
Cite as follows: Bertrand Meyer,The Dependent Delegate Dilemma, in Engineering Theories of Software
Intensive Systems, eds. Manfred Broy, J Gruenbauer, David Harel, C.A.R. Hoare, NATO Science Series
II: Mathematics, Physics and Chemistry, vol. 195, Springer-Verlag, June 2005, to appear.
The Dependent Delegate Dilemma
Bertrand Meyer, ETH Zurich
ABSTRACT
A criticism of the object-oriented style of programming is that the notion of class
invariant seems to collapse in non-trivial client-supplier relationships: a supplier
(“Dependent Delegate”) called from within the execution of a routine, where the
invariant is not required to hold, may call back into the originating object, which
it then catches in an inconsistent state. This is one of the problems arising from
theapplicationofassertion-basedsemantics toamodelof computation involving
references and the resulting possibility of dynamic aliasing.

This note suggests handling such cases by applying the basic non-object-
oriented Hoare rule, instead of the version involving the invariant. It does not
consider inheritance and dynamic binding.

1 OVERVIEW

A key concept of object-oriented programming, essential for reasoning about
classes and their instances, is the class invariant. A class invariant expresses a
consistency property applicable to all instances of a class. For example a class
PERSONwith a queryspousereturning aPERSONand a boolean query
is_married may include the invariant clauses:

In words: a person is married if and only if “he” has a spouse, and in that case
the spouse of that spouse is the person himself (the “Current” object as talked
about in the class).

Despite its name, the class invariant is, for all but non-trivial examples,
not always satisfied; it only has to hold when the object is officially accessible
to clients. During the execution of a routine of the class, the invariant may be
temporarily violated. This is already clear from our example: any routine that
affectsspouseor is_married, for example a proceduremarry (p: PERSON)
that sets the spouse of the current person top and is_marriedto True, will
temporarily, in-between those two setting operations, falsify the invariant.
This is considered acceptable since in such an intermediate state the object is
not directly usable by the rest of the world — it is busy executing a routine,
marry—, so it doesn’t matter that its state might be inconsistent. What counts
is that the invariant will hold before and after the execution of calls such as
Alice.marry (Bob), executed by clients of the classPERSON.

The Dilemma of interest for this note arises when such a client is also a
supplier, direct or indirect. A typical scheme is for a routiner (which could be
themarry of our example) to pass the current object to a supplier:

is_married= (spouse/= Void)
is_marriedimplies (spouse.spouse = Current))

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY2
This tells another objectsome_supplier(the “Dependent Delegate”) to do
some_work, for which it may need to access the current object, passed to it as
an argument. As a consequence, part ofsome_workcould be a call (a
“Dependent Delegate Callback”) back into that same object:

In this execution,x happens to be the former “current object” that is now
waiting for the execution ofr to terminate. But then the call to
some_operation, back into that object, catches it unawares: there is no
guarantee that the object will satisfy the invariant at that point, since the
Instructions_1might have invalidated that invariant, as they are entitled to do
— without violating the correctness requirement of the original class —
provided theInstructions_2 reëstablish it.

This is the Dependent Delegate Dilemma: you hope to delegate a certain
task to a supplier, but discover that the supplier (the delegate) is dependent on
you, soon coming back with requests for your own help. Since you didn’t
expect those requests — naïvely believing, like many a novice manager before
you, that delegating a task means you can stop worrying about it and just wait
for the delegate to come back with the work done — they may catch you in a
state that doesn’t satisfy the invariant (you may for example be dozing off
between meetings with successive visitors).

The ultimate cause behind the Dilemma is the role of references in the
object-oriented model of computation and the resulting possibility of dynamic
aliasing. In our example the delegate object can, throughx, keep a reference to
the originalPERSON object:

r is

some_work(x: PERSON) is

do
… Instructions_1…
some_supplier.some_work(Current)
… Instructions_2…

end

do
…
x.some_operation
…

end

some_supplier

x
(PERSON) (DELEGATE_TYPE)

§2 RULES FOR ROUTINE CALLS 3
Such dynamic aliasing is part of the flexibility provided by the use of
references, but complicates assertion-based reasoning about program behavior.

The next sections examine the Dilemma and suggest addressing it
through proper application of Hoare-style specifications. It is important for
this discussion to note the context in which the Dilemma may occur:

The case of a class that is both a client and supplier of another, introducing a
cycle in the client class, is known to be delicate. For example:

• It prohibits a client relationship of the “expanded client” form where
every instance ofA contains a subobject ofB, rather than the usual
“reference client” form where each instance ofA contains a (possibly
void) reference to an object of typeB. Eiffel’s compile-time validity rules
explicitly prohibit cycles in the expanded client relation[5].

• Cyclic client relationships make invariants more difficult to enforce. Class
PERSONmay have a featureresidence: HOUSEand the invariant clause
residence/= Void implies residence.resident= Current, whereHOUSEhas
resident: PERSON. Even if all the routines of classPERSONpreserve that
invariant, a routine of classHOUSEcan violate it by assigning toresident.
Looking at one of the classes alone will not reveal the error. ThisIndelicate
Delegate problem is closely related to the Dependent Delegate Dilemma.

This issue is discussed in[6] (11.14, “Class invariants and reference
semantics”) with the informal suggestion of adding a symmetric invariant:
here, in classHOUSE, resident/= Void implies resident.residence= Current.

2 RULES FOR ROUTINE CALLS

A routine call stands for the execution of the corresponding routine body, with
actual arguments if any substituted for the corresponding formals. This is
captured by the traditional (non-O-O) Hoare rule for routines, which in a
simplified form sufficient for this discussion we may write

The Dependent Delegate Dilemma arises when a supplier of a
class is also — because it calls back one of its routines — a client
of that class.

{ P} body { Q}

{ P’} call { Q’}
N_RULE

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY4
whereP andQ are assertions (precondition and postcondition),body is the
body of a routine,call is a call to that routine, and priming (inP’ andQ’)
stands for substitution of actual for formal arguments. The rule states that,
after such substitution, we may infer a property of any call to a routine from
the corresponding property of the routine’s body.

We call this ruleN_RULE (N for non-object-oriented).

N_RULE applies to calls of the form

This doesn’t just includes routine calls in a non-O-O language, but also, in an
O-O language, calls of theUNQUAL form executed by another routine in the
same class assome_routine, which simply callssome_routineon the same
object on which it is currently executing. The correctness of such calls, said to
beunqualified, falls underN_RULE.

In an object-oriented language, we also havequalified calls of the form

where some_routinemust be exported to the appropriate class (aclient)
executing the qualified call. It is for such qualified calls that the class invariant
intervenes, in the form of the modified rule

called “I_RULE ” because it involves the invariantINV of the class. The
invariant helps us reason about the class:

• Being added to the precondition, it facilitates writing the routine by
allowing us to assume that it always finds the object in a consistent state.

• Being added to the postcondition, it imposes on the routine the extra
requirement of ensuring the postcondition on exit.

For example, a class describing bank accounts may have an invariant clause
statingbalance= deposits.total – withdrawals.total: the current balance is
consistent with the history of deposits and withdrawals. An exported routine
that manipulates the account may assume this: it doesn’t have to worry about
finding an inconsistent object. It must, however, worry about avoiding that
same inconsistency on return. So if for example it modifies the list ofdeposits,
it must update thebalance accordingly.

some_routine(some_arguments) [UNQUAL]

some_routine (some_arguments) [QUAL]

{ P } body { Q }

{ P’} call { Q’}

some_object.

I_RUL E∧ INV ∧ INV

§2 RULES FOR ROUTINE CALLS 5
To complementI_RULE there’s also a rule ensuring that, on creation,
every object satisfies the invariant of its generating class. It reads

and applies to a creation procedure (“constructor” in C++);Defaultsdenotes
the result of default initializations.C_RULE is to I_RULE what the base step
of an induction rule is to the induction step. It is not, however, essential to the
present discussion.

For bothN_RULE andI_RULE the inferred property of routine calls —
the consequent of the rule — is the same:{ P’} call { Q’} . The invariant figures
only, in I_RULE , in the property of the routine body — the hypothesis that we
must prove to allow the inference. This presents the invariant as an internal
property of the class rather than one directly relevant to clients. Indeed, an
invariant typically includes, along with official properties, corresponding to
axioms of the corresponding abstract data type, a part known as the
representation invariant [3] which involves secret features of the class and
hence should not be visible to clients.

This discussion suggests a first definition of the correctness of a class:

The three cases are not exclusive; a routiner that falls into more than one case
must satisfy the associated clauses. In particular:

• In Eiffel, a procedure of the class may be available for normal calls
x.p (a), where clause2 applies, as well as for creation calls
createx.p (a) which subject it to clause3. (This is not the case in
languages such as C++, Java and C# where constructors are special
mechanisms distinct from the features of the class.)

• More directly relevant to this discussion,r may be both called by other
routines of the class in unqualified form and available for qualified calls
by clients, subjecting it to clause1 as well as2.

{ } c_body { Q ∧ INV}

{ P’} c_call { Q’}

Definition: Class Correctness (basic)
A class is correct if every routiner of the class satisfies the
following properties:
1 •N_RULE if a routine of the class callsr unqualified.

2 •I_RULE if r is exported to at least one client.

3 •C_RULE if r is a creation procedure.

C_RULEP ∧ Defaults

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY6
Clause2 is stronger than needed since it would suffice to require thatr satisfy
I_RULE if some client actually calls it qualified, as inx.p (a). But then we
couldn’t check class correctness without knowing all the clients of a class; this
would mean that the check isglobal, applying to an entire program (“system”
in Eiffel terminology). As given, the rule ismodular: enforceable at the level
of individual classes.

Clause2 makesI_RULE applicable to routines exported to “at least one
client”. In some object-oriented languages a feature is either secret or public;
then the rule will apply only to exported features. In others, the policy is more
fine-grained. For example C++ has a notion of “friend” classes and C# allows
export to the “family” of a class or to its assembly. In Eiffel, it is possible to
export a feature to specific classes, as in

The specifications determine whether a call of the formx.f (…), wherex is
declared of typeC andf is one off1, g1etc., is valid in a classCLIENT:

• For f1, CLIENT can be any class (the feature is public).

• For i1 the call is never valid (NONEis, by convention, the bottom of the
inheritance graph).

• For g1 the call is valid only in a classCLIENT that isA, B or one of its
descendants. (If we export a feature to a class we should also export it to
its descendants.)

Because the rule applies to all qualified calls,x.g1 (…) is not valid in classC
itself, because the call uses the class as its own client. For the call to be valid,
we must export the feature to the class itself, as withh1and of coursef1. This
policy distinguishes Eiffel from languages such as Java and C#, where a class
may always use its own features. It follows from the principle that:

class
C

feature
“Declaration of featuresf1, …”

feature { A, B}
“Declaration of featuresg1, …”

feature { A, B, C}
“Declaration of featuresh1, …”

feature { NONE}
“Declaration of featuresi1, …”

end

§3 THE DEPENDENT DELEGATE RULE 7
• A feature is always usable, within its own class, in unqualified calls.

• A qualified call, however, is only valid if it appears in a client to which
the feature is exported. This means that if the client is the same as the
supplier, it must export the feature to itself.

The rule that invariants (clause2of the rule) only matter for qualified calls also
affectsrun-time assertion monitoring. Current Eiffel implementations do not
yet support full proofs of correctness but offer optional run-time contract
monitoring. With invariant monitoring turned on, invariant checks, on routine
entry and exit, only take place for qualified calls. This means in particular (for
example under Eiffel Software’s EiffelStudio compiler) that the calls

although equivalent for a correct program, differ in the presence of invariant
monitoring: the second will cause the invariant to be checked, the first won’t.

3 THE DEPENDENT DELEGATE RULE

The purpose of the Class Correctness rule is to ensure that clients get the
promise of the class routines’ contracts, based on the assumption that
whenever an instance of the class is observable from the outside it will satisfy
its invariant. We may informally picture the life of an object as follows[6]:

f (…)
Current.f (…)

create a.make(…)

a.f (…)

a.g (…)

a.f (…)
State satisfying invariant

State that may violate invariant

Routine call (causing state change)

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY8
During the execution of qualified calls (as in the mark appearing in the
execution ofg) the invariant may temporarily be violated; but it will hold
before and after the execution of these calls.

With the possibility of calls to “dependent delegates” the basic Class
Correctness rule is no longer sufficient to ensure this property:

As illustrated,g may call back into the original object which it finds in a state
violating the invariant.

If such a callback from a dependent delegate (a supplier that is also a
client) occurs, it no longer suffices that the routine being called back,f in the
figure, satisfyI_RULE , since it is called outside of invariant-satisfying states.
The callback is similar to an unqualified call as may be executed from within
the class, which the basic Class Correctness rule addresses throughN_RULE
(clause1). It seems appropriate to address this case through the same formal
device, yielding a new clause:

This extra requirement appears to take care of the Dependent Delegate Dilemma
in the absence of dynamic binding and is the contribution of the present note.

The added condition can be checked locally for each class (in other
words, it is “modular”): while knowing theclientsof a class requires access to
the entire system (program), analyzing any class requires having access to its
suppliers(the classes used as type forx in any calls of the formx.f (…)
appearing in the class). Clause4 arises when such a supplier (direct or
indirect) is also a client, calling back into the object; checking it requires no
more information than is needed anyway to analyze the class, independently
of any specific system to which the class may belong.

Definition: Class Correctness (extended)
In addition to the preceding clauses,r must satisfy:
4 •N_RULE if a supplier of the class callsr qualified.

a.g (Current)

g (x)x.f (…)

§4 AN EXAMPLE 9
4 AN EXAMPLE

To see how the Dependent Delegate Dilemma and the solution presented work
out in practice, let us develop the “marriage” example sketched earlier:

Since there is no explicit creation procedure, instances of this class will be
created through the default creation mechanismcreatep (for p: PERSON) which
initializes all booleans such asis_marriedto False and all references such as
spouseto void, ensuring that the instance satisfies the invariant, as perC_RULE.

Here is a first attempt at a procedure to marry the currentPERSONobject
to another (omitting preconditions not relevant to the discussion, such asp not
beingCurrent):

class PERSONfeature
spouse: PERSON

-- Spouse, if any

is_married: BOOLEANis
-- Is this person married?

do
Result:= (Spouse /= Void)

end
… Procedures such asmarry (see below)…

invariant
is_married =(spouse/= Void)
is_marriedimplies (spouse.spouse = Current))

end

marry1(p: PERSON) is
-- Get married top. -- [INCORRECT VERSION]

require
p /= Void
not is_married
not p.is_married

do
spouse:= p
is_married:= True

ensure
is_married
spouse= p

end

p.marry1(Current)

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY10
This will not work since the call tomarry1violates the second clause of the
precondition: for this callp represents the currentPERSONobject, whose
is_married attribute has just been set to True.

Note that in this example the Dependent Delegate of classPERSONis
PERSONitself. The discussion can be directly transposed to the example of
people’s residence and houses’ residents, which involves two distinct classes.

We might try reversing the order of instructions:

but the call causes infinite recursion.

It seems inevitable to introduce a routine with fewer restrictions than
marry, a plain “setter” procedure, which we callget_engaged:

Procedureget_engagedis useful only forPERSON’s internal purposes; as a
consequence it appears in a feature clause labeledfeature { PERSON} ,
meaning it’s exported only toPERSONitself, allowing routines of the class to
use calls such asp1.get_engaged(p2) for p1 andp2 of typePERSON.

(p: PERSON) is
-- Get married top. -- [INCORRECT VERSION]

require
… As formarry1…

do

spouse:= p
is_married:= True

ensure
… As formarry1…

end

feature { PERSON} -- Implementation
get_engaged(p: PERSON) is

-- Setspouse to p andis_married to True.
-- No precondition!
do

spouse:= p
is_married:= True

ensure
spouse= p
is_married

end

marry2

p.marry2(Current)

§4 AN EXAMPLE 11
We may now write a correct version ofmarry:

The callp.get_engaged(Current) is executed in a state that doesn’t satisfy the
invariant sinceis_marriedis now True butspouse.spouseis notCurrent (it’s
indeed the purpose of that call to set it toCurrent).

This call,p.get_engaged(Current), is a dependent delegate callback on
p. It doesn’t actually cause a problem with the original Class Correctness rule
since that at stagep satisfies the invariant (itsspouseis void and itsis_married
is false). To illustrate a potentially damaging callback we replaceget_engaged
by two separate setter procedures:

(p: PERSON) is
-- Get married top.

require
… As formarry1…

do

ensure
… As formarry1…

end

feature { PERSON} -- Implementation
set_spouse(p: PERSON) is

-- Setspouse to p.
-- No precondition!
do

spouse:= p
ensure

spouse= p
end

set_marriedis
-- Setis_married to True.

-- No precondition!
do

is_married:= True
ensure

is_married
end

marry3

get_engaged(p)

p.get_engaged(Current)
Here the invariant

doesn’t hold!

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY12
Then we may write the marrying procedure as

where the last calls catches the object associated withp in a state that doesn’t
satisfy the invariant, since itsis_marriedis true but (assumingp had just been
created and initialized to the default) itsspouseis still void. With only the
basic Class Correctness rule this would makemarry4 incorrect; the extended
rule, however, only requiresset_spouseandset_marriedto satisfyN_RULE,
which they do since they trivially ensure their postconditions.

5 IMPROVING RUN-TIME INVARIANT MONITORING

The extended Class Correctness rule appears to provide a basis for addressing
the Dependent Delegate Dilemma, although this note does not address
inheritance and dynamic binding, and does not provide a formal proof, which
requires a mathematical model of O-O computation.

A practical consequence for today’s Design by Contract support systems,
enforcing run-time contract monitoring rather than proofs, is thatinvariant
monitoring should not apply to Dependent Delegate Callbacks. As noted,
invariant monitoring applies only to qualified calls; a Dependent Delegate
Callback is qualified (x.f) but, like an unqualified callf, it may catch the
object in a state that doesn’t satisfy the invariant, without signaling any actual
mistake in the system. Eiffel Software’s EiffelStudio implementation[1]
checks the invariant in this case; so do (as far as I know) other Eiffel compilers.

(p: PERSON) is
-- Get married top.

require
… As formarry1…

do

ensure
… As formarry1…

end

marry4

set_married
p.set_married

set_spouse(p)
p.set_spouse(Current)

Here the invariant
doesn’t hold forp

§6 ABOUT THE INDELICATE DELEGATE PROBLEM 13
This policy should be corrected as it may lead to false alarms. Such situations,
although very rare, do occasionally occur in practice; programmers address
them through calls to library routines that disable invariant monitoring before
the offending callback and reënable it after. Instead of forcing such ad hoc
solutions on the programmer, compilers should take care of the problem by
skipping the invariant check for dependent delegate callbacks.

Detecting that a qualified call is in fact a dependent delegate callback
shouldn’t be hard for compilers; this is, as noted, a local check, not requiring
any more information than already needed to analyze and compile a class.

6 ABOUT THE INDELICATE DELEGATE PROBLEM

An earlier part of the discussion mentioned the Indelicate Delegate problem,
causing a class invariant to be invalidated, through reference reassignment,
beyond the control of the class itself. Although this note concentrates on the
Dependent Delegate Dilemma, we may take a look at the relationship between
the two issues.

The Indelicate Delegate problem is indeed lurking in our marriage
example. All themarry procedures so far assumed the precondition clauses
not is_marriedandnot p.is_married. Assume we remove these clauses, to
loosen the requirements by allowing remarriage. Then for non-voidp, q andr
a client may execute the successive calls

The second call remarriesq to r. If marry is written — for example asmarry3
or marry4 — to preserve the invariant in accordance withI_RULE , it will
ensurespouse.spouse= Currentfor bothq andr. But neither implementation
updates any property ofp; indeed,spouse.spousewill, for p, end up with
valuer! Such bigamous behavior on the part ofq leads to moral outrage, the
full punishment of the law and (the real scandal for this discussion) breach of
software correctness.

[6], as already noted, suggested providing a symmetric invariant. This is
clearly not the right approach here, since only one class is involved: the
symmetric invariant is the same as the original,spouse.spouse= Current
(underis_married).

What we seem actually to need here isspouse.spouse.spouse= spouse.
Future work will address the issue in a more general setting.

p.marry (q)
q.marry (r)

THE POWER OF ABSTRACTION, REUSE AND SIMPLICITY14
7 SUMMARY AND CONCLUSION

This note has proposed a simple solution to the Dependent Delegate Dilemma,
based on a simple correctness rule: requiring that any routine used in a
dependent delegate callback satisfy, in addition to the object-oriented
correctness property, the traditional routine rule. If this solution is right, it
should be applied right away by run-time contract-monitoring options of
current compilers.

8 ACKNOWLEDGMENTS

This note derives from an email message to Peter Müller and Rustan Leino
(whose comments and criticism I gratefully acknowledge) during a discussion
in November 2003, originally triggered by comments by Tony Hoare at the
WG 2.3 meeting in Monterey in January 2002 (where he appears to have
suggested the solution described here, although I did not realize it then). It was
further fueled by remarks from Manfred Broy in Marktoberdorf in August
2004. Peter Müller provided further corrections.

REFERENCES

[1] Eiffel Software: EiffelStudio documentation, online ateiffel.com.

[2] C.A.R. Hoare:Procedures and Parameters: An Axiomatic Approach, in
Symposium on the Semantics of Programming Languages, ed. Erwin Engeler,
Lecture Notes in Mathematics 188, Springer-Verlag 1971, pages 103-116;
reprinted in C.A.R. Hoare and C. B. Jones (eds.),Essays in Computing
Science, Prentice Hall International 1989, pages [COMPLETE].

[3] C.A.R. Hoare:Proofs of Correctness of Data Representations, in Acta
Informatica, vol. 1, 1972, pages 271-281; reprinted in C.A.R. Hoare and C. B.
Jones (eds.),Essays in Computing Science, Prentice Hall International 1989,
pages 103-115.

[4] K. Rustan Leino and Peter Müller:Object Invariants in Dynamic Contexts,
in European Conference on Object-Oriented Programming, LNCS 3086,
Springer-Verlag, June 2004, pages 491-516.

[5] Bertrand Meyer:Eiffel: The Language, 2nd printing, Prentice Hall, 1992.

[6] Bertrand Meyer,Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

[7] Peter Müller:Modular Specification and Verification of Object-Oriented
Programs, LNCS 2262, Springer-Verlag, 2002.

http://www.eiffel.com

	The Dependent Delegate Dilemma Bertrand Meyer, ETH Zurich
	ABSTRACT
	1 OVERVIEW
	2 RULES FOR ROUTINE CALLS
	Definition: Class Correctness (basic)

	3 THE DEPENDENT DELEGATE RULE
	Definition: Class Correctness (extended)

	4 AN EXAMPLE
	5 IMPROVING RUN-TIME INVARIANT MONITORING
	6 ABOUT THE INDELICATE DELEGATE PROBLEM
	7 SUMMARY AND CONCLUSION
	8 ACKNOWLEDGMENTS

