input", "wait" or "output" domains; the number of queries
waiting within the internal queues shall not exceed the maximum
size of such queues; the disk value corresponding to each query
shall not be changed throughout the ~amic evolution of the system
(no updating). Four partial 'f"nnctions from "state" to "state"
describe the transitions

J • R. AERIAL ET .li.

"ask" enters a query into the internal queues

"serve" removes a query from the "current queue" after serving it

"change_move" changes the direction of the disk head movement

"search" looks for the next track to become the current track.

The union of these partial functions defines a binary relation
"next state" between states. It is now possible to construct an
instance of a "system" (the general model described in the chapter
NON DETERMINISTIC SYSTEM) and to prove that the proposed "lift system"
is indeed a "halting_system". -

LIFT SYSTEM =
~ NONYETERMINISTIC_SYSTEM, WELL_ORDER def

hardware[TRACK,VALUE] = class

track order finite_well_order

[TRACK];

disk TRACK + VALUE

end--'
static_state[TRACK,VALUE,QUERYJ = subclass hardware[TRACK,VALUE]

class

state[T ,V ,QJ

max_queue_size

initial_input

where

finite(QUERY)

end;

NAT;

QUERY + TRACK

= subclass static_state[T,V,QJ class

input,wait Q + T;

output Q + V;

current T

where

{f!2!!! (input); dom (wait); dom (output)} E

partition[QJ;

card(queue(T)) S max_queue_size;

(disk • (input U wait)) U output = disk

• initial input

SPECIFICATION LANGUAGE

Sl.ven

queue

waiting_queries

candidate

current_queue

end' -'

= inv(wait);

= queue(T);

= track_order(current)

n wait(Q);

= queue(current)

now the state transition functions

ask[T,V,Q]

serve[T,V,Q]

change_move[T,V,QJ

= ~ s + s' ~ s,s' : state[T,V,QJ where

input(s) ~ null;

card(waitin~queries(s)) < msx_queue_

size{s)

~
s' = re:pl s with

end' -'

input = input - {q + input(q)};

wait = wait U {q + input(q)}

given

q = any(g,2.!(input))

end

= func s + s' for s,s' : state[T,V,QJ where

current queue(s) ~ null

then

s' = re:pl s with

end' -'

wait = wait - {q + wait(q)};

given

q = any(current_queue)

end

= func s + s' for s,s' : state[T,V,QJ where - -
waiting_queries(s) ~ null;

candidate(s) =~;

current_queue(s) = null

J .R. AERIAL ET AL.

search[T,V,QJ

next state[T,V,QJ

~
s' = repl 5 ~

track_order = inv(track_order)

end

end' -'
= func 5 ~ 5' for s,s' : state[T,V,QJ where - -

candidate(s) # null; -
current_queue(s) = ~
~

s' = repl s ~

end' -'

current = min(candidate,

track_order)

= lli 5 ++ 5' .f.Q!. s,s' : state[T,V,QJ where

s' = ask(s) gr s' = serve(s) ~

s' = change~ove(s) ££ s' = search(s)

end' -'
-- now the final instantiation

initial_state[T,V,Q]

final_state[T,V,QJ

lift[T,V,QJ

th[T,V,QJ
end LIFT SYSTEM - - .

= subclass state[T,V,QJ where

input = initial_input

end' -'
= subclass state[T,V,QJ where

output = disk • initial input

~;

= £2E! system[state[T,V,QJJ with

reachable = closure(next_state[T,V,QJ)
-ident[state[T,V,QJJ;

initial = initial_state[T,V,QJ;

final = final state[T,V,QJ

end' -'
=> lift[T,V,QJ £ haltin&-system[state[T,V,QJJ

1 ,
t SPECIFICATION LANGUAGE I
W I 10.3 Garbage collectors

1
1,.' A classical example is now proposed. It has already been
! described in several papers, particularly the one by Dijkstra et
ill ale (*).
~

i
The informal description of this system will be given together

with the formal text; however, a previous knowledge of" the problem
is probably necessary to comprehend fully the proposed development.

GARBAGE_COLLECTORS =
~ '* A first class, called "stateO[N]", describes the basic data
structure of this system. It is generic with respect to N (for

Node) *'
stateO[N] = class

next : N ++ N;

free,root : subset(N)

given

reachable = closure(next)(root)

end' -'
1* An acceptable state is one where free nodes are not reachable
and have no successors *'
statel[N] = subclass stateO[N] where

free n reachable = ~;
next(free) = ~

end' -'
1* One now describes three functions, together called the "mutator".
They stand for the basic primitives at a user's disposal*1

1* The first primitive allows a user to extend the reachable nodes
by connecting an already reachable node with one that is free.
This node will, of course, lose this property *1

(*) On_the_Fly Garbage Collection: An Exercise in Cooperation,
E.W. Dijkstra et al., CACM, Vol 21, No 11, Nov. 1978.

J .R. AERIAL ET AL.

extendl[N] = ~ n,s + s' for

n : N; s,s' : statel[N]

where

n £ reachable(s); free(s) # ~

then

s r = repl s with

end" -'

next = next U {n ++ n'};

free = free - {n'}

given

n' = any(free)

end

/* The second ~rimitive allows a user to connect two already reach­
able nodes. This primitive requires that the set of free nodes be
not em~ty, although this is not strictly necessary */

insertl[N] = func n,n',s + 5' for

n,n' : N; s ,s' : statelENJ

where

n £ reachable(s);

n' E reachable(s);

free(s) # null

then

5' = repl s with

next = next U {n ++ n'}

end

end" -'
/* The third primitive disconnects two reachable nodes (if they were
already connected). A non empty free node set is also required */

removel[N] = func n,n',s + 5' for

n,n' : N; s,s' : statelENJ

where

n E reachable(s);

n' E reachable(s);

free(s) "I null

390

"l~--"""""""""""""------------

I
SPECIFICATION LANGUAGE

~
S' =, repl s ~

next = next - {n ++ nf}

~
end" -'

1* Whenever the free set is empty any previous "mutator" activity
ceases and another function, called the "collector", appends the
non-reachable nodes (called "garbage") to the free set */

collectorl[N] = func s ~ S' for

s,s' : statel[N]

where

free(s) = .!illll
then

s' = repl s with

free = free U garbage;

next = next - (garbage x next(garbage»

gl.ven

garbage = node - reachable

~
end" -'

1* Note that the "mutator" and "collector" activities exclude each
other. Note also that

next = next - (garbage x next(garbage))

ensures that the invariant of "statel[N]"

next(free) = ~

always holds * /
1* The "collector" activity will now be decomposed into two phases

a marking phase where reachable nodes are marked

- an appending phase where non marked nodes are appended to the
free nodes.

In order to do this one extends "statel[NJ" to introduce marked
nodes */

391

J .R. ABRIAL ET AL.

state2[NJ = subclass statel(N) class

marked : subset(N)

where

marked c reachable;

root c marked

end' -'
/* The "mutator" primitives do not change. The first "collector"
primitive marks the nodes */

mark2[NJ = ~ s ~ Sl ~ s,s' : state2[NJ where

next(s)(marked(s» ¢ marked(s);

free(s) = ~
~

5' = repl s ~

marked = marked U next(marked)

~
end; .

/* The second "collector" primitive appends the non marked nodes to
the free set */

append2[NJ = ~ s ~ S I !.2.! 5,5' : state2[N] where

next(s)(marked(s» c marked(s);

free(s) = ~
~

s' = repl s with

end" -'

free = free U non~arked;
next = next - (non_marked x next(non_marked»;

marked = root

given

non~arked = node - marked

~

/* Note that both "collector" primitives exclude each other (and
still exclude the "mutator" activities), and that the marking phase
is usually performed by several invocations of the "mark" function.
It is important to prove that this new "COllector" does the same

392

SPE~IFICATION LANGUAGE

thing as the previous one. In other words, we have to prove the
following theorem */

th2[N] => forall s tEL s : .9£!!l(append2[N]) ~

marked(s) = reachable(s)

~;

/* We have to prove

marked = closure(next)(root)

under the following hypothesis

HI : root c marked c closure(next)(root)

coming from the definition of "state2(N]"

H2 next (marked) c marked

coming from the definition of "~(append2[N])II.

rt is therefore sufficient to prove

closure(next)(root) c marked

This is done by induction.

step 0 root c marked

step n nextn(root) c marked

nextn+l(root) c next (marked)
n+l next (root) c marked

Q.E.D. */

(from HI)

(induction Hyp)

(from H2)

/* One now removes the constraint that "mutator" and "collector"
activities exclude each other. In other words, we allow the
"mutator" activities to be possibly performed between two invoc­
ations of the "mark" function. In order to do this, "statel[N]"
is extended by another component, a set of' "pre~arked" nodes, and
extra axioms * /
state3[U] = subclass statel[N] class

marked,pre_marked : subset(N)

where

marked n pre_marked =~;

next (marked) n non marked = ~;

root n non marked = null - -
393

J.R. ABRIAL ET AL.

given
non marked = node - (marked U pre_marked)

end;

/* The "mutator" functions are, of course, different. In particular,
the "insert" and "remove" functions do no longer require that the
free set be non empty */

extend3[NJ = func n,s ~ s' !2r
n : N; x,x' : state3[NJ

where

n € reachable (s); free (s) :;. nEll.

~
repl 5 ill.h

next = next U {n ++ n'};

free = free - {n'};

pre~arked = pre~arked U ({n'} n non_marked)

given

n' = any(free)

~
end;

/* Note that

pre~arked = pre marked U ({n'}n non_marked)

ensures the conservation of

next (marked) n non_marked = ~
which is an axiom of "state3[NJ" whose importance will be clear
later. (See the proof of th3[NJ) */

insert3[NJ = func n,n' ,s ~ 5' for

n,n' : N; 5,5' : state3[NJ

where

n € reachable(s); n' € reachable(s)

~

5' = repl 5 ~

end" -'

next = next U {n ++ nl};
pre~arked = pre_marked U ({n'}nnon~arked)

end -
394

SPECIFICATION LANGUAGE

/* The last "mutator" primitive "remove3[N]" is the same as
"removel[N]".

Next are the "collector" primitives *1

mark3[N] = func s + s' for s,s' : state3[N] where - -
pre_marked ~ null

then

s' = repl s with

end' -'

marked = marked U pre_marked;

pre_marked = next(pre marked) n non_marked

end

append3[N] = func s + s I .f.2!: s, s r

pre_marked = null

state3[N] where

~
s' = repl s ~

end' -'

free = free U non_marked;

next = next - (non~arked x next(non_marked»;

marked = null;

pre~arked = root

end

/* Note first that the "collector" activities still exclude each
other. It is now necessary to prove that this third "collector"
does the same thing as the previous one. This is not actually
true: this new "collector" only collects part of the garbage as
stated by the following theorem */

th3[N] => forall s for s : dom(append3[NJ) then

reachable(s) c marked(s)

~;

/* By comparison with "th2[N]" above, one may figure out that when
"append3[N]" is invoked, there exist some "marked" nodes that are
no longer reachable. We have to prove that

closure(next)(root) c marked

under the following hypothesis

395

J.R. ABRIAL ET AL.

HI root c (marked U pre~arked)

H2 next (marked) c (marked U pre marked)

both coming from the definition of "state3[N]"

H3 : pre~arked = ~
coming from the definition of ".9-.2!.(append3[N])".

Proof:

(1) root c marked (by HI and H3)

(2) next (marked) c marked (by H2 and H3)

(3) closure(next)(marked) = marked (by (2»

(4) closure (next) (root) c closure (next) (marked) .(by (1»

(5) closure(next)(root) c marked (by (3) and (4»

Q.E.D.

Unfortunately, this theorem does not prove that this actual
"collector" indeed collects anything. In other words, the set of
"non~arked" nodes might very well be empty when "append3[N]" is
invoked. Let "oldJarbage" be the set of nodes that are reachable
but still marked when "append3[N]" is invoked. One now proves that
this "oldJarbage" will indeed be appended to the free set upon
the next invocation of "append 3[N]". To do this, the following
extension of "state3[N]" is performed */

state4[N] = subclass state3[N] class

old-Barbage : subset(N)

where

oldJarbage n free = ~;
oldJarbage n reachable = ~;
oldJarbage c non_marked

~

1* The function "append3[N]" ~s accordingly changed into *1

append 4[N] = func 5 ~ st for s,s' : state4[NJ where - -
pre marked = null - -

then

st = repl s ~

396

SPECIFICATION LANGUAGE

end' -'
/* As "old garbage"
remains through the
interfering marking
theorem holds */

free = free U non_marked;

next = next - (non_marked x next(non_marked))

marked = null' -'
pre_marked = root;

old-Earbage = marked - reachable

end

is neither in the free set nor reachable, it so
"tt" t-" , mu a or ac ~v~tles, and ne~ther does the
phase "paint" it. Therefore, the following

th4[NJ => forall s ~ s : ~(append4[N]) ~

old_garbage(s) c free(s')

g~ven

S' = append4(s)

end;

/* Note that "old~arbage" is an "auxiliary variable" that has
nothing to do with the system itself! it is only defined for the
purpose of proving "th4[NJ" */

/* One now proceeds by decomposing the "mutator" activities one step
further, thereby allowing more interferences to occur with the
marking phase. Remember that the following was perfonned by
"extend3[NJ" and "insert3[N]"

pre_marked = pre~arked U ({n'} n non_marked)

By doing this, we possibly "shade" n I. This shading might be per­
formed in a non-exclusive way. To do this, a new component called
"param" is added, the purpose of which is to "store" the value of
n ' while other activities occur before its shading */

/* In order to prove that th3[N] still holds, we introduce yet
another auxiliary variable (*) named "old_next" that retain the
value of "next" just before the possible invocation of the shading
primitive */

state5[N] = subclass statel[N] class

marked, pre~arked,param

old next ; N ++ N

where

397

subset (N);

J .R. ABRIAL ET AL.

marked n pre_marked = ~;
next (marked) c (marked U pre~arked U param);

root c (marked U pre marked);

free c marked;

param c old-!eachable;

old next (marked) c (marked U pre marked) - -
given

non marked = node - (marked U pre_marked);

old_reachable = closure(old_next)(root)

~;

1* It is interesting to note the difference from the axioms of
"state3[N]" :

"next (marked)" is no longer always "non-Flarked II as "param" m8¥
be "non_marked".

We require that the free set be "marked".

The new "mutator l1 functions are the following * /

extend5[NJ = fune n,s ~ s' ~

n : N ; 5,5' : state5[N]

where

n £ reachable(s);

free(s) :; ~;

param(s) = ~
~

s' = repl s with

next = next U {n ++ n'};

free = free - {n'};

old_next = next U {n ++ n'}

given

n' = ~(free)

end -
(*) Auxiliary variable technique was first introduced by S. Owicki
in her thesis: Axiomatic Proof Technique For Parallel Programs,
Dept. C.S., Cornell University, TR.251 (1975).

398

r
1
I

SPECIFICATION LANGUAGE

1* Note that n' need not be shaded as it is already "marked" because
it belongs to "free" */

insert5[N] = ~ n,n',5 + s' for

n,n' :N; S,5' : state5[NJ

where

n £ reachable(s);

n' £ reachable(s);

param (s) = null

then

s' = repl s with

end" -'

next = next U {n ++ n'};

param = in'};

old_next = next

end

1* Note that 'after the invocation of insert5[NJ the following still
holds

param c ol~reachable

old_next(marked) c (marked U pre_marked)

because n' was an element of "reachable" and "param" was empty
before the invocation *1

shade5[N] = fune s + s' ~

s,s' : state5[NJ

where

param(s):; null

~
s' = repl s with

end" -'

pre_marked = pre marked U (param n

non_marked) ;

param = .m!ll;
old_next = next

end

399

J.R. AERIAL ET AL.

/* Note that after the invocation of "shade5[NJ", the invariant

next(marked) c (marked U pre_marked U param)

still holds, since "pre marked" was possibly extended if "param"
was "non marked". Note-that this would not have been the case if
II shade5[NJ" had been performed before "insert5[NJ" * /

remove5[NJ = fune n,n',8 -+ S' for

n,n l N;

s ,s I state[NJ

where

n t reachable(s);

n l t reachable(s);

.J?aram (s) = null

then

s I = repl s with

next = next - {n +-+ n l
};

old next = next - {n +-+ n l
};

end

end' -'
/* Now the "collector" */

mark5[NJ =~s+s'f2!

s, s I : state5[NJ

where

pre_marked # ~
then

s' = repl s .!lih

end' -'

marked = marked U pre marked;

pre~arked = next(marked) n non marked

~

append5[NJ = ~ 5 -+ S' !2!
5 ,s' : state5[NJ

where

pre~arked = ~

400

SPECIFICATION LANGUAGE

1h!:E.
s' = repl s with

end

end· -'

free = free U non_marked;

next = next - (non_marked x next(non_marked);

marked = non_marked;

pre_marked = root;

old next = old next - (non~arked x next

(non-Ylarked))

/* Of course, it is now important to prove that th3[N] still holds,
namely:

forall s for s : dom(append5[NJ) ~

reachable(s) c ·marked(s)

end

The only hypothesis of th3[N] that changes is H2, that was

H2 : next (marked) c (marked U pre_marked)

which now becomes

H2 : next (marked) c (marked U pre marked U param)

One proves that H2 indeed holds because of the following theorem */

th5[N] => forall s for s : dom(append5[NJ) then

param(s) c marked(s)

end

/* One has to prove

param c marked

under the following hypotheses

HI param c closure(old_next) (root)

H2 root c (marked U pre~arked)

H3 old_next (marked) c (marked U pre marked)

all three coming from the definition of "state5[N]"

401

J .R. AERIAL ET AL.

H4 : pre_marked = null

coming from the definition of "dom(append5)[N]"

Proof:

(1) root c marked

(2) old_next(marked c marked

(3) closure(old_next)(marked) = marked

(by H2 and H4)

(by H3 and H4)

(by (2»

(4) closure(old_next)(root) c closure(old next)
(marked)- (by (1»

(5) closure(old-pext)(root) c marked

(6) param c marked

Q.E.D. */

end GARBAGE_COLLECTORS

(by (3) and (4»)

(by Hl and (5»

The reader is invited to pursue further decompositions of "extend",
"mark", and "append". Note that the pre'·fious formalisation does
not contain any proof that the marking phase ever terminates.

10.4 Algebraic language

Our last example is an attempt to specify a formal language (!)
by defining its abstract syntax and semantics. We have chosen
algebraic languages because they are simple enough and also because
they are part of any programming language containing (boolean,
arithmetic and so forth) "expressions". The specification is
given at a general enough level so that any instantiation might be
performed for a particUlar case of algebraic language: in this
example, a boolean algebra.

An algebraic expression, as is well known, may be represented
by a ~ structure. For example, the following expression

(a + (a+b» / (a + b)

is pictured by

402

SPECIFICATION LANGUAGE

In this drawing, each node represents a sUb-expression made of
an operator and a set of ordered edges leading to other sub­
expressions. The number of out-going edges depends upon a property
of the corresponding operator called its ari ty, i. e., ";n and n+"
have an arity of two, whereas "a" and "b" are considered as operators
of 0 arity.

Algebraic expressions may contain several common sUbexpressions:
therefore a new structure, here called a double order, is best
suited to represent them. The above expression, for example,
might be represented by

Such a structure is a "double" order because (i) it is a strict
order relation, (ii) the out-going edges are also ordered. Before
entering into the main definitions, a small "chapter" describes
double orders.

403

J .R. AERIAL ET AL.

DOUBLE ORDER =
M

double_order[X] = set f !£r
f : X -+ seq[X]

where

(closure(r) - ident[X]) E strict-order[X]

given

r = reI x ++ Xl for - -
x ,x I : X

where

x I E f(x)(NAT)

end -
end' -'

/* One now defines the evaluation of a function through a double
order */

eval-Fel[X,Y] = ~ g,f ++ h f£!
g X x seq[Y] -+ Y;

f X -+ seq[X];

h X -+ Y

where

f E double_order[X];

forall x f£r x : X ~

h(x) = g(x,h 0 f(x))

th[X,Y] => eval_rel[X,Y] E functional(((X x seq[Y] -+ Y)

x (X -+ seq[X]),X -+ Y))

eval[X,Y] = function(eval_rel[X,Y])

The chapter "ALGEBRAIC LANGUAGE" first defines a "program" as a
class whose components-are the operator and arguments of each sub-
expression. Another class defines an "algebra" as a class defining
the application of an operator to a sequence of data as well as the
arity of each operator. The semantics of a program with respect to
an algebra defines the value of a sub-expression as the evaluation

404

SPECIFICATION LANGUAGE

of its arguments througb the double order represented by the program.
An instantiation of these classes finally defines a boolean expres­
sion "program" interpreted by a boolean algebra.

ALGEBRAIC_LANGUAGE =

~ DOUBLE_ORDER ~

program[EXF,OP] = class

operator EXP ~ OP;

argument EXP ~ seq[EXP]

where

argument & double_order[EXPJ

end;

algebra[DATA,OP] ~ class

value OP x seq [DATA] f DATA;

arity Op ~ NAT

where

.9B.!. (value) = set op, s ill
op OP;

s : seq[DATAJ

'Where

arity(op) = length(s)

end

end· -'
semantics[EXP,OP,DATAJ = ~ p,a,e ~ v !2r

-- now an example

p program[EXP,OP];

a algebra[DATA,OPJ;

e EXP;

v DATA

where static check

arity(a) • operator(p) =
length[EXPJ 0 argument(p)

~
v = eva1(value(a) ,argument(p)) (e)

405

J .R. ABRIAL ET AL_

BOOL OP = {A; v;-'; true; false};

BOOL = {true; false};

boolean_algebra =
~ algebra(BOOL,BOOL_OP) !!illi

value = {A, <true; true> -+ true;

A, <true; false> -+ false;

A, <false; true> -+ false;

A, <false; false> -+ false;

v, <true; true> -+ true;

v, <true; false> -+ true;

v, <false; true> -+ true;

v, <false; false> -+ false;

." <true> -+ false;

" <false> -+ true;

true, ~ -+ true;

false, ~ -+ false};

arity = {v ... 2-,
A ... 2-,
-, ... 1;

true ... 0;

false ... ° }
end' --'
EXP = {el; e2; e3; e4; e5; e6};

example = .££!!! program[EXP ,BOOL_OP] with

operator = {el ... -';

argument =

e2 ... v;

e3 ... v-,
e4 -+ A' ,
e5 -+ true;

e6 -+ false} ;

{el ... <e2> ;

e2 ... <e3 ;e4>;

e3 -+ <e5;e4>;

406

-r-'----------------------------__ _

SPECIFICATION LANGUAGE

e4 <e5;e6>;

e5!ll!Jd;
e6 null}

end' -'
th => semantics(example,boolean_algebra,el) = false

end ALGEBRAIC_LANGUAGE

APPENDIX: SUMMARY OF THE LANGUAGE

Utilisation sUblanguage

chapter ::= id = [use id list] def body end id -- --- ----
id list ::= id{ ,id}

Statement sUblanguage

body ::= clause{;clause}

clause ::= generic name = set

gener~c_name => bool

generic_name = class

generic-pame ::= id['['id_list']']

Set sublanguage

set ::= set id list for spec end -- - ----

subset (set) I
'{'set{;set}'}'

mill. I

object

set{,set}

(set)

407

J.R. ABRIAL ET AL.

spec ::= decl[where cond[given def]]

decl ::= id_list : set{;id_list : set}

cond ::= bool{;bool}

def ::= id~ist = set{;id_list = set}

set~d ::= [id.]id['['set{,set}'J']

Boolean sublangu28e

bool : := not(bool)

bool 2!. bool

set = set

set £: set

finite (set)

(bool)

Class sublanguage

class ::= class[sl'ec] end I
subclass class_exp[class decl][where cond[given def]]

class_exp ::= class_id{x class_id} I
class_id{ , I' class_id}

class_id ::= set id

~

object ::= £QE! object_id[~ def[given def]J ~

repl object_id with def[given defJ end

object_id ::= set id

Statement sUblanguage extensions

clause ::= operator~eneric_name = set

operator-seneric-pame ::= ££(id)['['id_list']']

408

SPECIFICATION LANGUAGE

Boolean sublanguage extensions

bool ::= bool => bool I
bool and bool

bool <=> bool

set :f. set

set V. set

exist id_list !s2!. spec ~ I

existl id_list !£r spec end I

forall id_list for decl[where

bool{; bool}

Set sUblanguage extensions

set ::= set{x set}

YSiL(set) I
set +-+ set I
set -I- set I
set 1- set

eodom(id)

eond] ~cond

[given de!] end -

func id list -I- id list for deel[where condJbind - - --

operator_id I
id(set +-+ set)

id(set) I
, { 'set +-+ set{; set ++ set}'}' I

'{'set -I- set {; set -I- set}'}'

[given de!] ~

subst id ~ set -I- set{; set -I- set}[given de!] ~

409

J.R. ABRIAL ET AL.

bind ::= then def I
when bool then def{~ bool ~ def}[~ def]

operator_id ::= [id.] ~(id)[I[Iset{,set}']']

Class sublanguage extension

class ::= '{'id_list'}'

ACKNOWLEDGEMENTS

We are particularly indebted to M. Demuynck, A. Guillon,
P. Moulin and G. Terrine for their fruitful comments, and to
B. Keller for her beautiful typing of the original version of this
text.

410

