
— in
rform
are

d off
ming
us as

lished
areas,

bit

om
if a
ited

this
and

but
cal
ted

ing
long
ly
ht for
f the
e of
Dependable sof tware

Bertrand Meyer

ETH Zurich
http://se.ethz.ch

Abstract. Achieving software reliability takes many complementary techniques,
directed at the process or at the products. This survey summarizes some of the
most fruitful ideas.

1 Overview

Everyone who uses software or relies on devices or processes that use software
other words, everyone — has a natural interest in guarantees that programs will pe
properly. The following pages provide a review of techniques to improve softw
quality.

There are many subcultures of software quality research, often seemingly seale
from each other; mentioning process-based approaches such as CMMI to program
language technologists, or tests to people working on proofs, can be as incongruo
bringing up Balanchine among baseball fans. This survey disregards such estab
cultural fences and instead attempts to include as many as possible of the relevant
on the assumption that producing good software is hard enough that “every little
counts” [60]. As a result we will encounter techniques of very diverse kinds.

A note of warning to the reader seeking objectivity: I have not shied away fr
including references — easy to spot — to my own work, with the expectation (
justification is needed) that it makes the result more lively than a cold inspection lim
to other people’s products and publications.

2 Scope and terminology

The first task is to define some of the fundamental terms. Even the first word of
article’s title, determined by the Hasler Foundation’s “Dependable Information
Communication Systems” project, requires clarification.

2.1 Reliability and dependability

In the software engineering literature the more familiar term is not “dependable”
“reliable”, as in “software reliability”. A check through general-purpose and techni
dictionaries confirms that the two have similar definitions and are usually transla
identically into foreign languages.

There does exist a definition of dependability [1] from the eponymous IFIP Work
Group 10.4 [39] that treats reliability as only one among dependability attributes, a
with availability, safety, confidentiality, integrity and maintainability. While possib
applicable to a computing system as a whole, this classification does not seem rig
their software part, as some attributes such as availability are not properties o
software per se, others such as confidentiality are included in reliability (through on

2

bious
bility

ability

ld
ncy
he
ng-

ereas
they

ree

ly be

ed
ugh

listed
ially
hieve
, not
es),

ses

s use

e of

The
the
m if

nput
fine

d by
the

but
ility
its components, security), and the remaining ones such as maintainability are of du
meaning for software, being better covered by other quality factors such as extendi
and reusability [57].

As a consequence of these observations the present survey interprets depend
as meaning the same thing, for software, as reliability.

2.2 Defining reliability

The term “software reliability” itself lacks a universally accepted definition. One cou
argue for taking it to cover all “external quality factors” such as ease of use, efficie
and extendibility, and even “internal quality factors” such as modularity. (T
distinction, detailed in [57], is that external factors are the properties, immediate or lo
term, that affect companies and people purchasing and using the software, wh
internal factors are perceptible only to software developers although in the end
determine the attainment of external factors.)

It is reasonable to retain a more restricted view in which reliability only covers th
external factors:correctness, robustnessandsecurity. This doesn’t imply that others are
irrelevant; for example even the most correct, robust and secure system can hard
considered dependable if in practice it takes ages to react to inputs, anefficiency
problem. The same goes forease of use: many software disasters on record happen
with systems that implemented the right functions but made them available thro
error-prone user interfaces. The reasons for limiting ourselves to the three factors
are, first, that including all others would turn this discussion into a survey of essent
the whole of software engineering (see [33]); second, that the techniques to ac
these three factors, although already very diverse, have a certain kindred spirit
shared by those for enhancing efficiency (like performance optimization techniqu
ease of use (like ergonomic design) and other external and internal factors.

2.3 Correctness, robustness, security

For the three factors retained, we may rely on the following definitions:

• Correctness is a system’s ability to perform according to its specification in ca
of use within that specification.

• Robustness is a system’s ability to prevent damage in cases of erroneou
outside of its specification.

• Security is a system’s ability to prevent damage in cases of hostile use outsid
its specification.

They correspond to levels of increasing departure from the specification.
specification of any realistic system makes assumptions, explicit or implicit, about
conditions of its use: a C compiler’s specification doesn’t define a generated progra
the input is payroll data, any more than a payroll program defines a pay check if the i
is a C program; and a building’s access control software specification cannot de
what happens if the building has burned. By nature, the requirements define
robustness and security are different from those of correctness: outside of
specification, we can no longer talk of “performing” according to that specification,
only seek the more modest goal of “preventing damage”; note that this implies the ab
to detectattempts at erroneous or hostile use.

3

isible
ls the
g the

nd at
s the
tes of

sible
t in
of

poor
the

ware

ntary

s; the
their

h we
e term
as the

, such

are
sign

cts
ready
r the

—
k for
e

tly

ave
lt in
on-
Security deserves a special mention as in recent years it has assumed a highly v
place in software concerns. This is a phenomenon to be both lamented, as it signa
end of a golden age of software development when we could concentrate on devisin
best possible functionality without too much concern about the world’s nastiness, a
the same time taken to advantage, since it has finally brought home to corporation
seriousness of software quality issues, a result that decades of hectoring by advoca
modern software engineering practices had failed to achieve. One of the most vi
signs of this phenomenon is Bill Gates’s edict famously halting all developmen
February of 2001 in favor of code reviews for hunting down security flaws. Many
these flaws, such as the most obnoxious, buffer overflow, are simply the result of
software engineering practices. Even if focusing on security means looking at
symptom rather than the cause, fixing security implies taking a coherent look at soft
tools and techniques and requires, in the end, ensuring reliability as a whole.

2.4 Product and process

Any comprehensive discussion of software issues must consider two compleme
aspects:product andprocess.

The products are the software elements whose reliability we are trying to asses
process includes the mechanisms and procedures whereby people and
organizations build these products.

2.5 The products of software

The products themselves are diverse. In the end the most important one, for whic
may assess correctness, robustness and security, is code. But even that simpl
covers several kinds of product: source code as programmers see it, machine code
computer executes it, and any intermediate versions as exist on modern platforms
as the bytecode of virtual machines.

Beyond code, we should consider many other products, which in their own ways
all “software”: requirements, specifications, design diagrams and other de
documents, test data — but also test plans —, user documentation, teaching aids…

To realize why it is important in the search for quality to pay attention to produ
other than code, it suffices to consider the results of numerous studies, some al
decades old [10], showing the steep progression of the cost of correcting an erro
later it is identified in the lifecycle.

2.6 Deficiencies

In trying to ascertain the reliability of a software product or process we must often
like a detective or a fire prevention engineer — adopt a negative mindset and loo
sources of violation of reliability properties. The accepted terminology her
distinguishes three levels:

• A failure is a malfunction of the software. Note that this term does not direc
apply to products other than executable code.

• A fault is a departure of the software product from the properties it should h
satisfied. A failure always comes from a fault, although not necessarily a fau
the code: it could be in the specification, in the documentation, or in a n
software product such as the hardware on which the system runs.

4

em.
: a

s of

t of
s. In

r
ion
ssed

ct —
, the
tops
e no
, and
self.

ess a
ing

h is
its

of

lity

red
t to

me
inst
inst

gainst
gainst

e
s

thing.
• An error is a wrong human decision made during the construction of the syst
“Wrong” is a subjective term, but for this discussion it’s clear what it means
decision is wrong if it can lead to a fault (which can in turn cause failures).

In a discussion limited tosoftwarereliability, all faults and hence all failures result from
errors, since software is an intellectual product not subject to the slings and arrow
the physical world.

The more familiar term for “error” isbug. The upper crust of the software
engineering literature shuns it for its animist connotations. “Error” has the benefi
admitting that our mistakes don’t creep into our software: we insert them ourselve
practice, as may be expected, everyone says “bug”.

2.7 Verification and validation

Even with subjectivity removed from the definition of “error”, definitions for the othe
two levels above remains relative: what constitutes a “malfunction” (for the definit
of failures) or a “departure” from desirable properties (for faults) can only be asse
with respect to some description of the expected characteristics.

While such reference descriptions exist for some categories of software produ
an element of code is relative to a design, the design is relative to a specification
specification is relative to an analysis of the requirements — the chain always s
somewhere; for example one cannot in the end certify that the requirements hav
fault, as this would mean assessing them against some higher-level description
would only push the problem further to assessing the value of the description it
Turtles all the way up.

Even in the absence of another reference (another turtle) against which to ass
particular product, we can often obtain some evaluation of its quality by perform
internal checks. For example:

• A program that does not initialize one of its variables along a particular pat
suspicious, independently of any of its properties vis-à-vis the fulfillment of
specification.

• A poorly written user manual may not explicitly violate the prescriptions
another project document, but is problematic all the same.

This observation leads to distinguishing two complementary kinds of reliabi
assessment,verification andvalidation, often combined in the abbreviation “V&V”:

• Verification is internal assessment of the consistency of the product, conside
just by itself. The last two examples illustrated properties that are subjec
verification: for code; for documentation. Type checking is another example.

• Validation isrelativeassessment of a product vis-à-vis another that defines so
of the properties that it should satisfy: code against design, design aga
specification, specification against requirements, documentation aga
standards, observed practices against company rules, delivery dates a
project milestones, observed defect rates against defined goals, test suites a
coverage metrics.

A popular version of this distinction[10] is that verification is about ascertaining that th
product is “doing things right” and validation that it is “doing the right thing”. It only applie
to code, however, since a specification, a project plan or a test plan do not “do” any

5

icity
ially

s to
ed
cting
han
such

lping
ful

ering

some

cess-
ibing
only
ther

tion,
riented
3 Classifying approaches

One of the reasons for the diversity of approaches to software quality is the multipl
of problems they address. The following table shows a list of criteria, essent
orthogonal, for classifying them.

The first distinction is cultural almost as much as it is technical. Witha priori techniques
the emphasis is methodological: telling development teams to apply certain rule
produce a better product. Witha posterioritechniques, the goal is to examine a propos
software product or process element for possible deficiencies, with the aim of corre
them. While it is natural to state that the two are complementary rather t
contradictory — a defense often used by proponents of “a posteriori” approaches
as testing when criticized for accepting software technology as it is rather than he
to improve it — they correspond to different views of the software world, one hope
of prevention and the other willing to settle down for cure.

The second distinction corresponds to the two dimensions of software engine
cited above: are we working on theproducts, or on theprocesses leading to them?

Some approaches are of a methodological nature and just require applying
practices; we may call themmanual, in contrast with techniques that aretool-supported
and hence at least partially automated.

An idea can be applicable regardless of technology choices; for example pro
based techniques such as CMMI, discussed below, explicitly stay away from prescr
specific technologies. At the other extreme, certain techniques may be applicable
if you accept a certain programming language, specification method, tool or o
technology choice. We may talk oftechnology-neutraland technology-specific
approaches; this is more a spectrum of possibilities than a black-and-white distinc
since many approaches assume a certain class of technologies — such as object-o
development — encompassing many variants.

Criteria for classifying approaches to software reliability

A priori (build) A posteriori (assess and correct)

Process Product

Manual Tool-supported

Technology-neutral Technology-specific

Product- and phase-neutral vs Product- or phase-specific

Static (uses software text) Dynamic (requires execution)

Informal Mathematical

Complete (guarantee) Partial (some progress)

Free Commercial

6

tion

ls,

een
urely
e the
ution
e the
h in

h

.

—

es and

arate
of
rfall”
nger

es
nch
tion,

nt,
all
ality
een
f the

n,
of
ation
Some techniques apply to a specific product or phase of the lifecycle: specifica
(a specification language), implementation (a static analyzer of code)… They are
product-specific, or phase-specific. Others, such as configuration management too
apply to many or all product kinds; they areproduct-neutral. “Product” is used here to
denote one of the types of outcome of the software construction process.

For techniques directed at program quality, an important division exists betw
dynamicapproaches such as testing, which rely on executing the program, and p
staticones, such as static analysis and program proofs, which only need to analyz
program text. Here too some nuances exist: a simulation technique requires exec
and hence can be classified as dynamic even though the execution doesn’t us
normal run-time environment; model-checking is classified as static even thoug
some respect it is close to testing.

Some methods are based onmathematicaltechniques; this is obviously the case wit
program proofs and formal specification in general. Many are moreinformal.

A technique intended to assess quality properties can give you acompleteguarantee
that they are satisfied, or — more commonly — somepartial reassurance to this effect

The final distinction is economic: between techniques in the public domain
usable for free, in the ordinary sense of the term — and commercial ones.

4 Process-based approaches

We start with the least technical approaches, emphasizing management procedur
organizational techniques.

4.1 Lifecycle models

One of the defining acts of software engineering was the recognition of the sep
activities involved, in the form of “lifecycle models” that prescribe a certain order
tasks (see the figure on the adjacent page). The initial model is the so-called “wate
[11], still used as a reference for discussions of the software process although no lo
recommended for literal application. Variants include:

• The “V model” which retains the sequential approach of the waterfall but divid
the process into two parts, the branches of the “V”; activities along the first bra
are for development, those in the second branch are for verification and valida
each applied to the results of one of the steps along the first branch.

• The “Spiral model” [11] which focuses on reducing risk in project manageme
in particular the risk caused by the all-or-nothing attitude of the Waterf
approach. The spiral model suggests isolating subsets of the system’s function
that are small enough to be implemented quickly, and when they have b
implemented taking advantage of the experience to proceed to other parts o
system. The idea is connected with the notion of rapid prototyping.

• The “Rational Unified Process”, distinguishing four phases, inceptio
elaboration, construction and transition, with a spiral-like iterative style
development and a set of recommended “best practices” such as configur
management.

7

Waterfall V-shaped

Spiral (from [11])

Lifecycle models, illustrated

Cluster

8

nted
ign,
s, as

n of
in

efits

d
re

ll do
ons

sk to

t the
mple

s
dels.

ficial,
ense,
ablish
sk of
e
es,
nal
000-
sent

for
the
I

lity
hich
ors.
• The “Cluster model” [51] [57], emphasizing a different form of incrementality —
building a system by layers, from the most fundamental to the most user-orie
— and aseamlessprocess treating successive activities, from analysis to des
implementation and maintenance, as a continuum. This model also introduce
part of the individual lifecycle of every cluster, ageneralizationstep to prepare for
future reuse of some of the developed elements.

The figure shows pictorial representations of some of these models.
Whatever their effect on how people actually develop software, the contributio

lifecycle models has been a classification and definition of the activities involved
software development, even when these activities are not executed asphasesin the
precise order mandated by, for example, the waterfall model. Software quality ben
in particular from:

• A distinction betweenrequirements, the recording of user requirements, an
specification, their translation into a systematic form suitable for softwa
development, where rigor and precision are essential.

• Recognition of the importance of Verification and Validation tasks.
• Recognition of post-delivery activities such as maintenance, although they sti

not occupy a visible enough place. Many software troubles result from evoluti
posterior to the initial release.

• In the Cluster model, the presence, for each cluster, of the generalization ta
prepare for reuse.

• Also in the Cluster model, the use of aseamlessandreversibleapproach which
unifies the methods, tools, techniques and notations that help throughou
software process, rather than exaggerate them. (The textbook counter-exa
here is the use of UML for analysis and design [56].)

• The growing emphasis onincrementalityin the development process, even if thi
concept is understood differently in, for example, the spiral, cluster and RUP mo

4.2 Organizational standards

Another process-related set of developments has had a major effect, largely bene
on some segments of the industry. In the early 1990s the US Department of Def
concerned with the need to assess its suppliers’ software capabilities and to est
consistent standards, entrusted the Software Engineering Institute with the ta
developing a “Capability Maturity Model”, whose current incarnation, CMMI [74] (th
I is for Integration) provides a collection of standards applicable to various disciplin
rather than a single model for software. Largely independently, the Internatio
Standard Organization has produced a set of software-oriented variants of its 9
series quality standards, which share a number of properties with CMMI. The pre
discussion is based on CMMI.

Beyond its original target community, CMM and CMMI have been the catalyst
one of the major phenomena of the IT industry starting in the mid-nineties:
development of offshore software production, especially in India [63]. CMM
qualification provides suppliers of outsourcing development services with qua
standards and the associated possibility of independent certification, without w
customers would not be have known how to trust distant, initially unknown contract

9

nd
ow
g it,
t. It
You

s

and

he

to

ell
its

ards
ents
only
ting
was
an
ther

titute for
shy

be
can

s of
alled)
CMMI is (in the earlier classification) product-neutral, phase-neutral a
technology-neutral. In its application to software it is intended only to determine h
well an organization controls its development process by defining and documentin
recording and assessing how it is applied in practice, and working to improve i
doesn’t prescribe what the process should be, only how much you are on top of it.
could presumably be developing in PL/I on IBM 370 and get CMMI qualification.

CMMI assesses both thecapability level of individual “process areas” in (such a
software) in an organization, and thematurity of an organization as a whole. It
distinguishes five levels of increasing maturity:

• Performed: projects happen and results get produced, but there is little control
no reproducibility; the process is essentially reactive.

• Managed: processes are clearly defined for individual projects, but not for t
organization as a whole. They remain largely reactive.

• Defined: proactive process defined for the organization.

• Quantitatively managed: the control mechanisms do not limit themselves
qualitative techniques, but add well-defined numerical measurements.

• Optimizing: the mechanisms for controlling processes are sufficiently w
established that the focus can shift on improving the organization and
processes.

Through their emphasis on the process and its repeatability, CMMI and ISO stand
help improve the quality of software development. One may expect such improvem
of the process to have a positive effect on the resulting products as well; but they are
part of the solution. After a software error — one module of the software was expec
measures in the metric system, another was providing them in English units —
identified as the cause of the failure of the NASA Mars Orbiter Vehicle mission [82],
engineer from the project noted that the organization was heavily into ISO and o
process standards. Process models and process-focused practices are not a subs
using the best technological solutions. Tailored versions of CMMI that would not
away from integrating specific technologies such as object technology could
extremely useful. In the meantime, the technology-neutral requirements of CMMI
be applied by organizations to get a better hold on their software processes.

4.3 Extreme programming

The Extreme Programming movement [6] is a reaction against precisely the kind
lifecycle models and process-oriented approaches just reviewed. XP (as it is also c
emphasizes instead the primacy of code. Some of the principal ideas include:

• Short release cycles to get frequent feedback.

• Pair programming (two people at a keyboard and terminal).

• Test-driven development.

• A general distrust of specification and design:testing is the preferred guide
of development.

• Emphasis on programmers’ welfare.

10

XP,
by
art of
ed
osed

who
s a
of

ost
are

ent

ed in
isms
urs.

ecord

luate

ed
pted

mpare
e
are

code
ne
t by
the

rs of
uality
e so

ficial
sed
Some of these practices are clearly beneficial to quality but were developed prior to
in particular short release cycles (Microsoft’s “daily build” as described in 1995
Cusumano and Shelby [19], see also [54]) and the use of frequent testing as p
development (see e.g. “quality first” [55]). Those really specific to XP are of limit
interest (while sometimes a good practice, pair programming cannot be imp
indiscriminately, both because it doesn’t work for some people and because those
find it useful may not find it useful all the time) or, in the case of tests viewed a
replacementfor specifications, downright detrimental. See [75] and [64] for critiques
the approach.

4.4 Code inspections

A long-established quality practice is the inspection, also known asreview: a session
designed to examine a certain software element with the aim of finding flaws. The m
common form iscodeinspection, but the process can be applied to any kind of softw
engineering product. Rules include:

• Small meeting: at most 8 people or so, including the developer of the elem
under review.

• The elements under review and any supporting documents must be circulat
advance; the participants should have read them and identified possible critic
before the meeting. The allotted time should be bounded, for example 2 or 3 ho

• The meeting must have a moderator to guide discussions and a secretary to r
results.

• The moderator should not be the developer’s manager. The intent is to eva
products, not people.

• The sole goal is to identify deficiencies and confirm that they are inde
deficiencies; correction is not part of the process and should not be attem
during the meeting.

Code inspections can help avoid errors, but to assess their usefulness one must co
the costs with those of running automatedtools that can catch some of the sam
problems without human intervention; static analyzers, discussed below,
an example.

Some companies have institutionalized the rule that no developer may check in
(integrate it into the repository for a current or future product) without approval by o
other developer, a limited form of code inspection that has a clearly beneficial effec
forcing the original developer to convince at least one other team member of
suitability of the contribution.

4.5 Open-source processes

A generalization of the idea of code inspection is the frequent assertion, by membe
the open-source community, that the open-source process dramatically improves q
by enabling many people to take a critical look at the software text; some have gon
far as to state that “given enough eyes, all bugs are shallow” [73].

As with many of the other techniques reviewed, we may see in this idea a bene
contribution, but not a panacea. John Viega gives [78] the example of a widely u

11

w
it

s able
d the
ould
that

than
f the
eyes

traced
ases.
this

erve

ware
tural
nd for
ide a
nable

the
suffer
tions
the
nding

te
n be

duct,
f the
term
t of a

om
lease
nder
security program in which “in the past two years, several very subtle buffer overflo
problems have been found… Almost all had been in the code for years, even though
had been examined many times by both hackers and security auditors One tool wa
to identify one of the problems as potentially exploitable, but researchers examine
code thoroughly and came to the conclusion that there was no way the problem c
be exploited.” (The last observation is anecdotal evidence for the above observation
tools such as static analyzers are potentially superior to human analysis.)

While is no evidence that open-source software as a whole is better (or worse)
commercial software, and no absolute rule should be expected if only because o
wide variety of products and processes on both sides, it is clear that more
potentially seemore bugs.

4.6 Requirements engineering

In areas such as embedded systems, many serious software failures have been
[45] to inadequate requirements rather than to deficiencies introduced in later ph
Systematic techniques for requirements analysis are available [76] [40] to improve
critical task of collecting customer wishes and translating them into a form that can s
as a basis for a software project.

4.7 Design patterns

A process-related advance that has had a strong beneficial effect on soft
development is the emergence of design patterns [32]. A pattern is an architec
scheme that has been recognized as fruitful through frequent use in applications, a
which a precise description exists according to a standard format. Patterns prov
common vocabulary to developers, hence simplifying design discussions, and e
them to benefit from the collective wisdom of their predecessors.

A (minority) view of patterns [62] [65] understands them as a first step towards
technique discussed next, reusable components. Patterns, in this interpretation,
from the limitation that each developer must manually insert the corresponding solu
into the architecture of every applicable system. If instead it is possible to turn
pattern into a reusable component, developers can directly reuse the correspo
solution through an API (Abstract Program Interface). The observation here is thatit is
better to reuse than to redo. Investigations [65] suggest that with the help of appropria
programming language constructs up to two thirds of common design patterns ca
thuscomponentized.

4.8 Trusted components

Quality improvement techniques, whether they emphasize the process or the pro
are only as good as their actual application by programmers. The magnitude o
necessary education effort is enough to temper any hope of major short-
improvements, especially given that many programmers have not had the benefi
formal computer science education to start with.

Another practical impediment to continued quality improvement comes fr
market forces. The short-term commercial interest of a company is generally to re
software that is “good enough” [83]: software that has barely passed the threshold u

12

The
r the
ut of
larly

usable
ent

y
ged
ch as

hms,
hich
good
fforts

hts
efit
well

of-
ent.

trial
such

n this
n to
tment
e level
it.

tools
ty.

rvice
ell

that
ctice

and
which the market would reject it because of bad quality; not excellent software.
extra time and expense to go from the first to the second stage may mean, fo
company, losing the market to a less scrupulous competitor, and possibly going o
business. For the industry as a whole, software quality has indeed improved regu
over time but tends to peak below the optimum.

An approach that can overcome these obstacles is increased reliance on re
components, providing pre-built solutions to problems that arise in many differ
applications, either regardless of the technical domain (general-purposecomponent
libraries) or in particular fields (specializedlibraries). Components have alread
changed the nature of software development by providing conveniently packa
implementations, accessible through abstract interfaces, of common aspects su
graphical user interfaces, database manipulation, basic numerical algorit
fundamental data structures and others, thereby elevating the level at w
programmers write their applications. When the components themselves are of
quality, such reuse has highly beneficial effects since developers can direct their e
to the quality of the application-specific part of their programs.

Examining more closely the relationship of components to quality actually highlig
two separate effects: it is comforting to know that the quality of a system will ben
from the quality of its components; but we must note that reuse magnifies the bad as
as the good:imperfectionscan be even more damaging in components than in “one-
a-kind” developments, since they affect every application that relies on a compon

The notion oftrusted component[58] [61] follows from this analysis that one of the
most pressing and promising tasks for improving software quality is the indus
production of reusable components equipped with a guarantee of quality. Producing
trusted components may involve most of the techniques discussed elsewhere i
article. For some of the more difficult ones, such as program proving, applicatio
components may be the best way to justify the cost and effort and recoup the inves
thanks to the scaling effect of component reuse: once a component has reached th
of quality at which it can really be trusted, it will benefit every application that relies on

5 Tools and environments

Transitioning now to product-oriented solutions, we examine some of the progress in
available to software developers — to the extent that it is relevant for software quali

5.1 Configuration management

Configuration management is a both practice (for the software developer) and a se
(from the supporting tools), so it could in principle be classified under “process” as w
as under “product”. It belongs more properly to the latter category since it’s tools
make configuration management realistic; applied as a pure organizational pra
without good tool support, it quickly becomes tedious and ceases being applied.

Configuration management may be defined as the systematic collecting
registering of project elements, including in particular the ability to:

• Register a new version of any project element.

• Retrieveany previously registered version of any project element.

13

stered

an
rlier

ion
hen
file.

tools,
rom
most

uct
earlier
itory.
, user

ve,
ment,
rable
time

is
ers
er
ment
ting a
redict
nown

an
the

s can
imilar
with
ach
zero
s
cost
ata
re
• Register dependencies, both between project elements and between regi
versionsof project elements (e.g.A relies onB, and version 10 ofA requires
version 7, 8 or 9 ofB).

• Construct composite products from their constituents — for example, build
executable version of a program from its modules — or reconstruct ea
versions, in accordance with registered dependencies.

A significant number of software disasters on record followed from configurat
management errors, typically due to reintroducing an obsolete version of a module w
compiling a new release of a program, or using an obsolete version of some data
Excuses no longer exist for such errors, as acceptable configuration management
both commercial and open-source, are widely available. These tools, while still far f
what one could hope for, have made configuration management one of the
important practices of modern software development.

Source code is not the only beneficiary of configuration management. Any prod
that evolves, has dependencies on other elements and may need restoring to an
state should be considered for inclusion in the configuration management repos
Besides code this may include project plans, specification and design documents
manuals, training documents such as PowerPoint slides, test data files.

5.2 Metrics and models

If we believe Lord Kelvin’s (approximate) maxim that all serious study is quantitati
then software and software development should be susceptible to measure
tempered of course by Einstein’s equally famous quote that not everything measu
is worth measuring. A few software properties, process or product, are at the same
measurable, worth measuring and relevant to software reliability.

On the process side,cost in its various dimensions is a prime concern. While it
important to record costs, if only for CMMI-style traceability, what most project manag
want at a particular time is amodelto estimate the cost of a future project or of the remaind
of a current project. Such models do exist and can be useful, at least if the develop
process is stable and the project is comparable to previous ones: then by estima
number of project parameters and relying on historical data for comparison one can p
costs — essentially, person-months — within reasonable average accuracy. A well-k
cost model, for which free and commercial tools are available, is COCOMO II [12].

During the development of a system,faults will be reported. In principle they
shouldn’t be comparable to the faults of a material product, since software is
intellectual product and doesn’t erode, wear out or collapse under attack from
weather. In practice, however, statistical analysis shows that faults in large project
follow patterns that resemble those of hardware systems and are susceptible to s
statistical prediction techniques. That such patterns can exist is in fact consistent
intuition: if the tests on the last five builds of a product under development have e
uncovered one hundred new bugs each, it is unlikely that the next iteration will have
bugs, or a thousand.Software reliability engineering[69][46] elaborates on these idea
to develop models for assessing and predicting failures, faults and errors. As with
models, a requirement for meaningful predictions is the ability to rely on historical d
for calibration. Reliability models are not widely known, but could help softwa
projects understand, predict and manage anomalies better.

14

e
lude:
ion

the
atic
are

rics
e of
rily
the

ach
the

in
t for
ed in

the
lly:
ual
se
ces,
rs),

ters,
ults
lysis),
ound
se
tions
ks.

hom
urce
ion.
, is
bugs
ch as
ore
lets
More generally, numerousmetrics have been proposed to provide quantitativ
assessments of software properties. Measures of complexity, for example, inc
“source lines of code” (SLOC), the most primitive, but useful all the same; “funct
points” [25], which count the number of elementary mechanisms implemented by
software; measures of the complexity of the control graph, such as “cyclom
complexity” [48][49]; and measures specifically adapted to object-oriented softw
[35][59]. The EiffelStudio environment [30] makes it possible to compute many met
applied to a project under development, including measures regarding the us
contracts (section8), and to compare them with values on record. While not necessa
meaningful in isolation, such measures elements are a useful control tool for
manager; they are in line with the CMMI’s insistence that an organization can only re
the higher levels of process maturity (4 and 5) by moving from the qualitative to
quantitative, and should be part of the data collected for such an effort.

5.3 Static analyzers

Static analyzersare another important category of tools, increasingly integrated
development environments, whose purpose is to examine the software tex
deficiencies. They lie somewhere between type checkers (themselves integrat
compilers) and full program provers, and will be studied below (page21) after the
discussion of proofs.

5.4 Integrated development environments

Beyond individual tools the evolution of software development has led to
widespread of integrated tool suites known as IDEs for Integrated (origina
Interactive) Development Environments. Among the best known are Microsoft’s Vis
Studio [66] and IBM’s Eclipse [27]; EiffelStudio [30] is another example. The
environments, equipped with increasingly sophisticated graphical user interfa
provide under a single roof a whole battery of mechanisms to write software (edito
manage its evolution (configuration management), compile it (compilers, interpre
optimizers), examine it effectively (browsers), run it and elucidate the sources of fa
(debuggers, testers), analyze it for possible inconsistencies and errors (static ana
generate code from design and analysis diagrams or the other way ar
(diagramming, “Computer-Aided Software Engineering” or CASE, rever
engineering), change architecture in a safe way through tool-controlled transforma
(refactoring), perform measurements as noted above (metric tools), and other tas

This is one of the most active areas in software engineering; programmers, for w
IDEs are the basic daily tools, are directly interested in their quality, so that open-so
projects such as Eclipse and EiffelStudio benefit from active community participat
The effect of these advanced frameworks on software reliability, while diffuse
undeniable, as their increasing cleverness supports quality in several ways: finding
through static and dynamic techniques; avoiding new bugs through mechanisms su
refactoring; generating some of the code without manual intervention; and, m
generally, providing a level of comfort that frees programmers from distractions and
them apply their best skills to the hardest issues of software construction.

15

able
s of
irit as
out
ugs at

ence
k to

ional,

tion
tance

fact
g in
iques
tract
ing.

to

and
ition

le

f
tem.

es

akes
eject
ng
hich
es a

errors
se be
6 Programming languages

The evolution of programming languages plays its part in the search for more reli
software. High-level languages contribute both positively, by providing higher level
expression through advanced constructs freeing the programmer (in the same sp
modern IDEs) from mundane, repetitive or irrelevant tasks, and negatively, by ruling
certain potentially unsafe constructs and, as a result, eradicate entire classes of b
the source.

The realization that programming language constructs could exert a major influ
on software quality both through what they offer and what they forbid dates bac
structuredprogramming [22] [20] which, in the early seventies, led to rejecting thegoto
as a control structure in favor of more expressive constructs — sequence, condit
loop, recursion. The next major step wasobject-orientedprogramming, introducing a
full new set of abstractions, in particular the notion of class, providing decomposi
based on object types rather than individual operations, and techniques of inheri
and genericity.

In both cases the benefit comes largely from being able to reasonless operationally
about software. A software text represents many possible executions, so many in
that it is hard to understand the program — and hence to get it right — by thinkin
terms of what happens at execution [22]. Both structured and object-oriented techn
make it possible to limit such operational thinking and instead understand the abs
properties of future run-time behaviors by applying the usual rules of logical reason

In drawing the list of programming languages’ most important contributions
quality, we must indeed put at the top all the mechanisms that have to do withstructure.
With ever larger programs addressing ever more ambitious goals, the production
maintenance of reliable software requires safe and powerful modular decompos
facilities. Particularly noteworthy are:

• As pointed out, theclassmechanism, which provides a general basis for stab
modules with a clear role in the overall architecture.

• Techniques forinformation hiding , which protect modules against details o
other modules, and permit independent evolution of the various parts of a sys

• Inheritance, allowing the classification and systematic organization of class
into structured collections, especially withmultiple inheritance.

• Genericity, allowing the construction of type-parameterized modules.

Another benefit of modern languages isstatic typing which requires programmers to
declare types for all the variables and other entities in their programs, then t
advantage of this information to detect possible inconsistencies in their use and r
programs, at compilation time, until all types fit. Static typing is particularly interesti
in object-oriented languages since inheritance supports a flexible type system in w
types can be compatible even if they are not identical, as long as one describ
specialization of the other.

Another key advance isgarbage collection, which frees programmers from having
to worry about the details of memory management and removes an entire class of
— such as attempts to access a previously freed memory cell — which can otherwi

16

s are
is a
es it

as C

ove
aults
ry.

re”,
be
treat

h as
sh-

ality
lder

ich
ies,

low-
by

he
tee,
ing

ic
e or

only
I can
rne
it’s
a-
ill

sical
particularly hard to detect and to correct, in particular because the resulting failure
often intermittent rather than deterministic. Strictly speaking, garbage collection
property of the language implementation, but it’s the language definition that mak
possible, as with modern object-oriented languages, or not, as in languages such
that permit arbitrary pointer arithmetic and type conversions.

Exception handling, as present in modern programming languages, helps impr
software robustness by allowing developers to include recovery code for run-time f
that would otherwise be fatal, such as arithmetic overflow or running out of memo

A mechanism that is equally far-reaching in its abstraction benefits is the “closu
“delegate” or “agent” [62]. Such constructs wrap operations in objects that can then
passed around anonymously across modules of a system, making it possible to
routines as first-class values. They drastically simplify certain kinds of software suc
numerical applications, GUI programming and other event-driven (or “publi
subscribe”) schemes.

The application of programming language techniques to improving software qu
is limited by the continued reliance of significant parts of the software industry on o
languages. In particular:

• Operating systems and low-level system-related tend to be written in C, wh
retains its attractions for such applications in spite of widely known deficienc
such as the possibility of buffer overflow.

• The embedded and mission-critical community sometimes prefers to use
level languages, including assembly, for fear of the risks potentially introduced
compilers and other supporting tools.

The “Verifying Compiler Grand Challenge” [38] [77] is an attempt to support t
development of tools that — even with such programming languages — will guaran
during the process of compiling and thanks to techniques described in the follow
sections, the reliability of the programs they process.

7 Static verification techniques

Static techniques work solely from the analysis of the software text: unlike dynam
techniques such as tests they do not require any execution to verify softwar
report errors.

7.1 Proofs

Perhaps the principal difference between mathematics and engineering is that
mathematics allows providing absolute guarantees. Given the proper axioms,
assert with total confidence that two plus two equals four. But if I want to drive to Be
the best assurance I can get that my car will not break down is a probability. I know
higher than if I just drive it to the suburbs, and lower than if my goal were Prague, Alm
Ata, Peking or Bombay; I can make it higher by buying a new, better car; but it w
never be one. Even with the highest attention to quality and maintenance, phy
products will occasionally fail.

17

ather

t of
ther
tem,

ming
and

ms,
orous
ing a

t
n. To

orm;

eling
as the
eals

the
f the
this
ions,
ion
sions

[5])
aikon
31].

of a
t be

on-
ory

ven.
nse,
ver
st
ts of
ke
Under appropriate assumptions, a program is like a mathematical proposition r
than a material device: any general property of the program — stating thatall executions
of the program will achieve a certain goal, or thatat least onepossible execution will —
is either true or false, and whether it is true or not is entirely determined by the tex
the program, at least if we assume correct functioning of the hardware and of o
software elements needed to carry out program execution (compiler, run-time sys
operating system). Another way of expressing this observation is that a program
language is similar to a mathematical theory, in which certain propositions are true
others false, as determined by the axioms and inference rules.

In principle, then, it should be possible to prove or disprove properties of progra
in particular correctness, robustness and security properties, using the same rig
techniques as in the proofs of any mathematical theorem. This assumes overcom
number of technical difficulties:

• Programming languages are generallynot defined as mathematical theories bu
through natural-language documents possessing a varying degree of precisio
make formal reasoning possible requires describing them in mathematical f
this is known as providing amathematical semantics(or “formal semantics”) to a
programming language and is a huge task, especially when it comes to mod
advanced mechanisms such as exception handling and concurrency, as well
details of computer arithmetic since the computer’s view of integers and r
strays from their standard mathematical properties.

• The theorems to be proved involve specific properties of programs, such as
value of a certain variable not exceeding a certain threshold at a certain state o
execution. Any proof process requires the ability to express such properties;
means extending the programming language with boolean-valued express
calledassertions. Common languages other than Eiffel do not include an assert
mechanism; this means that programmers will have to resort to special exten
such as JML for Java [43] (see also Spec#, an extension of the C# language
and annotate programs with the appropriate assertions. Some tools such as D
help in this process by extracting tentative assertions from the program itself [

• In practice the software’s actual operation depends, as noted, on those
supporting hardware and software environment; proofs of the software mus
complemented by guarantees about that environment.

• Not all properties lend themselves to easy enunciation. In particular, “n
functional” properties such as performance (response time, bandwidth, mem
occupation) are hard to model.

• More generally, a proof is only as useful as the program properties being pro
What is being proved is not the perfection of the program in any absolute se
nor even its quality, but only that it satisfies the assertions stated. It is ne
possible to know thatall properties of interest have been included. This is not ju
a theoretical problem: security attacks often take advantage of auxiliary aspec
the program’s behavior, which its design and verification did not ta
into account.

18

ified
ge. It
rties
teps.
spite
s as

ser

al
been
the

ent

ed

n

tates
he

lity
er say
like

xt.

e to
ition,
ext is

ay
• Even if the language, the context and the properties of interest are fully spec
semantically and the properties relevant, the proof process remains a challen
cannot in any case be performed manually, since even the proof of a few prope
of a moderately sized programs quickly reaches into the thousands of proof s
Fully automated proofs are, on the other hand, generally not possible. De
considerable advances in computer-assisted proof technology (for program
well as other applications) significant proofs still require considerable u
interaction and expert knowledge.

Of course the effort may well be worthwhile, especially in two cases: life-critic
systems in transportation and defense to which, indeed, much proof work has
directed; and reusable components, for which the effort is justified — as explained in
discussion of Trusted Components above — by the scaling-up effect of reuse.

Here are some of the basic ideas about how proofs work. A typical program elem
to prove would be, in Eiffel notation

This has a program body, thedo clause, and two assertions, a “precondition” introduc
by require and a “postcondition” introduced byensure and consisting of two
subclauses implicitly connected by anand . Assertions are essentially boolea
expressions of the language with the possibility, in a postcondition, of using theold
notation to refer to values on entry: here the first subclause of the postcondition s
that the value ofcounter will have been decreased by one after execution of t
do clause.

Program proofs deal with such annotated programs, also calledcontractedprograms
(see section8 below). The annotations remind us that proofs and other software qua
assurance technique can never give us absolute guarantees of quality: we can nev
that a program is “correct”, only assess it — whether through rigorous techniques
proofs or using more partial ones such as those reviewed next —relatively toexplicitly
stated properties, expressed here through assertions integrated in the program te

From a programmer’s viewpoint the above extract is simply the text of a routin
be executed, with some extra annotations, the precondition and postcond
expressing properties to be satisfied before and after. But for proof purposes this t
a theorem, asserting that whenever the body (thedo clause with its assignment
instruction) is executed with the precondition satisfied it will terminate in such a w
that the postcondition is satisfied.

decrement
-- Decrease counter by one.

require
counter > 0

do
counter := counter – 1

ensure
counter = old counter – 1
counter >= 0

end

19

cern
ers —

om,

f side
e

r

rule

you

erties
f

This theorem appears to hold trivially but — even before addressing the con
noted above that computer integers are not quite the same as mathematical integ
proving it requires the proper mathematical framework. The basic rule ofaxiomatic
semantics(or “Hoare semantics” [37]) covering such cases is the assignment axi
which for any variablex and expressione states that the following holds

whereQ (x) is an assertion which may depend onx; thenQ (e) is the same assertion with
every mention ofx replaced bye, except forold x which must be replaced byx.

This very general axiom captures the properties of assignment (in the absence o
effect in the evaluation ofe); its remarkable feature is that it is applicable even if th
source expressione contains occurrences of the target variablex, as in the example
(wherex is counter).

We may indeed apply the axiom to prove the example’s correctness. LetQ1 (x) be
x = old x – 1, corresponding to the first subclause of the postcondition, andQ2 (x) be
x >= 0. Applying the rule toQ1 (counter), we replacecounter by counter + 1 and
old counter by counter; this givescounter – 1 = counter – 1, which trivially holds.
Applying now the same transformations toQ2 (counter), we getcounter– 1 >= 0,
which is equivalent to the preconditioncounter > 0. This proves the correctness of ou
little assertion-equipped example.

From there the theory moves to more complex constructions. An inference
states that if you have proved

and

(note the postcondition of the first part matching the precondition of the second part)
are entitled to deduce

and so on for more instructions. A rule in the same style enables you to deduce prop
of if c then I1 else I2 end from properties ofI1 andI2. More advanced is the case o
loops: to prove the properties of

require Q (e) do x := e ensure Q (x)

require P do Instruction_1 ensure Q

require Q do Instruction_2 ensure R

require P do Instruction_1 ; Instruction_2 ensure Rt

from
Initialization

until
Exit

loop
Body

end

20

; for
l be
riant

nd

n exit
by

arted
rrect
es of

is is
non-
e,
f
r value

ing
anced

kind
of
’s

two
y
ated

ssive
you need, in this general approach, to introduce a new assertion called theloop
invariant and an integer expression called theloop variant. The invariant is a weakened
form of the desired postcondition, which serves as approximation of the final goal
example if the goal is to compute the maximum of a set of values, the invariant wil
“Result is the maximum of the values processed so far”. The advantage of the inva
is that it is possible both to:

• Ensure the invariant through initialization (thefrom clause in the above notation);
in the example the invariant will be trivially true if we start with just one value a
setResult to that value.

• Preserve the invariant through one iteration of the loop body (theloop clause); in
the example it suffices to extend the set of processed values by one elementv and
executeif v > Result then Result := v end .

If indeed a loop possesses such an invariant and its execution terminates, then o
the invariant will still hold (since it was ensured by the initialization and preserved
all the loop iterations), together with theExit condition. The combination of these two
assertions gives the postcondition of the loop. Seen the other way around, if we st
from a desired postcondition and weakened it to get an invariant, we will obtain a co
program. In the example, if the exit condition states that we have processed all valu
interest, combining this property with the invariant “Result is the maximum of the
values processed so far” tells us thatResult is the maximum of all values.

Such reasoning is only interesting if the loop execution actually terminates; th
where the loop variant comes in. It is an integer expression which must have a
negative value after theInitialization and decrease, while remaining non-negativ
whenever theBody is executed with theExit condition not satisfied. The existence o
such an expression is enough to guarantee termination since a non-negative intege
cannot decrease forever. In the example a variant isN — i whereN is the total number
of values being considered for the maximum (the proof assumes a finite set) andi the
number of values processed.

Axioms and inference rules similarly exist for other constructs of programm
languages, becoming, as noted, more intricate as one moves on to more adv
mechanisms.

For concurrent, reactive and real-time systems, boolean assertions of the
illustrated above may not be sufficient; it is often convenient to rely on properties
temporal logic [47], which given a set of successive observations of a program
execution, can express, for a boolean propertyQ:

• forever Q: from now on,Q will always hold.

• eventually Q: at some point in the future (where “future” includes now),Q will
hold.

• P until Q: Q will hold at some point in the future, and until thenP will hold.

Regardless of the kind of programs and properties being targeted, there are
approaches to producing program proofs. Theanalytic method takes programs as the
exist, then after equipping them with assertions, either manually or with some autom
aid as noted above, attempts the proof. Theconstructivemethod [24] [2] [68] integrates
the proof process in the software construction process, often using succe

21

of
ctical

tems
most

of
if we
very

arise
is of
or a

ince

of
ence
ecial

ge.
tool,
rejects

here
can

lized

ory

llow

to

ears
rs.

nt of
refinementsto go from specification to implementation through a sequence
transformations, each proved to preserve correctness, and integrating more pra
constraints at every step.

Proof technology has had some notable successes, including in industrial sys
(and in hardware design), but until recently has remained beyond the reach of
software projects.

7.2 Static analysis

If hoping for a proof covering all the correctness, reliability and security properties
potential interest is often too ambitious, the problem becomes more approachable
settle for a subset of these properties — a subset that may be very partial but
interesting. For example being able to determine that no buffer overflow can ever
in a certain program — in other words, to provide a firm guarantee, through analys
the program text, that every index used at run time to access an item in an array
character in a string will be within the defined bounds — is of great practical value s
this rules out a whole class of security attacks.

Static analysisis the tool-supported analysis of software texts for the purpose
assessing specific quality properties. Being “static”, it requires no execution and h
can in principle be applied to software products other than code. Proofs are a sp
case, the most far-reaching, but other static analysis techniques are available.

At the other extreme, a well-established form of elementary static analysis istype
checking, which benefits programs written in a statically typed programming langua
Type checking, usually performed by the compiler rather than by a separate
ascertains the type consistency of assignments, routine calls and expressions, and
any program that contains a type incompatibility.

More generally, techniques usually characterized as static analysis lie somew
between such basic compiler checks and full program proofs. Violations that
typically be detected by static analysis include:

• Variables that, on some control paths, would be accessed before being initia
(in languages such as C that do not guarantee initialization).

• Improper array and string access (buffer overflow).

• Memory properties: attempt to access a freed location, double freeing, mem
leak…

• Pointer management (again in low-level languages such as C): attempts to fo
void or otherwise invalid pointers.

• Concurrency control: deadlocks, data races.

• Miscellaneous: certain cases of arithmetic overflow or underflow, changes
supposedly constant strings…

Static analysis tools such as PREfix [72] have been regularly applied for several y
to new versions of the Windows code base and have avoided many potential erro

One of the issues of static analysis is the occurrence offalse alarms: inconsistency
reports that, on inspection, do not reveal any actual error. This was the weak poi
older static analyzers, such as the widely knownLint tool which complements the type

22

nder
gh to
hat
tatic
rms.

ach

light

ving
ich
such

ic
low.

cant
s into
sons

f the
the

r to
l the
tially

by
ll
o that
er of
able.
such
dlock
d, if a

ion
e
a

checking of C compilers: for a large program they can easily swamp their users u
thousand of messages, most of them spurious, but requiring a manual walkthrou
sort out the good from the bad. (In the search for errors, of course, the “good” is w
otherwise would be considered the bad: evidence of wrongdoing.) Progress in s
analysis has been successful in considerably reducing the occurrence of false ala

The popularity of static analysis is growing; the current trend is to extend the re
of static analysis tools ever further towards program proofs. Two examples are:

• Techniques ofabstract interpretation[18] with the supporting ASTRÉE tool [9],
which has been used to prove the absence of run-time errors in the primary f
control software, written in C, for the Airbus A340 fly-by-wire system.

• ESC-Java [21] and, more recently, the Boogie analyzer [4] make program pro
less obtrusive by incrementally extending the kind of diagnostics with wh
programmers are familiar, for example type errors, to more advanced checks
as the impossibility to guarantee that an invariant is preserved.

7.3 Model checking

Themodel checkingapproach to verification [36] [17] [3] is static, like proofs and stat
analysis, but provides a natural link to the dynamic techniques (testing) studied be
The inherent limitation of tests is that they can never be exhaustive; for any signifi
system — in fact, even for toy examples — the number of possible cases skyrocket
the combinatorial stratosphere, where the orders of magnitude invite lyrical compari
with the number of particles in the universe.

The useful measure is the number of possiblestatesof a program. The notion of state
was implicit in the earlier discussion of assertions. A state is simply a snapshot o
program execution, as could be observed, if we stop that execution, by looking up
contents of the program’s memory, or more realistically by using the debugge
examine the values of the program’s variables. Indeed it is the combination of al
variables’ values that determines the state. With every 64-bit integer variable poten
having 264 values, it is not surprising that the estimates quickly go galactic.

Model checking attempts exhaustive analysis of program states anyway
performingpredicate abstraction. The idea is to simplify the program by replacing a
expressions by boolean expressions (predicates), with only two possible values, s
the size of the state space decreases dramatically; it will still be large, but the pow
modern computers, together with smart algorithms, can make its exploration tract
Then to determine that a desired property holds — for example, a security property
as the absence of buffer overflows, or a timing property such as the absence of dea
— it suffices to evaluate the corresponding assertion in all of the abstract states an
violation of that assertion (orcounter-example) is found, to check that it also arises in
the original program.

For example, predicate abstraction will reduce a conditional instruct
if a > b then ... to if p then ..., wherep is a boolean. This immediately cuts down th
number of cases from 2128 to 2. The drawback is that the resulting program is only
caricature of the original; it loses the relation ofp to other predicates involvinga andb.
But it has an interesting property:if the original violates the assertion, then the

23

e
uced

nter-
in the

f it
d by

lse

r they
nter-
say,

the

over
ind

ten
ally
odel

t in
ns of

oted,
ving
ality.

nt.
abstracted version also does. So the next task is to look for any such violation in th
abstracted version. This may be possible through exhaustive examination of its red
state space, and if so isguaranteedto find any violation in the original program, but even
so is not the end of the story, since the reverse proposition does not hold: a cou
example in the abstracted program does not necessarily signal a counter-example
original. It could result from the artificial merging of several cases, for example i
occurs on a path — impossible in an execution of the original program — obtaine
selecting bothp andq as true whereq is the abstraction ofb > a + 1. Then examining
the state space of the abstracted program will either:

• Not find any violations, in which case itprovesthere was none in the original
program.

• Report violations, each of which might be an error in the original or simply a fa
alarm generated by the abstraction process.

So the remaining task, if counter-examples have been found, is to ascertain whethe
arise in the original. This involves defining the path predicate that leads to each cou
example, expressing it in terms of the original program variables (that is to
removing the predicate abstraction, giving, in the example,a > b and b > a + 1) and
determining if any combination of values for the program variables can satisfy
predicate: if such a combination, orvariable assignment, exists, then the counter-
example is a real one; if not, as in the case given, it is spurious.

This problem ofpredicate satisfiabilityis computationally hard; finding efficient
algorithms is one of the central areas of research in model checking.

The focus on counter-examples gives model checking a practical advantage
traditional proof techniques. Unless a software element was built with verification in m
(through a “constructive method” as defined above), the first attempt to verify it will of
fail. With proofs, this failure doesn’t tell us the source of the problem — and could actu
signal a limitation of the proof procedure rather than an error in the program. With m
checking, you get a counter-example which directly shows what’s wrong.

Model checking has captured considerable attention in recent years, firs
hardware design and then in reactive and real-time systems, for which the assertio
interest are often expressed in temporal logic.

8 Design by Contract

The goal of developing software to support full proofs of correctness properties is, as n
desirable but still unrealistic for most projects. Even a short brush with program pro
methods suggests, however, that more rigor can be highly beneficial to software qu
The techniques ofDesign by Contractgo in this direction and deliver part of the
corresponding benefits without requiring the full formality of proof-directed developme

The discussion of proofs introduced Eiffel notations such as

• require assertion -- A routine precondition

• ensure assertion -- A routine postcondition

associated with individual routines. They are examples ofcontract elements which specify
abstract semantic properties of program constructs. Contracts apply in particular to:

24

s
n

, the
total
t can

(in
ing

se
stem
ach
ies in

the

ough

odule

vant
often
ally
nough
ram
ajor
had

since
ther
any

dio
tion.

l

use
in
cted
allow
• Individual routines:precondition, stating the condition under which a routine i
applicable;postcondition, stating what condition it will guarantee in return whe
it terminates.

• In object-oriented programming, classes:class invariant, stating consistency
conditions that must hold whenever an object is in a stable state. For example
invariant for a “paragraph” class in a text processing system may state that the
length of letters and spaces is equal to the paragraph width. Every routine tha
modify an instance of the class may assume the class invariant on entry
addition to its precondition) and must restore it on exit (in addition to ensur
its postcondition).

• Loops:invariant and (integer)variant as discussed above.

• Individual instructions: “assert” or “check” constructs.

The discipline of Design by Contract [53] [57] [67] gives a central role to the
mechanisms in software development. It views the overall process of building a sy
as defining a multitude of relationships between “client” and “supplier” modules, e
specified through a contract in the same manner as relationships between compan
the commercial world.

The benefits of such a method, if carried systematically, extend throughout
lifecycle, supporting the goal ofseamlessness discussed earlier:

• Contracts can be used to expressrequirementsandspecificationsin a precise yet
understandable way, preferable to pure “bubbles and arrows” notations, alth
of course they can be displayed graphically too.

• The method is also a powerful guide todesignand implementation, helping
developers to understand better the precise reason and context for every m
they produce, and as a consequence to get the module right.

• Contracts serve as adocumentationmechanism: the “contract view” of a class,
which discards implementation-dependent elements but retains externally rele
elements and in particular preconditions, postconditions and class invariants,
provides just the right form of documentation for software elements, especi
reusable components: precise enough thanks to the contracts; abstract e
thanks to the removal of implementation properties; extracted from the prog
text, and hence having a better chance of being up to date (at least one m
software disaster was traced [41] to a software element whose specification
changed, unbeknownst to the developers who reused it); cheap to produce,
this form of documentation can be generated by tools from the source text, ra
than written separately; and multi-purpose, since the output can be tuned to
appropriate format such as HTML. Eiffel environments such as EiffelStu
produce such views [30], which serve as the basic form of software documenta

• Contracts are also useful formanagersto understand the software at a high leve
of abstraction, and as a tool to controlmaintenance.

• In object-oriented programming, contracts provide a framework for the proper
of inheritance, by allowing developers to specify the semantic framework with
which routines may be further refined in descendant classes. This is conne
with the preceding comment about management, since a consequence is to

25

ginal
and

ring
idea
.

[52]
tract
[80]),
[5].

ny
m a

ates)
”. In

cted
s of
tes
, and
uct

ng

tion,

em.

f the

n

a manager to check that refinements to an design are consistent with its ori
intent, which may have been defined by the top designers in the organization
expressed in the form of contracts.

• Most visibly, contracts are atestinganddebuggingmechanism. Since an execution
that violates an assertion always signals a bug, turning on contract monito
during development provides a remarkable technique for identifying bugs. This
is pursued further by some of the tools cited in the discussion of testing below

Design by Contract mechanisms are integrated in the design of the Eiffel language
[28] and a key part of the practice of the associated method. Dozens of con
extensions have been proposed for other programming languages (as well as UML
including many designs such as JML [43] for Java and the Spec# extension of C#

9 Testing

Testing [70] [8] is the most widely used form of program verification, and still for ma
teams essentially the only one. In academic circles testing has long suffered fro
famous comment [23] that (because of the astronomical number of possible st
“testing can only show the presence of bugs, but never to show their absence
retrospect it’s hard to find a rational explanation for why this comment ever detra
anyone from the importance of tests, since it in no way disproves the usefulnes
testing: finding bugs is a very important task of software development. All it indica
is that we should understand that finding bugs is indeed the sole purpose of testing
not delude ourselves that test results directly reflect the level of quality of a prod
under development.

9.1 Components of a test

Successful testing relies on atest plan: a strategy, expressed in a document, describi
choices for the tasks of the testing process. These tasks include:

• Determining which parts to test.

• Finding the appropriate input values to exercise.

• Determining the expected properties of the results (known asoracles). Input
values and the associated oracles together make uptest cases, the collection of
which constitutes atest suite.

• Instrumenting the software to run the tests (rather than perform its normal opera
or in addition to it); this is known as building atest harness, which may involve
test driversto solicit specific parts to be tested, andstubsto stand for parts of the
system that will not be tested but need a placeholder when other parts call th

• Running the software on the selected inputs.

• Comparing the outputs and behavior to the oracles.

• Recording the test data (test cases, oracles, outputs) for future re-testing o
system, in particularregression testing, the task of verifying that previously
corrected errors have not reappeared.

In addition there will be a phase ofcorrectionof the errors uncovered by the test, but i
line with the above observations this is not part of testing in the strict sense.

26

m
ine

e

in

d.

e
sly
into

ple

itical:
nd —

ning
nd is

ery
solid
h the

xt test.

hen
9.2 Kinds of test

One may classify tests with respect to theirscope(this was used in the earlier description
of the V model of the lifecycle):

• A unit test covers a module of the software.

• Integration test covers a complete cluster or subsystem.

• A system test covers the complete delivery.

• User Acceptance Testinginvolves the participation of the recipients of the syste
(in addition to the developers, responsible for the preceding variants) to determ
whether they are satisfied with the delivery.

• Business Confidence Testingis further testing with the users, in conditions as clos
as possible to the real operating environment.

An orthogonal classification addresseswhat is being tested:

• Functional testing: whether the system fulfills the functions defined
the specification.

• Performance testing: its use of resources.

• Stress testing: its behavior under extreme conditions, such as heavy user loa

Yet another dimension isintent: testing can befault-directedto find deficiencies but
also (despite the above warnings),conformance-directedto estimate satisfaction of
desired properties, oracceptance testingfor users to decide whether to approve th
product. Regression testing, as noted, re-runs tests corresponding to previou
identified errors; surprisingly to the layman, errors have a knack for surging back
the software, sometimes repeatedly, long after they were thought corrected.

The testing technique, in particular the construction of test suites, can be:

• Black-box: based on knowledge of the system’s specification only.

• White-box: based on knowledge of the code, which makes it possible for exam
to try to exercise as much of that code as possible.

Observing the state of the art in software testing suggests that four issues are cr
managing the test process; estimating the quality of test suites; devising oracles; a
the toughest — generating test cases automatically.

9.3 Managing the testing process

Test management has been made easier through the appearance oftesting frameworks
such as JUnit [42] and Gobo Eiffel Test [7] which record test harnesses to allow run
the tests automatically. This removes a considerable part of the burden of testing a
important for regression testing.

An example of a framework for regression testing of a compiler, incorporating ev
bug ever found since 1991, is EiffelWeasel [29]. Such automated testing require a
multi-process infrastructure, to ensure for example that if a test run causes a cras
testing process doesn’t also crash but records the problem and moves on to the ne

9.4 Estimating test quality

Being able to estimate the quality of a test suite is essential in particular to know w
to stop testing. The techniques are different for white-box and black-box testing.

27

n

en

s is
s of
ers
still

not
is to

ume
ns of
ases
ious
s
the

for
work
ly on
n of
an be

noted
re to
aid to

hest;
tive
ially to
s can

s to be

s; in
ration,
rking
With white-box testing it is possible to define various levels ofcoverage, each
assuming the preceding ones:instructioncoverage, ensuring that through the executio
of the selected test cases every instruction is executed at least once;branchcoverage,
where every boolean condition tests at least once to true and once to false;condition
coverage, where this is also the case for boolean sub-expressions;path coverage, for
which every path has been taken;loop coverage, where each loop body has be
executed at leastn times for setn.

Another technique for measuring test suite quality in white-box approache
mutation testing [79]. Starting with a program that passes its test suite, this consist
making modifications — similar, if possible, to the kind of errors that programm
would make — to the program, and running the tests again. If a “mutant” program
passes the tests, this indicates (once you have made sure the mutant is notequivalentto
the original, in other words, the changes are meaningful) that the tests were
sufficient. Mutation testing is an active area of research [71]; one of the challenges
use appropriate mutation operators, to ensure diversity of the mutants.

With black-box testing the previous techniques are not available since they ass
access to the source code to set up the test plan. It is possible to define notio
specification coverageto estimate whether the tests have exercised the various c
listed in the specification; if contracts are present, this will mean analyzing the var
cases listed in the preconditions.Partition testing[81] is the general name for technique
(black- or white-box) that split the input domain into representative subsets, with
implication that any test suite must cover all the subsets.

9.5 Defining oracles

An oracle, allowing interpretation of testing results, provides a decision criterion
accepting or rejecting the result of a test. The preparation of oracles can be as much
as the rest of the test plan. The best solution that can be recommended is to re
contracts: any functional property of a software system (with the possible exceptio
some user-interface properties for which human assessment may be required) c
expressed as a routine postcondition or a class invariant.

These assertions can be included in the test harness, but it is of course best, as
in the discussion of Design by Contract, to make them an integral part of the softwa
be tested as it is developed; they will then provide the other benefits cited, such as
design and built-in documentation, and will facilitate regression testing.

9.6 Test case generation

The last of the four critical issues listed, test case generation, is probably the toug
automaticgeneration in particular. Even though we can’t ever get close to exhaus
testing, we want the test process to cover as many cases as possible, and espec
make sure they are representative of the various potential program executions — a
be assessed in white-box testing by coverage measures and mutation, but need
sought in any form of testing.

For any realistic program, manually prepared tests will never cover enough case
addition, they are tedious to prepare. Hence the work on automatic test case gene
which tries to produce as many representative test cases as possible, typically wo

28

nd
e to
ns,
a

two
d tests
al or
Test

ion and

ry to
in,
r that

that
to

hing to
my
f this
eas,
work
do

der

rse
pa,
ork
for

ided

our
the
two
from specifications only (black-box). Two tools in this area are Korat for JML [13] a
AutoTest for Eiffel [15] (which draws on the advantage that — contracts being nativ
Eiffel — existing Eiffel software is typically equipped with large numbers of assertio
so that AutoTest can be run on softwareas is, and indeed has already uncovered
significant number of problems in existing programs and libraries).

Manual tests, which benefit from human insight, remain indispensable. The
kinds are complementary: manual tests are good at depth, automatically generate
at breadth. In particular, any run that ever uncovered a bug, whether through manu
automatic techniques, should become part of the regression test suite. Auto
integrates manual tests and regression tests within the automatic test case generat
execution framework [44].

Automatic test case generation needs a strategy for selecting inputs. Contra
intuition, randomtesting [34], which selects test data randomly from the input doma
can be an effective strategy if tuned to ensure a reasonably even distribution ove
domain, a policy known asadaptive random testing[14] which has so far been applied
to integers and other simple values (for which a clear notion of distance exists, so
“even distribution” is immediately meaningful). Recent work [16] extends the idea
object-oriented programming by defining a notion of object distance.

10 Conclusion

This survey has taken a broad sweep across many techniques that all have somet
contribute to the aim of software reliability. While it has stayed away from the gloo
picture of the state of the industry which seems to be de rigueur in discussions o
topic, and is not justified given the considerable amount of quality-enhancing id
techniques and tools that are available today and the considerable amount of good
currently in progress, it cannot fail to note as a conclusion that the industry could
much more to take advantage of all these efforts and results.

There is not enough of a reliability culture in the software world; too often, the or
of concerns is cost, then deadlines, then quality. It is time to reassess priorities.

Acknowledgments

The material in this chapter derives in part from the slides for an ETH industry cou
on Testing and Software Quality Assurance prepared with the help of Ilinca Ciu
Andreas Leitner and Bernd Schoeller. The discussion of CMMI benefited from the w
of Peter Kolb in the preparation of another ETH course, “Software Engineering
Outsourced and Offshored Development”. Bernd Schoeller and Ilinca Ciupa prov
important comments on the draft.

“Design by Contract” is a trademark of Eiffel Software.

The context for this survey was provided by the Hasler Foundation’s grant for
SCOOP work in the DICS project. We are very grateful for the opportunities that
grant and the project have provided, in particular for the experience gained in the
DICS workshops in 2004 and 2005.

29

g
001,

m

ues
at

ure
g,
ther

t

ls

rgne,

m
at
References

Note: All URLs listed were active in April 2006.

[1] Algirdas Avizienis, Jean-Claude Laprie and Brian Randell:Fundamental Concepts
of Dependability, in Proceedings of Third Information Survivability Report, October
2000, pages 7-12, available among other places atciteseer.ist.psu.edu/article/avizienis01
fundamental.html.
[2] Ralph Back:A Calculus of Refinements for Program Derivations, in Acta Informatica,
vol. 25, 1988, pages 593-624, available atcrest.cs.abo.fi/publications/public/1988/
ACalculusOfRefinementsForProgramDerivationsA.pdf.
[3] Thomas Ball and Sriram K. Rajamani:Automatically Validating Temporal Safety
Properties of Interfaces, in SPIN 2001, Proceedings of Workshop on Model Checkin
of Software, Lecture Notes in Computer Science 2057, Springer-Verlag, May 2
pages 103-122, available attinyurl.com/qrm9m.
[4] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, Wolfra
Schulte:Verification of object-oriented programs with invariants, in Journal of Object
Technology, vol. 3, no. 6, Special issue: ECOOP 2003 workshop on Formal Techniq
for Java-like Programs, June 2004, pages 27-56, available
www.jot.fm/issues/issue_2004_06/article2.
[5] Mike Barnett, K. Rustan M. Leino and Wolfram Schulte:The Spec# Programming
System: An Overview, in CASSIS 2004: Construction and Analysis of Safe, Sec
Interoperable Smart devices, Lecture Notes in Computer Science 3362, Springer-Verla
2004, available atresearch.microsoft.com/specsharp/papers/krml136.pdf; see also o
Spec# papers atresearch.microsoft.com/specsharp/.
[6] Kent Beck and Cynthia Andres:Extreme Programming Explained: Embrace
Change. 2nd edition, Addison-Wesley, 2004.
[7] Éric Bezault: Gobo Eiffel Test, online documentation a
www.gobosoft.com/eiffel/gobo/getest/index.html.
[8] Robert Binder: TestingObject-Oriented Systems: Models, Patterns, and Too,
Addison-Wesley, 1999.
[9] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Maubo
Antoine Miné, David Monniaux and Xavier Rival:ASTRÉE: A Static Analyzer for Large
Safety-Critical Software, in Applied Deductive Verification, Dagstuhl Seminar 3451,
November 2003, available atwww.di.ens.fr/~cousot/COUSOTtalks/Dagstuhl-3451-
2003.shtml. See also ASTRÉE page atwww.astree.ens.fr.
[10] Barry W. Boehm:Software Engineering Economics, Prentice Hall, 1981.
[11] Barry W. Boehm:A Spiral Model of Software Development and Enhancement, in
Computer (IEEE), vol. 21, no. 5, May 1988, pages 61-72.
[12] Barry W. Boehm et al.:Software Cost Estimation with COCOMO II, Prentice
Hall, 2000.
[13] Chandrasekhar Boyapati, Sarfraz Khurshid and Darko Marinov:Korat: Automated
Testing Based on Java Predicates, in Proceedings of the 2002 International Symposiu
on Software Testing and Analysis (ISSTA), Rome, July 22--24, 2002, available
tinyurl.com/qwwd3.

http://citeseer.ist.psu.edu/article/avizienis01fundamental.html
http://citeseer.ist.psu.edu/article/avizienis01fundamental.html
http://www.gobosoft.com/eiffel/gobo/getest/index.html
http://www.jot.fm/issues/issue_2004_06/article2
http://research.microsoft.com/specsharp/papers/krml136.pdf
http://research.microsoft.com/specsharp/
http://crest.cs.abo.fi/publications/public/1988/ACalculusOfRefinementsForProgramDerivationsA.pdf
http://crest.cs.abo.fi/publications/public/1988/ACalculusOfRefinementsForProgramDerivationsA.pdf
http://www.di.ens.fr/~cousot/COUSOTtalks/Dagstuhl-3451-2003.shtml
http://www.di.ens.fr/~cousot/COUSOTtalks/Dagstuhl-3451-2003.shtml
http://tinyurl.com/qwwd3
http://www.astree.ens.fr
http://tinyurl.com/qrm9m

30

nger-

ct
nted
orld,
also

f.

ages

mber
h-

at

uel
[14] T.Y. Chen, H. Leung and I.K. Mak:Adaptive random testing, in Advances in
Science - ASIAN 2004: Higher-Level Decision Making, 9th Asian Computing Science
Conference, ed. Michael J. Maher, Lecture Notes in Computer Science 3321, Spri
Verlag, 2004, available attinyurl.com/lpxn5.

[15] Ilinca Ciupa and Andreas Leitner:Automated Testing Based on Design by Contra,
in Proceedings of Net.ObjectsDays 2005, 6th Annual Conference on Object-Orie
and Internet-Based Technologies, Concepts and Applications for a Networked W
2005, pages 545-557, available atse.ethz.ch/people/ciupa/papers/soqua05.pdf. See
AutoTest page atse.ethz.ch/research/autotest.

[16] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer:Object Distance and
its Application to Adaptive Random testing of Object-Oriented Programs, submitted for
publication, 2006, available atse.ethz.ch/~meyer/publications/testing/object_distance.pd

[17] Edmund M. Clarke Jr., Orna Grumberg and Doron A. Peled:Model Checking, MIT
Press, 1999.

[18] Patrick Cousot:Verification by Abstract Interpretation, in International Symposium
on Verification Theory & Practice Honoring Zohar Manna’s 64th Birthday, ed. Nachum
Dershowitz, Lecture Notes in Computer Science 2772, Springer-Verlag, 2003, p
243-268.

[19] Michael Cusumano and Richard Selby:Microsoft Secrets, The Free Press, 1995.

[20] Ole-Johan Dahl, Edsger W. Dijkstra and C.A.R. Hoare:Structured Programming,
Academic Press, 1971.

[21] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe:Extended
Static Checking, Research Report 159, Compaq Systems Research Center, Dece
1998, available at ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/researc
reports/SRC-159.pdf.

[22] Edsger W. Dijkstra:Go To Statement Considered Harmful, in Communications of
the ACM, Vol. 11, No. 3, March 1968, pages 147-148, available
www.acm.org/classics/oct95/.

[23] Edsger W. Dijkstra:Notes on Structured Programming, in [20]; original typescript
available atwww.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[24] Edsger W. Dijkstra:A Discipline of Programming, Prentice Hall, 1978.

[25] Brian J. Dreger:Function Point Analysis, Prentice Hall, 1989.

[26] Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emman
Stapf:From Calls to Agents, in Journal of Object-Oriented Programming(JOOP), vol.
12, no. 6, September 1999, available atse.ethz.ch/~meyer/publications/joop/agent.pdf.

[27] Eclipse pages atwww.eclipse.org.

[28] ECMA/ISO: Eiffel: Analysis, Design and Programming Language, standard
ECMA 367, accepted in April 2006 as ISO standard, available atwww.ecma-
international.org/publications/standards/Ecma-367.htm.

[29] Eiffel open-source development site ateiffelsoftware.origo.ethz.ch/index.php/
Main_Page.

[30] Eiffel Software: EiffelStudio documentation, online ateiffel.com.

http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.eiffel.com
http://eiffelsoftware.origo.ethz.ch/
http://eiffelsoftware.origo.ethz.ch/
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/SRC-159.pdf
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/SRC-159.pdf
http://www.eclipse.org
http://se.ethz.ch/~meyer/publications/testing/object_distance.pdf
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://tinyurl.com/lpxn5
http://se.ethz.ch/people/ciupa/papers/soqua05.pdf
http://se.ethz.ch/research/autotest.html
http://se.ethz.ch/~meyer/publications/joop/agent.pdf
http://www.acm.org/classics/oct95/

31

,

J.

ages

at

s,
E

age

e

f
at

at

ms

E
at

t

[31] Michael D. Ernst, J. Cockrell, William G. Griswold and David Notkin:Dynamically
Discovering Likely Program Invariants to Support Program Evolution, in IEEE
Transactions on Software Engineering, vol. 27, no. 2, February 2001, pages 1-25
available atpag.csail.mit.edu/~mernst/pubs/invariants-tse2001.pdf.

[32] Erich Gamma, Richard Helms, Ralph Johnson and John Vlissides:Design Patterns,
Addison-Wesley, 1994.

[33] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli,Software Engineering, 2nd edition,
Prentice Hall, 2003.

[34] Richard Hamlet:Random Testing, in Encyclopedia of Software Engineering, ed.
J. Marciniak, 1994, available attinyurl.com/rcjxg.

[35] Brian Henderson-Sellers:Object-Oriented Metrics: Measures of Complexity,
Prentice Hall, 1995.

[36] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis and Sergio Yovine:Symbolic
Model Checking for Real-Time Systems, in Logic in Computer Science, Proceedings of
7th Symposium in Logics for Computer Science, Santa Cruz, California, 1992, p
394-406, available attinyurl.com/lb5fm.

[37] C.A.R. Hoare:An axiomatic basis for computer programming, in Communications
of the ACM, Vol. 12, no. 10, October 1969, pages 576 - 580, available
tinyurl.com/ory2s.

[38] C.A.R. Hoare and Jayadev Misra:Verified Software: Theories, Tools, Experiment
Vision of a Grand Challenge Project, October 2005, foundation paper for the VSTT
conference [77], available atvstte.ethz.ch/pdfs/vstte-hoare-misra.pdf.

[39] IFIP Working Group 10.4 on dependable computing and fault tolerance: home p
atwww.dependability.org.

[40] Michael Jackson:Problem Frames: Analysing and Structuring Softwar
Development Problems, Addison-Wesley, 2001.

[41] Jean-Marc Jézéquel and Bertrand Meyer:Design by Contract: The Lessons o
Ariane, in Computer(IEEE), vol. 30, no. 1, January 1997, pages 129-130, available
archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html.

[42] JUnit pages at SourceForge:junit.sourceforge.net.

[43] Gary T. Leavens and Yoonsik Cheon:Design by Contract with JML(Draft), at
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf; see also other JML papers
www.cs.iastate.edu/~leavens/JML/.

[44] Andreas Leitner, Ilinca Ciupa, Bertrand Meyer and Mark Howard:Reconciling
Manual and Automated Testing: The AutoTest Experience, submitted for publication,
2006.

[45] Nancy G. Leveson:System Safety in Computer-Controlled Automotive Syste,
SAE Congress, March 2000, available atsunnyday.mit.edu/papers/sae.pdf.

[46] Michael R. Lyu (ed.): Handbook of Software Reliability Engineering, IEE
Computer Society Press and McGraw-Hill, 1995; also available online
www.cse.cuhk.edu.hk/~lyu/book/reliability/.

[47] Zohar Manna and Amir Pnueli:The temporal logic of reactive and concurren
systems, Springer-Verlag, 1992.

http://www.dependability.org
http://sunnyday.mit.edu/papers/sae.pdf
http://www.cs.iastate.edu/~leavens/JML/
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf
http://tinyurl.com/ory2s
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
http://pag.csail.mit.edu/~mernst/pubs/invariants-tse2001.pdf
http://vstte.ethz.ch/pdfs/vstte-hoare-misra.pdf
http://tinyurl.com/lb5fm
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://tinyurl.com/rcjxg
http://junit.sourceforge.net

32

d
5.

the

-

at

at

03),

ct-

-271,

are
at
[48] Thomas J. McCabe:A Complexity Measure, in IEEE Transactions on Software
Engineering, vol. 2, no. 4, December 1976, pages 308-320.

[49] Thomas J. McCabe and Charles W. Butler:Design Complexity Measurement an
Testing, in Communications of the ACM, vol. 32, no. 12, December 1989, pages 1415-142

[50] Bertrand Meyer:Introduction to the Theory of Programming Languages, Prentice
Hall, 1990.

[51] Bertrand Meyer,The New Culture of Software Development: Reflections on
Practice of Object-Oriented Design, in Advances in Object-Oriented Software
Engineering, eds. D. Mandrioli, B. Meyer, Prentice Hall, 1991.

[52] Bertrand Meyer:Eiffel: The Language, 2nd printing, Prentice Hall, 1992.

[53] Bertrand Meyer:Applying “Design by Contract", in Computer(IEEE), 25, 10,
October 1992, pages 40-51.

[54] Bertrand Meyer:Object Success, Prentice Hall, 1995.

[55] Bertrand Meyer:Practice to Perfect: The Quality First Model,in Computer (IEEE),
May 1997, pages 102-106, available atse.ethz.ch/~meyer/publications/computer/
quality_first.pdf.

[56] Bertrand Meyer:UML: The Positive Spin, in American Programmer, 1997, available
atarchive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html.

[57] Bertrand Meyer:Object-Oriented Software Construction, 2ndedition, Prentice Hall,
1997.

[58] Bertrand Meyer, Christine Mingins and Heinz Schmidt:Providing Trusted
Components to the Industry, in Computer(IEEE), vol. 31, no. 5, May 1998, pages 104
105, available atse.ethz.ch/~meyer/publications/computer/trusted.pdf.

[59] Bertrand Meyer:The Role of Object-Oriented Metrics, in Computer (IEEE), vol.
31, no. 11, November 1998, pages 123-125, available
se.ethz.ch/~meyer/publications/computer/metrics.

[60] Bertrand Meyer,Every Little Bit Counts: Towards Reliable Software, in Computer
(IEEE_, vol. 32, no. 11, November 1999, pages 131-133, available
se.ethz.ch/~meyer/publications/computer/reliable.pdf.

[61] Bertrand Meyer:The Grand Challenge of Trusted Components, in ICSE 25
(International Conference on Software Engineering, Portland, Oregon, May 20
IEEE Computer Press, 2003.

[62] Bertrand Meyer:The Power of Abstraction, Reuse and Simplicity: An Obje
Oriented Library for Event-Driven Design,in From Object-Orientation to Formal
Methods: Essays in Memory of Ole-Johan Dahl, eds. Olaf Owe, Stein Krogdahl, Tom
Lyche, Lecture Notes in Computer Science 2635, Springer-Verlag, 2004, pages 236
available atse.ethz.ch/~meyer/publications/lncs/events.pdf.

[63] Bertrand Meyer:Offshore Development: The Unspoken Revolution in Softw
Engineering, in Computer (IEEE), January 2006, pages 122-124, available
se.ethz.ch/~meyer/publications/computer/outsourcing.pdf.

[64] Bertrand Meyer:What will remain of Extreme Programming?, in EiffelWorld, Vol.
5, no. 2, February 2006, available atwww.eiffel.com/
general/monthly_column/2006/February.html.

http://se.ethz.ch/~meyer/publications/computer/quality_first.pdf
http://se.ethz.ch/~meyer/publications/computer/quality_first.pdf
http://www.eiffel.com/general/monthly_column/2006/February.html
http://www.eiffel.com/general/monthly_column/2006/February.html
http://se.ethz.ch/~meyer/publications/computer/metrics
http://se.ethz.ch/~meyer/publications/computer/reliable.pdf
http://se.ethz.ch/~meyer/publications/computer/trusted.pdf
http://archive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html
http://se.ethz.ch/~meyer/publications/lncs/events.pdf
http://se.ethz.ch/~meyer/publications/computer/outsourcing.pdf

33

st at

rce

e

r
ring,

ce,

/

r

[65] Bertrand Meyer and Karine Arnout:Componentization: the Visitor Example, to
appear inComputer (IEEE), 2006, draft available atse.ethz.ch/~meyer/publications/
computer/visitor.pdf.
[66] Microsoft: Visual Studio pages atmsdn.microsoft.com/vstudio.
[67] Richard Mitchell and Jim McKim:Design by Contract by Example, Addison-
Wesley, 2001.
[68] Carroll Morgan:Programming from Specifications, 2ndedition, Prentice Hall, 1994,
available atweb.comlab.ox.ac.uk/oucl/publications/books/PfS/.
[69] John Musa:Software Reliability Engineering, 2nd edition, McGraw-Hill, 1998.
[70] Glenford J. Myers, Corey Sandler, Tom Badgett and Todd M. Thomas:The Art of
Software Testing, 2nd edition, Wiley, 2004.
[71] Jeff Offutt: Mutation testing papers atwww.ise.gmu.edu/~ofut/rsrch/mut.html.
[72] John Pincus: presentations (mostly PowerPoint slides) on PREfix and PREfa
research.microsoft.com/users/jpincus/.
[73] Eric Raymond:The Cathedral and the Bazaar: Musings on Linux and Open Sou
by an Accidental Revolutionary, O’ Reilly, 1999; earlier version available at
www.firstmonday.org/issues/issue3_3/raymond/.
[74] Software Engineering Institute, CMMI site, available atwww.sei.cmu.edu/cmmi.
[75] Matt Stephens and Doug Rosenberg:Extreme Programming Refactored: The Cas
Against XP, aPress, 2003.
[76] Axel van Lamsweerde:Goal-Oriented Requirements Engineering: A Guided Tou,
in Proceedings of the 5th IEEE International Symposium on Requirements Enginee
August 2001, available attinyurl.com/mscpj.
[77] Verified Software: Theories, Tools, Experiments: International IFIP conferen
ETH Zurich, October 2005, see VSTTE conference site atvstte.ethz.ch.
[78] John Viega: The Myth of Open-Source Security, 2000, available at
www.developer.com/tech/article.php/626641; follow-up article,Open-Source Security:
Still at Myth, September 2004, available atwww.onlamp.com/pub/a/security/2004/09/16
open_source_security_myths.html.
[79] Jeffrey M. Voas and Gary McGraw:Software Fault Injection: Inoculating Programs
Against Errors, Wiley, 1998.
[80] Jos Warmer and Anneke Kleppe:The Object Constraint Language: Getting You
Models Ready for MDA, 2nd edition, Addison-Wesley, 2003.
[81] Elaine J. Weyuker and Bingchiang Jeng:Analyzing Partition Testing Strategies, in
IEEETransactions on Software Engineering, vol. 17, no. 9, July 1991, pp. 97-108.
[82] Wikipedia: entry “Mars Climate Orbiter”, available at
en.wikipedia.org/wiki/Mars_Climate_Orbiter.
[83] Edward Yourdon:When Good Enough Software Is Best, in Software(IEEE), vol.
12, no. 3, May 1995, pages 79-81.

http://www.sei.cmu.edu/cmmi
http://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://www.developer.com/tech/article.php/626641
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.onlamp.com/pub/a/security/2004/09/16/open_source_security_myths.html
http://www.onlamp.com/pub/a/security/2004/09/16/open_source_security_myths.html
http://research.microsoft.com/users/jpincus/
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://web.comlab.ox.ac.uk/oucl/publications/books/PfS/
http://tinyurl.com/mscpj
http://msdn.microsoft.com/vstudio
http://vstte.ethz.ch
http://www.ise.gmu.edu/~ofut/rsrch/mut.html

	Dependable software
	1 OVERVIEW
	2 SCOPE AND TERMINOLOGY
	2.1 Reliability and dependability
	2.2 Defining reliability
	2.3 Correctness, robustness, security
	2.4 Product and process
	2.5 The products of software
	2.6 Deficiencies
	2.7 Verification and validation

	3 CLASSIFYING APPROACHES
	4 PROCESS-BASED APPROACHES
	4.1 Lifecycle models
	4.2 Organizational standards
	4.3 Extreme programming
	4.4 Code inspections
	4.5 Open-source processes
	4.6 Requirements engineering
	4.7 Design patterns
	4.8 Trusted components

	5 TOOLS AND ENVIRONMENTS
	5.1 Configuration management
	5.2 Metrics and models
	5.3 Static analyzers
	5.4 Integrated development environments

	6 PROGRAMMING LANGUAGES
	7 STATIC VERIFICATION TECHNIQUES
	7.1 Proofs
	7.2 Static analysis
	7.3 Model checking

	8 DESIGN BY CONTRACT
	9 TESTING
	9.1 Components of a test
	9.2 Kinds of test
	9.3 Managing the testing process
	9.4 Estimating test quality
	9.5 Defining oracles
	9.6 Test case generation

	10 CONCLUSION
	Acknowledgments
	References

