
Can Aspects Implement Contracts?

Stephanie Balzer?, Patrick Th. Eugster, Bertrand Meyer

ETH Zurich (Swiss Federal Institute of Technology)
Department of Computer Science

CH-8092 Zürich, Switzerland
{first name.last name}@inf.ethz.ch

This is the draft of a paper to be published
in RISE 2005. Cite as follows: Stephanie Balzer,
Patrick Eugster, Bertrand Meyer, ”Can Aspects
Implement Contracts?”, in Proceedings of RISE
2005 (Rapid Implementation of Software Engi-
neering techniques), Heraklion, Greece, Septem-
ber 2005, to appear as Springer Lecture Notes in
Computer Science.

Abstract. Design by ContractTM is commonly cited as an example of
the “crosscutting” concerns that aspect-oriented programming can ad-
dress. We test this conjecture by attempting to implement contracts
through aspects and assessing the outcome. The results of this experi-
ment cast doubt on the validity of the conjecture, showing that aspects
appear unable to capture contracts in a way that retains the benefits of
the Design by Contract methodology.

1 Introduction

Aspect-oriented programming (AOP) [1] emerged from a criticism of earlier pro-
gramming approaches, which it blames for focusing on just one dimension of
design. Object-oriented languages, for example, focus on the dimension of data
abstraction [2]. According to the AOP analysis, this prevents capturing other di-
mensions and results in tangled code, where code fragments representing dimen-
sions not supported by the programming language are replicated throughout the
code, defeating the advertised benefits of reuse and economy. Such dimensions,
or aspects, are said to“crosscut”the basic decomposition units of the software.
AOP instead supports multiple dimensions of design by turning such aspects
into first-class programming concepts, to be directly supported by the program-
ming language. Aspects, in the AOP view [3], allow programmers to capture
crosscutting concerns in a concise and modular way.

As an example of a crosscutting concern, the AOP literature frequently cites
[4–8] Design by ContractTM(DbC)1. DbC [9] is a methodology to guide many
aspects of software development including in particular analysis, design, docu-
mentation and testing. It is based on the specification of contracts that govern
the cooperation between components of a system by specifying each party’s ex-
pectations and guarantees.

In the DbC view [9], contracts should appear in the components themselves.
Replacing contracts by aspect-based techniques would contradict this view since
aspects, by definition, appear separately from the program units they“crosscut”.

? Contact address: Stephanie Balzer, Chair of Software Engineering, Clau-
siusstrasse 59, 8092 Zürich, Switzerland.

1 Design by Contract is a trademark of Eiffel Software.

2 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

We will start from this contradiction and investigate whether it can be re-
solved; for this purpose we will take the assertion that “aspects can emulate
contracts” at face value and attempt to build such an emulation in practice.

The analysis uses a simple example that we first implement in Eiffel [10],
the “mother tongue” of Design by Contract, and then in AspectJTM, a general-
purpose aspect-oriented extension to Java and the most prominent realization
to date of AOP ideas.

We illustrate through this example the loss of some of the principal benefits
of Design by Contract when emulating contracts with aspects, in particular
documentation and support for inheritance-based refinement. We further show
that contracts are not crosscutting by nature, and that aspectizing them risks
creating interactions with other aspects.

The remainder of this discussion is organized as follows. Section 2 provides
a short introduction to AOP. Section 3 illustrates the concepts of DbC and
introduces the running example of this paper. Section 4 studies, on the basis of
the running example, how to aspectize contracts in AspectJ. Section 5 — the
core of our comparative analysis — assesses whether and how this aspect-based
emulation achieves the goals of the original contract-based design. Section 6
draws from this analysis to discuss the general question of whether aspects can
emulate DbC. Section 7 provides our conclusion.

2 Aspect-Oriented Programming

This section provides an overview of Aspect-oriented programming (AOP) [1]
and introduces its underlying terminology.

2.1 Overview

AOP promises improved separation of design concerns by modeling aspects sep-
arately from components. Typical applications of AOP include [11, 4] logging,
concurrency/synchronization, change propagation, security checking, and — the
claim examined in this paper — DbC enforcement. The announced benefits of
aspect-oriented techniques include [4, 12, 13]:

– Explicitness. Aspects explicitly capture the structure of crosscutting con-
cerns.

– Reusability. Since aspects can apply to multiple components, it is possible
through a single aspect to describe crosscutting concerns common to several
components.

– Modularity. Since aspects are modular crosscutting units, AOP improves the
overall modularity of an application.

– Evolution. Evolution becomes easier since implementation changes of cross-
cutting concerns occur locally within an aspect and save the need to adapt
existing classes.

Can Aspects Implement Contracts? 3

– Stability. Special AOP language support (“property-based aspects” in As-
pectJ), make it possible to express generic aspects, which will remain ap-
plicable throughout future class evolution.

– Pluggability. Since aspects are modular, they can be easily plugged in and
out of an application.

2.2 Terminology

In discussing aspects, we will use the terminology of AspectJ as it is the best
known variant. AspectJ is an extension of Java enabling the specification of as-
pects and their crosscutting with classes. AspectJ expresses crosscutting through
join points and pointcuts. Joint points are well-defined points in the execution
of a program. Pointcuts are distinguished selections of join points that meet
some specified criteria. In addition to pointcuts, aspects allow specifying ad-
vice: method-like constructs defining complementary behavior at join points. To
become effective, a given advice has to be attached to a specific pointcut. De-
pending on the declaration, advice bodies are executed before or after a specified
join point, or they can surround (around) that join point. Besides pointcuts and
advice, aspects can list ordinary Java member declarations such as attributes,
methods, and constructors.

3 Design by Contract

In this section we present the concepts of Design by Contract (DbC) [9] and
introduce a running example.

3.1 Overview

DbC is a methodology to guide analysis, design, documentation, testing and
other tasks of software development.

The application of DbC to software design requires the developer to build
software systems based on precisely defined contracts between cooperating com-
ponents. Contracts, similar to real-life contracts, define the relationship between
two cooperating components — the client and the supplier — by expressing each
party’s expectations and guarantees. A general characteristic of contracts is that
they turn the obligation for one of the parties into a benefit of the other. Con-
tracts are expressed through preconditions, postconditions, and class invariants.

– Preconditions are conditions that the client must fulfill for the supplier to
carry out its task properly. Preconditions are an obligation for the client and
a benefit for the supplier.

– Postconditions are properties satisfied at the end of the task’s execution,
assuming the preconditions were met at the beginning. Postconditions are
an obligation for the supplier and a benefit for the client.

4 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

– Class invariants capture the deeper semantic properties and integrity con-
straints of a class and its instances. Class invariants must be satisfied by
every instance of a class whenever the instance is externally accessible: af-
ter creation; before and after any call to an exported routine (function or
procedure) of the class.

Applying DbC to software analysis and design helps build correct software.
By providing preconditions, postconditions and class invariants, programmers
explicitly specify the assumptions on which they rely to ensure the correctness
of every software element.

Besides providing analysis and design guidance, DbC improves the documen-
tation of software systems. Preconditions describe to client programmers which
conditions they must achieve before calling a routine. Postconditions describe
what the routine will then do for them. Class invariants make it possible to reason
abstractly and statically on the objects of a system’s execution. The “contract
view” of a class, retaining these elements but discarding implementations, pro-
vides a description of software components at just the right level of abstraction;
it can be produced by tools of the environment, such as EiffelStudio, and serves
as the fundamental form of documentation for DbC-based software, making it
possible to use a component on the sole basis of its contract view. In the DbC
view all this assumes — as noted above — that the contracts are an integral
part of the software text.

DbC also plays a major role in the debugging and testing of software sys-
tems. As preconditions, postconditions and invariants are correctness conditions
governing the correct functioning of software components and the relationship
between components, a contract violation at run time always signals a bug: client
bug for a precondition violation, supplier bug for a postcondition or invariant
violation. A DbC development environment must provide a compilation option
for enabling and disabling run-time contract monitoring. This provides crucial
help during the testing and debugging process, making these activities more fo-
cused than in other approaches: only with explicit contracts can one explicitly
compare the relationship between desired and actual behavior.

Among other advertised benefits of contracts is their support for the main-
tenance activity: when changing a class, the maintainer should be guided by the
existing contracts, class invariants in particular, and generally maintain them
even if the implementation changes.

Contracts also play a significant role, as detailed in section 5.4, in controlling
the inheritance mechanism, including when used for analysis of software.

3.2 An Example

In this section we introduce the running example of this paper. The example
is based on one presented in [4] and models points in the Cartesian coordinate
system. To illustrate the basic DbC ideas we provide the example first in Eiffel
[10]. Later, in section 4, we show the corresponding implementation in AspectJ.

Can Aspects Implement Contracts? 5

class
POINT

feature −− Access

x : DOUBLE
−− Abscissa value of current point

y : DOUBLE
−− Ordinate value of current point

feature −− Element change

change po int (new x : DOUBLE; new y : DOUBLE) i s
−− Overwrite coordinates of current point with provided va lues .

do
x := new x
y := new y

end

move by (de l t a x : DOUBLE; d e l t a y : DOUBLE) i s
−− Move current point by provided va lues .

do
x := x + de l t a x
y := y + de l t a y

end

feature −− Output

t o s t r i n g : STRING is
−− Str ing representa t ion of current point

do
Result := ” (” + x . out + ” , ” + y . out + ”) ”

end

end

Listing 1.1. Cartesian point implementation in Eiffel without contracts

Listing 1.1 shows the Eiffel class POINT implementing the example. This ver-
sion does not contain any contracts yet (see Listing 1.2 for the version including
contracts). The class declares the following five features2: the attributes x and
y, the procedures change point and move by, and the function to string . The various
feature clauses within the class text allow feature categorization.

All features in POINT are accessible by all clients of the class. Attributes x and
y are public; this is the appropriate policy since attribute access in Eiffel is read-
only for clients (any modification requires, in accordance with object-oriented
principles, the provision of an associated “setter” procedure).

Listing 1.2 shows the complete point implementation with contracts. Due to
the straightforwardness of the example there are only a few contracts, in this
case only postconditions. In Eiffel, postconditions are introduced by the keyword
ensure following the routine body. Preconditions are introduced by the keyword
require and have to precede the routine body, that is they are placed before the
do keyword. Class invariants are introduced by the keyword invariant and have

2 Features are the basic constituents of Eiffel classes and are either attributes or rou-
tines.

6 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

to be mentioned after the last feature in the class text. It is possible, although
not required, to tag individual assertion clauses for identification: the example
uses this possibility, as with the y correctly moved tag for the last assertion of the
procedure move by.

The class in listing 1.1 appears satisfactory in some general and fairly vague
sense — vague precisely because in the absence of contracts it is impossible
to know for sure what it is really supposed to do, and hence to talk about its
“correctness” or absence thereof. The new variant of POINT in listing 1.2 keeps
the implementation — so that in non-erroneous cases at least the new class
will “function” like the previous one — but makes it possible to talk about
correctness since it now includes contracts.

The postcondition of procedure move by, for example, uses old x to denote
the value attribute x had on routine entry, that is before the assignment was
executed. Such “old expressions”, permitted only in postconditions, are essential
to express the effect of a routine by stating how the final state differs from the
original state.

Listing 1.2 demonstrates the power of having contracts embedded within the
class text. Although contracts are clearly distinguishable from the actual routine
bodies, they are still part of their declaration. This encourages programmers
to update contracts when changing implementations. If they forget, run-time
contract monitoring will help spot the mistake quickly.

4 Aspectizing Contracts

In an interview [5] Kiczales cites DbC as an example of a crosscutting concern:
“[...] there are many other concerns that, in a specific system, have cross-

cutting structure. Aspects can be used to maintain internal consistency among
several methods of a class. They are well suited to enforcing a Design by Contract
style of programming.”

Other authors [4, 6–8] share that opinion. The idea has also been patented [6].
Let us pursue this idea and attempt to aspectize the preceding example using
AspectJ.

Listing 1.3 displays a Java counterpart of the original, uncontracted Eiffel
class POINT of listing 1.1. Except for syntactical differences, the two versions
most notably differ in the handling of attributes (fields in Java terminology).
Since attribute access in Java is not restricted by default, Java programmers
typically declare attribute values to be private and, additionally, provide appro-
priate “getter” methods.

Listing 1.4 displays the aspectized version of listing 1.3 that emulates the
contracted Eiffel version of listing 1.2 within an aspect using AspectJ. For sim-
plicity, we only list the aspectized postcondition of procedure move by(); the other
contract clauses would be amenable to the same treatment.

The aspect PointMoveByContract defines a pointcut, which denotes all calls of
moveBy(), and an associated after advice for the postcondition enforcement. In
case the postcondition is violated, the advice throws an exception. In addition,

Can Aspects Implement Contracts? 7

class
POINT

feature −− Access

x : DOUBLE
−− Abscissa value of current point

y : DOUBLE
−− Ordinate value of current point

feature −− Element change

change po int (new x : DOUBLE; new y : DOUBLE) i s
−− Overwrite coordinates of current point with provided va lues .

do
x := new x
y := new y

ensure
x co r r e c t l y upda t ed : x = new x
y co r r e c t l y upda t e : y = new y

end

move by (de l t a x : DOUBLE; d e l t a y : DOUBLE) i s
−− Move current point by provided va lues .

do
x := x + de l t a x
y := y + de l t a y

ensure
x cor rec t ly moved : x = old x + de l t a x
y cor rec t ly moved : y = old y + de l t a y

end

feature −− Output

t o s t r i n g : STRING is
−− Str ing representa t ion of current point

do
Result := ” (” + x . out + ” , ” + y . out + ”) ”

end

end

Listing 1.2. Cartesian point implementation in Eiffel with contracts

the aspect declares auxiliary constructs for recording the attribute values before
and after the method moveBy() was executed. To this end, the aspect includes
the inter-type declarations Point.oldX, Point.oldY, Point.newX, and Point.newY and a
before advice.

Although other techniques might be available, this seems to be the most
direct and effective way to “aspectize” contracts as suggested by the AOP liter-
ature.

5 Analysis

To compare the original contracted version (listing 1.2) and its aspect-based
emulation, we examine it in the light of some of the benefits of contracts listed
in section 3.1 — analysis and design, documentation, testing and debugging —
and two other important criteria: reusability and ease of use.

8 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

public c lass Point {

private double x ;
private double y ;

public double getX (){
return x ;

}

public double getY (){
return y ;

}

public void changePoint (double x , double y){
this . x = x ;
this . y = y ;

}

public void moveBy(double deltaX , double deltaY){
this . x += deltaX ;
this . y += deltaY ;

}

public St r ing toS t r i ng (){
return ” (” + getX () + ” , ” + getY () + ”) ” ;

}
}

Listing 1.3. Cartesian point implementation in Java

5.1 Analysis and Design Guidance

Both approaches provide design guidance by requiring developers to build soft-
ware systems based on precisely defined contracts. In AOP, however, one tends
to impose aspects on classes once the classes are developed, which clearly con-
tradicts the DbC methodology.

5.2 Documentation Aid

As Eiffel includes preconditions, postconditions, and invariants directly in the
class text, contracts become part of the class specification and thus increase
system documentation. In AspectJ, contracts are separated from the class they
describe and thus force the programmer to switch back and forth between classes
and aspects. Appropriate tool support, such as the AspectJ Development Tools
(AJDT) project for the Eclipse development environment, alleviates the problem
by highlighting the places where advice are injected.

5.3 Testing Assistance

Eiffel relies on run-time contract monitoring, which can be enabled or disabled
by setting a respective compilation option. AspectJ too, facilitates “pluggable”
run-time contract monitoring since aspectized contracts can be added or removed
from classes. Once an aspectized contract is removed, however, its documentation
is lost.

Can Aspects Implement Contracts? 9

public aspect PointMoveByContract {

private double Point . oldX ;
private double Point . oldY ;
private double Point . newX ;
private double Point . newY ;

public pointcut checkContract (Point p , double dx , double dy) :
ca l l (void Point . moveBy(double , double))
&& args (dx , dy)
&& target (p) ;

before (Point p , double dx , double dy) : checkContract (p , dx , dy){
p . oldX = p . getX () ;
p . oldY = p . getY () ;

}

after (Point p , double dx , double dy) : checkContract (p , dx , dy){
p . newX = p . getX () ;
p . newY = p . getY () ;
i f ((p . newX != p . oldX + dx) | | (p . newY != p . oldY + dy))

throw new ContractVio lat ionExcept ion (”p not c o r r e c t l y moved”) ;
}

}

Listing 1.4. Aspect implementing the postcondition of moveBy()

5.4 Contract Reuse

The application of wildcards in pointcuts makes aspects applicable to many
classes. In this way, AspectJ facilitates contract reuse. Eiffel too, allows contract
reuse, but restricts it to classes related by inheritance (see section 6.4).

5.5 Ease of Use

Eiffel promotes ease of contract application. Programmers declare contracts di-
rectly within the class text, at the place where they want them to apply. More-
over, Eiffel provides several constructs, such as the old notation (see section 3.2),
to facilitate the expressing of assertions. In AspectJ, programmers specify the
code places, where to inject the contracts, indirectly by means of pointcuts.

6 Discussion

In this section, we attempt to generalize from the example and assess whether
aspects are suited for emulating DbC.

6.1 Support of DbC Methodology

The analysis in section 5 implies that aspect-based DbC implementations do
not support the DbC methodology to the same extent as implementations in
contract-enabled languages. An aspect-based emulation ignores the documen-
tation mechanisms made possible by DbC. Since contracts are separated from

10 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

classes, the risk of introducing inconsistencies between classes and contracts is
increased; as programmers become aware of contracts only when using special
tools for browsing the spread application structure, they are more likely to for-
get adapting the contracts when changing the classes. This issue can get worse
after system deployment, once the aspectized contracts are removed. How will a
client, of a library component for example, know under which conditions it may
call a service?

Such removal of contracts also raises questions of maintainability. One of the
benefits of contracts mentioned in section 3.1 is to guide the evolution of classes;
but this assumes that the contracts are in the software.

Aspectized contracts promote a different focus on software design than DbC.
Whereas AOP aims at separating concerns, DbC fosters the explicit specification
of inter-module cooperation, in the modules themselves.

6.2 Are Contracts Crosscutting?

Contracts are recurrent in DbC-based code. Are they also crosscutting?
We can assess this conjecture by examining its consequences. If contracts

were crosscutting, an aspectized contract implementation would yield the ben-
efits presented in section 2.1. For example, the improved modularity requires
aspectized contracts to be modular. According to Parnas [14] modularity is, be-
sides the existence of explicit interfaces, defined by the possibility to create a
module with little knowledge of the code in other modules and the expectation
that drastic changes within one module will not require adaptations in other
modules. Contracts do not meet that definition: Since they semantically depend
on their classes, they can only be created with detailed knowledge of the as-
sociated classes, and are likely to be affected by modifications of these classes.
Aspectization is unlikely to change that situation.

Similar reasoning applies to other benefits listed: evolution and stability. Sep-
arating contracts from classes does not isolate the changes.

The remaining benefits mentioned in section 2.1 — explicitness, reusability,
pluggability — are achieved, at least partially, by an aspectized contract imple-
mentation. They would, however, also exist without aspectization. Implementing
contracts in Eiffel (see listing 1.2) makes contracts explicit, offers pluggability of
run-time contract monitoring, and allows contract reuse through genericity and
multiple inheritance (see also section 6.4 below).

The preceding considerations suggest that although contracts appear repeat-
edly within the class text — before and after each routine and at the end of the
class — they are not crosscutting by nature.

6.3 Crosscutting Contracts

Hannemann et al. [15] and Bergmans [16] have pointed out the existence of aspect
interactions in AOP. Such interactions can result in conflicts between classes and
aspects or between aspects and aspects. Aspects intended to emulate contracts
seem to create many such interactions.

Can Aspects Implement Contracts? 11

public aspect Sca lePo int {

private stat ic double s ca l eFac to r = 10 ;

public pointcut change (Point p , double x , double y) :
target (p) &&
args (x , y) &&
(execution (void Point . changePoint (double , double)) | |

execution (void Point .moveBy(double , double))) ;

void around (Point p , double x , double y) : change (p , x , y){
proceed (p , s ca l eFac to r ∗ x , s ca l eFac to r ∗ y) ;

}
}

Listing 1.5. Aspect allowing to scale points by a specified scale factor

To illustrate that problem, we extend our running example and assume that
we want to scale points transparently to the clients of class Point. This is typical
of the kind of incremental, seamless addition that aspects are intended to permit.
Listing 1.5 presents an aspect achieving this extension for scaling points accord-
ing to a specified scale factor. Whenever we attempt to change the coordinates of
a point, the around advice of aspect ScalePoint will multiply the new coordinates
we provide by scaleFactor. Such an aspect could be useful for displaying points
when the display device requires a special formatting.

Adding such an aspect breaks the contract of class Point. Both the new aspect
and the aspectized contract advise method moveBy. The problem is that they
work on the same method in a nested fashion without being aware of each other.
As soon as one aspect changes the state of the object on which the routine
operates, or changes the value of an argument of the routine, it compromises
any assumptions by the other aspect on object state or argument values.

The interleaved advice execution sequence in the example is as follows:

1. Before advice of aspect PointMoveByContract

2. Around advice of aspect ScalePoint

3. After advice of aspect PointMoveByContract

Since the around advice of aspect ScalePoint changes the point coordinates
invisibly to the aspectized contract, the postcondition ceases to be ensured. With
contract monitoring on, the after advice will raise a ContractViolationException. The
aspect ScalePoint literally crosscuts the contract.

The example suggests that no module in a system — class or aspect — can
be oblivious of the presence of contracts.

6.4 Contracts and Inheritance

A key property of DbC is its connection with the inheritance mechanism and, as
a consequence, software reuse. When a class inherits from one or more others,
the following rules apply to its contracts [9]:

12 Stephanie Balzer, Patrick Th. Eugster, Bertrand Meyer

– Parent’s invariant rule: The invariants of all the parents of a class apply to
the class itself.

– Assertion redeclaration rule: A routine redeclaration may only replace the
original precondition by one equal or weaker, and the original postcondition
by one equal or stronger. This applies both to redefinition (overriding an
inherited implementation) and effecting (providing a first implementation of
a feature inherited as deferred, that is to say, without an implementation);
the second application is particularly useful in the transition from analysis
(which uses deferred classes) to design and implementation.

Ideally, the development environment should enforce these rules. With as-
pectized contracts, however, there seems to be no clear way of achieving this. It
is left to the programmer to make sure that the pointcuts for injecting invari-
ants also apply to descendant classes and that the refinement of preconditions
and postconditions in descendant classes follows the assertion redeclaration rule.
Intended revisions on the AspectJ join point model aiming at increasing the ex-
pressiveness of pointcut definitions [17] might abate the problem in future. For
the moment, however, programmers must live with the pure syntactical mech-
anisms of the AspectJ join point model, and take care of consistent contract
refinement themselves.

7 Conclusion

Our investigation of whether aspects are suited for implementing Design by
Contract suggests that such an emulation fails to provide some of the principal
benefits of Design by Contract, in particular documentation and support for
inheritance-based refinement. We have further observed that contracts are not
crosscutting by nature, and that aspectizing them risks creating interactions
with other aspects.

These conclusions are of course dependent on the context of our study: it
may be — although we have no evidence of either possibility — that using
another AOP environment than AspectJ, the current flagship and reference for
AOP, would yield better results; and that we used the wrong techniques for
aspectizing contracts, missing more effective solutions.

Based on the current state of our aspectizing efforts, however, the conclusion
seems clear: the widely repeated AOP claim that aspects can emulate contracts
does not appear to stand.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: ECOOP
’97 - Object-Oriented Programming: 11th European Conference. Volume 1241 of
Lecture Notes in Computer Science., Springer-Verlag GmbH (1997) 220–242

Can Aspects Implement Contracts? 13

2. Lieberherr, K.J., Lorenz, D.H., Mezini, M.: Building modular object-oriented sys-
tems with reusable collaborations (tutorial session). In: ICSE, ACM Press (2000)
821

3. Lopes, C.V., Kiczales, G.: Improving design and source code modularity using
AspectJ (tutorial session). In: ICSE, IEEE-CS : Computer Society and SIGSOFT:
ACM Special Interest Group on Software Engineering and Irish Comp Soc : Irish
Computer Society, ACM Press (2000) 825

4. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
Getting started with AspectJ. Commun. ACM 44 (2001) 59–65

5. TheServerSide.COM: Interview with Gregor Kicza-
les, topic: Aspect-oriented programming (AOP).
http://www.theserverside.com/talks/videos/GregorKiczalesText/interview.tss
(2003)

6. Lopes, C.V., Lippert, M., Hilsdale, E.A.: Design by contract with aspect-oriented
programming. U.S. Patent No. 6,442,750 (2002)

7. Diotalevi, F.: Contract enforcement with AOP. http://www-
128.ibm.com/developerworks/library/j-ceaop/ (2004)

8. Skotiniotis, T., Lorenz, D.H.: Cona: aspects for contracts and contracts for aspects.
In: OOPSLA Companion, ACM Press (2004) 196–197

9. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall
Professional Technical Reference (1997)

10. Meyer, B.: Eiffel: The Language. Prentice Hall Professional Technical Reference
(1991)

11. Kiczales, G.: AspectJ: Aspect-oriented programming in Java. In Aksit, M., Mezini,
M., Unland, R., eds.: NetObjectDays. Volume 2591 of Lecture Notes in Computer
Science., Springer-Verlag GmbH (2002) 1

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: ECOOP. Volume 2072 of Lecture
Notes in Computer Science., Springer-Verlag GmbH (2001) 327–353

13. Lopes, C.V., Kiczales, G.: Recent developments in aspect. In Demeyer, S., Bosch,
J., eds.: ECOOP Workshops. Volume 1543 of Lecture Notes in Computer Science.,
Springer-Verlag GmbH (1998) 398–401

14. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15 (1972) 1053–1058

15. Hannemann, J., Chitchyan, R., Rashid, A.: Analysis of aspect-oriented software. In
Buschmann, F., Buchmann, A.P., Cilia, M.A., eds.: ECOOP Workshops. Volume
3013 of Lecture Notes in Computer Science., Springer-Verlag GmbH (2003) 154–
164

16. Bergmans, L.: Towards detection of semantic conflicts between crosscutting con-
cerns. In Hannemann, J., Chitchyan, R., Rashid, A., eds.: Workshop on Analysis
of Aspect-Oriented Software. ECOOP 2003 (2003)

17. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning.
In: ICSE, ACM Press (2005) 49 – 58

